JP2011190982A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2011190982A
JP2011190982A JP2010057192A JP2010057192A JP2011190982A JP 2011190982 A JP2011190982 A JP 2011190982A JP 2010057192 A JP2010057192 A JP 2010057192A JP 2010057192 A JP2010057192 A JP 2010057192A JP 2011190982 A JP2011190982 A JP 2011190982A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
air
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010057192A
Other languages
Japanese (ja)
Other versions
JP5200045B2 (en
Inventor
Hidenori Ezaki
秀範 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010057192A priority Critical patent/JP5200045B2/en
Priority to US13/043,495 priority patent/US20110219817A1/en
Publication of JP2011190982A publication Critical patent/JP2011190982A/en
Application granted granted Critical
Publication of JP5200045B2 publication Critical patent/JP5200045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of preventing temperature unevenness of air taken out of the heat exchanger. <P>SOLUTION: The heat exchanger has a refrigerant condensing part 21 including a plurality of tubes 21a formed to extend in the vertical direction and radiation fins 21b joined to the tubes 21a for heat-exchanging with external gas by flowing a refrigerant body through the tubes 21a, and a refrigerant supercooling part 23 including a receiver tank 22 for gas-liquid separating the refrigerant body, and a deriving part 23c and an introducing part 23d of the refrigerant body in the vertical direction for heat-exchanging between the refrigerant body and the external gas. The refrigerant body flows through the refrigerant condensing part 21, the receiver tank 22, and the refrigerant supercooling part 23 in this order. The external gas flows around the refrigerant supercooling part 23 and then flows around the refrigerant condensing part 21. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば車両用空調装置に用いられる熱交換器に関する。   The present invention relates to a heat exchanger used in, for example, a vehicle air conditioner.

比較的排熱の少ない燃料電池自動車、電気自動車などでは、それに対応した種々の車両用空調装置が提案されている。この種の車両用空調装置では、ヒートポンプの能力を向上させることが求められており、例えば、コンデンサ(ヒータ)の下流に過冷却部(サブクール部)を設ける技術が提案されている(特許文献1参照)。   Various types of air conditioners for vehicles have been proposed for fuel cell vehicles, electric vehicles, and the like with relatively little exhaust heat. In this type of vehicle air conditioner, it is required to improve the performance of the heat pump. For example, a technique of providing a supercooling part (subcooling part) downstream of a condenser (heater) has been proposed (Patent Document 1). reference).

特開平6−341736号公報(請求項1、図1)JP-A-6-341736 (Claim 1, FIG. 1)

しかしながら、特許文献1に記載の技術では、ヒートポンプ能力を向上すべくコンデンサ、過冷却部の順に冷媒が流れるように構成されているが、熱交換器から取り出される空気の温度むらについてはこれまで全く考慮されてこなかった。   However, in the technique described in Patent Document 1, the refrigerant is configured to flow in the order of the condenser and the supercooling unit in order to improve the heat pump capability. However, the temperature unevenness of the air taken out from the heat exchanger has never been so far. It has not been considered.

本発明は、前記従来の問題を解決するものであり、熱交換器から取り出される空気の温度むらを防止することができる熱交換器を提供することを課題とする。   This invention solves the said conventional problem, and makes it a subject to provide the heat exchanger which can prevent the temperature nonuniformity of the air taken out from a heat exchanger.

本発明は、上下方向に複数伸長して形成されたチューブおよび前記チューブに接合されたフィンを備え、冷媒体を前記チューブ内に通すことにより外部からの気体と熱交換する冷媒凝縮部と、前記冷媒体を気液分離する気液分離部と、上下方向に前記冷媒体の導出部と導入部とを備え、前記冷媒体と前記外部からの気体とで熱交換を行う冷媒過冷却部と、を有し、前記冷媒体が、前記冷媒凝縮部、前記気液分離部、前記冷媒過冷却部の順に通流するとともに、前記外部からの気体が前記冷媒過冷却部を流れた後、前記冷媒凝縮部に流れるように構成したことを特徴とする。   The present invention includes a tube formed by extending a plurality of members in the vertical direction and a fin joined to the tube, and a refrigerant condensing unit that exchanges heat with an external gas by passing a refrigerant body through the tube; A gas-liquid separation unit that separates the refrigerant body from gas and liquid; a refrigerant subcooling unit that includes a derivation unit and an introduction unit of the refrigerant body in a vertical direction, and performs heat exchange between the refrigerant body and the gas from the outside; And the refrigerant body flows in the order of the refrigerant condensing unit, the gas-liquid separation unit, and the refrigerant subcooling unit, and after the gas from the outside flows through the refrigerant subcooling unit, the refrigerant It is configured to flow to the condensing part.

これによれば、チューブを上下方向に伸長して形成するとともに冷媒過冷却部の上下に導出部と導入部とを形成することにより、冷媒凝縮部を流れる冷媒体の流れ方向と冷媒過冷却部を流れる冷媒体の流れ方向とを対向させることが可能になり、熱交換器から取り出される気体の温度を均一にすることが可能になる。   According to this, the flow direction of the refrigerant flowing through the refrigerant condensing unit and the refrigerant subcooling unit are formed by extending the tube in the vertical direction and forming the lead-out unit and the introduction unit above and below the refrigerant subcooling unit. It is possible to oppose the flow direction of the refrigerant flowing through the heat exchanger, and the temperature of the gas taken out from the heat exchanger can be made uniform.

つまり、冷媒凝縮部では、上側から下側に向かって冷媒体が流れることによって、冷媒体の放熱によって気体が冷却され、凝縮した冷媒体(液冷媒)が下側に溜まり、冷媒過冷却部では、下側にある導入部から入って上側にある導出部に向かって冷媒体(液冷媒)が流れることによって、冷媒体の放熱によって気体がさらに冷却される。このように、冷媒凝縮部の上側から下側に向けて冷媒体の温度が下がり、冷媒過冷却部の下側から上側に向けて冷媒体の温度が下がることで、熱交換器の上下方向における温度むらを防止することが可能になる。   That is, in the refrigerant condensing unit, the refrigerant flows from the upper side to the lower side, whereby the gas is cooled by the heat radiation of the refrigerant body, and the condensed refrigerant body (liquid refrigerant) is accumulated on the lower side. When the refrigerant body (liquid refrigerant) flows from the lower introduction part to the upper outlet part, the gas is further cooled by the heat radiation of the refrigerant body. As described above, the temperature of the refrigerant body decreases from the upper side to the lower side of the refrigerant condensing unit, and the temperature of the refrigerant body decreases from the lower side to the upper side of the refrigerant subcooling unit. It becomes possible to prevent temperature unevenness.

また、前記冷媒凝縮部の冷媒入口部に過熱領域を配置し、前記冷媒過冷却部の冷媒出口部に過冷却領域を配置し、前記外部からの気体が前記過冷却領域を流れた後、少なくとも一部が前記過熱領域に流れることを特徴とする。   In addition, an overheating region is disposed at the refrigerant inlet of the refrigerant condensing unit, a supercooling region is disposed at the refrigerant outlet of the refrigerant supercooling unit, and at least after gas from the outside flows through the supercooling region, A part flows into the overheating region.

これによれば、例えば、冷媒入口部の過熱領域には凝縮温度よりも高い温度の冷媒体が流れ、冷媒出口部の過冷却領域には凝縮温度よりも低い温度の冷媒体が流れるので、熱交換器から排出される気体は、中間の凝縮温度に近い温度の気体が排出されることになる。このように、過熱領域と過冷却領域とを配置することにより、熱交換器の上下方向において温度むらのない気体を取り出すことが可能になる。これによって、安定した熱交換性能を得ることが可能になる。   According to this, for example, a refrigerant body having a temperature higher than the condensing temperature flows in the superheated region of the refrigerant inlet portion, and a refrigerant body having a temperature lower than the condensing temperature flows in the supercooling region of the refrigerant outlet portion. The gas discharged from the exchanger is discharged at a temperature close to the intermediate condensation temperature. As described above, by arranging the overheating region and the overcooling region, it is possible to take out a gas having no temperature unevenness in the vertical direction of the heat exchanger. This makes it possible to obtain stable heat exchange performance.

また、前記気液分離部に導出する経路と、外部に冷媒体を導出する経路とを分岐する分岐流路を備えたことを特徴とする。   Further, the present invention is characterized in that a branch channel that branches a path leading to the gas-liquid separator and a path leading the refrigerant body to the outside is provided.

これによれば、気液分離部の上流側に分岐流路を備えることにより、冷房運転時に気液分離部および冷媒過冷却部に冷媒体を流す必要がない場合、気液分離部側に無駄に冷媒体が流れないようにできる。   According to this, by providing the branch flow path upstream of the gas-liquid separation unit, it is not necessary for the gas-liquid separation unit side when it is not necessary to flow the refrigerant through the gas-liquid separation unit and the refrigerant subcooling unit during the cooling operation. It is possible to prevent the refrigerant body from flowing through.

本発明によれば、熱交換器から取り出される空気の温度むらを防止することができる熱交換器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger which can prevent the temperature nonuniformity of the air taken out from a heat exchanger can be provided.

第1実施形態の熱交換器を示す分解斜視図である。It is a disassembled perspective view which shows the heat exchanger of 1st Embodiment. 第1実施形態の熱交換器を示す外観斜視図である。It is an external appearance perspective view which shows the heat exchanger of 1st Embodiment. (a)は上部ヘッダを示す断面図、(b)は下部ヘッダを示す断面図である。(A) is sectional drawing which shows an upper header, (b) is sectional drawing which shows a lower header. レシーバタンクと冷媒過冷却部との接続部を示す断面図である。It is sectional drawing which shows the connection part of a receiver tank and a refrigerant | coolant supercooling part. 本実施形態の熱交換器を車両用空調装置に適用した場合の暖房運転時の冷媒体の流れを示す全体構成図である。It is a whole block diagram which shows the flow of the refrigerant body at the time of heating operation at the time of applying the heat exchanger of this embodiment to a vehicle air conditioner. 本実施形態の熱交換器を車両用空調装置に適用した場合の冷房運転時の冷媒体の流れを示す全体構成図である。It is a whole block diagram which shows the flow of the refrigerant body at the time of air_conditionaing | cooling operation at the time of applying the heat exchanger of this embodiment to a vehicle air conditioner. 本実施形態の熱交換器における作用効果を模式的に示す説明図であり、(a)は本実施形態、(b)は比較例である。It is explanatory drawing which shows typically the effect in the heat exchanger of this embodiment, (a) is this embodiment, (b) is a comparative example. 第2実施形態の熱交換器を示し、(a)は一部省略斜視図、(b)は(a)のX−X線断面図、(c)は(a)のY−Y線断面図である。The heat exchanger of 2nd Embodiment is shown, (a) is a partially-omission perspective view, (b) is XX sectional drawing of (a), (c) is YY sectional drawing of (a). It is. 第3実施形態の熱交換器を示し、(a)は縦断面図、(b)はチューブの構成を示す斜視図である。The heat exchanger of 3rd Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is a perspective view which shows the structure of a tube. 冷媒凝縮部および冷媒過冷却部とレシーバタンクとの接続部の構成を示す断面図であり、(a)は変形例、(b)は別の変形例である。It is sectional drawing which shows the structure of the connection part of a refrigerant | coolant condensing part and a refrigerant | coolant supercooling part, and a receiver tank, (a) is a modification, (b) is another modification. (a)および(b)はチューブの内部構造の変形例であり、(c)〜(f)はヘッダの断面構造の変形例である。(A) And (b) is a modification of the internal structure of a tube, (c)-(f) is a modification of the cross-sectional structure of a header.

以下、本発明に係る実施形態について図面を参照して説明する。
図1および図2に示すように、第1実施形態の熱交換器20は、熱交換器20は、冷媒凝縮部21、レシーバタンク(気液分離部)22および冷媒過冷却部23を備え、冷媒凝縮部21に冷媒過冷却部23が重ねられて構成されている。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the heat exchanger 20 of the first embodiment includes a refrigerant condensing unit 21, a receiver tank (gas-liquid separating unit) 22, and a refrigerant subcooling unit 23. A refrigerant supercooling unit 23 is stacked on the refrigerant condensing unit 21.

冷媒凝縮部21は、上下方向(鉛直方向)に伸長する複数本のチューブ21a,21a,・・・が等間隔に配列され、各チューブ21a,21a間にコルゲートタイプの放熱フィン(フィン)21bが設けられて構成されている。なお、チューブ21aおよび放熱フィン21bは、熱伝導性(放熱性)の高い金属材料(アルミニウム、銅など)で形成されている。   In the refrigerant condensing unit 21, a plurality of tubes 21a, 21a,... Extending in the vertical direction (vertical direction) are arranged at equal intervals, and corrugated heat radiation fins (fins) 21b are provided between the tubes 21a, 21a. It is provided and configured. The tubes 21a and the heat radiating fins 21b are formed of a metal material (aluminum, copper, etc.) having high thermal conductivity (heat dissipation).

また、冷媒凝縮部21は、上部に後記するコンプレッサ10から吐出された冷媒体を各チューブ21aに分配する上部ヘッダ21cと、下部に各チューブ21aを通過した冷媒体が集合する下部ヘッダ21dと、を備えている。なお、上部ヘッダ21cと下部ヘッダ21dの詳細については後記する。   The refrigerant condensing unit 21 includes an upper header 21c that distributes the refrigerant discharged from the compressor 10 described later to each tube 21a, and a lower header 21d in which the refrigerant passing through each tube 21a gathers at the lower part, It has. Details of the upper header 21c and the lower header 21d will be described later.

レシーバタンク22は、冷媒凝縮部21および冷媒過冷却部23の側部に配置され(図2参照)、冷媒凝縮部21によって液状化した冷媒体(液冷媒)と液状化しきれなかった冷媒体(ガス冷媒)とを分離する機能(気液分離機能)を有している。   The receiver tank 22 is disposed on the sides of the refrigerant condensing unit 21 and the refrigerant subcooling unit 23 (see FIG. 2), and the refrigerant body (liquid refrigerant) liquefied by the refrigerant condensing unit 21 and the refrigerant body (liquid refrigerant) that has not been liquefied ( (Gas refrigerant).

すなわち、レシーバタンク22は、たて長の筒形状を呈し、液冷媒とガス冷媒とを分離して貯留するタンク部22aを有している。なお、タンク部22aに導入された冷媒体について、そのなかに含まれる水分の除去がなされるようになっていてもよい。本実施形態では、例えば、タンク部22a内の底部に乾燥剤を充填して水分除去を可能としている。   That is, the receiver tank 22 has a vertically long cylindrical shape, and has a tank portion 22a that separates and stores liquid refrigerant and gas refrigerant. In addition, about the refrigerant | coolant body introduce | transduced into the tank part 22a, the moisture contained in it may be removed. In the present embodiment, for example, a desiccant is filled in the bottom of the tank portion 22a to enable moisture removal.

冷媒過冷却部23は、レシーバタンク22から導出された液冷媒と、空調用空気(外部からの気体)Aとで熱交換を行い、液冷媒をさらに冷却して完全な液冷媒にするものである。   The refrigerant subcooling section 23 performs heat exchange between the liquid refrigerant derived from the receiver tank 22 and air-conditioning air (gas from the outside) A, and further cools the liquid refrigerant to make it a complete liquid refrigerant. is there.

また、冷媒過冷却部23は、冷媒凝縮部21と同様な材料で形成されたチューブ23aと、このチューブ23aを覆う放熱フィン23bとで構成されている。   Moreover, the refrigerant | coolant supercooling part 23 is comprised by the tube 23a formed with the material similar to the refrigerant | coolant condensing part 21, and the radiation fin 23b which covers this tube 23a.

チューブ23aは、水平方向に延びて形成され、冷媒凝縮部21の両端部に対応する位置でU字状に折り返されながら下側から上側に向かって蛇行形状を呈している。   The tube 23a is formed to extend in the horizontal direction, and has a meandering shape from the lower side to the upper side while being folded back in a U shape at positions corresponding to both ends of the refrigerant condensing unit 21.

放熱フィン23bは、プレートタイプであり、縦長板状のフィンが複数枚平行に並べられて、蛇行しているチューブ21aの周囲を覆うように構成されている。   The heat radiating fins 23b are of a plate type, and a plurality of vertically long fins are arranged in parallel so as to cover the periphery of the meandering tube 21a.

なお、冷媒凝縮部21の放熱フィン21bや冷媒過冷却部23の放熱フィン23bのそれぞれの形状は、空調用空気Aが冷媒過冷却部23の放熱フィン23b間と冷媒凝縮部21の放熱フィン21b間の双方を通過できるものであれば特に限定されるものではなく、例えば双方をコルゲートタイプにするなど、適宜変更することができる。   In addition, each shape of the radiation fin 21b of the refrigerant | coolant condensing part 21 and the radiation fin 23b of the refrigerant | coolant subcooling part 23 is as follows. There is no particular limitation as long as both of them can be passed between them, and for example, both can be appropriately changed to a corrugated type.

図3(a)に示すように、上部ヘッダ21cは、内部に冷媒体が水平方向に沿って流れる空間を有し、それぞれのチューブ21aの上端部が上部ヘッダ21cの底面に形成された貫通孔21c1に挿入され、上部ヘッダ21cと各チューブ21aとが接合されている。これにより、コンプレッサ10から上部ヘッダ21cに導入された冷媒体は、矢印で示すように、それぞれのチューブ21aに分配して導入されて、下方に向けて通流するようになっている。   As shown in FIG. 3 (a), the upper header 21c has a space in which the refrigerant flows in the horizontal direction, and the upper end of each tube 21a is a through hole formed in the bottom surface of the upper header 21c. The upper header 21c and each tube 21a are joined to each other. As a result, the refrigerant introduced from the compressor 10 into the upper header 21c is distributed and introduced into the respective tubes 21a as indicated by arrows, and flows downward.

図3(b)に示すように、下部ヘッダ21dは、内部に冷媒体が水平方向に沿って通流する空間を有し、それぞれのチューブ21aの下端部が下部ヘッダ21dの上面に形成された貫通孔21d1に挿入され、各チューブ21aと下部ヘッダ21dとが接合されている。   As shown in FIG. 3B, the lower header 21d has a space through which the refrigerant flows in the horizontal direction, and the lower end of each tube 21a is formed on the upper surface of the lower header 21d. Each tube 21a and the lower header 21d are joined by being inserted into the through hole 21d1.

また、下部ヘッダ21dは、配管22bを介してレシーバタンク22に接続されている。配管22bは、タンク部22aの底部からタンク部22a内を上方に向けて所定長さまで貫通して延びている。この所定長さは、液冷媒が溜まったときに、液冷媒の液面が配管22bの先端(上端)を越えないような位置に設定されているのが望ましい。図3(a)では、説明の便宜上、実際よりも所定長さを短くした状態を図示している。   The lower header 21d is connected to the receiver tank 22 via a pipe 22b. The pipe 22b extends from the bottom of the tank portion 22a through the tank portion 22a upward to a predetermined length. The predetermined length is preferably set at a position where the liquid refrigerant does not exceed the tip (upper end) of the pipe 22b when the liquid refrigerant accumulates. FIG. 3A shows a state where the predetermined length is shorter than the actual length for convenience of explanation.

また、下部ヘッダ21dは、レシーバタンク22と反対側に、後記するコンデンサ30に向かって流れる配管a2(図6参照)が接続されている。なお、本実施形態では、下部ヘッダ21dが分岐流路を構成している。   The lower header 21d is connected to a pipe a2 (see FIG. 6) flowing toward the capacitor 30 described later on the side opposite to the receiver tank 22. In the present embodiment, the lower header 21d constitutes a branch channel.

図4に示すように、冷媒過冷却部23は、レシーバタンク22と配管22cを介して接続されている。すなわち、配管22cは、レシーバタンク22の底部から下方に延びて形成され、冷媒過冷却部23のチューブ23aの入口23a1(導入部23c)と接続されている。   As shown in FIG. 4, the refrigerant supercooling unit 23 is connected to the receiver tank 22 via a pipe 22c. That is, the pipe 22 c is formed extending downward from the bottom of the receiver tank 22 and is connected to the inlet 23 a 1 (introduction portion 23 c) of the tube 23 a of the refrigerant supercooling portion 23.

このように構成された熱交換器20は、電気自動車(EV:ElectricVehicle)、燃料電池車(FCV:Fuel Cell Vehicle)、ハイブリッド自動車(HEV:HybridElectric Vehicle)などの車両Vの車両用空調装置1Aとして利用することができる。   The heat exchanger 20 configured as described above is used as a vehicle air conditioner 1A for a vehicle V such as an electric vehicle (EV), a fuel cell vehicle (FCV), and a hybrid vehicle (HEV). Can be used.

図5および図6に示すように、車両用空調装置1Aは、コンプレッサ10と、熱交換器20と、コンデンサ30と、自動膨張弁40と、第1エバポレータ50と、第2エバポレータ60と、冷暖切換手段70と、ECU(制御装置)80と、を含んで構成されている。   As shown in FIGS. 5 and 6, the vehicle air conditioner 1 </ b> A includes a compressor 10, a heat exchanger 20, a condenser 30, an automatic expansion valve 40, a first evaporator 50, a second evaporator 60, The switching means 70 and an ECU (control device) 80 are included.

コンプレッサ10は、モータ(またはエンジン)などによって駆動され、冷媒体を吸入、圧縮して、熱交換器20に向けて高温・高圧の冷媒体を吐出するようになっている。   The compressor 10 is driven by a motor (or engine) or the like, sucks and compresses a refrigerant body, and discharges a high-temperature and high-pressure refrigerant body toward the heat exchanger 20.

コンデンサ30は、凝縮部31とレシーバタンク32とで構成され、車両Vの前端のボンネット内の空間に配置され、凝縮部31内を流れる冷媒体が、車両Vの前方から導入される外気と熱交換(放熱)を行うようになっている。凝縮部31は、左右方向に延びる複数本のチューブ(不図示)と放熱フィン(不図示)などで構成されている。   The condenser 30 includes a condensing unit 31 and a receiver tank 32. The condenser 30 is disposed in a space in the hood at the front end of the vehicle V, and the refrigerant flowing through the condensing unit 31 is introduced from the front of the vehicle V and heat. Replacement (heat dissipation) is performed. The condensing unit 31 includes a plurality of tubes (not shown) extending in the left-right direction, radiating fins (not shown), and the like.

レシーバタンク32は、凝縮部31の側部に配置され、前記レシーバタンク22と同様に、筒状に形成され、冷房運転時に凝縮部31で液冷媒とガス冷媒とを分離する機能(気液分離機能)を有している。   The receiver tank 32 is disposed on the side of the condensing unit 31 and is formed in a cylindrical shape like the receiver tank 22 and has a function of separating the liquid refrigerant and the gas refrigerant in the condensing unit 31 during the cooling operation (gas-liquid separation). Function).

自動膨張弁40は、冷媒体の温度に応じて開度を変化させることができ、後記する第1エバポレータ50(または第2エバポレータ60)から流出した冷媒体の温度および圧力を検知する手段(不図示)を有し、第1エバポレータ(または第2エバポレータ60)から流出した冷媒体の温度および圧力に応じて、自動膨張弁40の開度を変化させ、冷媒体の流量を変化させることができる。   The automatic expansion valve 40 can change the opening degree according to the temperature of the refrigerant body, and is means for detecting the temperature and pressure of the refrigerant body flowing out from the first evaporator 50 (or the second evaporator 60) described later (non- The opening of the automatic expansion valve 40 can be changed according to the temperature and pressure of the refrigerant flowing out from the first evaporator (or the second evaporator 60), and the flow rate of the refrigerant can be changed. .

第1エバポレータ50は、内部を通流する冷媒体が車室内Cから排出される空調用空気A(熱源)と熱交換を行うものであり、車両Vの荷室D(トランクルーム)など、空調用空気Aが車外に排出される車両Vの後部に配置されている。すなわち、第1エバポレータ50では、暖房運転時に、冷媒体を介して車両Vの車室内Cから車外に排出される空調用空気A(熱源)から熱を取り込むようになっている。熱源としては、車室内Cから排出される空調用空気Aに限定されるものではなく、車両Vの駆動部分(モータなど)からの排熱を利用してもよい。   The first evaporator 50 exchanges heat with the air-conditioning air A (heat source) discharged from the passenger compartment C through the refrigerant flowing through the interior, and is used for air-conditioning such as the cargo compartment D (trunk room) of the vehicle V. The air A is disposed at the rear part of the vehicle V from which the air A is discharged outside the vehicle. That is, in the 1st evaporator 50, heat is taken in from the air-conditioning air A (heat source) discharged | emitted from the vehicle interior C of the vehicle V outside a vehicle via a refrigerant body at the time of heating operation. The heat source is not limited to the air-conditioning air A exhausted from the vehicle interior C, and exhaust heat from a drive portion (such as a motor) of the vehicle V may be used.

第2エバポレータ60は、車室内Cに配置され、冷媒体と空調用空気Aとの間で熱交換を行うものであり、空調用空気Aの流れに対して熱交換器20よりも上流側に配置されている。   The second evaporator 60 is disposed in the passenger compartment C and performs heat exchange between the refrigerant body and the air conditioning air A, and is located upstream of the heat exchanger 20 with respect to the flow of the air conditioning air A. Has been placed.

コンプレッサ10の冷媒体の吐出口10bは、配管a1を介して冷媒凝縮部21の冷媒体の入口21a1と接続され、冷媒凝縮部21の冷媒体の出口21a2は、電磁弁V1を備えた配管a2を介してコンデンサ30の冷媒体の入口30aと接続されている。なお、電磁弁V1は、これを閉じることにより、コンデンサ30への冷媒体の流れを遮断するコンデンサ遮断手段を構成している。   The refrigerant outlet 10b of the compressor 10 is connected to the refrigerant inlet 21a1 of the refrigerant condensing unit 21 via a pipe a1, and the refrigerant outlet 21a2 of the refrigerant condensing part 21 is a pipe a2 provided with an electromagnetic valve V1. Is connected to the inlet 30a of the refrigerant body of the capacitor 30. The solenoid valve V1 constitutes a capacitor shut-off means that shuts off the flow of the refrigerant to the capacitor 30 by closing the solenoid valve V1.

コンデンサ30の冷媒体の出口30bは、逆止弁V2を備えた配管a3を介して自動膨張弁40の減圧側の入口40aと接続されている。自動膨張弁40の減圧側の出口40bは、配管a4を介して第1エバポレータ50の冷媒体の入口50aと接続されている。なお、逆止弁V2は、コンデンサ30から自動膨張弁40への冷媒体の流れのみを許容する弁である。   The outlet 30b of the refrigerant body of the condenser 30 is connected to the inlet 40a on the pressure reducing side of the automatic expansion valve 40 via a pipe a3 provided with a check valve V2. The outlet 40b on the pressure reducing side of the automatic expansion valve 40 is connected to the refrigerant inlet 50a of the first evaporator 50 via a pipe a4. The check valve V <b> 2 is a valve that allows only the flow of the refrigerant from the capacitor 30 to the automatic expansion valve 40.

第1エバポレータ50の冷媒体の出口50bは、配管a5を介して第2エバポレータ60の冷媒体の入口60aと接続されている。第2エバポレータ60の冷媒体の出口60bは、配管a6を介して自動膨張弁40の温度検出側の入口40cと接続されている。自動膨張弁40の温度検出側の出口40dは、配管a7を介してコンプレッサ10の冷媒体の吸入口10aと接続されている。   The refrigerant body outlet 50b of the first evaporator 50 is connected to the refrigerant body inlet 60a of the second evaporator 60 via a pipe a5. The outlet 60b of the refrigerant body of the second evaporator 60 is connected to the temperature detection side inlet 40c of the automatic expansion valve 40 via a pipe a6. An outlet 40d on the temperature detection side of the automatic expansion valve 40 is connected to a refrigerant inlet 10a of the compressor 10 via a pipe a7.

熱交換器20の冷媒過冷却部23の出口23a2は、上流側から順に電磁弁V3、中間絞りS、逆止弁V4を備えた配管a8を介して、逆止弁V2と自動膨張弁40との間の配管a3に合流するように接続されている。なお、逆止弁V4は、冷媒過冷却部23から自動膨張弁40への冷媒体の流れのみを許容する弁である。また、電磁弁V3は、これを閉じることにより、冷媒体が冷媒過冷却部23を迂回して流れる過冷却部迂回手段を構成している。   The outlet 23a2 of the refrigerant supercooling section 23 of the heat exchanger 20 is connected to the check valve V2 and the automatic expansion valve 40 via a pipe a8 including an electromagnetic valve V3, an intermediate throttle S, and a check valve V4 in order from the upstream side. It connects so that it may join to the piping a3 between. The check valve V4 is a valve that allows only the flow of the refrigerant from the refrigerant subcooling section 23 to the automatic expansion valve 40. Moreover, the electromagnetic valve V3 constitutes a supercooling portion bypassing means that closes the solenoid valve V3 and flows the coolant bypassing the refrigerant supercooling portion 23.

コンデンサ30の出口30bと逆止弁V2との間の配管a3には、上流側から順に電磁弁V5、逆止弁V6を備えた配管a9を介して、配管a7に合流するように接続されている。なお、逆止弁V6は、配管a3側から配管a7側への冷媒体の流れのみを許容する弁である。   A pipe a3 between the outlet 30b of the capacitor 30 and the check valve V2 is connected so as to join the pipe a7 via a pipe a9 having an electromagnetic valve V5 and a check valve V6 in order from the upstream side. Yes. The check valve V6 is a valve that allows only the flow of the refrigerant from the pipe a3 side to the pipe a7 side.

配管a4と配管a5との間には、第1エバポレータ迂回手段として機能する、電磁弁V7を備えた配管a10が接続されている。   Between the pipe a4 and the pipe a5, a pipe a10 provided with an electromagnetic valve V7 that functions as a first evaporator bypass means is connected.

配管a5と配管a6との間には、第2エバポレータ迂回手段として機能する、電磁弁V8を備えた配管a11が接続されている。   Between the pipe a5 and the pipe a6, a pipe a11 including an electromagnetic valve V8 that functions as a second evaporator bypass means is connected.

冷暖切換手段70は、暖房運転時の冷媒体および空調用空気Aの流れと、冷房運転時の冷媒体および空調用空気Aの流れとを切り換えるものであり、第1エバポレータ迂回手段と第2エバポレータ迂回手段とコンデンサ遮断手段と過冷却部迂回手段とともに、エアダンパ71を含んで構成されている。   The cooling / heating switching means 70 switches between the flow of the refrigerant body and air-conditioning air A during the heating operation and the flow of the refrigerant body and air-conditioning air A during the cooling operation, and the first evaporator bypass means and the second evaporator. The air damper 71 is configured together with the bypass means, the condenser cutoff means, and the supercooling portion bypass means.

エアダンパ71は、熱交換器20と第2エバポレータ60との間の空間に配置され、暖房運転時には、エアダンパ71が開かれて、車外から車室内Cに導入される空調用空気Aが、第2エバポレータを通過し、かつ、熱交換器20を通過するように流れが制御される(図5参照)。一方、冷房運転時には、エアダンパ71が閉じられて、車室内Cに導入される空調用空気Aが、第2エバポレータ60を通過し、かつ、熱交換器20を通過しないように流れが制御される(図6参照)。   The air damper 71 is disposed in a space between the heat exchanger 20 and the second evaporator 60. During the heating operation, the air damper 71 is opened, and the air-conditioning air A introduced from the outside of the vehicle into the vehicle interior C is the second. The flow is controlled so as to pass through the evaporator and through the heat exchanger 20 (see FIG. 5). On the other hand, during the cooling operation, the air damper 71 is closed, and the flow is controlled so that the air conditioning air A introduced into the vehicle interior C passes through the second evaporator 60 and does not pass through the heat exchanger 20. (See FIG. 6).

ECU80は、電磁弁V1、V3、V5、V7、V8を開閉制御するとともに、エアダンパ71を開閉制御して、暖房運転時と冷房運転時のそれぞれの運転時における冷媒体の流れおよび空調用空気Aの流れを制御する。   The ECU 80 controls opening and closing of the electromagnetic valves V1, V3, V5, V7, and V8, and also controls the opening and closing of the air damper 71 so that the flow of the refrigerant and the air conditioning air A during the heating operation and the cooling operation are performed. To control the flow.

次に、車両用空調装置1Aの動作について説明する。図5に示す車両Vは、暖房運転時を示し、電磁弁V1,V7が閉じられている。図6に示す車両Vは、冷房運転時を示し、電磁弁V3,V5,V8が閉じられている。   Next, the operation of the vehicle air conditioner 1A will be described. The vehicle V shown in FIG. 5 shows the heating operation, and the electromagnetic valves V1 and V7 are closed. The vehicle V shown in FIG. 6 shows the cooling operation, and the electromagnetic valves V3, V5, and V8 are closed.

(暖房運転時の動作)
図5に示すように、暖房運転時には、コンプレッサ10が駆動されると、コンプレッサ10の吸入口10aから吸入され、吐出口10bから吐出された冷媒体は、配管a1を介して熱交換器20に供給される。これにより、高温・高圧の冷媒体(気体)が熱交換器20に供給されることになる。
(Operation during heating operation)
As shown in FIG. 5, during the heating operation, when the compressor 10 is driven, the refrigerant body sucked from the suction port 10a of the compressor 10 and discharged from the discharge port 10b is transferred to the heat exchanger 20 via the pipe a1. Supplied. As a result, a high-temperature and high-pressure refrigerant (gas) is supplied to the heat exchanger 20.

コンプレッサ10から供給された冷媒体は、熱交換器20の冷媒凝縮部21に導入され、冷媒凝縮部21内を上側から下側に向かって流れる際(図1参照)に車外から車室内Cに導入される空調用空気Aと熱交換を行う。すなわち、冷媒体は、空調用空気A(冷たい外気)によって冷却されることにより凝縮され、高温のガス冷媒から低温の液冷媒となる。一方、空調用空気Aは、凝縮する際に放出される熱によって昇温する。   The refrigerant body supplied from the compressor 10 is introduced into the refrigerant condensing unit 21 of the heat exchanger 20, and flows from the outside of the vehicle to the vehicle interior C when flowing in the refrigerant condensing unit 21 from the upper side to the lower side (see FIG. 1). Heat exchange is performed with the air-conditioning air A to be introduced. That is, the refrigerant body is condensed by being cooled by the air-conditioning air A (cold outside air), and becomes a low-temperature liquid refrigerant from a high-temperature gas refrigerant. On the other hand, the air-conditioning air A is heated by heat released when it is condensed.

冷媒凝縮部21から導出された冷媒体(液冷媒)は、配管22bを介してレシーバタンク22に導入される。レシーバタンク22では、冷媒体が気液分離、つまり、液冷媒がタンク部22a(図1参照)の下部に溜まり、冷媒凝縮部21で液化しきれなかったガス冷媒がタンク部22aの上部に溜まる。レシーバタンク22で気液分離された液冷媒は、レシーバタンク22の底部から配管22cを介して冷媒過冷却部23に導入される。   The refrigerant body (liquid refrigerant) derived from the refrigerant condensing unit 21 is introduced into the receiver tank 22 via the pipe 22b. In the receiver tank 22, the refrigerant body is gas-liquid separated, that is, the liquid refrigerant is accumulated in the lower part of the tank part 22a (see FIG. 1), and the gas refrigerant that has not been liquefied in the refrigerant condensing part 21 is accumulated in the upper part of the tank part 22a. . The liquid refrigerant separated from the gas and liquid in the receiver tank 22 is introduced from the bottom of the receiver tank 22 into the refrigerant supercooling unit 23 via the pipe 22c.

冷媒過冷却部23の下端に設けられた導入部23cに導入された冷媒体(液冷媒)は、車室内Cに導入される空調用空気A(冷たい外気)と熱交換を行う。冷媒過冷却部23は、空調用空気Aの流れに対して、冷媒凝縮部21よりも上流側(風上側)に位置しているので、空調用空気Aによって冷媒体がさらに冷やされて凝縮温度よりも低温の液冷媒となる。ここでの処理が、いわゆるサブクール領域となっている。   The refrigerant body (liquid refrigerant) introduced into the introduction part 23c provided at the lower end of the refrigerant supercooling part 23 exchanges heat with air-conditioning air A (cold outside air) introduced into the vehicle interior C. Since the refrigerant subcooling unit 23 is located upstream (upward) of the refrigerant condensing unit 21 with respect to the flow of the air conditioning air A, the refrigerant body is further cooled by the air conditioning air A and the condensation temperature is increased. It becomes a lower temperature liquid refrigerant. This processing is a so-called subcool region.

冷媒過冷却部23の上端に設けられた導出部23dから導出された液冷媒は、中間絞りSを通過することによって、液冷媒が減圧される。   The liquid refrigerant led out from the lead-out part 23d provided at the upper end of the refrigerant subcooling part 23 passes through the intermediate throttle S, so that the liquid refrigerant is decompressed.

中間絞りSによって減圧された液冷媒は、配管a3を介して自動膨張弁40に導入される。自動膨張弁40によって減圧された液冷媒は、液体と気体とが混在した状態の冷媒体に変化して、第1エバポレータ50に導入される。   The liquid refrigerant decompressed by the intermediate throttle S is introduced into the automatic expansion valve 40 via the pipe a3. The liquid refrigerant decompressed by the automatic expansion valve 40 is changed to a refrigerant body in which liquid and gas are mixed and introduced into the first evaporator 50.

第1エバポレータ50では、車室内Cから荷室D(図5参照)に排出される空気用空気Aと冷媒体とで熱交換を行う。すなわち、冷媒体が第1エバポレータ50を通過する際、空調用空気Aが有している熱を吸収して冷媒体が蒸発する。これにより、車室内Cの熱を有効に活用することができる。   In the first evaporator 50, heat is exchanged between the air for air A discharged from the passenger compartment C to the cargo compartment D (see FIG. 5) and the refrigerant body. That is, when the refrigerant body passes through the first evaporator 50, the refrigerant body evaporates by absorbing the heat of the air-conditioning air A. Thereby, the heat of the vehicle interior C can be utilized effectively.

第1エバポレータ50から導出された冷媒体は、第2エバポレータ60を迂回する配管a11を通り、そして、配管a6、自動膨張弁40、配管a7を通ってコンプレッサ10に戻る。   The refrigerant derived from the first evaporator 50 passes through the pipe a11 that bypasses the second evaporator 60, and returns to the compressor 10 through the pipe a6, the automatic expansion valve 40, and the pipe a7.

暖房運転時における車両用空調装置1Aでは、ECU80によってエアダンパ71が全開に制御されることにより、車外から取り込んだ空調用空気Aが、第2エバポレータ60と熱交換器20の双方を通り抜ける。第2エバポレータ60では、冷媒体が迂回するので熱交換は行われず、熱交換器20では、冷媒凝縮部21での放熱によって空調用空気Aが高温・高圧の冷媒体によって加熱され、暖かい空気が車室内Cに導入される。   In the vehicle air conditioner 1 </ b> A during the heating operation, the air damper 71 is fully opened by the ECU 80, so that the air conditioning air A taken from outside the vehicle passes through both the second evaporator 60 and the heat exchanger 20. In the second evaporator 60, since the refrigerant bypasses, heat exchange is not performed, and in the heat exchanger 20, the air-conditioning air A is heated by the high-temperature / high-pressure refrigerant due to the heat radiation in the refrigerant condensing unit 21, and the warm air is It is introduced into the passenger compartment C.

なお、暖房運転時には、ECU80によって電磁弁V5が開弁されることで、配管a9を介してコンデンサ30とコンプレッサ10の吸入口10aとが連通する。これにより、コンプレッサ10を作動させたときに吸入口10aに発生する吸引力(負圧)によって、レシーバタンク32などのコンデンサ30内に残留した冷媒体(液冷媒)が、配管a9を介して吸引されるので、冷媒体を有効に活用することができる。   During the heating operation, the solenoid valve V5 is opened by the ECU 80, so that the condenser 30 and the suction port 10a of the compressor 10 communicate with each other via the pipe a9. Thereby, the refrigerant body (liquid refrigerant) remaining in the capacitor 30 such as the receiver tank 32 is sucked through the pipe a9 by the suction force (negative pressure) generated at the suction port 10a when the compressor 10 is operated. Therefore, the refrigerant body can be used effectively.

(冷房運転時の動作)
図6に示すように、冷房運転時には、コンプレッサ10が駆動されると、コンプレッサ10で圧縮された冷媒体は、配管a1を介して熱交換器20に供給される。これにより、高温・高圧の冷媒体(気体)が熱交換器20に供給されることになる。
(Operation during cooling operation)
As shown in FIG. 6, during the cooling operation, when the compressor 10 is driven, the refrigerant body compressed by the compressor 10 is supplied to the heat exchanger 20 via the pipe a1. As a result, a high-temperature and high-pressure refrigerant (gas) is supplied to the heat exchanger 20.

コンプレッサ10から供給された冷媒体は、熱交換器20の冷媒凝縮部21に導入されるが、エアダンパ71が全閉状態に制御されているので、冷媒凝縮部21内を冷媒体が流れても空調用空気Aと熱交換を行うことはない。したがって、空調用空気Aが高温・高圧の冷媒体によって加熱されることがない。また、ECU80によって電磁弁V1が開かれ、電磁弁V3が閉じられているので、冷媒凝縮部21を通過した冷媒体は、レシーバタンク22および冷媒過冷却部23に流れることなく、配管a2を介してコンデンサ30に導入される。   The refrigerant body supplied from the compressor 10 is introduced into the refrigerant condensing unit 21 of the heat exchanger 20. However, since the air damper 71 is controlled to be fully closed, the refrigerant body flows through the refrigerant condensing unit 21. Heat exchange with the air-conditioning air A is not performed. Therefore, the air-conditioning air A is not heated by the high-temperature / high-pressure refrigerant body. Further, since the electromagnetic valve V1 is opened and the electromagnetic valve V3 is closed by the ECU 80, the refrigerant body that has passed through the refrigerant condensing unit 21 does not flow to the receiver tank 22 and the refrigerant subcooling unit 23, but via the pipe a2. Are introduced into the capacitor 30.

コンデンサ30に導入された冷媒体は、凝縮部31を通過する際に外気と熱交換することによって冷却される。熱交換後の冷媒体は、レシーバタンク32内において冷媒体が気液分離され、冷媒体から液冷媒が分離される。レシーバタンク32内の液冷媒は、配管a3を介して自動膨張弁40に導入される。   The refrigerant introduced into the condenser 30 is cooled by exchanging heat with the outside air when passing through the condenser 31. The refrigerant body after heat exchange is gas-liquid separated in the receiver tank 32, and the liquid refrigerant is separated from the refrigerant body. The liquid refrigerant in the receiver tank 32 is introduced into the automatic expansion valve 40 through the pipe a3.

自動膨張弁40に導入された液冷媒は、減圧されて、液冷媒とガス冷媒とが混在した状態となる。自動膨張弁40を通過した冷媒体は、第1エバポレータ50を迂回する配管a10を通って、第2エバポレータ60に導入される。   The liquid refrigerant introduced into the automatic expansion valve 40 is depressurized, and the liquid refrigerant and the gas refrigerant are mixed. The refrigerant body that has passed through the automatic expansion valve 40 is introduced into the second evaporator 60 through the pipe a10 that bypasses the first evaporator 50.

第2エバポレータ60では、車室内Cに導入される空調用空気Aと冷媒体との熱交換、すなわち、冷媒体が第2エバポレータ60を通過する際、コンデンサ30によって冷却された低温の冷媒体が空調用空気Aの熱を吸収することにより、空調用空気Aが冷却され、車室内Cに導入される。   In the second evaporator 60, heat exchange between the air-conditioning air A introduced into the passenger compartment C and the refrigerant body, that is, when the refrigerant body passes through the second evaporator 60, the low-temperature refrigerant body cooled by the capacitor 30 is By absorbing the heat of the air conditioning air A, the air conditioning air A is cooled and introduced into the passenger compartment C.

第2エバポレータ60から導出された冷媒体は、配管a6、自動膨張弁40、配管a7を介してコンプレッサ10に戻る。   The refrigerant body derived from the second evaporator 60 returns to the compressor 10 via the pipe a6, the automatic expansion valve 40, and the pipe a7.

冷房運転時における車両用空調装置1Aでは、エアダンパ71が全閉に制御されているので、第2エバポレータ60で冷却された空調用空気Aは熱交換器20によって暖められることなく、冷たい空気が車室内Cに導入される。   In the vehicle air conditioner 1A during the cooling operation, since the air damper 71 is controlled to be fully closed, the air-conditioning air A cooled by the second evaporator 60 is not heated by the heat exchanger 20, and cold air is It is introduced into the room C.

なお、除湿暖房運転時には、暖房運転時の状態に対して、さらにECU80によって電磁弁V8が閉じられて、冷媒体が第2エバポレータ60を通るように制御される。なお、暖房運転時の動作と重複する部分については説明を省略する。   Note that during the dehumidifying heating operation, the ECU 80 is further controlled to close the electromagnetic valve V8 so that the refrigerant passes through the second evaporator 60 with respect to the state during the heating operation. In addition, description is abbreviate | omitted about the part which overlaps with the operation | movement at the time of heating operation.

すなわち、第1エバポレータ50から第2エバポレータ60に導入された冷媒体は、空調用空気Aの熱を吸収して、空調用空気Aが冷却される。そして、第2エバポレータ60から導出された冷媒体は、配管a6、自動膨張弁40、配管a7を介してコンプレッサ10に戻る。   That is, the refrigerant introduced from the first evaporator 50 to the second evaporator 60 absorbs the heat of the air-conditioning air A, and the air-conditioning air A is cooled. And the refrigerant body derived | led-out from the 2nd evaporator 60 returns to the compressor 10 via the piping a6, the automatic expansion valve 40, and the piping a7.

このように、第1エバポレータ50から導出された冷媒体と、空調用空気Aとで熱交換を行う第2エバポレータ60とを備えると、除湿暖房運転時に、第2エバポレータ60に流入する冷媒体の吸熱によって空調用空気Aが冷却されるので、外気から取り込まれた空気(空調用空気A)に含まれる水蒸気が除去されて、除湿処理が施される。   As described above, when the refrigerant derived from the first evaporator 50 and the second evaporator 60 that exchanges heat with the air-conditioning air A are provided, the refrigerant flowing into the second evaporator 60 during the dehumidifying heating operation is provided. Since air-conditioning air A is cooled by heat absorption, water vapor contained in air (air-conditioning air A) taken from outside air is removed, and dehumidification is performed.

以上説明したように第1実施形態の熱交換器20によれば、チューブ21aを上下方向に伸長して形成して、冷媒凝縮部21を流れる冷媒体の流れ方向を下向きとし、さらに冷媒過冷却部23の下側に冷媒体の導入部、上側に冷媒体の導出部を形成して、冷媒体の流れ方向を上向きとすることにより、冷媒凝縮部では、冷媒体の温度が上から下に向かって低下し、冷媒過冷却部では、冷媒体の温度が下から上に向かって低下するので、冷媒凝縮部から出る気体の温度を均一にすることが可能になる。   As described above, according to the heat exchanger 20 of the first embodiment, the tube 21a is formed by extending in the vertical direction, the flow direction of the refrigerant flowing through the refrigerant condensing unit 21 is directed downward, and the refrigerant is supercooled. In the refrigerant condensing unit, the temperature of the refrigerant body is changed from the top to the bottom by forming the refrigerant body introduction part on the lower side of the part 23 and forming the refrigerant body outlet part on the upper side so that the flow direction of the refrigerant body is upward. Since the temperature of the refrigerant body decreases from the bottom to the top in the refrigerant subcooling section, the temperature of the gas exiting from the refrigerant condensing section can be made uniform.

また、第1実施形態の熱交換器20によれば、冷媒凝縮部21の冷媒入口部Q1(図3(a)参照)に過熱領域R1を配置し、冷媒過冷却部23の冷媒出口部Q2(図1参照)に過冷却領域R2を配置して、空調用空気Aを過冷却領域R2に流した後、過熱領域R1に流すことにより、以下の効果が得られる。   Further, according to the heat exchanger 20 of the first embodiment, the superheat region R1 is arranged at the refrigerant inlet portion Q1 (see FIG. 3A) of the refrigerant condensing portion 21, and the refrigerant outlet portion Q2 of the refrigerant subcooling portion 23 is disposed. By arranging the supercooling region R2 (see FIG. 1) and flowing the air-conditioning air A to the supercooling region R2, the following effects are obtained.

すなわち、図7(a)に示すように、冷媒過冷却部23に車外から冷たい空調用空気Aが導入されたとき、過冷却領域R2では、冷媒過冷却部23で冷やされた凝縮温度よりも低い温度の冷媒体が流れ、過熱領域R1では、コンプレッサ10からの凝縮温度よりも高い温度の(気体の)冷媒体が流れるので、過冷却領域R2および過熱領域R1の高さ位置において冷媒凝縮部21から取り出される空調用空気Aはある暖かい温度(例えば、Ta)の風(気体)になる。ちなみに、冷媒過冷却部23の冷媒入口部側の領域R3では、冷媒過冷却部23に導入されたばかりの凝縮温度に近い冷媒体が流れ、冷媒凝縮部21の冷媒出口部側の領域R4では、冷媒凝縮部21で放熱された凝縮温度に近い冷媒体が流れるので、領域R3,R4の高さ位置において冷媒凝縮部21から取り出される空調用空気Aは、前記と同様な温度Taの暖かい風(気体)となる。   That is, as shown in FIG. 7A, when cold air-conditioning air A is introduced into the refrigerant subcooling section 23 from the outside of the vehicle, in the supercooling region R2, the condensation temperature cooled by the refrigerant subcooling section 23 is higher. A refrigerant body having a low temperature flows, and in the superheat region R1, a refrigerant gas having a temperature higher than the condensation temperature from the compressor 10 flows. Therefore, the refrigerant condensing unit is located at a height position of the supercooling region R2 and the superheat region R1. The air-conditioning air A taken out from 21 becomes wind (gas) at a certain warm temperature (for example, Ta). By the way, in the region R3 on the refrigerant inlet side of the refrigerant subcooling portion 23, a refrigerant body close to the condensation temperature just introduced into the refrigerant subcooling portion 23 flows, and in the region R4 on the refrigerant outlet portion side of the refrigerant condensing portion 21, Since the refrigerant body close to the condensation temperature radiated by the refrigerant condensing unit 21 flows, the air-conditioning air A taken out from the refrigerant condensing unit 21 at the height positions of the regions R3 and R4 is a warm air having a temperature Ta similar to the above ( Gas).

ちなみに、比較例として、図7(b)に示すように、冷媒凝縮部21のみに空調用空気Aを通過させる場合には、冷媒入口側の領域R10では、凝縮温度よりも高い温度の冷媒体が流れるので、冷媒凝縮部21から取り出される空調空気Aは熱くなり、冷媒出口側の領域R20では、凝縮温度に近い冷媒体が流れるので、冷媒凝縮部21から取り出される空調用空気Aは暖かくなる。このため冷媒凝縮器21の上下において、温度むらが発生することになる。   Incidentally, as a comparative example, as shown in FIG. 7B, when the air-conditioning air A is allowed to pass only through the refrigerant condensing unit 21, the refrigerant body having a temperature higher than the condensing temperature in the region R10 on the refrigerant inlet side. Therefore, the conditioned air A taken out from the refrigerant condensing part 21 becomes hot, and in the region R20 on the refrigerant outlet side, a refrigerant body close to the condensing temperature flows, so the air conditioned air A taken out from the refrigerant condensing part 21 becomes warm. . For this reason, temperature unevenness occurs above and below the refrigerant condenser 21.

このように、冷媒入口部Q1に配置された冷媒凝縮部21の過熱領域R1と、冷媒出口部Q2に配置された冷媒過冷却部23の過冷却領域R2に対して、同一の空調用空気Aが流れるように設定することで、他の領域においても温度にばらつきが発生するのを防止することができ、安定した熱交換性能を得ることが可能になる。なお、同一の空調用空気Aが流れるとは、過冷却領域R2を流れる冷媒体で熱交換された空調用空気Aが過熱領域R1を流れる冷媒体で熱交換されることを意味している。   In this way, the same air conditioning air A is applied to the superheating region R1 of the refrigerant condensing unit 21 arranged at the refrigerant inlet Q1 and the supercooling region R2 of the refrigerant subcooling unit 23 arranged at the refrigerant outlet Q2. By setting so as to flow, it is possible to prevent variations in temperature in other regions, and to obtain stable heat exchange performance. Note that the same air-conditioning air A flows means that the air-conditioning air A heat-exchanged by the refrigerant flowing in the supercooling region R2 is heat-exchanged by the refrigerant flowing in the superheating region R1.

また、第1実施形態の熱交換器20によれば、図3(b)に示すように、冷媒凝縮部21の下部ヘッダ21dを分岐流路として構成したので、冷房運転時には、電磁弁V3(図6参照)を閉じることにより、チューブ21aを通過した冷媒体がレシーバタンク22に流れることなく、コンデンサ30に流れることになる。一方、暖房運転時には、電磁弁V1(図5参照)を閉じることにより、チューブ21aを通過した冷媒体は、コンデンサ30に向かうことなく、レシーバタンク22に流れ、さらに冷媒過冷却部23を通って自動膨張弁40に導入される。このように、冷房運転時には、レシーバタンク22および冷媒過冷却部23に無駄に冷媒体が流れないようすることができる。   Moreover, according to the heat exchanger 20 of 1st Embodiment, as shown in FIG.3 (b), since the lower header 21d of the refrigerant | coolant condensing part 21 was comprised as a branch flow path, at the time of air_conditionaing | cooling operation, electromagnetic valve V3 ( By closing (see FIG. 6), the refrigerant body that has passed through the tube 21 a flows into the capacitor 30 without flowing into the receiver tank 22. On the other hand, at the time of heating operation, by closing the electromagnetic valve V1 (see FIG. 5), the refrigerant body that has passed through the tube 21a flows to the receiver tank 22 without going to the capacitor 30, and further passes through the refrigerant subcooling section 23. It is introduced into the automatic expansion valve 40. As described above, during the cooling operation, the refrigerant body can be prevented from flowing unnecessarily to the receiver tank 22 and the refrigerant supercooling unit 23.

図8は第2実施形態の熱交換器を示し、(a)は一部省略斜視図、(b)は(a)のX−X線断面図、(c)は(a)のY−Y線断面図である。第2実施形態の熱交換器200は、冷媒凝縮部を構成するチューブと、冷媒過冷却部を構成するチューブとが一体に形成されたものである。   8A and 8B show a heat exchanger according to the second embodiment, in which FIG. 8A is a partially omitted perspective view, FIG. 8B is a sectional view taken along line XX of FIG. 8A, and FIG. 8C is YY of FIG. It is line sectional drawing. In the heat exchanger 200 of the second embodiment, a tube constituting the refrigerant condensing unit and a tube constituting the refrigerant subcooling unit are integrally formed.

すなわち、図8(a)に示すように、熱交換器200は、上下方向に伸長する複数のチューブ210、チューブ210間に配置される放熱フィン220、上部ヘッダ230、下部ヘッダ240で構成されている。なお、レシーバタンク22については、第1実施形態と同様であるので、同一の符号を付してその説明を省略する。   That is, as shown in FIG. 8A, the heat exchanger 200 includes a plurality of tubes 210 extending in the vertical direction, radiating fins 220 disposed between the tubes 210, an upper header 230, and a lower header 240. Yes. Since the receiver tank 22 is the same as that of the first embodiment, the same reference numerals are given and description thereof is omitted.

チューブ210は、図8(c)に示すように、略楕円筒形状の筒体211と、筒体211の内側の空間を2つに区画する隔壁212とで構成されている。隔壁212は、上下方向にチューブ210のほぼ上端から下端まで延びてチューブ210内の空間を2分するように配置されている。また、筒体211の上端部213には、隔壁212と対応する位置に凹状の切欠き214,214が形成されている。なお、筒体211の下端部215についても、同様にして隔壁212と対応する位置に凹状の切欠き216が形成されている(図8(b)参照)。   As shown in FIG. 8C, the tube 210 includes a substantially elliptical cylindrical body 211 and a partition wall 212 that divides the space inside the cylindrical body 211 into two. The partition wall 212 is arranged so as to extend from the substantially upper end to the lower end of the tube 210 in the vertical direction so as to divide the space in the tube 210 into two. In addition, concave notches 214 and 214 are formed in the upper end portion 213 of the cylindrical body 211 at positions corresponding to the partition walls 212. Note that a concave notch 216 is similarly formed at the position corresponding to the partition wall 212 at the lower end portion 215 of the cylindrical body 211 (see FIG. 8B).

放熱フィン220は、コルゲートタイプのフィンであり、チューブ210の両側面の全体にわたって配置されている(図8(a)参照)。   The heat radiating fins 220 are corrugated fins, and are disposed over the entire side surfaces of the tube 210 (see FIG. 8A).

図8(b)に示すように、上部ヘッダ230は、冷媒体の流れ方向から見たときに断面略山型の形状を呈し、各チューブ210が接続されるベース231と、ベース231の上部を覆うカバー232と、前記隔壁212と対応する位置で、上部ヘッダ230の空間を仕切る仕切板233とで構成されている。   As shown in FIG. 8 (b), the upper header 230 has a substantially mountain-shaped cross section when viewed from the flow direction of the refrigerant, and includes a base 231 to which each tube 210 is connected and an upper portion of the base 231. The cover 232 for covering and a partition plate 233 for partitioning the space of the upper header 230 at a position corresponding to the partition wall 212 are configured.

ベース231は、チューブ210の並び方向に延びる略プレート状を呈し、チューブ210の上端部213が挿入される貫通孔231aが、各チューブ210と対応する位置に形成されている。カバー232は、凸形状を呈し、ベース231の上部、レシーバタンク22側の一端を閉塞するように構成されている。仕切板233は、チューブ210の並び方向に延びて形成され、チューブ210の下端縁部が切欠き214に当接するように配置される。   The base 231 has a substantially plate shape extending in the arrangement direction of the tubes 210, and through holes 231 a into which the upper end portions 213 of the tubes 210 are inserted are formed at positions corresponding to the tubes 210. The cover 232 has a convex shape and is configured to close the upper portion of the base 231 and one end on the receiver tank 22 side. The partition plate 233 is formed to extend in the direction in which the tubes 210 are arranged, and is arranged so that the lower end edge of the tube 210 abuts the notch 214.

このように形成されたベース231、カバー232および仕切板233は、溶接などによって接合される。なお、空調用空気Aの風下側に位置するチューブ210の流路S10の流路断面が、風上側に位置するチューブ210の流路S20の流路断面よりも大きくなうように形成されている。また、上部ヘッダ230内は、流路S10に対応する側の流路S1の流路断面が、流路S20に対応する側の流路S3の流路断面よりも大きくなるよう形成されている。また、下部ヘッダ240内についても同様に、流路S10に対応する側の流路S2の流路断面が、流路S20に対応する側の流路S4の流路断面よりも大きくなるように形成されている。   The base 231, the cover 232, and the partition plate 233 formed in this way are joined by welding or the like. Note that the cross section of the flow path S10 of the tube 210 located on the leeward side of the air-conditioning air A is formed to be larger than the cross section of the flow path S20 of the tube 210 located on the upwind side. . Further, the upper header 230 is formed such that the cross section of the flow path S1 on the side corresponding to the flow path S10 is larger than the cross section of the flow path S3 on the side corresponding to the flow path S20. Similarly, in the lower header 240, the flow path cross section of the flow path S2 on the side corresponding to the flow path S10 is formed to be larger than the flow path cross section of the flow path S4 on the side corresponding to the flow path S20. Has been.

下部ヘッダ240は、チューブ210の下端部215が挿入される貫通孔241aを有するベース241、ベース241を覆うカバー242、仕切板243によって、上部ヘッダ230と同様に構成されている。なお、下部ヘッダ240のレシーバタンク22側の一端面240aには、流路S2と連通する配管22b、流路S4と連通する配管22cがそれぞれ接続されている。   The lower header 240 is configured in the same manner as the upper header 230 by a base 241 having a through-hole 241a into which the lower end portion 215 of the tube 210 is inserted, a cover 242 that covers the base 241 and a partition plate 243. A pipe 22b that communicates with the flow path S2 and a pipe 22c that communicates with the flow path S4 are connected to one end surface 240a of the lower header 240 on the receiver tank 22 side.

このように構成された熱交換器200では、暖房運転時において、コンプレッサ10から導入された冷媒体が上部ヘッダ230の流路S1、チューブ210の流路S10、下部ヘッダ240の流路S2を通って、空調用空気Aが暖められる。空調用空気Aと熱交換された冷媒体は、配管22bを介してレシーバタンク22に導入されて気液分離され、配管22cを介して下部ヘッダ240の流路S4に導入される。その後、チューブ210の流路S20、上部ヘッダ230の流路S3を通って、自動膨張弁40(中間絞りS)に導入される。   In the heat exchanger 200 configured as described above, during the heating operation, the refrigerant introduced from the compressor 10 passes through the flow path S1 of the upper header 230, the flow path S10 of the tube 210, and the flow path S2 of the lower header 240. Thus, the air-conditioning air A is warmed. The refrigerant body heat-exchanged with the air-conditioning air A is introduced into the receiver tank 22 through the pipe 22b and separated into gas and liquid, and is introduced into the flow path S4 of the lower header 240 through the pipe 22c. Thereafter, the gas is introduced into the automatic expansion valve 40 (intermediate throttle S) through the flow path S20 of the tube 210 and the flow path S3 of the upper header 230.

つまり、第2実施形態の熱交換器200では、チューブ210の流路S10、放熱フィン220、上部ヘッダ230の流路S1および下部ヘッダ240の流路S2によって冷媒凝縮部が構成されている。また、第2実施形態では、チューブ210の流路S20、放熱フィン220、上部ヘッダ230の流路S3および下部ヘッダ240の流路S4によって冷媒過冷却部が構成されている。   That is, in the heat exchanger 200 of the second embodiment, the refrigerant condensing unit is configured by the flow path S10 of the tube 210, the heat radiation fin 220, the flow path S1 of the upper header 230, and the flow path S2 of the lower header 240. Moreover, in 2nd Embodiment, the refrigerant | coolant supercooling part is comprised by the flow path S20 of the tube 210, the thermal radiation fin 220, the flow path S3 of the upper header 230, and the flow path S4 of the lower header 240.

このように構成された第2実施形態の熱交換器200によれば、図8(b)に示すように、冷媒入口部Q1に配置された冷媒凝縮部の過熱領域R1と、冷媒出口部Q2に配置された冷媒過冷却部の過冷却領域R2に対して、同一の空調用空気Aが流れるようになるので、他の領域においても同様な温度の空調用空気Aを取り出すことができ、温度むらを起さずに安定した熱交換性能が得られるようになる。   According to the heat exchanger 200 of the second embodiment configured as described above, as shown in FIG. 8 (b), the superheat region R1 of the refrigerant condensing part arranged in the refrigerant inlet part Q1, and the refrigerant outlet part Q2 Since the same air-conditioning air A flows to the supercooling region R2 of the refrigerant supercooling unit disposed in the air-conditioning system, the air-conditioning air A having the same temperature can be taken out in other regions. Stable heat exchange performance can be obtained without causing unevenness.

また、第2実施形態によれば、下部ヘッダ240が、レシーバタンク22に流れる流路と、コンデンサ30に流れる流路とに分岐する流路S2(分岐流路)を構成しているので、冷房運転時には、レシーバタンク22および冷媒過冷却部に無駄に冷媒体が流れないようにすることができる。   In addition, according to the second embodiment, the lower header 240 configures the flow path S2 (branch flow path) that branches into the flow path that flows to the receiver tank 22 and the flow path that flows to the capacitor 30. During operation, the refrigerant body can be prevented from flowing unnecessarily to the receiver tank 22 and the refrigerant subcooling section.

図9は第3実施形態の熱交換器を示し、(a)は縦断面図、(b)はチューブの構成を示す斜視図である。第3実施形態の熱交換器300は、冷媒凝縮部を構成するチューブ310と冷媒過冷却部を構成するチューブ320とを別々のチューブで構成したものである。   FIG. 9 shows a heat exchanger according to the third embodiment, in which (a) is a longitudinal sectional view and (b) is a perspective view showing a configuration of a tube. In the heat exchanger 300 of the third embodiment, the tube 310 constituting the refrigerant condensing part and the tube 320 constituting the refrigerant subcooling part are constituted by separate tubes.

すなわち、熱交換器300は、上下方向に伸長する複数のチューブ310,320、チューブ310,320間に配置される放熱フィン330、上部ヘッダ340、下部ヘッダ350で構成されている。   That is, the heat exchanger 300 includes a plurality of tubes 310 and 320 extending in the vertical direction, radiating fins 330 disposed between the tubes 310 and 320, an upper header 340, and a lower header 350.

図9(b)に示すように、チューブ310は、流路形状が半トラック形状を呈し、チューブ320は、流路形状が半楕円形状を呈している。また、チューブ310の平坦な壁面とチューブ320の平坦な壁面とが向かい合い、かつ、隙間360が形成されるように配置される。   As shown in FIG. 9B, the tube 310 has a semi-track shape in the flow path, and the tube 320 has a semi-elliptical shape in the flow path. Further, the flat wall surface of the tube 310 and the flat wall surface of the tube 320 face each other, and the gap 360 is formed.

なお、上部ヘッダ340が第2実施形態の上部ヘッダ230と相違する点は、図9(a9に示すように、ベース341に、チューブ310とチューブ320の各上端部が挿入される貫通孔341a,341bが形成されている点である。また、下部ヘッダ350についても、ベース351に、チューブ310とチューブ320の各上端部が挿入される貫通孔351a,351bが形成されている点のみが第2実施形態の下部ヘッダ240と異なっている。   The difference between the upper header 340 and the upper header 230 of the second embodiment is that, as shown in FIG. 9 (a9), through holes 341a, through which the upper ends of the tube 310 and the tube 320 are inserted into the base 341, 341b is also formed in the lower header 350. The lower header 350 is the second only in that through holes 351a and 351b into which the upper ends of the tubes 310 and 320 are inserted are formed in the base 351. It differs from the lower header 240 of the embodiment.

また、第3実施形態では、チューブ310、放熱フィン220、上部ヘッダ340の流路S1および下部ヘッダ350の流路S2によって冷媒凝縮部が構成されている。また、第3実施形態では、チューブ320、放熱フィン220、上部ヘッダ340の流路S3および下部ヘッダ350の流路S4によって冷媒過冷却部が構成されている。   Further, in the third embodiment, the refrigerant condensing unit is configured by the tube 310, the heat radiation fin 220, the flow path S1 of the upper header 340 and the flow path S2 of the lower header 350. In the third embodiment, the refrigerant supercooling section is configured by the tube 320, the heat radiation fin 220, the flow path S3 of the upper header 340, and the flow path S4 of the lower header 350.

このように構成された第3実施形態の熱交換器300によれば、第1実施形態および第2実施形態と同様に、温度むらを起さずに安定した熱交換性能が得られ、また、冷房運転時には、レシーバタンク22および冷媒過冷却部に無駄に冷媒体が流れないようすることができる。   According to the heat exchanger 300 of the third embodiment configured as described above, a stable heat exchange performance can be obtained without causing temperature unevenness, as in the first and second embodiments. During the cooling operation, the refrigerant body can be prevented from flowing unnecessarily to the receiver tank 22 and the refrigerant subcooling section.

なお、前記した2実施形態では、下部ヘッダ240とレシーバタンク22とを配管22b,22cを用いて接続していたが、これに限定されるものではなく、図10(a)に示すように、内部に、下部ヘッダ240の流路S2とレシーバタンク22とを接続する流路401、および下部ヘッダ240の流路S4とレシーバタンク22とを接続する流路402を備えたブロック状の部材400を用いてもよい。また、図10(b)に示すように、下部ヘッダ240をレシーバタンク22の底側まで延出して形成し、レシーバタンク22の上面に開口する連通孔245にレシーバタンク22内の配管22bを接続し、上面に開口する連通孔246にレシーバタンク22の出口の開口部を接続するようにしてもよい。図10に示す構成は、第1実施形態および第3実施形態に適用してもよい。   In the two embodiments described above, the lower header 240 and the receiver tank 22 are connected using the pipes 22b and 22c. However, the present invention is not limited to this, and as shown in FIG. Inside, a block-shaped member 400 having a flow path 401 connecting the flow path S2 of the lower header 240 and the receiver tank 22 and a flow path 402 connecting the flow path S4 of the lower header 240 and the receiver tank 22 is provided. It may be used. 10B, the lower header 240 is formed to extend to the bottom side of the receiver tank 22, and the pipe 22b in the receiver tank 22 is connected to the communication hole 245 that opens on the upper surface of the receiver tank 22. And you may make it connect the opening part of the exit of the receiver tank 22 to the communicating hole 246 opened to an upper surface. The configuration shown in FIG. 10 may be applied to the first embodiment and the third embodiment.

また、本発明の各実施形態に示したチューブ21a、23a、210、310、320は、単純な筒体に限定するものではなく、例えば、図11(a)および(b)に示すように、チューブ210A,310A,320Aに複数の隔壁sが内蔵されることで複数の流路が内部に形成されていてもよい。さらに、図8(c)で示した隔壁212は、図11(a)のチューブ210Aの隔壁sと共用されていてもよい。   Moreover, the tubes 21a, 23a, 210, 310, and 320 shown in the embodiments of the present invention are not limited to simple cylinders. For example, as shown in FIGS. 11 (a) and 11 (b), A plurality of flow paths may be formed in the tube 210A, 310A, 320A by incorporating a plurality of partition walls s. Further, the partition wall 212 shown in FIG. 8C may be shared with the partition wall s of the tube 210A in FIG.

さらに、図8に示すヘッダ230、240および図9に示すヘッダ340、350は、図11(c)において、符号230Aに示すように、仕切板とカバーとが一体で形成されていてもよい。また、図11(d)において、符号230Bに示すように、カバーとベースと仕切板とが一体に形成されていてもよい。また、図11(e)において、符号230Cに示すように、冷媒凝縮部側に形成された山型のヘッダh1と冷媒過冷却部側に形成された山型のヘッダh2からなる2つのヘッダを対向する側面において接続して、それぞれのヘッダh1,h2が互いに当接する面において仕切板の部分を形成してもよい。また、図11(f)において、符号230Dに示すように、当接する部分にシール部材tを設けるようにしてもよい。   Further, the headers 230 and 240 shown in FIG. 8 and the headers 340 and 350 shown in FIG. 9 may be formed integrally with a partition plate and a cover, as indicated by reference numeral 230A in FIG. 11C. In FIG. 11D, as shown by reference numeral 230B, the cover, the base, and the partition plate may be integrally formed. Moreover, in FIG.11 (e), as shown to the code | symbol 230C, the two headers which consist of the peak-shaped header h1 formed in the refrigerant | coolant condensing part side and the peak-shaped header h2 formed in the refrigerant | coolant subcooling part side are shown. A part of the partition plate may be formed on the surface where the headers h1 and h2 are in contact with each other by connecting on the opposite side surfaces. Further, in FIG. 11 (f), as shown by reference numeral 230D, a seal member t may be provided at a contact portion.

20,200,300 熱交換器
21 冷媒凝縮部
21a チューブ
21b 放熱フィン(フィン)
21c 上部ヘッダ
21d 下部ヘッダ(分岐流路)
22 レシーバタンク(気液分離部)
23 冷媒過冷却部
23c 導入部
23d 導出部
Q1 冷媒入口部
Q2 冷媒出口部
R1 過熱領域
R2 過冷却領域
20, 200, 300 Heat exchanger 21 Refrigerant condensing part 21a Tube 21b Radiation fin (fin)
21c Upper header 21d Lower header (branch channel)
22 Receiver tank (gas-liquid separator)
23 Refrigerant supercooling part 23c Introducing part 23d Deriving part Q1 Refrigerant inlet part Q2 Refrigerant outlet part R1 Superheated area R2 Supercooled area

Claims (3)

上下方向に複数伸長して形成されたチューブおよび前記チューブに接合されたフィンを備え、冷媒体を前記チューブ内に通すことにより外部からの気体と熱交換する冷媒凝縮部と、
前記冷媒体を気液分離する気液分離部と、
上下方向に前記冷媒体の導出部と導入部とを備え、前記冷媒体と前記外部からの気体とで熱交換を行う冷媒過冷却部と、を有し、
前記冷媒体が、前記冷媒凝縮部、前記気液分離部、前記冷媒過冷却部の順に通流するとともに、前記外部からの気体が前記冷媒過冷却部を流れた後、前記冷媒凝縮部に流れるように構成したことを特徴とする熱交換器。
A refrigerant condensing part that includes a tube formed by extending a plurality of members in the vertical direction and fins joined to the tube, and exchanges heat with gas from the outside by passing a refrigerant body through the tube;
A gas-liquid separator for gas-liquid separation of the refrigerant body;
A refrigerant supercooling section that includes an outlet portion and an introduction portion of the refrigerant body in a vertical direction, and performs heat exchange between the refrigerant body and the gas from the outside;
The refrigerant body flows in the order of the refrigerant condensing unit, the gas-liquid separating unit, and the refrigerant subcooling unit, and after the gas from the outside flows through the refrigerant subcooling unit, it flows into the refrigerant condensing unit A heat exchanger configured as described above.
前記冷媒凝縮部の冷媒入口部に過熱領域を配置し、
前記冷媒過冷却部の冷媒出口部に過冷却領域を配置し、
前記外部からの気体が前記過冷却領域を流れた後、少なくとも一部が前記過熱領域に流れることを特徴とする請求項1に記載の熱交換器。
An overheating region is disposed at the refrigerant inlet of the refrigerant condensing unit,
A supercooling region is disposed at the refrigerant outlet of the refrigerant supercooling unit;
2. The heat exchanger according to claim 1, wherein at least a part of the gas from the outside flows in the superheating region after the gas from the outside flows in the supercooling region.
前記冷媒凝縮部は、前記気液分離部に導出する経路と、外部に冷媒体を導出する経路とを分岐する分岐流路を備えたことを特徴とする請求項1または請求項2に記載の熱交換器。   The said refrigerant | coolant condensing part was equipped with the branch flow path which branches the path | route derived | led-out to the said gas-liquid separation part, and the path | route which derive | leads-out a refrigerant | coolant body to the exterior. Heat exchanger.
JP2010057192A 2010-03-15 2010-03-15 Heat exchanger Expired - Fee Related JP5200045B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010057192A JP5200045B2 (en) 2010-03-15 2010-03-15 Heat exchanger
US13/043,495 US20110219817A1 (en) 2010-03-15 2011-03-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057192A JP5200045B2 (en) 2010-03-15 2010-03-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2011190982A true JP2011190982A (en) 2011-09-29
JP5200045B2 JP5200045B2 (en) 2013-05-15

Family

ID=44558635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057192A Expired - Fee Related JP5200045B2 (en) 2010-03-15 2010-03-15 Heat exchanger

Country Status (2)

Country Link
US (1) US20110219817A1 (en)
JP (1) JP5200045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084469A1 (en) * 2011-12-08 2013-06-13 株式会社デンソー Heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2974409B1 (en) * 2011-04-21 2018-01-05 Valeo Systemes Thermiques HEAT EXCHANGER FOR A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION
JP6026956B2 (en) * 2013-05-24 2016-11-16 サンデンホールディングス株式会社 Indoor heat exchanger
EP2835608A1 (en) * 2013-08-08 2015-02-11 VALEO AUTOSYSTEMY Sp. Z. o.o. Dual plane condenser
ITUB20152983A1 (en) * 2015-08-07 2017-02-07 De Longhi Appliances Srl PERFECT PORTABLE CONDITIONER
US20180252218A1 (en) * 2017-03-01 2018-09-06 Ingersoll-Rand Company Paired oil cooler and aftercooler fluid flow arrangement
FR3096447B1 (en) * 2019-05-21 2021-05-21 Valeo Systemes Thermiques Heat exchanger and associated heat exchange system for vehicles
CN113063241B (en) * 2019-12-30 2022-06-21 浙江三花智能控制股份有限公司 Heat exchange assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152869A (en) * 1984-01-20 1985-08-12 株式会社デンソー Air cooling refrigerating device for car
JPH0384395A (en) * 1989-08-23 1991-04-09 Showa Alum Corp Duplex heat exchanger
JP2001041601A (en) * 1999-07-30 2001-02-16 Denso Corp Refrigerating cycle device
JP2004020070A (en) * 2002-06-18 2004-01-22 Hitachi Ltd Heat pump type cold-hot water heater

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JP3051420B2 (en) * 1990-03-02 2000-06-12 株式会社日立製作所 Air conditioner and method of manufacturing indoor heat exchanger used for the device
JP4608834B2 (en) * 2001-09-18 2011-01-12 株式会社デンソー Refrigeration cycle equipment
US6904770B2 (en) * 2003-09-03 2005-06-14 Delphi Technologies, Inc. Multi-function condenser
JP4089567B2 (en) * 2003-09-16 2008-05-28 株式会社デンソー Heat exchanger module for cooling
US7093461B2 (en) * 2004-03-16 2006-08-22 Hutchinson Fts, Inc. Receiver-dryer for improving refrigeration cycle efficiency
JP4246189B2 (en) * 2005-09-07 2009-04-02 株式会社デンソー Refrigeration cycle equipment
DE102006028017A1 (en) * 2006-02-10 2007-08-16 Behr Gmbh & Co. Kg Heat exchanger, in particular with cold storage
DE102006011327A1 (en) * 2006-03-09 2007-09-13 Behr Gmbh & Co. Kg Heat exchanger with cold storage
CN102084197A (en) * 2008-07-04 2011-06-01 开利公司 Refrigerated transport system testing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152869A (en) * 1984-01-20 1985-08-12 株式会社デンソー Air cooling refrigerating device for car
JPH0384395A (en) * 1989-08-23 1991-04-09 Showa Alum Corp Duplex heat exchanger
JP2001041601A (en) * 1999-07-30 2001-02-16 Denso Corp Refrigerating cycle device
JP2004020070A (en) * 2002-06-18 2004-01-22 Hitachi Ltd Heat pump type cold-hot water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084469A1 (en) * 2011-12-08 2013-06-13 株式会社デンソー Heat exchanger
JP2013139998A (en) * 2011-12-08 2013-07-18 Denso Corp Heat exchanger

Also Published As

Publication number Publication date
JP5200045B2 (en) 2013-05-15
US20110219817A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5200045B2 (en) Heat exchanger
US10753686B2 (en) Condenser for vehicle
JP5391379B2 (en) Refrigerant cycle of automobile air conditioner
US10005354B2 (en) Cooling module and cooling system for vehicle
US9140473B2 (en) Condenser for vehicle
US20090090130A1 (en) Evaporator Unit
CN104995047B (en) Air conditioner for vehicles
JP6870570B2 (en) Vehicle heat management system
KR101461871B1 (en) Condenser for vehicle
JP2009257748A (en) Heating and air-conditioning unit for automobile
US20180022188A1 (en) Air conditioner for vehicle
KR102255799B1 (en) Refrigerant cycle of air conditioner for vehicles
GB2316738A (en) A combined refrigerant accumulator and heat transfer unit
JP2013119373A (en) Condenser for vehicle
KR101894440B1 (en) External heat exchanger of heat pump system for vehicle
JP2012132586A (en) Refrigeration cycle device
JP3941555B2 (en) Refrigeration cycle apparatus and condenser
JP2011189824A (en) Air-conditioning system for vehicle
JP2004190956A (en) Condenser
KR101338464B1 (en) Heat pump system for vehicle
JP6025716B2 (en) Air conditioner for vehicles
JP3214278B2 (en) Air conditioner
KR102123858B1 (en) Air conditioner system for vehicle
JPH09126592A (en) Outdoor heat exchanger for heat pump type refrigerating cycle
JP6891711B2 (en) Combined heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees