JP2009292318A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009292318A
JP2009292318A JP2008147997A JP2008147997A JP2009292318A JP 2009292318 A JP2009292318 A JP 2009292318A JP 2008147997 A JP2008147997 A JP 2008147997A JP 2008147997 A JP2008147997 A JP 2008147997A JP 2009292318 A JP2009292318 A JP 2009292318A
Authority
JP
Japan
Prior art keywords
water
refrigerant
condenser
condensed water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008147997A
Other languages
Japanese (ja)
Inventor
Kenichiro Sato
憲一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2008147997A priority Critical patent/JP2009292318A/en
Publication of JP2009292318A publication Critical patent/JP2009292318A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3233Cooling devices characterised by condensed liquid drainage means
    • B60H1/32331Cooling devices characterised by condensed liquid drainage means comprising means for the use of condensed liquid, e.g. for humidification or for improving condenser performance

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger can effectively improve condensing capacity of a condenser by properly utilizing condensed water of an evaporator. <P>SOLUTION: This heat exchanger 2 is provided with a coolant device 4 having the evaporator 10 for heating coolant and the condenser 16 for condensing the coolant via the evaporator 10, and a water circuit 6 for exchanging heat of the condensed water dropped from the evaporator 10 according to heat exchange in the evaporator 10 with the coolant flowing in the condenser by collecting and circulating condensed water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換装置に係り、詳しくは、車両用空調装置として用いて好適な熱交換装置に関する。   The present invention relates to a heat exchange device, and more particularly to a heat exchange device suitable for use as a vehicle air conditioner.

この種の熱交換装置は、例えば車両に搭載される空調装置として利用され、冷媒を加熱する蒸発器、該蒸発器を経由した冷媒を凝縮させる凝縮器を有する冷媒回路を備えている。
そして、特許文献1には、蒸発器における熱交換に伴い蒸発器から滴下する凝縮水を凝縮器の表面に直接に噴射し、凝縮器の凝縮能力を補助する散水装置を備えた熱交換装置が開示されている。
特開2002−372385号公報
This type of heat exchange device is used as, for example, an air conditioner mounted on a vehicle, and includes a refrigerant circuit having an evaporator that heats the refrigerant and a condenser that condenses the refrigerant that passes through the evaporator.
And in patent document 1, the heat exchange apparatus provided with the watering apparatus which injects the condensed water dripped from an evaporator with the heat exchange in an evaporator directly on the surface of a condenser, and assists the condensing capability of a condenser. It is disclosed.
JP 2002-372385 A

しかしながら、上記従来技術では、凝縮器の表面に噴射された凝縮水を回収することができないため、外気温が高い場合などには凝縮水量が不足して凝縮器の凝縮能力を継続的かつ充分に確保することができないとの問題がある。
また、凝縮器の表面に凝縮水を噴射した後に凝縮器の表面の水分に塵埃が付着し、凝縮器が汚れ、凝縮器の凝縮能力が低下するおそれがある。
However, in the above prior art, the condensed water sprayed on the surface of the condenser cannot be recovered. Therefore, when the outside air temperature is high, the amount of condensed water is insufficient and the condensation capacity of the condenser is continuously and sufficiently increased. There is a problem that it cannot be secured.
Further, after the condensed water is jetted onto the surface of the condenser, dust adheres to the moisture on the surface of the condenser, and the condenser may be contaminated, and the condensation capacity of the condenser may be reduced.

更に、凝縮器の表面に凝縮水を噴射する際に、車両のエンジンルーム内に水分が飛散し、エンジンルーム内の他の部品に悪影響を及ぼすおそれがある。
本発明は、このような課題に鑑みてなされたもので、蒸発器の凝縮水を適切に利用して凝縮器の凝縮能力を効果的に向上することができる熱交換装置を提供することを目的とする。
Furthermore, when condensate is sprayed onto the surface of the condenser, moisture is scattered in the engine room of the vehicle, which may adversely affect other parts in the engine room.
The present invention has been made in view of such problems, and an object of the present invention is to provide a heat exchange device that can effectively improve the condensing capacity of the condenser by appropriately using the condensed water of the evaporator. And

上記の目的を達成するべく、請求項1記載の熱交換装置は、冷媒を加熱する蒸発器、蒸発器を経由した冷媒を凝縮させる凝縮器を有する冷媒回路と、蒸発器における熱交換に伴い蒸発器から滴下する凝縮水を回収、循環させて凝縮器を流れる冷媒と熱交換させる水回路とを備えることを特徴としている。
また、請求項2記載の発明では、請求項1において、凝縮器は、冷媒回路を循環する冷媒が通液される冷媒通路と、水回路を循環する凝縮水が通液される水通路とを有し、冷媒通路及び水通路はチューブに一体に形成されてなることを特徴としている。
In order to achieve the above object, a heat exchanging apparatus according to claim 1 is an evaporator that heats a refrigerant, a refrigerant circuit that has a condenser that condenses the refrigerant that has passed through the evaporator, and an evaporator that accompanies heat exchange in the evaporator. It is characterized by comprising a water circuit that collects and circulates the condensed water dripped from the condenser and exchanges heat with the refrigerant flowing through the condenser.
According to a second aspect of the present invention, in the first aspect, the condenser includes a refrigerant passage through which the refrigerant circulating in the refrigerant circuit is passed and a water passage through which the condensed water circulating through the water circuit is passed. And the coolant passage and the water passage are formed integrally with the tube.

更に、請求項3記載の発明では、請求項2において、水回路は、蒸発器から滴下する凝縮水を一旦貯蔵するタンクと、タンクに貯蔵された凝縮水を水通路へ圧送するポンプとを有し、凝縮器における熱負荷に応じてポンプを駆動する制御手段を具備することを特徴としている。
更にまた、請求項4記載の発明では、請求項2または3において、凝縮器は、チューブが複数積層されてなり、水回路は、複数の水通路の入口に凝縮水を拡散させて水通路に流入させるノズルを有することを特徴としている。
Further, in the invention described in claim 3, in claim 2, the water circuit has a tank that temporarily stores the condensed water dripped from the evaporator, and a pump that pumps the condensed water stored in the tank to the water passage. And a control means for driving the pump in accordance with the heat load in the condenser.
Furthermore, in the invention of claim 4, in claim 2 or 3, the condenser is formed by stacking a plurality of tubes, and the water circuit diffuses condensed water to the inlets of the plurality of water passages to form the water passages. It is characterized by having an inflow nozzle.

また、請求項5記載の発明では、請求項2乃至4の何れかにおいて、水回路は、水通路の出口に、水通路内の凝縮水を所定圧力以下に維持しつつ水通路の外部に排水する真空ポンプを有することを特徴としている。
更に、請求項6記載の発明では、請求項5において、冷媒回路は、蒸発器を経由した冷媒を圧縮し凝縮器に向けて吐出する圧縮機と、蒸発器を経由後に圧縮機に至るまでの冷媒を真空ポンプから排水された凝縮水と熱交換させる熱交換器とを有することを特徴としている。
According to a fifth aspect of the present invention, in any one of the second to fourth aspects, the water circuit drains outside the water passage at the outlet of the water passage while maintaining the condensed water in the water passage below a predetermined pressure. It is characterized by having a vacuum pump.
Further, in the invention described in claim 6, in claim 5, the refrigerant circuit includes a compressor that compresses the refrigerant that has passed through the evaporator and discharges the refrigerant toward the condenser, and the compressor that passes through the evaporator and then reaches the compressor. It has a heat exchanger for exchanging heat with the condensed water drained from the vacuum pump.

更にまた、請求項7記載の発明では、請求項1乃至6の何れかにおいて、水回路は、フィルタを有することを特徴としている。
また、請求項8記載の発明では、請求項3乃至7の何れかにおいて、タンクは、タンク内に貯蔵される凝縮水が所定液位以上になるとき、凝縮水をタンクの外部に排出するフロート弁を有することを特徴としている。
Furthermore, in the invention described in claim 7, in any one of claims 1 to 6, the water circuit has a filter.
The invention according to claim 8 is the float according to any one of claims 3 to 7, wherein the tank discharges the condensed water to the outside of the tank when the condensed water stored in the tank reaches a predetermined liquid level or higher. It is characterized by having a valve.

請求項1記載の本発明の熱交換装置によれば、蒸発器における熱交換に伴い蒸発器から滴下する凝縮水を回収、循環させて凝縮器を流れる冷媒と熱交換させる水回路を備える。これにより、凝縮器の熱負荷が大きいときには、凝縮器にて冷媒の凝縮に供した凝縮水を回収して再利用することができるため、凝縮器の凝縮能力を継続的かつ充分に確保することができる。   According to the heat exchanging apparatus of the present invention as set forth in claim 1, a water circuit is provided that collects and circulates the condensed water dripping from the evaporator along with heat exchange in the evaporator and exchanges heat with the refrigerant flowing through the condenser. As a result, when the heat load of the condenser is large, the condensed water used for condensing the refrigerant in the condenser can be collected and reused, so that the condensation capacity of the condenser is continuously and sufficiently secured. Can do.

また、請求項2記載の発明によれば、凝縮器は、冷媒回路を循環する冷媒が通液される冷媒通路と、水回路を循環する凝縮水が通液される水通路とを有し、冷媒通路及び水通路はチューブに一体に形成されてなる。これにより、凝縮器において凝縮水と冷媒とを熱交換させる際に、凝縮器やその冷媒通路の表面の水分に塵埃が付着することを防止することができる。従って、凝縮器の汚れ、ひいては汚れの付着による凝縮器の凝縮能力の低下を防止することができるため、凝縮器の凝縮能力を更に確実に確保することができるとともに、凝縮器の耐久性やメンテナンス性をも向上することができる。   According to the invention described in claim 2, the condenser has a refrigerant passage through which the refrigerant circulating in the refrigerant circuit is passed, and a water passage through which condensed water circulating through the water circuit is passed, The refrigerant passage and the water passage are formed integrally with the tube. Thereby, when heat is exchanged between the condensed water and the refrigerant in the condenser, it is possible to prevent dust from adhering to the moisture on the surface of the condenser and the refrigerant passage. Accordingly, it is possible to prevent the condenser from deteriorating due to dirt on the condenser and, in turn, dirt, thereby further ensuring the condenser's condensing capacity and ensuring durability and maintenance of the condenser. Can also be improved.

しかも、凝縮器周辺の熱交換装置を構成する他の機器や部品に凝縮水が飛散することを防止することができるため、凝縮器のみならず熱交換装置全体の耐久性やメンテナンス性を向上することができる。
更に、請求項3記載の発明によれば、水回路は、蒸発器から滴下する凝縮水を一旦貯蔵するタンクと、タンクに貯蔵された凝縮水を水通路へ圧送するポンプとを有し、凝縮器における熱負荷に応じてポンプを駆動する制御手段を具備する。これにより、凝縮器における熱負荷に応じてタンクに貯蔵した凝縮水を凝縮器に適宜供給することができるため、凝縮器の凝縮能力をより一層確実に確保することができる。
In addition, since it is possible to prevent the condensed water from splashing on other devices and parts constituting the heat exchange device around the condenser, the durability and maintainability of not only the condenser but the entire heat exchange device are improved. be able to.
According to a third aspect of the present invention, the water circuit has a tank that temporarily stores the condensed water dripped from the evaporator, and a pump that pumps the condensed water stored in the tank to the water passage. The control means which drives a pump according to the thermal load in a vessel is provided. Thereby, since the condensed water stored in the tank can be appropriately supplied to the condenser according to the heat load in the condenser, the condensing capacity of the condenser can be ensured more reliably.

更にまた、請求項4記載の発明によれば、凝縮器は、チューブが複数積層されてなり、水回路は、複数の水通路の入口に凝縮水を拡散させて水通路に流入させるノズルを有する。これにより、各チューブの各水通路に万遍なく凝縮水を流入させることができ、凝縮器全体において凝縮水が冷媒から蒸発潜熱を効率的に奪うことができるため、凝縮器の凝縮能力を向上することができる。   Furthermore, according to the invention described in claim 4, the condenser is formed by stacking a plurality of tubes, and the water circuit has a nozzle for diffusing condensed water at the inlets of the plurality of water passages to flow into the water passages. . As a result, the condensed water can flow uniformly into each water passage of each tube, and the condensed water can efficiently take the latent heat of vaporization from the refrigerant in the entire condenser, thus improving the condensation capacity of the condenser. can do.

また、請求項5記載の発明によれば、水回路は、水通路の出口部に、水通路内の凝縮水を所定圧力以下に維持しつつ水通路の外部に排水する真空ポンプを有する。これにより、水通路内を凝縮水が蒸発する圧力にすることができるため、蒸発した凝縮水、即ち蒸気によって冷媒からの蒸発潜熱を効率的に奪うことができるため、凝縮器の凝縮能力を更に向上することができる。   According to the invention described in claim 5, the water circuit has a vacuum pump at the outlet of the water passage that drains the condensed water in the water passage to the outside of the water passage while maintaining the pressure below a predetermined pressure. As a result, the pressure inside the water passage can be set to a pressure at which the condensed water evaporates, so that the latent heat of evaporation from the refrigerant can be efficiently taken away by the evaporated condensed water, i.e., the steam. Can be improved.

更に、請求項6記載の発明によれば、冷媒回路は、蒸発器を経由した冷媒を圧縮し凝縮器に向けて吐出する圧縮機と、蒸発器を経由後に圧縮機に至るまでの冷媒を真空ポンプから排水された凝縮水と熱交換させる熱交換器とを有する。これにより、蒸発器を経由後に圧縮機に至るまでの低温低圧冷媒によって、真空ポンプから排水される気液混合状態の凝縮水を確実に液相にしてからタンクに戻すことができるため、水回路における凝縮水の循環効率が向上し、ひいては凝縮器の凝縮能力を更に向上することができる。   Furthermore, according to the invention described in claim 6, the refrigerant circuit compresses the refrigerant passing through the evaporator and discharges it toward the condenser, and vacuums the refrigerant passing through the evaporator and reaching the compressor. A heat exchanger for exchanging heat with the condensed water drained from the pump; As a result, the low-temperature and low-pressure refrigerant that passes through the evaporator and reaches the compressor can reliably return the condensed liquid in the gas-liquid mixed state drained from the vacuum pump to the liquid phase and then return it to the tank. The circulation efficiency of the condensed water in can be improved, so that the condensing capacity of the condenser can be further improved.

更にまた、請求項7記載の発明によれば、水回路は、フィルタを有することにより、水回路を循環する凝縮水の汚れを除去することができるため、凝縮器の凝縮能力及び耐久性並びにメンテナンス性を更に向上することができる。
また、請求項8記載の発明によれば、タンクは、タンク内に貯蔵される凝縮水が所定液位以上になるとき、凝縮水をタンクの外部に排出するフロート弁を有する。これにより、タンク内の余分な凝縮水はオーバーフローさせて排出することができ、タンクには凝縮器の凝縮能力、ひいては熱交換装置の熱交換能力に合致した凝縮水量が常時確保されるため、凝縮器の凝縮能力をより一層確実に確保することができる。
Furthermore, according to the seventh aspect of the present invention, since the water circuit has the filter, it is possible to remove the dirt of the condensed water circulating in the water circuit, so that the condensation capacity and durability of the condenser and the maintenance are maintained. The property can be further improved.
According to the eighth aspect of the present invention, the tank has a float valve that discharges the condensed water to the outside of the tank when the condensed water stored in the tank reaches a predetermined liquid level or higher. As a result, excess condensate in the tank can be overflowed and discharged. Since the tank always has an amount of condensate that matches the condenser's condensing capacity and thus the heat exchanging capacity of the heat exchanger, The condensing capacity of the vessel can be ensured more reliably.

以下、図面により本発明の一実施形態について説明する。
図1は本発明の熱交換装置の一例を模式的に示しており、この熱交換装置2は例えば車両用空調装置として用いられ、冷媒回路4と水回路6とから構成されている。
冷媒回路4は、冷媒が循環する冷媒循環路8に、冷媒の流れ方向から順に蒸発器10、内部熱交換器(熱交換器)12、圧縮機14、凝縮器16、膨張弁18が介挿されて閉回路をなしている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows an example of a heat exchange device according to the present invention. This heat exchange device 2 is used as, for example, a vehicle air conditioner, and includes a refrigerant circuit 4 and a water circuit 6.
In the refrigerant circuit 4, an evaporator 10, an internal heat exchanger (heat exchanger) 12, a compressor 14, a condenser 16, and an expansion valve 18 are inserted in the refrigerant circulation path 8 through which the refrigerant circulates in order from the refrigerant flow direction. Has been closed circuit.

蒸発器10は、車両の車室内の空気と蒸発器10の冷媒通路10aを流れる冷媒とを熱交換させる熱交換器であって、車室内の空気を熱源として冷媒を加熱して蒸発させることにより、冷媒回路4側に車室内の空気の熱を回収し、車室内を所望の空調温度に調整している。
内部熱交換器12は、蒸発器10を経由後に圧縮機14に至るまでの低温低圧冷媒を水回路6を循環する凝縮水、詳しくは後で詳述する真空ポンプ30から排水される気液混合状態の凝縮水と熱交換させている。
The evaporator 10 is a heat exchanger that exchanges heat between the air in the vehicle compartment of the vehicle and the refrigerant flowing through the refrigerant passage 10a of the evaporator 10, and heats and evaporates the refrigerant using the air in the vehicle compartment as a heat source. The heat of the air in the passenger compartment is recovered on the refrigerant circuit 4 side, and the passenger compartment is adjusted to a desired air conditioning temperature.
The internal heat exchanger 12 is a gas-liquid mixture drained from the condensed water that circulates through the water circuit 6 through the low-temperature and low-pressure refrigerant that passes through the evaporator 10 and then reaches the compressor 14. Heat exchange with condensed water in the state.

圧縮機14は、内部熱交換器12を経由した冷媒を圧縮して過熱蒸気の状態としている。
凝縮器16は、圧縮機14から吐出される冷媒を凝縮液化する熱交換器であって、凝縮器16内の冷媒通路16aに外気を送風するためのファン17を備えている。
ファン17による送風によって外気の熱で凝縮された液冷媒は、内部熱交換器12を経て膨張弁18に送出され、膨張弁18を経由して膨張、減圧された後に蒸発器10に向けて送出される。
The compressor 14 compresses the refrigerant that has passed through the internal heat exchanger 12 and is in the state of superheated steam.
The condenser 16 is a heat exchanger that condenses and liquefies the refrigerant discharged from the compressor 14, and includes a fan 17 for blowing outside air to the refrigerant passage 16 a in the condenser 16.
The liquid refrigerant condensed by the heat of the outside air by the air blown by the fan 17 is sent to the expansion valve 18 via the internal heat exchanger 12, expanded and depressurized via the expansion valve 18, and then sent to the evaporator 10. Is done.

このように構成される冷媒回路4では、蒸発器10における熱交換に伴い、蒸発器10の冷媒通路10aの表面に車室内の空気に含まれる水分が凝縮した凝縮水が付着し、蒸発器10の下方に滴下する。水回路6は、この凝縮水を回収して循環させ、凝縮器16、即ち冷媒通路16aを流れる冷媒の凝縮液化に利用している。
詳しくは、水回路6は、凝縮水が循環する水循環路20に、凝縮水の流れ方向から順にタンク22、ポンプ24、フィルタ26、ノズル28、凝縮器16内に設けられる水通路16b、真空ポンプ30、内部熱交換器12が介挿されて閉回路をなしている。
In the refrigerant circuit 4 configured as described above, with heat exchange in the evaporator 10, condensed water condensed with moisture contained in the air in the passenger compartment adheres to the surface of the refrigerant passage 10 a of the evaporator 10. Dripping below. The water circuit 6 collects and circulates this condensed water and uses it for condensing and liquefying the refrigerant flowing through the condenser 16, that is, the refrigerant passage 16a.
Specifically, the water circuit 6 is provided in a water circulation path 20 through which condensed water circulates, in order from the direction of the condensed water flow, a tank 22, a pump 24, a filter 26, a nozzle 28, a water passage 16b provided in the condenser 16, and a vacuum pump. 30, an internal heat exchanger 12 is inserted to form a closed circuit.

タンク22には、水循環路20の他、蒸発器10から延びる凝縮水の回収路32が接続され、蒸発器10から滴下する凝縮水は回収路32を介してタンク22に一旦貯蔵され、そこからタンク22に装着されたポンプ24にて水通路16b側へ圧送される。
ポンプ24は、車両や熱交換装置2を総合的に制御する図示しない電子制御装置(制御手段)に電気的に接続され、水通路16bを流れる凝縮水の温度および/または凝縮器16の周囲の温度および/または凝縮器16内における冷媒の凝縮圧力、即ち凝縮器16の熱負荷に応じて駆動され、凝縮器16における熱負荷に応じた量の凝縮水をタンク22から水通路16b側に供給する。尚、車室内の空調を含めた環境や車両の運転状況などに応じ、車室内の快適性や車両の省燃費制御などと同調させてポンプ24を駆動しても良い。
In addition to the water circulation path 20, a condensed water recovery path 32 extending from the evaporator 10 is connected to the tank 22, and the condensed water dripping from the evaporator 10 is temporarily stored in the tank 22 via the recovery path 32, and from there The pump 24 attached to the tank 22 is pumped toward the water passage 16b.
The pump 24 is electrically connected to an electronic control device (control means) (not shown) that comprehensively controls the vehicle and the heat exchange device 2, and the temperature of the condensed water flowing through the water passage 16 b and / or around the condenser 16. Driven according to the temperature and / or the condensation pressure of the refrigerant in the condenser 16, that is, the heat load of the condenser 16, and supplies the amount of condensed water according to the heat load in the condenser 16 from the tank 22 to the water passage 16b side. To do. It should be noted that the pump 24 may be driven in synchronism with the comfort of the passenger compartment or the fuel saving control of the vehicle according to the environment including the air conditioning in the passenger compartment or the driving situation of the vehicle.

図2のタンク22の要部拡大図に示されるように、タンク22内の上部には、タンク22内まで延びる回収路32の下端開口部32aにフロート弁34が設けられ、このフロート弁34は通常は開弁され、回収路32を流れる凝縮水は下端開口部32aからタンク22内に流入する。
一方、タンク22に貯蔵される凝縮水が所定液位を超えると、フロート弁34が凝縮水の浮力により閉弁し、下端開口部32aを閉塞する。回収路32には排水路36が接続されており、回収路32を流れる凝縮水は、フロート弁34の閉弁によってタンク22内に流入することなく排水路36を流れてタンク22の外部へ排出される。
As shown in the enlarged view of the main part of the tank 22 in FIG. 2, a float valve 34 is provided at the upper end of the tank 22 at the lower end opening 32 a of the recovery path 32 extending into the tank 22. Normally, the valve is opened and the condensed water flowing through the recovery path 32 flows into the tank 22 from the lower end opening 32a.
On the other hand, when the condensed water stored in the tank 22 exceeds a predetermined liquid level, the float valve 34 is closed by the buoyancy of the condensed water and closes the lower end opening 32a. A drainage channel 36 is connected to the recovery channel 32, and the condensed water flowing through the recovery channel 32 flows through the drainage channel 36 without flowing into the tank 22 by the valve closing of the float valve 34 and is discharged to the outside of the tank 22. Is done.

フィルタ26は、水循環路20を循環する凝縮水の汚れを水通路16bの上流側にて除去している。
ノズル28は、水通路16bの入口近傍にて水循環路20の流路を狭めている。
真空ポンプ30は、その圧送能力を可変に構成された例えばダイアフラム式のポンプであって、水通路16bを流れる凝縮水をタンク22に向けて圧送する。
The filter 26 removes dirt of condensed water circulating in the water circulation path 20 on the upstream side of the water path 16b.
The nozzle 28 narrows the flow path of the water circulation path 20 in the vicinity of the inlet of the water path 16b.
The vacuum pump 30 is, for example, a diaphragm pump having a variable pumping capacity, and pumps the condensed water flowing through the water passage 16 b toward the tank 22.

ここで、図3の凝縮器16の斜視図に示されるように、水通路16bは凝縮器16内で冷媒通路16aと一体化されたチューブ38内に形成され、凝縮器16は、このチューブ38の他、フィン40、分配部材42A,42Bから構成されている。
チューブ38は、その両端、即ち冷媒通路16a及び水通路16bの出入り口が開口した平板状をなして複数設けられ、フィン40を介して積層されている。
Here, as shown in the perspective view of the condenser 16 in FIG. 3, the water passage 16 b is formed in a tube 38 integrated with the refrigerant passage 16 a in the condenser 16, and the condenser 16 is formed in the tube 38. In addition, it is composed of fins 40 and distribution members 42A and 42B.
A plurality of tubes 38 are provided in the form of a flat plate having both ends, that is, the entrances and exits of the coolant passage 16 a and the water passage 16 b, and are stacked via fins 40.

フィン40は、波板状に形成され、積層されるチューブ38間にてこれらチューブ38に当接されるとともに、チューブ38に沿って設けられている。また、各フィン40は各チューブ38とともに分配部材42A,42Bに例えばロー付け固定されている。
ここで、フィン40を設けることにより、冷媒は凝縮水との熱交換に加え、ファン17による送風によっても効果的に冷却されるが、冷媒の蒸発潜熱はフィン40自体をも冷却するため、ファン17による送風がフィン40により冷却され、冷媒の凝縮液化を促進する。
The fins 40 are formed in a corrugated plate shape and are in contact with the tubes 38 between the stacked tubes 38 and are provided along the tubes 38. The fins 40 are fixed to the distribution members 42A and 42B together with the tubes 38 by, for example, brazing.
Here, by providing the fins 40, the refrigerant is effectively cooled not only by heat exchange with the condensed water but also by air blown by the fan 17, but the latent heat of vaporization of the refrigerant also cools the fins 40 itself. The air blown by 17 is cooled by the fins 40 to promote the condensation of the refrigerant.

分配部材42A,42Bは、有底有蓋のパイプ状に形成され、各分配部材42A,42B内には各チューブ38の両端開口がそれぞれ位置づけられている。
詳しくは、図4の図3、A−A方向からみた凝縮器16の要部断面図に示されるように、チューブ38は、冷媒通路16aと水通路16bとが隔壁16cにより仕切られて構成されている。
The distribution members 42A and 42B are formed in a pipe shape with a bottom and a lid, and both end openings of the tubes 38 are positioned in the distribution members 42A and 42B, respectively.
Specifically, as shown in FIG. 3 in FIG. 4 and a cross-sectional view of the main part of the condenser 16 as viewed from the direction AA, the tube 38 is configured by partitioning a refrigerant passage 16a and a water passage 16b by a partition wall 16c. ing.

また、図5の図4、B−B方向からみたチューブ38の断面図にも示されるように、冷媒通路16aは複数の小通路16dに分割されている。
一方、各分配部材42A,42B内の長手方向には、冷媒通路16aが開口される空間Saと水通路16bが開口される空間Sbとを各チューブ38の隔壁16cの位置にて仕切る仕切り部材44A,44Bがそれぞれ延設され、各仕切り部材44A,44Bの一部は各チューブ38の隔壁16cの位置に差し込み固定されている。
Further, as shown in FIG. 4 in FIG. 5 and a cross-sectional view of the tube 38 viewed from the BB direction, the refrigerant passage 16a is divided into a plurality of small passages 16d.
On the other hand, in the longitudinal direction in each distribution member 42A, 42B, a partition member 44A that partitions the space Sa in which the refrigerant passage 16a is opened and the space Sb in which the water passage 16b is opened at the position of the partition wall 16c of each tube 38. 44B extend, and a part of each partition member 44A, 44B is inserted and fixed at the position of the partition wall 16c of each tube 38.

また、分配部材42Aには、冷媒循環路8及び水循環路20が接続部材46Aを介して接続される。即ち、冷媒及び凝縮水は、接続部材46Aを介して分配部材42Aの各空間Sa,Sbにそれぞれ流入し、各チューブの38の通路16a,16bにそれぞれ分配して流入される。この際、凝縮水はノズル28を介して空間Sbに流入されることにより、各チューブ38の各水通路16bに拡散されて流入される。   Further, the refrigerant circulation path 8 and the water circulation path 20 are connected to the distribution member 42A via a connection member 46A. That is, the refrigerant and the condensed water flow into the spaces Sa and Sb of the distribution member 42A through the connection member 46A, and are distributed and flow into the passages 16a and 16b of the tubes 38, respectively. At this time, the condensed water flows into the space Sb through the nozzle 28, and is diffused and flows into the water passages 16b of the tubes 38.

一方、分配部材42Bには、冷媒循環路8及び水循環路20が接続部材46Bを介して接続されている。即ち、冷媒及び凝縮水は、通路16a,16bを経てそれぞれ分配部材42Bの各空間Sa,Sbに分配されて流入され、接続部材46Bを介してそれぞれ冷媒循環路8及び水循環路20に流出される。
このようにして構成される凝縮器16では、図3中では凝縮器16の右上部分から流入された冷媒及び凝縮水が右側から左側に向けて熱交換しながら並行して流れ、この際に凝縮水が冷媒からの蒸発潜熱を奪って冷媒を冷却した後に、凝縮器16の左下部分から凝縮器16の外部へ流出される。
On the other hand, the refrigerant circulation path 8 and the water circulation path 20 are connected to the distribution member 42B via a connection member 46B. That is, the refrigerant and the condensed water are distributed and flowed into the spaces Sa and Sb of the distribution member 42B through the passages 16a and 16b, respectively, and flow out to the refrigerant circulation path 8 and the water circulation path 20 through the connection member 46B, respectively. .
In the condenser 16 configured in this way, in FIG. 3, the refrigerant and the condensed water flowing in from the upper right part of the condenser 16 flow in parallel while exchanging heat from the right side to the left side. Water takes out the latent heat of vaporization from the refrigerant and cools the refrigerant, and then flows out from the lower left part of the condenser 16 to the outside of the condenser 16.

ここで、真空ポンプ30は水通路16bを流れる凝縮水の温度、即ち凝縮器16の熱負荷に応じて水通路16b内の空気静圧を凝縮水が蒸発される圧力に減圧している。
具体的には、凝縮水の温度が30℃〜40℃と仮定すると、水の蒸気圧曲線によれば、水通路16b内が0.5bar以下になるように真空ポンプ30を駆動することにより、凝縮水は水通路16b内において蒸発される。そして、真空ポンプ30から排出された気液混合状態の凝縮水は、内部熱交換器12にて蒸発器10を経由後に圧縮機14に至るまでの低温低圧冷媒によって液相にされた後、タンク22に戻される。
Here, the vacuum pump 30 reduces the static air pressure in the water passage 16b to a pressure at which the condensed water is evaporated according to the temperature of the condensed water flowing through the water passage 16b, that is, the heat load of the condenser 16.
Specifically, assuming that the temperature of the condensed water is 30 ° C. to 40 ° C., according to the water vapor pressure curve, by driving the vacuum pump 30 so that the inside of the water passage 16b is 0.5 bar or less, The condensed water is evaporated in the water passage 16b. The condensed water in the gas-liquid mixed state discharged from the vacuum pump 30 is converted into a liquid phase by the low-temperature and low-pressure refrigerant that passes through the evaporator 10 and then reaches the compressor 14 in the internal heat exchanger 12, and then the tank Return to 22.

以上のように、本実施形態では、水回路6を備えることにより、凝縮器16の熱負荷が大きいときには、凝縮器16にて冷媒の凝縮に供した凝縮水を回収して再利用することができるため、凝縮器16の凝縮能力を継続的かつ充分に確保することができる。
また、冷媒通路16a及び水通路16bをチューブ38に一体に形成することにより、凝縮器16において凝縮水と冷媒とを熱交換させる際に、凝縮器16やその冷媒通路16aの表面の水分に塵埃が付着することを防止することができる。従って、凝縮器16の汚れ、ひいては汚れの付着による凝縮器16の凝縮能力の低下を防止することができるため、凝縮器16の凝縮能力を更に確実に確保することができるとともに、凝縮器16の耐久性やメンテナンス性をも向上することができる。
As described above, in the present embodiment, by providing the water circuit 6, when the heat load of the condenser 16 is large, the condensed water used for the refrigerant condensation in the condenser 16 can be recovered and reused. Therefore, the condensation capacity of the condenser 16 can be ensured continuously and sufficiently.
Further, by forming the refrigerant passage 16a and the water passage 16b integrally with the tube 38, when heat is exchanged between the condensed water and the refrigerant in the condenser 16, dust on the surface of the condenser 16 and the surface of the refrigerant passage 16a. Can be prevented from adhering. Accordingly, since the condenser 16 can be prevented from being deteriorated, and consequently the condensation ability of the condenser 16 can be prevented from being deteriorated due to the adhesion of the dirt, the condenser 16 can be more reliably secured. Durability and maintainability can also be improved.

しかも、凝縮器16周辺の熱交換装置2を構成する他の機器や部品、ひいては車両のエンジンルーム内に凝縮水が飛散することを防止することができるため、凝縮器16のみならず熱交換装置2全体、ひいては車両全体の耐久性やメンテナンス性を向上することができる。
更に、凝縮器16における熱負荷に応じてタンク22に貯蔵した凝縮水を凝縮器16に適宜供給することにより、凝縮器16の凝縮能力をより一層確実に確保することができる。
In addition, it is possible to prevent the condensed water from splashing into other equipment and parts constituting the heat exchange device 2 around the condenser 16 and thus into the engine room of the vehicle, so that not only the condenser 16 but also the heat exchange device. It is possible to improve the durability and maintainability of the entire vehicle 2 and the vehicle as a whole.
Furthermore, by appropriately supplying the condensed water stored in the tank 22 to the condenser 16 in accordance with the heat load in the condenser 16, the condensing capacity of the condenser 16 can be further ensured.

更にまた、水回路6がノズル28を有することにより、各チューブ38の各水通路16bに万遍なく凝縮水を流入させることができ、凝縮器16全体において、凝縮水が冷媒から蒸発潜熱を効率的に奪うことができるため、凝縮器16の凝縮能力を向上することができる。
また、水回路6が真空ポンプ30を有することにより、凝縮水温度が30℃〜40℃と仮定すると、水通路16b内を例えば0.5bar程度の圧力にし、水通路16b内の凝縮水を蒸発させて冷媒から蒸発潜熱を効率的に奪うことができるため、凝縮器16の凝縮能力を更に向上することができる。
Furthermore, since the water circuit 6 has the nozzles 28, the condensed water can be uniformly flown into the respective water passages 16 b of the respective tubes 38, and the condensed water efficiently evaporates latent heat from the refrigerant in the entire condenser 16. Therefore, the condensation capacity of the condenser 16 can be improved.
Further, since the water circuit 6 includes the vacuum pump 30, assuming that the condensed water temperature is 30 ° C. to 40 ° C., the water passage 16b is brought to a pressure of about 0.5 bar, for example, and the condensed water in the water passage 16b is evaporated. Therefore, the latent heat of vaporization can be efficiently removed from the refrigerant, so that the condensation capacity of the condenser 16 can be further improved.

更に、内部熱交換器12にて蒸発器10を経由後に圧縮機14に至るまでの冷媒を真空ポンプから排水された凝縮水と熱交換させることにより、蒸発器10を経由後に圧縮機14に至るまでの低温低圧冷媒によって、真空ポンプ30から排水される気液混合状態の凝縮水を確実に液相にしてからタンク22に戻すことができるため、水回路6における凝縮水の循環効率が向上し、ひいては凝縮器16の凝縮能力を更に向上することができる。   Further, the refrigerant from the internal heat exchanger 12 through the evaporator 10 to the compressor 14 is exchanged with the condensed water drained from the vacuum pump, so that the refrigerant reaches the compressor 14 through the evaporator 10. The low-temperature and low-pressure refrigerant until the condensate in the gas-liquid mixed state discharged from the vacuum pump 30 can be surely changed to the liquid phase and then returned to the tank 22, thereby improving the circulation efficiency of the condensate in the water circuit 6. As a result, the condensing capacity of the condenser 16 can be further improved.

更にまた、水回路6がフィルタ26を有することにより、水回路16bを循環する凝縮水の汚れを除去することができるため、凝縮器16の凝縮能力、耐久性及びメンテナンス性を更に向上することができる。
また、タンク22がフロート弁34を有することにより、タンク22内の余分な凝縮水はオーバーフローさせて排出することができ、タンク22には凝縮器16の凝縮能力、ひいては熱交換装置2の熱交換能力に合致した凝縮水量が常時確保されるため、凝縮器16の凝縮能力をより一層確実に確保することができる。
Furthermore, since the water circuit 6 has the filter 26, dirt of condensed water circulating in the water circuit 16b can be removed, so that the condensing capacity, durability and maintainability of the condenser 16 can be further improved. it can.
Further, since the tank 22 has the float valve 34, excess condensed water in the tank 22 can be overflowed and discharged, and the tank 22 can condense the condenser 16 and thus heat exchange of the heat exchanger 2. Since the amount of condensed water matching the capacity is always ensured, the condensing capacity of the condenser 16 can be further ensured.

更に、本実施形態の凝縮器16は、従来の凝縮器の分配部材及び接続部材のみを変更することで実現でき、経済性にも優れる。更にまた、本実施形態の実現に伴い追加された部品のコストは凝縮器16の凝縮能力向上に伴う熱交換装置2のライフサイクル運転コストの節減によって充分に減価償却可能である。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
Furthermore, the condenser 16 of this embodiment can be realized by changing only the distribution member and the connection member of the conventional condenser, and is excellent in economic efficiency. Furthermore, the cost of the parts added with the realization of the present embodiment can be sufficiently depreciated by reducing the life cycle operating cost of the heat exchange device 2 due to the improvement of the condensation capacity of the condenser 16.
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、内部熱交換器12は、蒸発器10を経由後に圧縮機14に至るまでの低温低圧冷媒を真空ポンプ30から排水される気液混合状態の凝縮水と熱交換させているが、これに加えて上記低温低圧冷媒を冷媒通路16aから流出した高圧冷媒と熱交換させるようにしても良く、この場合には冷媒回路4の熱効率の更なる向上が図れて好ましい。   For example, in the above embodiment, the internal heat exchanger 12 exchanges heat with low-temperature and low-pressure refrigerant that passes through the evaporator 10 and reaches the compressor 14 with condensed water in a gas-liquid mixed state discharged from the vacuum pump 30. However, in addition to this, the low-temperature and low-pressure refrigerant may be heat-exchanged with the high-pressure refrigerant flowing out of the refrigerant passage 16a. In this case, the thermal efficiency of the refrigerant circuit 4 can be further improved, which is preferable.

本発明の一実施形態に係る熱交換装置の模式図である。It is a schematic diagram of the heat exchange apparatus which concerns on one Embodiment of this invention. 図1のタンクの要部拡大図である。It is a principal part enlarged view of the tank of FIG. 図1の凝縮器の斜視図である。It is a perspective view of the condenser of FIG. 図3のA−A方向からみた凝縮器の要部断面図である。It is principal part sectional drawing of the condenser seen from the AA direction of FIG. 図4のB−B方向からみたチューブの断面図である。It is sectional drawing of the tube seen from the BB direction of FIG.

符号の説明Explanation of symbols

2 熱交換装置
4 冷媒回路
6 水回路
10 蒸発器
12 内部熱交換器(熱交換器)
16 凝縮器
16a 冷媒通路
16b 水通路
22 タンク
24 ポンプ
26 フィルタ
28 ノズル
30 真空ポンプ
34 フロート弁
38 チューブ
2 Heat Exchanger 4 Refrigerant Circuit 6 Water Circuit 10 Evaporator 12 Internal Heat Exchanger (Heat Exchanger)
16 Condenser 16a Refrigerant passage 16b Water passage 22 Tank 24 Pump 26 Filter 28 Nozzle 30 Vacuum pump 34 Float valve 38 Tube

Claims (8)

冷媒を加熱する蒸発器、該蒸発器を経由した冷媒を凝縮させる凝縮器を有する冷媒回路と、
前記蒸発器における熱交換に伴い該蒸発器から滴下する凝縮水を回収、循環させて前記凝縮器を流れる冷媒と熱交換させる水回路とを備えることを特徴とする熱交換装置。
An evaporator for heating the refrigerant, a refrigerant circuit having a condenser for condensing the refrigerant via the evaporator, and
A heat exchange device comprising: a water circuit that collects and circulates the condensed water dripping from the evaporator in association with heat exchange in the evaporator, and exchanges heat with the refrigerant flowing through the condenser.
前記凝縮器は、前記冷媒回路を循環する冷媒が通液される冷媒通路と、前記水回路を循環する凝縮水が通液される水通路とを有し、
前記冷媒通路及び前記水通路はチューブに一体に形成されてなることを特徴とする請求項1に記載の熱交換装置。
The condenser has a refrigerant passage through which a refrigerant circulating through the refrigerant circuit is passed, and a water passage through which condensed water circulating through the water circuit is passed,
The heat exchange apparatus according to claim 1, wherein the refrigerant passage and the water passage are formed integrally with a tube.
前記水回路は、前記蒸発器から滴下する凝縮水を一旦貯蔵するタンクと、該タンクに貯蔵された凝縮水を前記水通路へ圧送するポンプとを有し、
前記凝縮器における熱負荷に応じて前記ポンプを駆動する制御手段を具備することを特徴とする請求項2に記載の熱交換装置。
The water circuit has a tank that temporarily stores condensed water dripping from the evaporator, and a pump that pumps the condensed water stored in the tank to the water passage,
The heat exchange apparatus according to claim 2, further comprising a control unit that drives the pump in accordance with a heat load in the condenser.
前記凝縮器は、前記チューブが複数積層されてなり、
前記水回路は、複数の前記水通路の入口に凝縮水を拡散させて該水通路に流入させるノズルを有することを特徴とする請求項2または3に記載の熱交換装置。
The condenser is formed by laminating a plurality of the tubes,
4. The heat exchange device according to claim 2, wherein the water circuit includes a nozzle that diffuses condensed water into inlets of the plurality of water passages and flows the condensed water into the water passages. 5.
前記水回路は、前記水通路の出口に、該水通路内の凝縮水を所定圧力以下に維持しつつ該水通路の外部に排水する真空ポンプを有することを特徴とする請求項2乃至4の何れかに記載の熱交換装置。   The said water circuit has the vacuum pump which drains the exterior of this water path, maintaining the condensed water in this water path below a predetermined pressure at the exit of the said water path. The heat exchange apparatus in any one. 前記冷媒回路は、前記蒸発器を経由した冷媒を圧縮し前記凝縮器に向けて吐出する圧縮機と、前記蒸発器を経由後に前記圧縮機に至るまでの冷媒を前記真空ポンプから排水された凝縮水と熱交換させる熱交換器とを有することを特徴とする請求項5に記載の熱交換装置。   The refrigerant circuit compresses the refrigerant that has passed through the evaporator and discharges the refrigerant toward the condenser, and condenses the refrigerant that has passed through the evaporator and reaches the compressor after being discharged from the vacuum pump. The heat exchanger according to claim 5, further comprising a heat exchanger that exchanges heat with water. 前記水回路は、フィルタを有することを特徴とする請求項1乃至6の何れかに記載の熱交換装置。   The heat exchanger according to claim 1, wherein the water circuit includes a filter. 前記タンクは、該タンク内に貯蔵される凝縮水が所定液位以上になるとき、凝縮水を前記タンクの外部に排出するフロート弁を有することを特徴とする請求項3乃至7の何れかに記載の熱交換装置。   The said tank has a float valve which discharges condensed water to the exterior of the said tank when the condensed water stored in this tank becomes a predetermined liquid level or more. The heat exchange apparatus as described.
JP2008147997A 2008-06-05 2008-06-05 Heat exchanger Pending JP2009292318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008147997A JP2009292318A (en) 2008-06-05 2008-06-05 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008147997A JP2009292318A (en) 2008-06-05 2008-06-05 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009292318A true JP2009292318A (en) 2009-12-17

Family

ID=41540924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008147997A Pending JP2009292318A (en) 2008-06-05 2008-06-05 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009292318A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435003A (en) * 2011-11-10 2012-05-02 浙江理工大学 Double-plate exchange condensation water recycling high efficiency solar heat pump machine set
WO2012102407A1 (en) 2011-01-28 2012-08-02 株式会社日本触媒 Manufacturing method for polyacrylic acid (salt) -based water-absorbent resin powder
EP2637882A1 (en) * 2010-11-10 2013-09-18 Renault Trucks Air conditioning system for a cabin of a vehicle
CN108954777A (en) * 2018-06-06 2018-12-07 海信(山东)空调有限公司 Condensation water recovery and use system and air-cooled ducted air conditioner
WO2020059418A1 (en) * 2018-09-21 2020-03-26 サンデンホールディングス株式会社 Refrigeration circuit
KR102362982B1 (en) * 2021-10-29 2022-02-15 주식회사 나우이엘 Low-temperature storage with increased condenser cooling efficiency with evaporator-generated condensate
WO2022249452A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Refrigeration cycle device
US11703236B2 (en) * 2019-10-29 2023-07-18 SunToWater Technologies, LLC Systems and methods for recovering water using a refrigeration system of a water recovery system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2637882A1 (en) * 2010-11-10 2013-09-18 Renault Trucks Air conditioning system for a cabin of a vehicle
JP2013541466A (en) * 2010-11-10 2013-11-14 ルノー・トラックス Air conditioning system for automobile cabin
WO2012102407A1 (en) 2011-01-28 2012-08-02 株式会社日本触媒 Manufacturing method for polyacrylic acid (salt) -based water-absorbent resin powder
CN102435003A (en) * 2011-11-10 2012-05-02 浙江理工大学 Double-plate exchange condensation water recycling high efficiency solar heat pump machine set
CN108954777A (en) * 2018-06-06 2018-12-07 海信(山东)空调有限公司 Condensation water recovery and use system and air-cooled ducted air conditioner
CN108954777B (en) * 2018-06-06 2020-12-18 海信(山东)空调有限公司 Condensate water recycling system and air duct machine
WO2020059418A1 (en) * 2018-09-21 2020-03-26 サンデンホールディングス株式会社 Refrigeration circuit
US11703236B2 (en) * 2019-10-29 2023-07-18 SunToWater Technologies, LLC Systems and methods for recovering water using a refrigeration system of a water recovery system
WO2022249452A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Refrigeration cycle device
JP7479569B2 (en) 2021-05-28 2024-05-08 三菱電機株式会社 Refrigeration Cycle Equipment
KR102362982B1 (en) * 2021-10-29 2022-02-15 주식회사 나우이엘 Low-temperature storage with increased condenser cooling efficiency with evaporator-generated condensate

Similar Documents

Publication Publication Date Title
JP2009292318A (en) Heat exchanger
KR101316859B1 (en) Condenser for vehicle
US10317117B2 (en) Vapor compression system
US7234309B2 (en) Method and apparatus for evaporative cooling of a cooling fluid
US7430878B2 (en) Air conditioning system and methods
CN107076434B (en) Water-cooling split air-conditioning system
JP2014080174A (en) Condenser for vehicle
JP2022515614A (en) Heat exchanger
TW201727170A (en) Vapor compression system
JP2022517728A (en) Heat exchanger
JP2013119373A (en) Condenser for vehicle
JP2011190982A (en) Heat exchanger
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2008209070A (en) Heat exchanger and sealed cooling tower
JP3511059B2 (en) Drain water treatment system for engine exhaust gas
JP2953453B2 (en) Air conditioner
JP2006038306A (en) Freezer
JP3917917B2 (en) Evaporator and refrigerator
KR20100077289A (en) Air-conditioning and heating equipment
JP2010216708A (en) Water receiving tray
JP2008064426A (en) Condenser and refrigerating machine
JP2022521365A (en) Heat exchanger
CN117157497B (en) Central air-conditioning heat pump system with cooling device
WO2017027021A1 (en) Air conditioning tower
KR102206973B1 (en) Air conditioner system for vehicle