JP5708343B2 - Electromagnetic drive device and solenoid valve - Google Patents

Electromagnetic drive device and solenoid valve Download PDF

Info

Publication number
JP5708343B2
JP5708343B2 JP2011162364A JP2011162364A JP5708343B2 JP 5708343 B2 JP5708343 B2 JP 5708343B2 JP 2011162364 A JP2011162364 A JP 2011162364A JP 2011162364 A JP2011162364 A JP 2011162364A JP 5708343 B2 JP5708343 B2 JP 5708343B2
Authority
JP
Japan
Prior art keywords
suction
movable core
outer peripheral
core
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011162364A
Other languages
Japanese (ja)
Other versions
JP2013024380A (en
Inventor
健太郎 熊倉
健太郎 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011162364A priority Critical patent/JP5708343B2/en
Publication of JP2013024380A publication Critical patent/JP2013024380A/en
Application granted granted Critical
Publication of JP5708343B2 publication Critical patent/JP5708343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

本発明は、電磁駆動装置及びそれを備えた電磁弁に関する。   The present invention relates to an electromagnetic drive device and an electromagnetic valve including the same.

従来、軸方向に往復移動する可動体において、コイルへの通電による発生磁束が可動コアを通って固定コアの吸引部に受け渡されることにより、可動コアが吸引部に吸引駆動される電磁駆動装置が、知られている。このような電磁駆動装置は、例えば可動コアを有する可動体の往復移動に応じて、流体の流通するポートが開閉される電磁弁等において、好適に利用されている。   Conventionally, in a movable body that reciprocates in the axial direction, an electromagnetic drive device in which the movable core is suction-driven to the suction portion by passing the magnetic flux generated by energizing the coil through the movable core to the suction portion of the fixed core It has been known. Such an electromagnetic drive device is suitably used in, for example, an electromagnetic valve that opens and closes a port through which a fluid flows according to a reciprocating movement of a movable body having a movable core.

さて、電磁駆動装置の一種として特許文献1に開示される装置の固定コアには、可動コアを同軸上に往復移動自在に収容する筒状の収容部が、当該可動コアを往方向へ吸引する吸引部と共に、設けられている。ここで、往方向の吸引部と接続される収容部の外周側には、コイルが設けられていると共に、同収容部の内周面には、可動コアが摺動して軸方向に案内されるようになっている。こうした構成により特許文献1の開示装置では、収容部外周側のコイルへの通電により発生した磁束を、収容部内周側の可動コアに通して、収容部と接続の吸引部に受け渡すことで、軸方向に安定した可動体の移動が可能となるのである。   Now, in the fixed core of the device disclosed in Patent Document 1 as a kind of electromagnetic drive device, a cylindrical housing portion that reciprocally moves the movable core coaxially sucks the movable core in the forward direction. It is provided with the suction part. Here, a coil is provided on the outer peripheral side of the housing portion connected to the forward suction portion, and the movable core slides and is guided in the axial direction on the inner peripheral surface of the housing portion. It has become so. With such a configuration, in the disclosed device of Patent Document 1, the magnetic flux generated by energizing the coil on the outer peripheral side of the housing portion is passed through the movable core on the inner peripheral side of the housing portion, and passed to the suction portion connected to the housing portion, This makes it possible to move the movable body stably in the axial direction.

特許第4569371号公報Japanese Patent No. 4569371

しかし、特許文献1に開示の電磁駆動装置では、吸引部と収容部とが同程度の径方向厚さをもって形成されているので、コイルへの通電による発生磁束が吸引部よりも、収容部へ流れて拡散するおそれがある。そのため、本来同軸上に配置されるべき可動コアと固定コアとが互いに偏芯している場合は特に、可動コアから外周側の収容部に磁束が受け渡され易くなり、可動コアから吸引部へと受け渡される磁束が減少することになる。その結果、外周側の収容部に磁束を受け渡す可動コアでは、径方向に作用するサイドフォースが増えるので、当該可動コアを有する可動体の駆動応答性が低下してしまう。また、サイドフォースが増えることにより、可動コアと収容部との摺動摩擦が増大するため、電磁駆動装置の耐久性を阻害してしまう。さらに、磁束の通過密度を高めるべく径方向厚さを増大させる必要のある吸引部に対して、同程度の径方向厚さを収容部が有しているため、当該収容部の外周側コイルの巻き数を増やして吸引力を増大させることは、難しい。こうした吸引力の増大が困難な状況は、可動体についての駆動応答性の向上を図る上においてネックとなるため、望ましくない。   However, in the electromagnetic drive device disclosed in Patent Document 1, since the suction portion and the housing portion are formed with the same radial thickness, the magnetic flux generated by energizing the coil is directed to the housing portion rather than the suction portion. May flow and spread. Therefore, especially when the movable core and the fixed core that should be arranged coaxially are eccentric from each other, the magnetic flux is easily transferred from the movable core to the housing portion on the outer peripheral side, and from the movable core to the suction portion. The magnetic flux delivered will decrease. As a result, in the movable core that transfers the magnetic flux to the outer circumferential side accommodating portion, the side force acting in the radial direction increases, so that the drive responsiveness of the movable body having the movable core decreases. Further, since the side force is increased, the sliding friction between the movable core and the accommodating portion is increased, which impairs the durability of the electromagnetic drive device. Furthermore, since the housing portion has the same radial thickness as the suction portion that needs to increase the radial thickness in order to increase the magnetic flux passage density, the outer peripheral coil of the housing portion has the same thickness. It is difficult to increase the suction force by increasing the number of turns. Such a situation where it is difficult to increase the suction force is not desirable because it becomes a bottleneck in improving the drive response of the movable body.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、駆動応答性と耐久性の向上が可能な電磁駆動装置及びそれを備えた電磁弁を提供することにある。   The present invention has been made in view of the problems described above, and an object thereof is to provide an electromagnetic drive device capable of improving drive response and durability and an electromagnetic valve including the same.

請求項1に記載の発明は、可動コアを有し当該可動コアの軸方向に往復移動する可動体と、可動コアを同軸上に往復移動自在に収容する筒状の収容部と、可動コアを軸方向のうち往方向へ吸引する吸引部とを有する固定コアと、収容部の外周側に設けられ通電により磁束を発生するコイルと、可動コア、固定コア、及びコイルを収容するとともに吸引部と磁気的に接続されたヨークとを備え、コイルの発生磁束が可動コアを通って吸引部に受け渡されることにより、可動コアが吸引部に吸引駆動される電磁駆動装置において、吸引部は、収容部から往方向へ離間するに従って、外周面が拡径することにより吸引部の径方向厚さを増大させる外周面を形成し、収容部は、吸引部よりも絞られた径方向厚さをもって往方向の吸引部に接続され、吸引部において外周面の最小径部は、コイルよりも往方向に位置し、吸引部において、外周面が最も拡径している部分の径方向の厚さは、吸引部とヨークとが磁気的に接続されている領域の軸方向の長さよりも大きいThe invention according to claim 1 includes a movable body having a movable core and reciprocally moving in the axial direction of the movable core, a cylindrical housing portion for reciprocally moving the movable core on the same axis, and a movable core. A fixed core having a suction part that sucks in the forward direction of the axial direction, a coil that is provided on the outer peripheral side of the housing part and generates a magnetic flux by energization , a movable core, a fixed core, and a suction part that houses the coil and A magnetically connected yoke, and the magnetic flux generated by the coil is transferred to the suction portion through the movable core, so that the movable core is attracted to the suction portion. The outer peripheral surface is increased in diameter as the distance from the front portion increases, thereby forming an outer peripheral surface that increases the radial thickness of the suction portion, and the accommodating portion has a radial thickness that is narrower than the suction portion. connected to a suction portion of the direction, intake The smallest diameter portion of the outer peripheral surface is located in the forward direction from the coil, and the radial thickness of the portion of the suction portion where the outer peripheral surface is most expanded is magnetically reduced between the suction portion and the yoke. It is larger than the axial length of the connected area .

このように請求項1に記載の発明において吸引部の径方向厚さは、それよりも絞られた収容部の径方向厚さに比して厚くなるため、コイルへの通電による発生磁束は、可動コアから収容部よりも吸引部へ流れ易くなる。故に、可動コアと固定コアとが互いに偏芯する場合においても、可動コアからの磁束を、外周側の収容部には受け渡し難くして、当該収容部と往方向にて接続の吸引部に集中して受け渡すことができる。その結果、可動コアを外周側の収容部に押し付けるサイドフォースが減るので、当該可動コアを有する可動体の駆動応答性を向上させることが可能となる。また、サイドフォースが減ることにより、可動コアと収容部との摺動摩擦が減るので、電磁駆動装置の耐久性を向上させることも可能となる。   Thus, in the invention according to claim 1, since the radial thickness of the suction portion is larger than the radial thickness of the accommodating portion that is narrower than that, the magnetic flux generated by energizing the coil is It becomes easier to flow from the movable core to the suction part than the accommodation part. Therefore, even when the movable core and the fixed core are eccentric from each other, it is difficult to transfer the magnetic flux from the movable core to the housing portion on the outer peripheral side, and is concentrated on the suction portion connected in the forward direction with the housing portion. Can be handed over. As a result, the side force that presses the movable core against the outer peripheral housing portion is reduced, so that the drive response of the movable body having the movable core can be improved. In addition, since the side force is reduced, the sliding friction between the movable core and the housing portion is reduced, so that the durability of the electromagnetic drive device can be improved.

さらに請求項1に記載の発明の吸引部では、収容部から往方向への離間に従った外周面の拡径により、径方向厚さの増大が実現されるので、可動コアから受け渡される磁束の通過面積は、当該離間に従って大きくなる。これにより、吸引部における通過磁束の密度を高めて、可動コアを吸引駆動するための吸引力を増強させることができる。また、収容部の径方向厚さが吸引部よりも絞られる分、外周側のコイルの巻き数を増やして発生磁束の密度を高めることで、吸引力を増強させることができる。これらによれば、吸引力を受ける可動コアを有した可動体の駆動応答性を向上させることが、可能となる。   Furthermore, in the suction part according to the first aspect of the present invention, since the increase in the radial thickness is realized by the diameter increase of the outer peripheral surface in accordance with the separation in the forward direction from the housing part, the magnetic flux delivered from the movable core The passage area increases as the distance increases. Thereby, the density of the passing magnetic flux in the attraction unit can be increased, and the attraction force for attracting and driving the movable core can be increased. Further, the attracting force can be increased by increasing the number of turns of the coil on the outer peripheral side and increasing the density of the generated magnetic flux as much as the radial thickness of the housing portion is reduced more than the attracting portion. According to these, it becomes possible to improve the drive responsiveness of a movable body having a movable core that receives a suction force.

さらに、請求項に記載の発明によると、吸引部において外周面の最小径部は、コイルよりも往方向に位置する。この発明において吸引部の外周面は、コイルよりも往方向に位置する最小径部を起点に、往方向への離間に従って拡径するので、当該吸引部の外周側からコイルの位置を外すことができる。これによれば、吸引部の最小径部と接続されることになる収容部の径方向厚さを、可及的に絞り得るので、当該収容部の外周側コイルの巻き数を増やして吸引力を増強させることができる。また、コイルの内周側からは外れることになる吸引部の径方向厚さを、収容部から往方向への離間に従って可及的に増大し得るので、それによっても吸引力を増強させることができる。これらのことから、可動コアを有する可動体についての駆動応答性の向上に貢献可能となる。 Further, according to the first aspect of the present invention, the minimum diameter portion of the outer peripheral surface of the suction portion is located in the forward direction from the coil. In this invention, since the outer peripheral surface of the suction part is expanded from the minimum diameter part located in the forward direction with respect to the coil as the distance from the forward direction increases, the position of the coil can be removed from the outer peripheral side of the suction part. it can. According to this, since the radial thickness of the housing portion to be connected to the minimum diameter portion of the suction portion can be reduced as much as possible, the number of turns of the outer peripheral side coil of the housing portion can be increased to increase the suction force. Can be strengthened. In addition, since the radial thickness of the suction portion that will be detached from the inner peripheral side of the coil can be increased as much as possible in accordance with the separation in the forward direction from the housing portion, it is also possible to increase the suction force. it can. From these things, it becomes possible to contribute to the improvement of the drive responsiveness about the movable body which has a movable core.

請求項に記載の発明によると、吸引部は、可動コアに対し往方向にて対向して当該可動コアを吸引する吸引面を形成し、外周面の最小径部は、軸方向においてコイルと吸引面との間に位置する。この発明において吸引部は、可動コアに対し往方向にて対向する吸引面と、往方向とは反対方向のコイルとの間となる最小径部を起点に、往方向への離間に従って径方向厚さを増大させるので、当該吸引面に近接するほど磁束の通過面積が大きくなる。これによれば、最小径部がコイルよりも往方向に位置することによる上述の作用と相俟って、吸引面による可動コアの吸引力を増強させることができるので、当該可動コアを有する可動体についての駆動応答性の向上に大きく貢献可能となる。 According to the second aspect of the present invention, the suction part forms a suction surface that faces the movable core in the forward direction and sucks the movable core, and the minimum diameter part of the outer peripheral surface is the coil in the axial direction. Located between the suction surface. In this invention, the suction part starts from the minimum diameter part between the suction surface facing the movable core in the forward direction and the coil in the direction opposite to the forward direction, and the radial direction thickness increases according to the separation in the forward direction. Therefore, the closer to the attraction surface, the larger the magnetic flux passage area. According to this, in combination with the above-described operation due to the minimum diameter portion being positioned in the forward direction with respect to the coil, the suction force of the movable core by the suction surface can be increased. This can greatly contribute to the improvement of the drive response of the body.

請求項に記載の発明は、コイルを軸方向に挟んで吸引部と反対側に設けられるリングコアを備え、コイルの発生磁束がリングコアから収容部及び可動コアを通過して吸引部に受け渡される。この発明においてコイルへの通電による発生磁束は、当該コイルを軸方向に挟んで吸引部と反対側のリングコアから、収容部及び可動コアへと通過する。このとき、吸引部よりも絞られた径方向厚さの収容部では、リングコアから受け渡されることになる磁束が軸方向には拡散し難くなるので、可動コアと固定コアが互いに偏芯する場合においても、当該磁束を可動コアへ集中して受け渡すことができる。その結果、可動コアを外周側の収容部へ押し付けるサイドフォースが減るので、当該可動コアを有する可動体についての駆動応答性の向上に貢献可能となる。また、サイドフォースが減ることにより、可動コアと収容部との摺動摩擦が減るので、電磁駆動装置の耐久性の向上にも貢献可能となる。 The invention according to claim 3 includes a ring core provided on the opposite side of the suction portion with the coil sandwiched in the axial direction, and the magnetic flux generated by the coil passes from the ring core to the suction portion through the housing portion and the movable core. . In the present invention, the magnetic flux generated by energizing the coil passes from the ring core on the opposite side of the suction portion across the coil in the axial direction to the housing portion and the movable core. At this time, in the accommodating portion having a radial thickness that is narrower than the suction portion, the magnetic flux that is transferred from the ring core is difficult to diffuse in the axial direction, so the movable core and the fixed core are eccentric from each other. In this case, the magnetic flux can be concentrated and transferred to the movable core. As a result, the side force that presses the movable core against the outer peripheral housing portion is reduced, which can contribute to an improvement in drive response of the movable body having the movable core. In addition, since the side force is reduced, the sliding friction between the movable core and the housing portion is reduced, which can contribute to the improvement of the durability of the electromagnetic drive device.

請求項に記載の発明によると、吸引部において外周面は、収容部から往方向へ離間するに従って漸次拡径する。この発明の吸引部では、収容部から往方向への離間に従って外周面が漸次拡径するので、可動コアから受け渡される磁束は、当該漸次拡径の外周面に沿って通過し易くなる。これによれば、吸引部における通過磁束の密度を高めて、吸引力を増強させることができるので、可動コアを有する可動体についての駆動応答性の向上に貢献可能となる。 According to the fourth aspect of the present invention, the outer peripheral surface of the suction portion gradually increases in diameter as it moves away from the housing portion in the forward direction. In the suction portion according to the present invention, the outer peripheral surface gradually increases in diameter in accordance with the separation in the forward direction from the accommodating portion, so that the magnetic flux transferred from the movable core easily passes along the outer peripheral surface having the gradually increased diameter. According to this, the density of the passing magnetic flux in the attraction unit can be increased and the attraction force can be increased, so that it is possible to contribute to the improvement of the drive response of the movable body having the movable core.

請求項に記載の発明によると、吸引部は、収容部から離間するに従って外周面の拡径率が一定又は減少するように、漸次拡径する。この発明の吸引部において、収容部から往方向への離間に従って拡径率が一定又は減少する漸次拡径形態の外周面は、可動コアから受け渡される磁束の通過を滑らかにし得る。これによれば、吸引部における通過磁束の密度を高めて、吸引力を増強させることができるので、可動コアを有する可動体についての駆動応答性の向上に大きく貢献可能となる。 According to the fifth aspect of the present invention, the suction part gradually expands so that the diameter expansion rate of the outer peripheral surface is constant or decreases as the suction part is separated from the storage part. In the suction portion according to the present invention, the outer peripheral surface of the gradually enlarged diameter form in which the diameter expansion rate is constant or decreases according to the separation in the forward direction from the housing portion can smooth the passage of the magnetic flux delivered from the movable core. According to this, since the density of the passing magnetic flux in the attraction unit can be increased and the attraction force can be increased, it is possible to greatly contribute to the improvement of the drive response of the movable body having the movable core.

請求項に記載の発明によると、吸引部は、外周面の内周側において可動体を往復移動自在に支持する。ここで、可動コアと固定コアとが偏芯している場合においてサイドフォースは、可動コアの往方向端部を収容部側の吸引部端部により吸引する際に径方向に発生するので、それら端部に集中して作用し易い。しかし、吸引部が外周面の内周側にて往復移動自在に支持する可動体においては、当該支持箇所が、吸引部端部に吸引される可動コアの往方向端部の近傍箇所となるので、サイドフォースの集中により径方向に働く荷重を確実に支えることができる。これによれば、サイドフォースに起因する可動コアと収容部との摺動摩擦を減らし得るので、当該可動コアを有する可動体についての駆動応答性の向上と、耐久性の向上とに貢献可能となる。 According to the sixth aspect of the present invention, the suction portion supports the movable body so as to be reciprocally movable on the inner peripheral side of the outer peripheral surface. Here, when the movable core and the fixed core are eccentric, the side force is generated in the radial direction when the forward end portion of the movable core is sucked by the suction portion end portion on the housing portion side. It is easy to work by concentrating on the edge. However, in the movable body in which the suction part is supported so as to be reciprocally movable on the inner peripheral side of the outer peripheral surface, the support part is a part near the forward end part of the movable core sucked by the suction part end part. The load acting in the radial direction can be reliably supported by the concentration of the side force. According to this, since the sliding friction between the movable core and the accommodating portion due to the side force can be reduced, it is possible to contribute to the improvement of the drive response and the durability of the movable body having the movable core. .

請求項に記載の発明は、電磁駆動装置と、流体が流通するポートを可動体の往復移動に応じて開閉する弁部とを備える。この発明としての電磁弁において電磁駆動装置は、可動体の往復移動に応じて弁部のポートを開閉することで、当該ポートにおける流体流通を制御し得る。ここで電磁駆動装置では、可動コアと固定コアが互いに偏芯する場合でも可動コアへのサイドフォースを低減し得るのみならず、吸引部における通過磁束の密度を高め得ると共にコイルの巻き数を増やし得るので、駆動応答性及び耐久性を向上可能である。したがって、こうした電磁駆動装置により実現される流体流通制御では、高い制御応答性を長きに亘って発揮可能となるのである。 The invention described in claim 7 includes an electromagnetic drive device and a valve portion that opens and closes a port through which a fluid flows according to the reciprocating movement of the movable body. In the electromagnetic valve according to the present invention, the electromagnetic driving device can control the fluid flow in the port by opening and closing the port of the valve unit in accordance with the reciprocating movement of the movable body. Here, in the electromagnetic drive device, not only can the side force to the movable core be reduced even when the movable core and the fixed core are eccentric to each other, but also the density of the passing magnetic flux in the suction portion can be increased and the number of turns of the coil can be increased. Thus, drive response and durability can be improved. Therefore, in the fluid flow control realized by such an electromagnetic drive device, high control responsiveness can be exhibited for a long time.

本発明の第一実施形態による電磁弁を示す断面図である。It is sectional drawing which shows the solenoid valve by 1st embodiment of this invention. 図1とは異なる作動状態を示す断面図である。It is sectional drawing which shows the operation state different from FIG. 図1の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 図2の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 本発明の第二実施形態による電磁弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the solenoid valve by 2nd embodiment of this invention. 図1の変形例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the modification of FIG. 図1の他の変形例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the other modification of FIG.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. In addition, not only combinations of configurations explicitly described in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if they are not explicitly specified unless there is a problem with the combination. .

(第一実施形態)
図1は、本発明の第一実施形態による電磁弁1を示している。電磁弁1は、例えば車両用自動変速機の油圧制御装置等を構成する流体制御弁として利用される。電磁駆動装置10と弁部100とを組み合わせてなる電磁弁1は、当該弁部100のポート121,122,123,124,125を開閉することで、それら各ポート121,122,123,124,125における流体流通を制御する。
(First embodiment)
FIG. 1 shows a solenoid valve 1 according to a first embodiment of the present invention. The electromagnetic valve 1 is used as a fluid control valve that constitutes, for example, a hydraulic control device of a vehicle automatic transmission. The electromagnetic valve 1 formed by combining the electromagnetic driving device 10 and the valve unit 100 opens and closes the ports 121, 122, 123, 124, 125 of the valve unit 100, so that these ports 121, 122, 123, 124, The fluid flow at 125 is controlled.

(弁部の説明)
図1,2に示すように、電磁弁1において弁部100は、スリーブ120、スプール110及びリターンスプリング130等を備えている。
(Explanation of valve part)
As shown in FIGS. 1 and 2, the valve unit 100 of the electromagnetic valve 1 includes a sleeve 120, a spool 110, a return spring 130, and the like.

スリーブ120は、金属により円筒状に形成され、スプール110を外周側から摺動支持している。スリーブ120には、入力ポート121、出力ポート122、フィードバックポート123及び排出ポート124,125が径方向に貫通形成されている。入力ポート121には、図示しないオイル供給源側からの作動油が入力される。出力ポート122は、その出力対象に対して作動油を出力する。フィードバックポート123は、出力ポート122と電磁弁1の外部で連通しており、当該出力ポート122から出力される作動油の一部が入力される。排出ポート124,125は、それぞれ軸方向において隣合うポート122,123からスリーブ120及びスプール110間を通じて漏出する作動油を、図示しないオイルパンへ排出する。   The sleeve 120 is formed of a metal in a cylindrical shape, and supports the spool 110 by sliding from the outer peripheral side. The sleeve 120 is formed with an input port 121, an output port 122, a feedback port 123, and discharge ports 124 and 125 penetrating in the radial direction. The input port 121 receives hydraulic oil from an oil supply source (not shown). The output port 122 outputs hydraulic oil to the output target. The feedback port 123 communicates with the output port 122 outside the electromagnetic valve 1, and a part of the hydraulic oil output from the output port 122 is input. The discharge ports 124 and 125 discharge the hydraulic oil leaking from the adjacent ports 122 and 123 in the axial direction through the sleeve 120 and the spool 110 to an oil pan (not shown).

スプール110は、金属により円柱状に形成されてスリーブ120の内周側に略同軸上に収容され、軸方向に往復移動自在となっている。スプール110の一端面は、電磁駆動装置10の構成要素のうち後述する可動体20のシャフト24の一端面に、当接している。故に、可動体20の駆動によりスプール110に働く力は、スプール110を電磁駆動装置10とは反対側(ここでは、図1,2の左方向)に押圧する軸力となる。また、スプール110においてスリーブ120により支持されるランド150,152,154のうちランド150,152には、フィードバックポート123から入力される作動油の油圧が働く。ここで、ランド150,152が油圧を受ける受圧面積は相異なっている。故に、フィードバックポート123からの油圧によりスプール110に働く力も、スプール110を電磁駆動装置10とは反対側に押圧する軸力となる。   The spool 110 is formed of a metal in a cylindrical shape, is accommodated substantially coaxially on the inner peripheral side of the sleeve 120, and is reciprocally movable in the axial direction. One end surface of the spool 110 is in contact with one end surface of the shaft 24 of the movable body 20 described later among the components of the electromagnetic driving device 10. Therefore, the force acting on the spool 110 by driving the movable body 20 is an axial force that presses the spool 110 to the side opposite to the electromagnetic drive device 10 (here, the left direction in FIGS. 1 and 2). In addition, the hydraulic pressure of the hydraulic oil input from the feedback port 123 acts on the lands 150, 152 among the lands 150, 152, 154 supported by the sleeve 120 in the spool 110. Here, the pressure receiving areas where the lands 150 and 152 receive the hydraulic pressure are different. Therefore, the force acting on the spool 110 by the hydraulic pressure from the feedback port 123 is also an axial force that presses the spool 110 to the side opposite to the electromagnetic drive device 10.

リターンスプリング130は、金属製の圧縮コイルスプリングからなり、スプール110を挟んで電磁駆動装置10とは反対側に配置されている。リターンスプリング130の一端部は、スリーブ120に固定のリテーナ140により係止されている。リターンスプリング130の弾性変形によりスプール110に働く復元力は、スプール110を電磁駆動装置10側(ここでは、図1,2の右方向)に押圧する軸力となる。   The return spring 130 is made of a metal compression coil spring, and is disposed on the opposite side of the electromagnetic drive device 10 with the spool 110 interposed therebetween. One end of the return spring 130 is locked by a retainer 140 fixed to the sleeve 120. The restoring force that acts on the spool 110 due to the elastic deformation of the return spring 130 becomes an axial force that presses the spool 110 toward the electromagnetic drive device 10 (here, the right direction in FIGS. 1 and 2).

以上の構成からスプール110は、電磁駆動装置10の可動体20の駆動による軸力と、フィードバックポート123からの油圧による軸力と、リターンスプリング130の復元力による軸力とが釣り合う位置に、図1,2の如く往復移動する。こうしたスプール110の往復移動によって、入力ポート121から出力ポート122へ流通する作動油量が減少または増加するため、出力ポート122から出力される作動油の油圧が上昇または下降することになる。   With the above configuration, the spool 110 is located at a position where the axial force generated by driving the movable body 20 of the electromagnetic drive device 10, the axial force generated by the hydraulic pressure from the feedback port 123, and the axial force generated by the restoring force of the return spring 130 are balanced. It reciprocates like 1 and 2. As the spool 110 reciprocates, the amount of hydraulic fluid flowing from the input port 121 to the output port 122 decreases or increases, and the hydraulic pressure of the hydraulic fluid output from the output port 122 increases or decreases.

(電磁駆動装置)
図1,2に示すように、電磁弁1において電磁駆動装置10は、可動体20、固定コア30、ヨーク40、リングコア50及びコイル70等を備えている。
(Electromagnetic drive device)
As shown in FIGS. 1 and 2, in the electromagnetic valve 1, the electromagnetic driving device 10 includes a movable body 20, a fixed core 30, a yoke 40, a ring core 50, a coil 70, and the like.

可動体20は、可動コア22と、当該可動コア22に同軸上に接続されるシャフト24とを有している。可動コア22は、鉄等の磁性材により円筒状に形成されて固定コア30の内周側に収容され、軸方向へ往復移動自在となっている。そこで本実施形態では、可動コア22の軸方向のうち、図1,2の矢印Dgが示す方向を「往方向Dg」定義とし、図1,2の矢印Drが示す方向を「復方向Dr」と定義する。   The movable body 20 has a movable core 22 and a shaft 24 that is coaxially connected to the movable core 22. The movable core 22 is formed in a cylindrical shape by a magnetic material such as iron and is accommodated on the inner peripheral side of the fixed core 30 so as to be reciprocally movable in the axial direction. Therefore, in the present embodiment, the direction indicated by the arrow Dg in FIGS. 1 and 2 among the axial directions of the movable core 22 is defined as the “forward direction Dg”, and the direction indicated by the arrow Dr in FIGS. It is defined as

シャフト24は、金属により円柱状に形成され、可動コア22に嵌入固定されている。シャフト24は、往方向Dgの端面をスプール110の端面に当接させることで、後に詳述するように可動コア22に生じる往方向Dgの駆動力を、スプール110へ伝達する。   The shaft 24 is formed of a metal in a cylindrical shape, and is fitted and fixed to the movable core 22. The shaft 24 abuts the end surface in the forward direction Dg on the end surface of the spool 110, thereby transmitting the driving force in the forward direction Dg generated in the movable core 22 to the spool 110 as will be described in detail later.

固定コア30は、鉄等の磁性材により円筒状に形成され、収容部32及び吸引部34を軸方向に並んで有している。収容部32は、軸方向に実質一定の内径をもって円筒孔状の支持孔32aを形成することにより、当該可動コア22を軸方向へ往復移動自在に収容して同軸上に摺動支持している。   The fixed core 30 is formed in a cylindrical shape by a magnetic material such as iron, and has a housing portion 32 and a suction portion 34 side by side in the axial direction. The accommodating portion 32 forms a cylindrical support hole 32a having a substantially constant inner diameter in the axial direction, thereby accommodating the movable core 22 so as to be reciprocally movable in the axial direction and supporting the same in a coaxial manner. .

吸引部34は、収容部32に対して往方向Dgに接続されている。吸引部34は、収容部32の支持孔32aと実質同一且つ軸方向に一定の内径をもって円筒孔状の吸引孔34dを形成することにより、当該吸引孔34dに対して可動コア22が摺動状態で同軸上に進入可能となっている。吸引部34は、吸引孔34dの往方向Dgの端部に略垂直に吸引面34aを形成しており、可動コア22に対して当該吸引面34aを往方向Dgにて対向させている。これらの構成により、コイル70の発生する磁束MF(図3の矢印参照)が可動コア22から吸引部34に受け渡されることで、吸引孔34d及び吸引面34aの少なくとも一方との間に吸引力が発生する当該可動コア22は、往方向Dgに吸引されることになる。   The suction part 34 is connected to the accommodating part 32 in the forward direction Dg. The suction part 34 forms a cylindrical suction hole 34d having a constant inner diameter in the axial direction that is substantially the same as the support hole 32a of the housing part 32, so that the movable core 22 slides relative to the suction hole 34d. It is possible to enter on the same axis. The suction part 34 forms a suction surface 34a substantially perpendicular to the end of the suction hole 34d in the forward direction Dg, and the suction surface 34a is opposed to the movable core 22 in the forward direction Dg. With these configurations, the magnetic flux MF (see the arrow in FIG. 3) generated by the coil 70 is transferred from the movable core 22 to the suction portion 34, so that an attraction force is generated between at least one of the suction hole 34d and the suction surface 34a. The movable core 22 in which is generated is attracted in the forward direction Dg.

ヨーク40は、鉄等の磁性材により有底円筒状に形成され、可動コア22、固定コア30、リングコア50及びコイル70等を収容している。ヨーク40の開口部には、固定コア30のうち吸引部34がかしめによって固定されており、それによって、吸引部34とヨーク40とが磁気的に接続されている。   The yoke 40 is formed in a bottomed cylindrical shape using a magnetic material such as iron, and houses the movable core 22, the fixed core 30, the ring core 50, the coil 70, and the like. The suction portion 34 of the fixed core 30 is fixed to the opening of the yoke 40 by caulking, whereby the suction portion 34 and the yoke 40 are magnetically connected.

リングコア50は、鉄等の磁性材により円環状に形成され、コイル70を軸方向に挟んで吸引部34とは反対側に配置されている。リングコア50は、収容部32の外周側において、コイル70を覆う樹脂絶縁材72との間に弾性部材52を挟持している。リングコア50は、この弾性部材52の復元力を復方向Drへ受けることにより、ヨーク40の底部に押し付けられている。これによりリングコア50は、固定コア30のうち収容部32に対する外周側での軸ずれを低減されているとともに、収容部32とヨーク40との間を磁気的に接続している。   The ring core 50 is formed in an annular shape from a magnetic material such as iron, and is disposed on the opposite side of the suction portion 34 with the coil 70 sandwiched in the axial direction. The ring core 50 sandwiches the elastic member 52 between the ring core 50 and the resin insulating material 72 covering the coil 70 on the outer peripheral side of the housing portion 32. The ring core 50 is pressed against the bottom of the yoke 40 by receiving the restoring force of the elastic member 52 in the backward direction Dr. As a result, the ring core 50 is reduced in axial deviation on the outer peripheral side with respect to the housing portion 32 of the fixed core 30 and magnetically connects the housing portion 32 and the yoke 40.

コイル70は、エナメル線等の導線が樹脂絶縁材72に巻装されてなり、固定コア30のうち収容部32の外周側に同軸上に配置されている。コイル70は、樹脂絶縁材72に埋設されたターミナル74を通じて通電されることにより、ヨーク40、リングコア50、固定コア30の収容部32、可動コア22及び固定コア30の吸引部34を、図3の矢印の如く順次通過する磁束MFを発生する。その結果、吸引部34と可動コア22との間に働く吸引力は、コイル70への通電電流と共に通過磁束MFの密度が増加することにより、増大する。このような吸引力を受ける可動コア22を一体に有した可動体20は、軸方向のうち収容部32側から吸引部34側へ向かう往方向Dgに、駆動される。なお、図2は、コイル70への通電により可動体20が往方向Dgの吸引部34に吸引駆動された状態を示し、図1は、当該通電の停止により、弁部100のリターンスプリング130から復元力を受ける可動体20が復方向Drへリターン駆動された状態を示している。   The coil 70 is formed by winding a conductive wire such as an enamel wire around a resin insulating material 72 and is coaxially disposed on the outer peripheral side of the housing portion 32 in the fixed core 30. When the coil 70 is energized through a terminal 74 embedded in the resin insulating material 72, the yoke 40, the ring core 50, the receiving portion 32 of the fixed core 30, the movable core 22 and the suction portion 34 of the fixed core 30 are shown in FIG. A magnetic flux MF that sequentially passes as indicated by the arrow of FIG. As a result, the attractive force acting between the attractive portion 34 and the movable core 22 increases as the density of the passing magnetic flux MF increases along with the energization current to the coil 70. The movable body 20 integrally having the movable core 22 that receives such a suction force is driven in the forward direction Dg from the housing portion 32 side toward the suction portion 34 side in the axial direction. 2 shows a state in which the movable body 20 is sucked and driven by the suction portion 34 in the forward direction Dg by energization of the coil 70, and FIG. 1 shows that the return spring 130 of the valve portion 100 is stopped by the deenergization. The state is shown in which the movable body 20 receiving the restoring force is driven to return in the backward direction Dr.

(特徴)
次に、本発明の第一実施形態の特徴部分について、図3,4に基づき説明する。なお、図3は、図1の部分拡大図として、可動体20が復方向Drへリターン駆動された状態を示し、図4は、図2の部分拡大図として、可動体20が往方向Dgの吸引部34に吸引駆動された状態を示す。
(Feature)
Next, the characteristic part of 1st embodiment of this invention is demonstrated based on FIG. 3 shows a state in which the movable body 20 is driven to return in the backward direction Dr as a partially enlarged view of FIG. 1, and FIG. 4 shows a partially enlarged view of FIG. A state in which suction is driven by the suction unit 34 is shown.

固定コア30において特徴部分としての吸引部34は、軸方向のうち収容部32から往方向Dgへ離間するに従って漸次拡径する外周面34bを、吸引孔34dの外周側に同軸上に形成している。ここで、特に本実施形態の外周面34bは、収容部32の外周側のコイル70よりも往方向Dgにて外径が最小となる最小径部34cを起点に、往方向Dgの単位長さに対する外径の変化率である拡径率が同方向Dgにて実質一定となるように、形成されている。このような外周面34bの形成と、先述した軸方向に実質一定外径の吸引孔34dの形成とにより吸引部34は、その径方向の厚さを、収容部32から往方向Dgへ離間するに従って漸次増大させている。それと共に本実施形態の吸引部34では、外周面34bの最小径部34cがコイル70と吸引面34aとの間に位置していることから、当該吸引面34aに対して往方向Dgに近接するほど、径方向厚さの増大により磁束MFの通過面積が大きくなっている。   The suction part 34 as a characteristic part in the fixed core 30 has an outer peripheral surface 34b that gradually increases in diameter in the axial direction as being separated from the housing part 32 in the forward direction Dg, coaxially formed on the outer peripheral side of the suction hole 34d. Yes. Here, in particular, the outer peripheral surface 34b of the present embodiment has a unit length in the forward direction Dg starting from the minimum diameter portion 34c having the smallest outer diameter in the forward direction Dg than the coil 70 on the outer peripheral side of the housing portion 32. The expansion ratio, which is the rate of change of the outer diameter with respect to, is formed so as to be substantially constant in the same direction Dg. Due to the formation of the outer peripheral surface 34b and the above-described formation of the suction hole 34d having a substantially constant outer diameter in the axial direction, the suction portion 34 is separated in the radial direction from the housing portion 32 in the forward direction Dg. It is gradually increased according to At the same time, in the suction portion 34 of the present embodiment, the minimum diameter portion 34c of the outer peripheral surface 34b is located between the coil 70 and the suction surface 34a, so that it is close to the forward direction Dg with respect to the suction surface 34a. As the thickness in the radial direction increases, the passage area of the magnetic flux MF increases.

吸引部34はさらに、外周面34bの内周側において吸引面34aよりもさらに内周側へと突出する支持部34eを、円環状に形成している。この支持部34eは、可動体20のうちシャフト24を外周側から同軸上に、往復移動自在に支持している。こうして支持される可動体20の復方向Drの移動端では、図3に示すように、可動コア22の往方向Dgの端部から、最小径部34cを形成する吸引部34の復方向Drの端部までの距離は、コイル70への通電に応じて発生する磁束MFを、可動コア22から吸引部34へ受け渡し可能な程度の距離に設定されている。   The suction part 34 further has a support part 34e formed in an annular shape that protrudes further to the inner peripheral side than the suction face 34a on the inner peripheral side of the outer peripheral face 34b. The support portion 34e supports the shaft 24 of the movable body 20 so as to be reciprocally movable coaxially from the outer peripheral side. At the moving end in the backward direction Dr of the movable body 20 supported in this manner, as shown in FIG. 3, the backward direction Dr of the suction part 34 that forms the minimum diameter part 34c from the end in the forward direction Dg of the movable core 22 is provided. The distance to the end is set to such a distance that the magnetic flux MF generated in response to energization of the coil 70 can be transferred from the movable core 22 to the suction unit 34.

固定コア30において別の特徴部分としての収容部32は、先述した軸方向に実質一定内径の支持孔32aの外周側に、軸方向に実質一定外径の外周面32bを同軸上に形成している。ここで、特に本実施形態の外周面32bは、吸引部34の外周面34bのうち最小径部34cと実質同一外径に設定されている。これにより、収容部32の径方向厚さは、最小径部34cの形成箇所にて最薄となる吸引部34の径方向厚さよりも、軸方向の全域で絞られた形となっている。それと共に、本実施形態における収容部32の径方向厚さは、可動コア22の径方向厚さと比較しても、薄く設定されている。   The accommodating portion 32 as another characteristic portion in the fixed core 30 is formed by coaxially forming an outer peripheral surface 32b having a substantially constant outer diameter in the axial direction on the outer peripheral side of the support hole 32a having a substantially constant inner diameter in the axial direction. Yes. Here, in particular, the outer peripheral surface 32 b of the present embodiment is set to have substantially the same outer diameter as the smallest diameter portion 34 c of the outer peripheral surface 34 b of the suction portion 34. As a result, the radial thickness of the accommodating portion 32 is narrowed in the entire area in the axial direction, rather than the radial thickness of the suction portion 34 that is the thinnest at the location where the minimum diameter portion 34c is formed. At the same time, the radial thickness of the accommodating portion 32 in the present embodiment is set to be thinner than the radial thickness of the movable core 22.

以上の構成から固定コア30では、吸引部34よりも絞られた収容部32の径方向厚さに比して、当該吸引部34の厚さが厚くなるため、図1の状態からコイル70への通電により発生する磁束MFは、可動コア22から収容部32よりも吸引部34へと流れ易くなる。故に、可動コア22と固定コア30とが互いに偏芯する場合においても、可動コア22からの磁束MFを、外周側の収容部32には受け渡し難くして、当該収容部32とは往方向Dgにて接続の吸引部34に集中して受け渡すことができる。その結果、可動コア22を外周側の収容部32に押し付けるサイドフォースが減るので、当該可動コア22を有する可動体20の駆動応答性を向上させることが可能となる。また、サイドフォースが減ることにより、可動コア22と収容部32との摺動摩擦が減るので、電磁駆動装置10の耐久性を向上させることも可能となる。   From the above configuration, in the fixed core 30, the thickness of the suction portion 34 is larger than the radial thickness of the housing portion 32 squeezed more than the suction portion 34. The magnetic flux MF generated by the energization is more likely to flow from the movable core 22 to the suction portion 34 than from the housing portion 32. Therefore, even when the movable core 22 and the fixed core 30 are decentered from each other, the magnetic flux MF from the movable core 22 is difficult to be transferred to the outer accommodating portion 32, and is away from the accommodating portion 32 in the forward direction Dg. Can be concentrated and delivered to the suction part 34 of the connection. As a result, the side force that presses the movable core 22 against the housing portion 32 on the outer peripheral side is reduced, so that the drive response of the movable body 20 having the movable core 22 can be improved. Further, since the side force is reduced, the sliding friction between the movable core 22 and the accommodating portion 32 is reduced, so that the durability of the electromagnetic driving device 10 can be improved.

ここで、可動コア22と固定コア30とが偏芯している場合においてサイドフォースは、可動コア22の往方向Dgの端部を吸引部34の復方向Dr(収容部32側)の端部により吸引する際に径方向に発生するので、それら端部に集中して作用し易い。しかし、吸引部34が外周面34bの内周側の支持部34eにより往復移動自在に支持する可動体20においては、当該支持箇所が、吸引部34の復方向Drの端部に吸引される可動コア22の往方向Dgの端部に対して近傍箇所となる。その結果、サイドフォースの集中により径方向に働く荷重は、当該集中対象の吸引部34の端部にて確実に支えられることになるので、サイドフォースに起因する可動コア22と収容部32との摺動摩擦を減らし得る。したがって、可動コア22を有する可動体20についての駆動応答性の向上と、耐久性の向上とに貢献可能である。   Here, when the movable core 22 and the fixed core 30 are eccentric, the side force is the end of the movable core 22 in the forward direction Dg and the end of the suction portion 34 in the backward direction Dr (accommodating portion 32 side). Since it is generated in the radial direction when sucked by the nozzle, it tends to concentrate on these end portions and act. However, in the movable body 20 in which the suction portion 34 is supported by the support portion 34e on the inner peripheral side of the outer peripheral surface 34b so as to be reciprocally movable, the support portion is movable to be sucked to the end portion of the suction portion 34 in the backward direction Dr. It is a location near the end of the core 22 in the forward direction Dg. As a result, the load acting in the radial direction due to the concentration of the side force is surely supported by the end of the suction portion 34 to be concentrated, so that the movable core 22 and the accommodating portion 32 caused by the side force are Sliding friction can be reduced. Therefore, it is possible to contribute to improvement of drive response and durability of the movable body 20 having the movable core 22.

さらに、固定コア30において吸引部34よりも絞られた径方向厚さの収容部32では、リングコア50から収容部32へと受け渡されることになるコイル70の発生磁束MFが、軸方向には拡散し難くなる。故に、可動コア22と固定コア30が互いに偏芯する場合においても、リングコア50からの磁束MFを収容部32に略径方向に通過させて、可動コア22へと集中して受け渡すことができる。これによっても、可動コア22を外周側の収容部32へ押し付けるサイドフォースが減るので、可動体20の駆動応答性の向上並びに摺動摩擦の低減による耐久性の向上が可能となる。   Furthermore, in the housing portion 32 having a radial thickness that is narrower than the suction portion 34 in the fixed core 30, the magnetic flux MF generated by the coil 70 that is transferred from the ring core 50 to the housing portion 32 is reduced in the axial direction. Difficult to diffuse. Therefore, even when the movable core 22 and the fixed core 30 are decentered from each other, the magnetic flux MF from the ring core 50 can be passed through the accommodating portion 32 in the substantially radial direction and concentratedly delivered to the movable core 22. . Also by this, the side force that presses the movable core 22 against the outer circumferential side accommodating portion 32 is reduced, so that the drive response of the movable body 20 can be improved and the durability can be improved by reducing the sliding friction.

またさらに、固定コア30の吸引部34では、収容部32から往方向Dgへの離間に従った外周面34bの拡径により径方向厚さの増大が実現されることで、可動コア22から受け渡される磁束MFの通過面積が当該離間に従って大きくなっている。これにより、吸引部34における通過磁束MFの密度を高めて、可動コア22を吸引駆動するための吸引力を増強させることができる。ここで、特に本実施形態の吸引部34では、収容部32から往方向Dgへの離間に従う一定の拡径率での漸次拡径を実現している外周面34bに沿って、磁束MFが滑らかに通過し易いことから、吸引力の増強作用が確実なものとなる。また、本実施形態の吸引部34は、コイル70の内周側から往方向Dgに外れた最小径部34cを起点に、さらに往方向Dgの吸引面34a側へと向かって厚さを増大させているので、吸引力を増強させる磁束MFの通過面積の増大量が可及的に大きくされ得ている。これらによれば、吸引力を受ける可動コア22を有した可動体20の駆動応答性を向上させることが、可能である。   Still further, in the suction portion 34 of the fixed core 30, an increase in the radial thickness is realized by increasing the diameter of the outer peripheral surface 34 b according to the separation in the forward direction Dg from the housing portion 32. The passing area of the passed magnetic flux MF increases with the separation. Thereby, the density of the passing magnetic flux MF in the suction part 34 can be increased, and the suction force for driving the movable core 22 by suction can be increased. Here, in particular, in the suction portion 34 of the present embodiment, the magnetic flux MF is smooth along the outer peripheral surface 34b that realizes a gradual expansion at a constant expansion rate according to the separation in the forward direction Dg from the storage portion 32. Therefore, it is possible to ensure the attraction force. Further, the suction portion 34 of the present embodiment increases in thickness toward the suction surface 34a side in the forward direction Dg, starting from the minimum diameter portion 34c that deviates in the forward direction Dg from the inner peripheral side of the coil 70. Therefore, the amount of increase in the passage area of the magnetic flux MF that enhances the attractive force can be increased as much as possible. According to these, it is possible to improve the drive response of the movable body 20 having the movable core 22 that receives the suction force.

加えて固定コア30では、吸引部34がコイル70よりも往方向Dgに位置して、当該コイル70の内周側から確実に外れていることにより、吸引部34に対する収容部32の径方向厚さの絞り量が可及的に大きくされ得ている。これにより、コイル70の巻き数を増やして、コイル70が発生する磁束MF自体の密度を高めることができるので、吸引力のさらなる増強による駆動応答性の向上が可能となるのである。   In addition, in the fixed core 30, the suction portion 34 is positioned in the forward direction Dg with respect to the coil 70 and is surely detached from the inner peripheral side of the coil 70, so that the radial thickness of the housing portion 32 relative to the suction portion 34 is increased. The aperture amount can be increased as much as possible. As a result, the number of turns of the coil 70 can be increased and the density of the magnetic flux MF itself generated by the coil 70 can be increased, so that the drive response can be improved by further increasing the attractive force.

ここまで説明した電磁弁1によれば、駆動応答性及び耐久性の向上された電磁駆動装置10により弁部100における流体流通が制御されるので、当該流体流通についての高い制御応答性を長きに亘って発揮可能となるのである。   According to the electromagnetic valve 1 described so far, the fluid flow in the valve unit 100 is controlled by the electromagnetic drive device 10 with improved drive response and durability. Therefore, the high control response for the fluid flow is long. It can be demonstrated over a long time.

(第二実施形態)
図5に示すように第二実施形態は、第一実施形態の特徴部分を変形させたものである。第二実施形態の吸引部2034は、軸方向のうち収容部32から往方向Dgへ離間するに従って漸次拡径する外周面2034bにつき、拡径率を当該往方向Dgへの離間に従って減少させている。ここで、外周面2034bの漸次拡径部分のうち最小径部34cから往方向Dgに所定距離離れた箇所に設定される最大径部2034fは、第一実施形態の外周面34bの漸次拡径部分のうち同最大径部に対して、実質同一外径に設定されている。
(Second embodiment)
As shown in FIG. 5, the second embodiment is a modification of the characteristic portion of the first embodiment. The suction part 2034 of the second embodiment reduces the diameter expansion rate in accordance with the separation in the forward direction Dg with respect to the outer peripheral surface 2034b that gradually increases in diameter in the axial direction as it moves away from the housing part 32 in the forward direction Dg. . Here, the maximum diameter portion 2034f set at a predetermined distance away from the minimum diameter portion 34c in the forward direction Dg among the gradually expanded diameter portion of the outer peripheral surface 2034b is the gradually expanded diameter portion of the outer peripheral surface 34b of the first embodiment. Are set to substantially the same outer diameter with respect to the same maximum diameter portion.

このような外径設定下、収容部32からの往方向Dgへの離間に従って外周面2034bの拡径率が減少する吸引部2034では、図5に二点鎖線で示す第一実施形態の場合よりも、径方向厚さが増大することになる。これによれば、漸次拡径を実現する外周面2034bに沿うことで滑らかに通過し易くなる磁束MFにつき、吸引部2034における通過面積をさらに増大させて、吸引力の増強作用を高めることができる。したがって、吸引力を受ける可動コア22を有した可動体20の駆動応答性を、より効果的に向上させることが可能である。   In the suction part 2034 in which the diameter expansion rate of the outer peripheral surface 2034b decreases as the outer diameter is set in the forward direction Dg from the housing part 32, the case of the first embodiment shown by the two-dot chain line in FIG. However, the radial thickness increases. According to this, with respect to the magnetic flux MF that easily passes smoothly along the outer peripheral surface 2034b that realizes gradual diameter expansion, the passage area in the suction portion 2034 can be further increased, and the attraction force enhancing action can be enhanced. . Therefore, it is possible to more effectively improve the drive response of the movable body 20 having the movable core 22 that receives the suction force.

(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明は、それらの実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and various embodiments and combinations can be made without departing from the scope of the present invention. Can be applied.

具体的には、図6に変形例を示すように、固定コア30において吸引部34の外周面34bは、収容部32から往方向Dgへ離間するに従って段階的に拡径することにより、吸引部34の径方向厚さを段階的に増大させるものであってもよい。また、図7に変形例を示すように、吸引部34の外周面34bは、拡径率が往方向Dgへ離間するに従って増加するように、当該方向Dgへの離間に従って漸次拡径して吸引部34の径方向厚さを漸次増大させるものであってもよい。   Specifically, as shown in a modified example in FIG. 6, the outer peripheral surface 34 b of the suction portion 34 in the fixed core 30 is gradually increased in diameter as it is separated from the housing portion 32 in the forward direction Dg. The thickness in the radial direction 34 may be increased stepwise. Further, as shown in FIG. 7, the outer peripheral surface 34 b of the suction portion 34 gradually increases in diameter according to the separation in the direction Dg and sucks so that the diameter expansion rate increases as the separation in the forward direction Dg. The radial thickness of the portion 34 may be gradually increased.

1 電磁弁、10 電磁駆動装置、20 可動体、22 可動コア、24 シャフト、30 固定コア、32 収容部、32a 支持孔、32b 外周面、34,2034 吸引部、34a 吸引面、34b,2034b 外周面、34c 最小径部、34d 吸引孔、34e 支持部、2034f 最大径部、40 ヨーク、50 リングコア、70 コイル、100 弁部、110 スプール、120 スリーブ、121 入力ポート、122 出力ポート、123 フィードバックポート、124,125排出ポート DESCRIPTION OF SYMBOLS 1 Solenoid valve, 10 Electromagnetic drive device, 20 Movable body, 22 Movable core, 24 Shaft, 30 Fixed core, 32 Accommodating part, 32a Support hole, 32b Outer surface, 34, 2034 Suction part, 34a Suction surface, 34b, 2034b Outer periphery Surface, 34c Minimum diameter part, 34d Suction hole, 34e Support part, 2034f Maximum diameter part, 40 Yoke, 50 Ring core, 70 Coil, 100 Valve part, 110 Spool, 120 Sleeve, 121 Input port, 122 Output port, 123 Feedback port , 124, 125 discharge port

Claims (7)

可動コアを有し当該可動コアの軸方向に往復移動する可動体と、
前記可動コアを同軸上に往復移動自在に収容する筒状の収容部と、前記可動コアを軸方
向のうち往方向へ吸引する吸引部とを有する固定コアと、
前記収容部の外周側に設けられ通電により磁束を発生するコイルと
前記可動コア、前記固定コア、及び前記コイルを収容するとともに前記吸引部と磁気的に接続されたヨークとを備え、前記コイルの発生磁束が前記可動コアを通って前記吸引部に受け渡されることにより、前記可動コアが前記吸引部に吸引駆動される電磁駆動装置において、
前記吸引部は、前記収容部から前記往方向へ離間するに従って、外周面が拡径することにより前記吸引部の径方向厚さを増大させる外周面を形成し、
前記収容部は、前記吸引部よりも絞られた径方向厚さをもって前記往方向の前記吸引部
に接続され
前記吸引部において前記外周面の最小径部は、前記コイルよりも前記往方向に位置し、
前記吸引部において、前記外周面が最も拡径している部分の径方向の厚さは、前記吸引部と前記ヨークとが磁気的に接続されている領域の前記軸方向の長さよりも大きいことを特徴とする請求項1に記載の電磁駆動装置。
A movable body having a movable core and reciprocating in the axial direction of the movable core;
A fixed core having a cylindrical accommodating portion that accommodates the movable core in a reciprocating manner on the same axis, and a suction portion that sucks the movable core in the forward direction in the axial direction;
A coil that is provided on the outer peripheral side of the housing portion and generates a magnetic flux by energization ;
The movable core, the fixed core, and the yoke that accommodates the coil and that is magnetically connected to the attraction unit are provided, and the magnetic flux generated by the coil is transferred to the attraction unit through the movable core. In the electromagnetic drive device in which the movable core is driven to be sucked by the suction portion,
The suction part forms an outer peripheral surface that increases the thickness in the radial direction of the suction part by increasing the diameter of the outer peripheral surface as it is separated from the housing part in the forward direction,
The accommodating portion is connected to the suction portion in the forward direction with a radial thickness that is narrower than the suction portion ;
In the suction part, the minimum diameter part of the outer peripheral surface is located in the forward direction from the coil,
In the suction portion, the radial thickness of the portion where the outer peripheral surface is most expanded is larger than the axial length of the region where the suction portion and the yoke are magnetically connected. The electromagnetic drive device according to claim 1.
前記吸引部は、前記可動コアに対し前記往方向にて対向して当該可動コアを吸引する吸引面を形成し、The suction portion forms a suction surface that sucks the movable core while facing the movable core in the forward direction,
前記外周面の最小径部は、軸方向において前記コイルと前記吸引面との間に位置することを特徴とする請求項1に記載の電磁駆動装置。  The electromagnetic drive device according to claim 1, wherein the minimum diameter portion of the outer peripheral surface is located between the coil and the suction surface in the axial direction.
前記コイルを軸方向に挟んで前記吸引部と反対側に設けられるリングコアを備え、A ring core provided on the opposite side of the suction portion with the coil sandwiched in the axial direction;
前記コイルの発生磁束が前記リングコアから前記収容部及び前記可動コアを通過して前記吸引部に受け渡されることを特徴とする請求項1または2に記載の電磁駆動装置。  3. The electromagnetic drive device according to claim 1, wherein the magnetic flux generated by the coil passes from the ring core to the attraction portion through the housing portion and the movable core.
前記吸引部において前記外周面は、前記収容部から前記往方向へ離間するに従って漸次拡径することを特徴とする請求項1〜3のいずれか一項に記載の電磁駆動装置。4. The electromagnetic driving device according to claim 1, wherein the outer peripheral surface of the suction portion gradually increases in diameter as it is separated from the housing portion in the forward direction. 5. 前記吸引部は、前記収容部から離間するに従って前記外周面の拡径率が一定又は減少するように、漸次拡径することを特徴とする請求項4に記載の電磁駆動装置。The electromagnetic drive device according to claim 4, wherein the suction part gradually increases in diameter so that the diameter expansion rate of the outer peripheral surface is constant or decreases as the suction part is separated from the storage part. 前記吸引部は、前記外周面の内周側において前記可動体を往復移動自在に支持することを特徴とする請求項1〜5のいずれか一項に記載の電磁駆動装置。The electromagnetic drive device according to claim 1, wherein the suction unit supports the movable body so as to be reciprocally movable on an inner peripheral side of the outer peripheral surface. 請求項1〜6のいずれか一項に記載の電磁駆動装置と、The electromagnetic drive device according to any one of claims 1 to 6,
流体が流通するポートを前記可動体の往復移動に応じて開閉する弁部とを備えることを特徴とする電磁弁。  An electromagnetic valve comprising: a valve portion that opens and closes a port through which a fluid flows according to the reciprocating movement of the movable body.
JP2011162364A 2011-07-25 2011-07-25 Electromagnetic drive device and solenoid valve Expired - Fee Related JP5708343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162364A JP5708343B2 (en) 2011-07-25 2011-07-25 Electromagnetic drive device and solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162364A JP5708343B2 (en) 2011-07-25 2011-07-25 Electromagnetic drive device and solenoid valve

Publications (2)

Publication Number Publication Date
JP2013024380A JP2013024380A (en) 2013-02-04
JP5708343B2 true JP5708343B2 (en) 2015-04-30

Family

ID=47782966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162364A Expired - Fee Related JP5708343B2 (en) 2011-07-25 2011-07-25 Electromagnetic drive device and solenoid valve

Country Status (1)

Country Link
JP (1) JP5708343B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094309B2 (en) 2012-07-27 2017-03-15 アイシン・エィ・ダブリュ株式会社 Solenoid drive
JP6171918B2 (en) * 2013-12-18 2017-08-02 アイシン・エィ・ダブリュ株式会社 Electromagnetic drive device and solenoid valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058604B2 (en) * 2000-12-11 2008-03-12 株式会社デンソー Solenoid valve device
JP2004353774A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Linear solenoid
JP4569371B2 (en) * 2005-04-28 2010-10-27 株式会社デンソー Linear solenoid
JP4618133B2 (en) * 2006-01-06 2011-01-26 株式会社デンソー solenoid valve
JP5209434B2 (en) * 2008-10-17 2013-06-12 日本電産トーソク株式会社 solenoid valve

Also Published As

Publication number Publication date
JP2013024380A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5125441B2 (en) Linear solenoid device and solenoid valve
JP4058749B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP4285354B2 (en) Linear solenoid and solenoid valve
JP4888495B2 (en) Linear solenoid
JP4618133B2 (en) solenoid valve
JP5299499B2 (en) Electromagnetic solenoid
US20100301978A1 (en) Linear actuator
JP2012204574A (en) Linear solenoid
JP2006112620A (en) Diaphragm, and solenoid valve comprising the same
US20210278007A1 (en) Solenoid
US20210278008A1 (en) Solenoid
JP5708343B2 (en) Electromagnetic drive device and solenoid valve
JP4492649B2 (en) Bleed valve device
JP2009079605A (en) Solenoid valve device
JP4022855B2 (en) Solenoid valve device
JP2013038233A (en) Electromagnetic drive and solenoid valve
JP2001332419A (en) Electromagnetic driving device, flow rate controller using it, and method of manufacturing it
JP4013440B2 (en) Electromagnetic drive device and electromagnetic valve using the same
US11783979B2 (en) Solenoid
JP2020088144A (en) solenoid
JP2009281469A (en) Linear solenoid
US20230013945A1 (en) Solenoid valve
JP7183985B2 (en) solenoid
JP4775356B2 (en) Linear solenoid
JP2007255501A (en) Solenoid and solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5708343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees