JP5701502B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5701502B2
JP5701502B2 JP2009296047A JP2009296047A JP5701502B2 JP 5701502 B2 JP5701502 B2 JP 5701502B2 JP 2009296047 A JP2009296047 A JP 2009296047A JP 2009296047 A JP2009296047 A JP 2009296047A JP 5701502 B2 JP5701502 B2 JP 5701502B2
Authority
JP
Japan
Prior art keywords
light
light emitting
source unit
light source
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009296047A
Other languages
Japanese (ja)
Other versions
JP2011138815A (en
Inventor
佐野 雅彦
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009296047A priority Critical patent/JP5701502B2/en
Publication of JP2011138815A publication Critical patent/JP2011138815A/en
Application granted granted Critical
Publication of JP5701502B2 publication Critical patent/JP5701502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光装置に関し、特に光源から出射される光の配光を制御する光透過部材を備える発光装置に関する。   The present invention relates to a light emitting device, and more particularly to a light emitting device including a light transmission member that controls light distribution of light emitted from a light source.

近年、光源として発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等の半導体発光素子を搭載した発光装置は、各種の照明や表示装置に利用されている。また、半導体発光素子と、該発光素子より発光される一次光に励起されて一次光と異なる色相の二次光を発光する波長変換部材と、を組み合わせることで、光の混色の原理により、多様な色彩の光を発光可能な発光装置が開発されている。特に、半導体発光素子は消費電力が低く長寿命であるため、蛍光灯に代替可能な照明の光源として注目を集めており、これら半導体発光素子を搭載した発光装置の更なる発光出力及び発光効率の向上、並びに均一な発光色及び輝度の配光が求められている。   2. Description of the Related Art In recent years, light-emitting devices equipped with semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) as light sources have been used for various lighting and display devices. In addition, by combining a semiconductor light emitting element and a wavelength conversion member that emits secondary light having a hue different from that of the primary light by being excited by the primary light emitted from the light emitting element, various combinations can be made based on the principle of light color mixing. Light emitting devices capable of emitting light of various colors have been developed. In particular, since semiconductor light emitting devices have low power consumption and long life, they are attracting attention as illumination light sources that can replace fluorescent lamps. Further, light emitting devices equipped with these semiconductor light emitting devices have further improved light output and light emission efficiency. There is a need for improvement and light distribution with uniform emission color and brightness.

例えば特許文献1に記載されている半導体発光装置は、中間基板上に突起電極を介して半導体チップをフリップチップ接続して構成された発光部と、半導体チップ上に設けられた封止部とを備えており、この封止部は屈折率が1.6以上1.8以下の透明な熱硬化性樹脂により構成されている。これにより、半導体チップ側から封止部側に進む光が半導体チップと封止部との界面で全反射を起こす割合を小さくして、光取り出し効率を向上させている。   For example, a semiconductor light emitting device described in Patent Document 1 includes a light emitting unit configured by flip-chip connecting a semiconductor chip on an intermediate substrate via a protruding electrode, and a sealing unit provided on the semiconductor chip. The sealing portion is made of a transparent thermosetting resin having a refractive index of 1.6 to 1.8. As a result, the ratio of the light traveling from the semiconductor chip side to the sealing portion side causing total reflection at the interface between the semiconductor chip and the sealing portion is reduced to improve the light extraction efficiency.

また例えば特許文献2に記載されているLEDパッケージは、発光素子と該発光素子を包囲するように固定されたレンズ部とを備えており、このレンズ部に、発光素子の中心軸に対して垂直な方向へ光を集光させる第1光学部と、発光素子の中心軸方向へ光を集光させる第2光学部と、が設けられている。これにより、発光素子の配光に応じて放射方向が適切に制御され、光学系で制御できない光が放射されることを防ぐとともに、薄型で小型でも集光性に優れ、効率良く光を外部放射させることができるとされている。   Further, for example, the LED package described in Patent Document 2 includes a light emitting element and a lens portion fixed so as to surround the light emitting element, and the lens portion is perpendicular to the central axis of the light emitting element. There are provided a first optical unit that condenses the light in various directions and a second optical unit that condenses the light in the direction of the central axis of the light emitting element. As a result, the radiation direction is appropriately controlled according to the light distribution of the light-emitting elements, preventing light that cannot be controlled by the optical system from being emitted, and it is thin and compact, has excellent light collecting properties, and efficiently emits light to the outside. It is said that it can be made.

特開2007−273764号公報JP 2007-273964 A 特開2004−281605号公報JP 2004-281605 A 特開2005−294786号公報JP 2005-294786 A 特開2007−142178号公報JP 2007-142178 A 特開2005−109289号公報JP 2005-109289 A

しかしながら、引用文献1及び2に記載された発光装置は、レンズの焦点に発光素子を含む光源を配置して、レンズ表面での反射を抑制して、取り出し効率を高めているが、光源の配向性に依存するため、発光素子と波長変換部材による色ムラが発生する問題がある。他方、波長変換部材若しくはそれと散乱剤を含む被覆部材を厚くする、又は蛍光体若しくは散乱剤を多くして散乱効果を高める、ことで、その部材から出射される光の色ムラを改善することができるが、それにより部材中への光の閉じ込め効果が高まり、光の取り出し効率、然るに発光効率が大きく低下する。すなわち、引用文献1及び2に記載された発光装置の構成では、色ムラを抑制して、高い輝度及び発光効率を維持しながら光を拡散させることができず、これら良好な光学特性を兼ね備えた発光装置とならない。特許文献に開示されるレンズは、光軸に対して回転対称体を成しているため、上述した光軸周りの色ムラは改善できず、そのまま発光される。   However, although the light emitting devices described in the cited documents 1 and 2 are arranged with a light source including a light emitting element at the focal point of the lens to suppress reflection on the lens surface and increase the extraction efficiency, Therefore, there is a problem that color unevenness occurs due to the light emitting element and the wavelength conversion member. On the other hand, by increasing the thickness of the wavelength conversion member or the coating member containing it and the scattering agent, or increasing the phosphor or scattering agent to increase the scattering effect, the color unevenness of the light emitted from the member can be improved. However, the light confinement effect in the member is increased, and the light extraction efficiency and the light emission efficiency are greatly reduced. That is, in the configuration of the light emitting device described in the cited documents 1 and 2, it is not possible to diffuse light while suppressing color unevenness and maintaining high luminance and light emission efficiency, and has these good optical characteristics. Does not become a light emitting device. Since the lens disclosed in the patent document forms a rotationally symmetric body with respect to the optical axis, the above-described color unevenness around the optical axis cannot be improved and light is emitted as it is.

これは、波長変換部材により被覆された発光素子を有する発光装置において、一次光は素子の出射面での正面輝度が高く、その出射面の正面から高角度側になるに従い、波長変換部材中の一次光の光路長が長くなっていくため、二次光への変換率が高くなって輝度が低下していく配向性となる。他方、波長変換部材中の蛍光体粒子から発光される二次光(波長変換光)は、粒子を基点とする無指向の発光、粒子による散乱作用により、一次光に比べ均一な配向性となる。このため、光源部の一次光と二次光の配光が異なり、特に素子の主な出射面となる上面と側面の重ね合わせの領域、その高角度領域においては一次光の光束が二次光に比べ小さく二次光の色味が強くなり、発光の観測方向によって色ムラを生ずる。このような色ムラの発生は、波長変換部材を比較的薄く設け、光源の光取り出し効率を高める場合に顕著であり、波長変換部材を厚くしたり反射鏡や拡散板を別途設けたりすれば低減することができるが、その場合には光の取り出し効率が低下し、ひいては発光装置の発光効率を低下させることになる。   This is because in a light-emitting device having a light-emitting element covered with a wavelength conversion member, the primary light has a high front luminance at the output surface of the element, and as the angle from the front of the output surface increases, Since the optical path length of the primary light becomes longer, the conversion rate to the secondary light becomes higher and the orientation is lowered in luminance. On the other hand, the secondary light (wavelength converted light) emitted from the phosphor particles in the wavelength conversion member has a uniform orientation compared to the primary light due to omnidirectional light emission based on the particles and the scattering action by the particles. . For this reason, the light distribution of the primary light and the secondary light of the light source section is different, and the primary light flux is the secondary light especially in the overlapping area of the upper surface and the side surface, which is the main emission surface of the element, in the high angle region. Compared to the above, the color of the secondary light becomes strong and color unevenness occurs depending on the observation direction of light emission. The occurrence of such color unevenness is conspicuous when the wavelength conversion member is provided relatively thin and the light extraction efficiency of the light source is increased, and can be reduced by increasing the thickness of the wavelength conversion member or separately providing a reflecting mirror or a diffusion plate. However, in that case, the light extraction efficiency is lowered, and as a result, the light emission efficiency of the light emitting device is lowered.

本発明は、上記課題に鑑みてなされたものであり、その目的は、色ムラが少なく、高効率の発光が可能な発光装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting device that has less color unevenness and can emit light with high efficiency.

本発明に係る発光装置は、下記(1)〜(14)の手段により、上記課題を解決することができる。
(1)実装面に実装されて一次光を発光する発光素子と、該発光素子を被覆して前記一次光の波長と異なる波長の二次光を発光する波長変換部材と、を有する光源部と、前記光源部を被覆して、前記一次光及び二次光を外部に出射する光出射面を有する光透過部材と、を備え、前記光出射面に、複数の凸部が設けられており、前記凸部は、中心軸方向に突出し、該中心軸は前記光源部を通って互いに傾斜していると共に、該各々の凸部の中心軸は前記発光素子又は光源部の光軸に対して傾斜している発光装置。
(2)前記発光素子又は前記光源部の発光表面は、前記光軸に略垂直な第1の主面と、該第1の主面に傾斜し、該第1の主面の周囲に複数設けられる第2の主面と、を有し、前記光出射面が、前記第1の主面及び複数の第2の主面に対向する表面領域を有する上記(1)に記載の発光装置。
(3)前記光透過部材は、前記光源部から一定の距離で周囲を囲む光拡散領域と、該光拡散領域より外側に前記凸部が設けられる集光領域を有する上記(1)又は(2)に記載の発光装置。
(4)前記光源部が、実装基板上に載置され、前記光拡散領域が、前記実装基板を囲んで、該実装基板より外側にまで延出して設けられる上記(1)乃至(3)のいずれか1つに記載の発光装置。
(5)前記光源部が、実装基板上に載置され、前記光拡散領域が、前記実装基板上に配置される上記(1)乃至(3)のいずれか1つに記載の発光装置。
(6)前記集光領域の凸部は、前記実装基板の上面より上方に設けられている上記(1)乃至(5)のいずれか1つに記載の発光装置。
(7)前記光源部が実装基板上に配置されると共に、前記実装基板の上面を基準として、前記光透過部材が、前記実装基板より外側に延出されて、前記光出射面が実装基板より外側に設けられ、前記凸部は、該中心軸が前記光源部の上方に向かって前記光軸に対して傾斜している上記(1)乃至(6)のいずれか1つに記載の発光装置。
(8)前記光透過部材の延出部が、前記実装基板の上面に対して略平行な底面を有する上記(7)に記載の発光装置。
(9)前記凸部は、前記光軸に対する傾斜角が45°以上90°以下である上記(1)乃至(8)のいずれか1つに記載の発光装置。
(10)前記光透過部材は、前記凸部の前記光軸との傾斜角が、互いに略同一である少なくとも1組の凸部を有している上記(1)乃至(9)のいずれか1つに記載の発光装置。
(11)前記凸部は、前記中心軸を回転中心軸とする回転体の凸曲面を有している上記(1)乃至(10)のいずれか1つに記載の発光装置。
(12)前記凸部は、該中心軸が、前記光軸を回転中心軸として、該回転方向に略同一の角度でそれぞれ配置されている上記(1)乃至(11)のいずれか1つに記載の発光装置。
(13)前記光透過部材は、前記凸部が、前記光軸を回転対称軸とする回転対称性を有し、該回転対称性が3回以上である上記(1)乃至(12)のいずれか1つに記載の発光装置。
(14)前記光軸が、前記実装面に略垂直であり、前記光透過部材は、該光軸を中心軸として、該中心軸方向に突出する第2の凸部を有する上記(1)乃至(13)のいずれか1つに記載の発光装置。
The light emitting device according to the present invention can solve the above-described problems by the following means (1) to (14).
(1) A light source unit comprising: a light emitting element that is mounted on a mounting surface and emits primary light; and a wavelength conversion member that covers the light emitting element and emits secondary light having a wavelength different from the wavelength of the primary light; A light transmissive member that covers the light source part and has a light emitting surface that emits the primary light and the secondary light to the outside, and a plurality of convex portions are provided on the light emitting surface, The convex portions protrude in the direction of the central axis, the central axes are inclined with respect to each other through the light source unit, and the central axes of the convex portions are inclined with respect to the optical axis of the light emitting element or the light source unit. Light emitting device.
(2) A light emitting surface of the light emitting element or the light source unit is provided with a first main surface substantially perpendicular to the optical axis, a plurality of light emitting surfaces inclined to the first main surface, and provided around the first main surface. The light emitting device according to (1), wherein the light emitting surface has a surface region facing the first main surface and the plurality of second main surfaces.
(3) The above (1) or (2), wherein the light transmissive member includes a light diffusion region surrounding the light source portion with a certain distance from the light source portion, and a light collection region in which the convex portion is provided outside the light diffusion region. ).
(4) In the above (1) to (3), the light source unit is mounted on a mounting substrate, and the light diffusion region is provided to extend outside the mounting substrate so as to surround the mounting substrate. The light emitting device according to any one of the above.
(5) The light-emitting device according to any one of (1) to (3), wherein the light source unit is mounted on a mounting substrate, and the light diffusion region is disposed on the mounting substrate.
(6) The light emitting device according to any one of (1) to (5), wherein the convex portion of the condensing region is provided above the upper surface of the mounting substrate.
(7) The light source unit is disposed on the mounting substrate, the light transmitting member is extended outward from the mounting substrate with respect to the upper surface of the mounting substrate, and the light emitting surface is formed from the mounting substrate. The light emitting device according to any one of (1) to (6), wherein the light emitting device is provided outside and the convex portion is inclined with respect to the optical axis toward the upper side of the light source unit. .
(8) The light emitting device according to (7), wherein the extending portion of the light transmitting member has a bottom surface substantially parallel to the top surface of the mounting substrate.
(9) The light emitting device according to any one of (1) to (8), wherein the convex portion has an inclination angle with respect to the optical axis of 45 ° or more and 90 ° or less.
(10) The light transmitting member includes any one of the above (1) to (9), in which the convex portion has at least one pair of convex portions whose inclination angles with the optical axis are substantially the same. The light-emitting device described in one.
(11) The light emitting device according to any one of (1) to (10), wherein the convex portion has a convex curved surface of a rotating body having the central axis as a rotation central axis.
(12) The convex portion may have any one of the above (1) to (11) in which the central axis is disposed at substantially the same angle in the rotational direction with the optical axis as the rotational central axis. The light emitting device described.
(13) In any of the above (1) to (12), in the light transmitting member, the convex portion has rotational symmetry with the optical axis as a rotational symmetry axis, and the rotational symmetry is 3 times or more. The light-emitting device as described in any one.
(14) The optical axis is substantially perpendicular to the mounting surface, and the light transmitting member has a second convex portion that protrudes in the central axis direction with the optical axis as a central axis. The light emitting device according to any one of (13).

本発明によれば、互いに配光の異なる一次光並びに波長変換光の二次光をそれぞれ発光する発光素子と波長変換部材とを備える光源部に対し、光出射面に複数の凸部が設けられた光透過部材が該光源部を覆うように設けられ、その凸部の中心軸が互いに傾斜し、光軸に対して傾斜していることによって、光源部から効率良く光が取り出されるとともに、色ムラの発生しやすい光軸の高角度域において、凸部による集光、反射機能、すなわち光学レンズ機能で、色ムラが低減された配光の発光装置を提供することができる。   According to the present invention, a plurality of convex portions are provided on the light exit surface of the light source unit including the light emitting element and the wavelength conversion member that respectively emit the primary light having different light distribution and the secondary light of the wavelength converted light. The light transmitting member is provided so as to cover the light source part, and the central axes of the convex parts are inclined with respect to each other and are inclined with respect to the optical axis. In a high angle region of the optical axis where unevenness is likely to occur, it is possible to provide a light-emitting device with a light distribution in which color unevenness is reduced by a condensing and reflecting function by a convex portion, that is, an optical lens function.

本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 従来の発光装置の配向特性図(a)と、その発光装置を説明する概略上面図(c)と、そのA−A断面における概略断面図(b)である。They are the orientation characteristic view (a) of the conventional light-emitting device, the schematic top view (c) explaining the light-emitting device, and the schematic sectional drawing (b) in the AA cross section. 図1の(a),(b)の配向性を説明する概略上面図(b)と、概略断面図(a)である。They are a schematic top view (b) explaining the orientation of (a) and (b) of FIG. 1, and a schematic sectional view (a). 本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 図5に係る発光装置の実装基体及びその配線構造を説明する概略上面図である。FIG. 6 is a schematic top view illustrating a mounting substrate and a wiring structure of the light emitting device according to FIG. 5. 本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定しない。特に、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、以下に記載されている実施の形態についても同様に、特に排除する記載が無い限りは各構成等を適宜組み合わせて適用できる。また、本発明において、傾斜とは、特に断りがない限り、垂直を含む。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Similarly, the embodiments described below can be applied by appropriately combining the components and the like unless otherwise specified. In the present invention, the term “inclination” includes vertical unless otherwise specified.

<実施の形態1>
図1(b)は、本発明の実施の形態1に係る発光装置の概略上面図であり、図1(a)は図1(b)のA−A概略断面図である。図1に示す例の発光装置100は、主として、実装基体50の上面の実装面に実装された発光素子10および波長変換部材20を有する光源部30と、この光源部を被覆する光透過部材40と、から構成されている。なお以下、図示するように、実装面に平行な面をxy平面、実装面に垂直な方向をz方向(z軸)とし、図1(b)における横方向をx方向(x軸)、縦方向をy方向(y軸)として説明する。また、xy平面をz方向からの視点を、本装置の上面視とする。なお、図中の矢印は、光の進行状態を説明し、黒塗り三角の鏃の矢印は、大きい三角が光出射面からの発光を、小さい三角が光透過部材中の光の伝搬及び外部への発光をそれぞれ示し、黒塗り矢印、白抜き矢印は、それぞれ一次光、二次光の強い発光を示している。他の図についても同様である。
<Embodiment 1>
FIG. 1B is a schematic top view of the light-emitting device according to Embodiment 1 of the present invention, and FIG. 1A is a schematic cross-sectional view taken along line AA of FIG. The light emitting device 100 of the example shown in FIG. 1 mainly includes a light source unit 30 having a light emitting element 10 and a wavelength conversion member 20 mounted on a mounting surface on an upper surface of a mounting substrate 50, and a light transmitting member 40 covering the light source unit. And is composed of. Hereinafter, as shown in the figure, the plane parallel to the mounting surface is the xy plane, the direction perpendicular to the mounting surface is the z direction (z axis), the horizontal direction in FIG. 1B is the x direction (x axis), and the vertical direction. The direction will be described as the y direction (y axis). The viewpoint from the z direction on the xy plane is the top view of the apparatus. The arrows in the figure explain the progress of light, and the arrows with black triangles indicate that the large triangles emit light from the light exit surface, and the small triangles indicate the propagation of light in the light transmission member and to the outside. The black arrow and the white arrow indicate strong light emission of primary light and secondary light, respectively. The same applies to other figures.

実装基体50は、その上面に正負電極用の配線55が形成された実装基板であり、その配線55上に、上面視形状が略正方形の板状体の発光素子10が、素子の正負電極にそれぞれ設けられた導電性接着剤60を介して1個フリップ実装されている。この発光素子10の周囲、より詳細には発光素子10の上面および側面(端面)は、波長変換部材20に被覆されている。なお図では実装面と素子との間にも波長変換部材20が設けられているが、本発明では光出射方向以外の領域には特に設けられていなくてもよい。実装基板50上面の略全面は、絶縁膜58により被覆されており、上面側に設けられた配線55が底面側に導通されて、底面側の配線56で装置外部と電気的接続される。このような光源部30に配線56から給電すると、発光素子10は一次光を発光し、波長変換部材20は、発光素子10から発光された一次光により励起され、一次光の波長と異なる波長の二次光を発光する。また一次光の一部は波長変換されずに波長変換部材20を透過し、従って光源部から一次光と二次光が出射され、光透過部材を透過した一次光と二次光とが重畳した混色光が観測される。   The mounting substrate 50 is a mounting substrate having positive and negative electrode wirings 55 formed on the upper surface thereof. On the wiring 55, the light-emitting element 10 having a plate-like shape having a substantially square shape when viewed from above is used as the positive and negative electrodes of the element. One piece is flip-mounted through a conductive adhesive 60 provided. The periphery of the light emitting element 10, more specifically, the upper surface and the side surface (end face) of the light emitting element 10 are covered with the wavelength conversion member 20. In the figure, the wavelength conversion member 20 is also provided between the mounting surface and the element. However, in the present invention, the wavelength conversion member 20 may not be provided in any region other than the light emission direction. A substantially entire upper surface of the mounting substrate 50 is covered with an insulating film 58, and the wiring 55 provided on the upper surface side is electrically connected to the bottom surface side, and is electrically connected to the outside of the apparatus by the wiring 56 on the bottom surface side. When power is supplied to the light source unit 30 from the wiring 56, the light emitting element 10 emits primary light, and the wavelength conversion member 20 is excited by the primary light emitted from the light emitting element 10 and has a wavelength different from the wavelength of the primary light. Emits secondary light. Further, a part of the primary light is transmitted through the wavelength conversion member 20 without being wavelength-converted. Therefore, the primary light and the secondary light are emitted from the light source unit, and the primary light and the secondary light transmitted through the light transmission member are superimposed. Mixed light is observed.

光透過部材40は、光源部30を内包、封止して実装基板50の上面に設けられており、その表面に光源部30から出射された一次光および二次光を装置外部に出射する光出射面41を有している。そして、この光出射面41には、光源部30の側方に4つ(凸部45)、光源部30の上方に1つ(第2の凸部44)、の全部で5つの凸部が設けられている。この光源部30側方に設けられた4つの凸部45の各中心軸C,C,C,Cはxy平面内にあって、光源部30を中心としてその周りに90°間隔で略等配されている。また、第2の凸部44の中心軸Bは、z軸である。そして、各凸部44,45は、その凸部の中心軸を光軸とする凸曲面を各々有している。すなわち、光軸のz軸を回転中心軸として、回転方向に略同一の角度で、側方の各凸部45の中心軸が配置されており、一方、側方の各凸部45は略同一形状に形成されているため、z軸を回転対称軸として、その4つの凸部45は回転対称性を有し、4回回転対称で構成されている。また、上方の凸部44も、側方の各凸部45と同様に、中心軸を回転中心とする回転対称体であり、側方の凸部45はその一部、すなわち実装面より下方の部分が切除された形状となっている。すなわち、発光素子10の側面(第2の主面)、またそれに対向する波長変換部材20及び光源部30の側面に対して、対向する光出射面として、各凸部45が配置され、その凸部の凸曲面の端部の表面領域から光出射される。なお、各凸部の中心軸は、光源部30及び発光素子10を基準として、そこを通る軸になっており、また、発光素子の主面(上面)及び4つの側面に対向する、具体的には略平行な光変換部材20、光源部30の表面(上面と側面)、すなわち光源部の発光面を備え、各表面に略垂直な方向に、各凸部の中心軸を備えている。光透過部材40は、実装面内に設けられて、その底面が実装面に接合した反射面を構成し、凸部45にあっては、底面が凸部の一部を構成している。 The light transmitting member 40 includes and seals the light source unit 30 and is provided on the upper surface of the mounting substrate 50. Light that emits primary light and secondary light emitted from the light source unit 30 to the outside of the surface of the light transmitting member 40. An exit surface 41 is provided. The light emitting surface 41 has five convex portions in total: four on the side of the light source unit 30 (convex portion 45) and one above the light source unit 30 (second convex portion 44). Is provided. The central axes C 1 , C 2 , C 3 , and C 4 of the four convex portions 45 provided on the side of the light source unit 30 are in the xy plane, and the light source unit 30 is centered on the periphery at 90 ° intervals. Are roughly evenly distributed. Further, the central axis B of the second convex portion 44 is the z-axis. Each of the convex portions 44 and 45 has a convex curved surface with the central axis of the convex portion as an optical axis. That is, the central axis of each lateral projection 45 is arranged at substantially the same angle in the rotation direction with the z axis of the optical axis as the rotation center axis, while each lateral projection 45 is substantially identical. Since the z-axis is a rotationally symmetric axis, the four convex portions 45 have rotational symmetry and are configured with fourfold rotational symmetry. Similarly to the side convex portions 45, the upper convex portion 44 is also a rotationally symmetric body with the central axis as the rotation center, and the side convex portion 45 is a part thereof, that is, below the mounting surface. The shape is a part cut away. That is, each convex portion 45 is disposed as a light emission surface facing the side surface (second main surface) of the light emitting element 10 and the side surfaces of the wavelength conversion member 20 and the light source unit 30 facing each other. Light is emitted from the surface area of the end of the convex curved surface of the part. The central axis of each convex portion is an axis passing through the light source unit 30 and the light emitting element 10 as a reference, and is opposed to the main surface (upper surface) and four side surfaces of the light emitting element. Includes a substantially parallel light conversion member 20 and a surface (upper surface and side surface) of the light source unit 30, that is, a light emitting surface of the light source unit, and a central axis of each convex portion in a direction substantially perpendicular to each surface. The light transmitting member 40 is provided in the mounting surface, and its bottom surface constitutes a reflecting surface joined to the mounting surface. In the convex portion 45, the bottom surface constitutes a part of the convex portion.

ここで、図2(a)は、従来の発光装置150の一次光(太線の実線)と二次光(破線)の配光(発光強度の角度依存)と、その混合光(細線)の色温度の放射角分布について、その特性の傾向を説明する概略図であり、図2(c)と(b)はそれぞれ、その従来の発光装置の一例に係る概略上面図とそのA−A断面の概略断面図である。また、図3(a),(b)は図1(a),(b)に対応する図で光の伝搬、出射を説明する図である。それらの図において、各光の強度の高い方向を、矢印Iを一次光、矢印IIを二次光として示している。この構造では、光源部30は実施の形態1と同様であり、それが半球状のレンズの封止部材40における略焦点に配置され、細線の矢印で図示するように、光源部30から放射された光がその表面に略垂直に入射して、それにより反射が抑制されて、出射面41からそのまま出射される。従って、発光素子10の上面(主面)の正面方向(光軸方向)と、4つの側面の正面方向(x軸、y軸方向)で、相対的に一次光(矢印I)が強く、各軸の高角度域で各面の発光が重ね合わせられ、各軸の傾斜角、ここでは略垂直、においてその中間領域の角度域で、相対的に二次光(矢印II)が強くなる。これは、発光素子の各発光面において、その正面方向と斜め方向、すなわち各軸の軸方向と高角度域では、一次光が光源部の発光面に到達するまでの距離、光路長が異なることによる。このとき、高角度域でその距離が長くなるため、波長変換される割合が高くなり、従って該領域では、相対的に一次光が弱く、二次光が強くなる。図示する従来の発光装置では、光源部の発光が表面41に到達して、表面反射を抑えて、そのまま出射させる光学レンズとなっているため、上記光源部の発光の一次・二次光の配向の違い、色ムラが、そのまま出射されて、装置の発光特性、図2(a)の細線に示すように同じ傾向を有する。ここでは、半球レンズを例示したが、光軸に対して回転対称体の封止部材、例えば特許文献2に例示される図1(b)の断面に観るような回転体であっても、図3(b)に観る断面を備えた回転体では、光軸周りの配向性の光、すなわち発光素子の側面の発光が、そのまま取り出されて配向が変化しないため、色ムラが発生する。   Here, FIG. 2A shows the light distribution of the primary light (thick solid line) and the secondary light (dashed line) of the conventional light emitting device 150 (the angle dependence of the emission intensity) and the color of the mixed light (thin line). It is the schematic explaining the tendency of the characteristic about the radiation angle distribution of temperature, and FIG.2 (c) and (b) are the schematic top views and its AA cross section which concern on an example of the conventional light-emitting device, respectively. It is a schematic sectional drawing. FIGS. 3A and 3B are diagrams corresponding to FIGS. 1A and 1B for explaining the propagation and emission of light. In these drawings, the direction in which the intensity of each light is high is indicated by an arrow I as primary light and an arrow II as secondary light. In this structure, the light source unit 30 is the same as that of the first embodiment. The light source unit 30 is arranged at a substantially focal point in the sealing member 40 of the hemispherical lens, and is emitted from the light source unit 30 as shown by a thin line arrow. The incident light is incident on the surface substantially perpendicularly, thereby suppressing reflection and exiting from the exit surface 41 as it is. Accordingly, the primary light (arrow I) is relatively strong in the front direction (optical axis direction) of the upper surface (main surface) of the light emitting element 10 and the front direction (x axis, y axis direction) of the four side surfaces. The light emission of each surface is superposed in the high angle region of the axis, and the secondary light (arrow II) becomes relatively strong in the angle region of the intermediate region at the inclination angle of each axis, here substantially vertical. This is because each light emitting surface of the light emitting element has a different distance and optical path length until the primary light reaches the light emitting surface of the light source unit in the front direction and the oblique direction, that is, the axial direction of each axis and the high angle region. by. At this time, since the distance becomes longer in the high angle region, the rate of wavelength conversion becomes higher. Therefore, in the region, the primary light is relatively weak and the secondary light is strong. In the conventional light emitting device shown in the figure, since the light emitted from the light source part reaches the surface 41 and is an optical lens that emits the light as it is while suppressing surface reflection, the primary and secondary light emitted from the light source part are aligned. The color unevenness is emitted as it is, and has the same tendency as shown by the light emission characteristics of the device, the thin line in FIG. Here, the hemispherical lens is illustrated, but the sealing member of a rotationally symmetric body with respect to the optical axis, for example, a rotating body as seen in the cross section of FIG. In the rotating body having the cross section seen in 3 (b), the alignment light around the optical axis, that is, the light emitted from the side surface of the light emitting element is taken out as it is, and the alignment does not change, and color unevenness occurs.

上述した一次・二次光の配向性について、その角度範囲は具体的には、凸部の中心軸、すなわち装置の光軸であるz軸、さらにx軸,y軸に対する傾斜角θが小さい低角度域(0°〜±45°付近)に一次光が強く放出され(矢印I)、高角度域(−90°〜−45°付近、+45°〜+90°付近)に二次光が強く放出される(矢印II)。従って、上述した本実施の形態の発光装置では、図1,3に示すように、光軸周りに凸部が設けられると共に、光軸方向も加えて、一次光が強い方向に、光透過部材の光出射面に凸部45及び光軸方向の第2の凸部44が設けられることによって、光源部から出射された一次光および二次光は、光透過部材40内部において各凸部内に導光されると共に、各凸部表面から互いに異なる中心軸方向に装置外部に放出される。具体的には、細矢印で図示するように、従来の発光装置と同様に、光源部30から凸部44,45に至る一定距離、具体的には凸部間の凹部に至る距離の領域では、光源部30の周囲を囲む光透過部材40内で、光拡散領域として機能し、それより外側の領域では、上述の凸部による集光領域として機能する。この集光領域では、凸部間の凹部により分散され、凸部の凸曲面により、凸部突端方向に反射、集光されて、各凸部の導光機能、光学レンズ機能により、上述した色ムラが改善されて、主に各凸部の凸曲面の表面、すなわちその曲面から発散されて、光出射される。また、第2の主面に対向する4つの凸部45は、実装面上に、約半周の回転による回転体となっているため、底面の略平坦な表面は、上記従来の発光装置、光拡散領域と同様に、反射面として機能し、上面側の凸曲面で、上述した集光機能、光学レンズ機能が提供される。したがって、図3(b)に示すように、光透過部材の光出射面にこのような凸部が複数設けられ、各凸部の中心軸が互いに傾斜していることによって、各凸部表面を出射面として、そこから放出される一次光と二次光と、が互いに重畳させて色ムラを低減する。また、光軸方向についても、図3(a)に示すようにほぼ同様であるが、上述したように側方の凸部45は回転体の一部、半回転の回転体で構成され、他方、第2の凸部44は全周の回転体であり、且つ発光素子10、光源部30の主発光の主面に対向する凸部であるため、該光軸方向の発光は、第2の凸部44から主な発光が取り出され、隣接する4つの凸部45からは補助的な発光がなされる。このように、本発明の発光装置は、従来の発光装置と同様に、光源部に対向する光出射面を設けて光が取り出されることで、その光取り出し効率を維持して、従来の発光装置の問題である一次光、二次光の配向の違い、色ムラを改善した構造となっている。   Regarding the orientation of the primary / secondary light described above, the angle range is specifically a low tilt angle θ with respect to the central axis of the projection, that is, the z-axis which is the optical axis of the device, and the x-axis and y-axis. Primary light is emitted strongly in the angle range (near 0 ° to ± 45 °) (arrow I), and secondary light is emitted strongly in the high angle region (near -90 ° to -45 °, + 45 ° to + 90 °). (Arrow II). Therefore, in the light emitting device of the present embodiment described above, as shown in FIGS. 1 and 3, the light transmitting member is provided in the direction in which the primary light is strong in addition to the optical axis direction as well as the convex portion around the optical axis. By providing the convex portion 45 and the second convex portion 44 in the optical axis direction on the light emitting surface, the primary light and the secondary light emitted from the light source portion are guided into each convex portion inside the light transmitting member 40. The light is emitted and emitted from the surface of each convex portion to the outside of the apparatus in different central axis directions. Specifically, as shown by a thin arrow, in a region of a certain distance from the light source unit 30 to the convex portions 44 and 45, specifically, a distance from the concave portion between the convex portions, as in the conventional light emitting device. In the light transmission member 40 surrounding the light source unit 30, it functions as a light diffusion region, and in the region outside it, it functions as a light collection region by the above-mentioned convex portions. In this condensing region, the color is dispersed by the concave portions between the convex portions, reflected and condensed in the convex end direction by the convex curved surface of the convex portions, and the color described above by the light guide function and optical lens function of each convex portion. The unevenness is improved, and the light is emitted mainly from the surface of the convex curved surface of each convex portion, that is, from the curved surface. Further, since the four convex portions 45 facing the second main surface are rotating bodies on the mounting surface by rotation about a half circumference, the substantially flat surface of the bottom surface is the same as the conventional light emitting device, light Similar to the diffusion region, it functions as a reflecting surface, and the above-described light condensing function and optical lens function are provided by the convex surface on the upper surface side. Therefore, as shown in FIG. 3B, a plurality of such convex portions are provided on the light emitting surface of the light transmitting member, and the central axes of the convex portions are inclined to each other, so that the surface of each convex portion is As the emission surface, the primary light and the secondary light emitted therefrom are superimposed on each other to reduce color unevenness. Also, the optical axis direction is substantially the same as shown in FIG. 3A, but as described above, the side projection 45 is constituted by a part of the rotating body, a half-rotating rotating body, and the other side. The second convex portion 44 is a rotating body around the entire circumference and is a convex portion facing the main light emission main surface of the light emitting element 10 and the light source unit 30, so that the light emission in the optical axis direction is the second Main light emission is extracted from the convex portions 44, and auxiliary light emission is performed from the four adjacent convex portions 45. As described above, the light emitting device according to the present invention is similar to the conventional light emitting device in that the light emitting surface facing the light source unit is provided and light is extracted, so that the light extraction efficiency is maintained and the conventional light emitting device is maintained. This is a structure in which the difference in the orientation of primary light and secondary light, and the color unevenness, which are the above problems, are improved.

特に、本実施の形態の発光装置では、光透過部材の光出射面41に、装置外部に向かって突出した複数の凸部45が設けられており、この凸部45の中心軸は、他の少なくとも1つの凸部45の中心軸に対し傾斜し、本実施の形態では隣接する互いに傾斜した中心軸を備える凸部が設けられている。これにより、光軸の高角度域、すなわち光源部30の側方において、1つの凸部から出射された光と他の凸部から出射された光とが各中心軸方向に発光され、重畳されることで、上記色ムラを低減することができる。図1に示す例の発光装置100では、光透過部材の光出射面41に5つの凸部(44,45)が設けられており、その隣接する各凸部の中心軸が互いに90°の角度をなすように配置されている。なお、互いに隣接する凸部は、上述したように凸部間の凹部で分散され、各凸部に導光されて、凸部の凸曲面表面から光出射される光が互いに重畳されるため、その中心軸の傾斜角が大きくなると、それによる色ムラが発生するため、各凸部の光出射を効率良く重畳させるため、この両凸部の中心軸同士のなす角度が一断面において45°以上90°以下であることが好ましい。   In particular, in the light emitting device of the present embodiment, the light emitting surface 41 of the light transmitting member is provided with a plurality of convex portions 45 protruding toward the outside of the device, and the central axis of this convex portion 45 is the other axis. In the present embodiment, a convex portion having adjacent central axes that are inclined with respect to the central axis of at least one convex portion 45 is provided. Thereby, in the high angle region of the optical axis, that is, on the side of the light source unit 30, the light emitted from one convex part and the light emitted from the other convex part are emitted in each central axis direction and superimposed. Thus, the color unevenness can be reduced. In the light emitting device 100 of the example shown in FIG. 1, five convex portions (44, 45) are provided on the light emitting surface 41 of the light transmitting member, and the central axes of the adjacent convex portions are at an angle of 90 ° with each other. It is arranged to make. In addition, since the convex portions adjacent to each other are dispersed in the concave portions between the convex portions as described above, and are guided to each convex portion, and the light emitted from the convex curved surface of the convex portions is superimposed on each other, When the inclination angle of the central axis is increased, color unevenness is caused thereby. Therefore, in order to efficiently overlap the light emission of each convex portion, the angle formed by the central axes of both convex portions is 45 ° or more in one section. It is preferably 90 ° or less.

本発明に係る発光装置では、上述のように、複数の凸部44,45の位置およびその方向の組み合わせによって、装置の配光すなわち輝度や色度の分布を制御している。そのため、光源部の周囲に光軸周りに設けられる凸部は、2つの場合は、両凸部の向き、その中心軸の傾斜角が大きくなり、その場合には上述したように隣接凸部の出射光の重畳効果が薄れ、小さい場合には光軸周りの片側に偏り、他方側では同様に凸部の向き、傾斜角が大きくなるため、凸部45はxy平面で3以上設けられていることが好ましく、上述したように互いに傾斜角が45°以上90°以下であることが、さらに好ましい。この3以上の凸部45の中心軸が、xy平面において光源部30を中心として該光源部30の周囲に略等配されていること、すなわち、光軸を中心としてその周りに各凸部の中心軸の成す角度が、本実施の形態のように略同一であることが好ましい。これにより、装置の光軸(z軸)の周囲の各方位に対して均衡の取れた色ムラの低減が可能となり、配向性に優れた光出射がなされる。   In the light emitting device according to the present invention, as described above, the light distribution of the device, that is, the distribution of luminance and chromaticity is controlled by the combination of the positions and directions of the plurality of convex portions 44 and 45. Therefore, in the case of two convex portions provided around the optical axis around the light source unit, the direction of both convex portions and the inclination angle of the central axis thereof become large. When the effect of superimposing the emitted light is weak and small, it is biased to one side around the optical axis, and on the other side, the direction and inclination angle of the convex portion are similarly increased. Therefore, three or more convex portions 45 are provided on the xy plane. As described above, it is more preferable that the inclination angles are 45 ° or more and 90 ° or less as described above. The central axes of the three or more convex portions 45 are substantially equally arranged around the light source portion 30 around the light source portion 30 in the xy plane, that is, the convex portions 45 are arranged around the optical axis as a center. The angles formed by the central axes are preferably substantially the same as in the present embodiment. As a result, it is possible to reduce color unevenness balanced with respect to each direction around the optical axis (z-axis) of the apparatus, and light emission with excellent orientation is achieved.

さらに本発明の発光装置は、主として、実装面上に光透過部材40が設けられて、実装面より上方側に光出射する構造であり、すなわち、光軸を基準に0°から90°の角度範囲に光透過部材40が設けられて、その表面の光出射面から放射される装置であるため、図1(b)、3(b)の上面図で観る光軸周りの配向性に加えて、図1(a)、3(a)の断面図で見る実装面より上方、光軸を中心に広がる角度範囲の配向性も必要となる。ここで、本発明の発光装置は、光源部30の側方側、下方側、実装面より下方側への光出射があってもよく、他の実施の形態では、実装面より側方の外側、下方側に光透過部材を設けて、その領域に光出射面を有する形態を説明している。このように、実装面より上方側への出射、装置の光軸方向の出射の光束、輝度を維持するために、本実施の形態のように光軸を中心軸とする第2の凸部44を有する形態と、光軸周りに設けられる複数の凸部45の内、少なくとも1つの凸部の中心軸が、光源部30が設けられた実装基板50の上面を基準として該光源部30の上方に向かって傾斜している、つまりxz平面又はyz平面でz軸方向に傾斜している形態と、具体的には光軸と90°未満の角度で傾斜する中心軸を有する凸部を設ける形態とすることができる。本実施の形態は、光源部30の直上に、z軸を中心軸Bとする第2の凸部44が設けられており、装置の光軸方向へ出射される光は、第2の凸部で集光され、その凸曲面の方面から出射されて、色ムラを改善して光の取り出し効率を高めながら、光軸に対して高角度域に配置された他の凸部45から出射される光との重畳により装置、その高角度域、凸部間の中間域における色ムラを低減して、良好な配向性とすることができる。   Furthermore, the light-emitting device of the present invention has a structure in which the light transmitting member 40 is mainly provided on the mounting surface and emits light upward from the mounting surface, that is, an angle of 0 ° to 90 ° with respect to the optical axis. In addition to the orientation around the optical axis as seen in the top views of FIGS. 1 (b) and 3 (b), the light transmitting member 40 is provided in the range and is emitted from the light emitting surface of the surface. 1A and 3A are also required to be oriented in an angular range extending from the mounting surface as seen in the cross-sectional views and centering on the optical axis. Here, the light emitting device of the present invention may emit light from the side of the light source 30, the lower side, and the lower side of the mounting surface. In other embodiments, the light emitting device is outside the side of the mounting surface. The embodiment has been described in which a light transmitting member is provided on the lower side and a light emitting surface is provided in that region. In this way, in order to maintain the light emitted upward from the mounting surface, the light beam emitted in the direction of the optical axis of the apparatus, and the luminance, the second convex portion 44 having the optical axis as the central axis as in the present embodiment. And the central axis of at least one of the plurality of projections 45 provided around the optical axis is above the light source unit 30 with respect to the upper surface of the mounting substrate 50 on which the light source unit 30 is provided. In other words, a configuration in which a convex portion having a central axis that is inclined at an angle of less than 90 ° with respect to the optical axis is provided. It can be. In the present embodiment, the second convex portion 44 having the z axis as the central axis B is provided immediately above the light source unit 30, and the light emitted in the optical axis direction of the apparatus is the second convex portion. And is emitted from the other convex part 45 arranged in a high angle range with respect to the optical axis while improving color unevenness and improving light extraction efficiency. By superimposing with light, it is possible to reduce color unevenness in the device, its high angle region, and the intermediate region between the convex portions, and to achieve good orientation.

また各凸部45の中心軸は、z軸とのなす角度が互いに略等しいことが好ましい。これにより、光源部30の光軸、すなわち主要な発光方向となるz軸周りに略均等に色ムラを低減することができる。特に、凸部45の中心軸がz軸となす角度は、45°以上であることが好ましい。通常、一次光が弱く、二次光が強くなる角度範囲は、光源部の構造に依存するが、図2(a)に示すように、z軸となす角度が45°以上の高角度域、例えば60°付近に設けられるためである。これは、発光素子10及び波長変換部材20の配光の相違、その発光面の相違、並びに上述したように、波長変換部材20の厚みや一次光の入射角に依存して波長変換部材20内を伝搬する一次光の光路長が異なり、光の放射角により波長変換量に差異が生じること、などに起因する。また、凸部45の中心軸とz軸とのなす角度が90°以下であれば、装置の光軸となるz軸とその低角度域に対して光を効率良く重畳させることができ、装置の光軸方向の色ムラを低減することができる。特に、図1に示す例の発光装置100では、光源部30の側方に設けられた4つの凸部45各々の中心軸C,C,C,Cはxy平面内に設けられており、これら中心軸C〜Cとz軸とのなす角度は90°で、互いに等しくなっている。また凸部のうち1つの凸部の中心軸が、光源部30が設けられた実装基体50の上面に略垂直、すなわちz軸であり、残りの凸部の中心軸が、xy平面において光源部30を中心として該光源部30の周囲に略等配され、且つ光源部30が設けられた実装基体50の上面に略平行、つまりxy平面内に設けられている。このような形態であれば、発光素子10の第2の主面の側面、それに対向する光源部30の側面に各々対応して、本実施の形態ではそれに対向して、凸部45を配置でき、一次光と二次光の分布に各々対応した凸部45とできるため、各凸部の機能を効率的に割り当てられ、光源部の発光を効率よく重畳させ、出射させることができ、さらに光軸方向、光軸に対して低角度域においても、同様に光軸周りの色ムラを低減することができる。 In addition, it is preferable that the central axis of each convex portion 45 has substantially the same angle with the z-axis. Thereby, color unevenness can be reduced substantially evenly around the optical axis of the light source unit 30, that is, the z-axis that is the main light emitting direction. In particular, the angle formed by the central axis of the convex portion 45 and the z-axis is preferably 45 ° or more. Usually, the angle range in which the primary light is weak and the secondary light is strong depends on the structure of the light source unit, but as shown in FIG. 2 (a), as shown in FIG. For example, it is provided near 60 °. This depends on the difference in light distribution between the light emitting element 10 and the wavelength conversion member 20, the difference in the light emission surface, and the wavelength conversion member 20 depending on the thickness of the wavelength conversion member 20 and the incident angle of the primary light as described above. This is because, for example, the optical path length of the primary light propagating through the light beam differs, and the wavelength conversion amount varies depending on the radiation angle of the light. Further, if the angle formed by the central axis of the convex portion 45 and the z-axis is 90 ° or less, the light can be efficiently superimposed on the z-axis serving as the optical axis of the device and its low angle region. The color unevenness in the optical axis direction can be reduced. In particular, in the light emitting device 100 of the example illustrated in FIG. 1, the central axes C 1 , C 2 , C 3 , and C 4 of the four convex portions 45 provided on the side of the light source unit 30 are provided in the xy plane. The angles formed by the central axes C 1 to C 4 and the z axis are 90 ° and are equal to each other. In addition, the central axis of one of the convex portions is substantially perpendicular to the upper surface of the mounting substrate 50 on which the light source unit 30 is provided, that is, the z axis, and the central axis of the remaining convex portions is the light source unit on the xy plane. The light source unit 30 is substantially equally distributed around the light source unit 30 and is substantially parallel to the upper surface of the mounting substrate 50 on which the light source unit 30 is provided, that is, in the xy plane. In such a form, the convex portion 45 can be disposed so as to correspond to the side surface of the second main surface of the light emitting element 10 and the side surface of the light source unit 30 facing the second main surface, respectively, in the present embodiment. Since the convex portions 45 corresponding to the distributions of the primary light and the secondary light can be obtained, the function of each convex portion can be efficiently assigned, the light emission of the light source portion can be efficiently superimposed and emitted, and the light Similarly, color unevenness around the optical axis can be reduced even in a low angle region with respect to the axial direction and the optical axis.

本発明の凸部44,45は、光透過部材の光出射面41において、上述の従来の発光装置に比して、装置外部に向かってその中心軸方向に突出した部位として設けられる。凸部44,45を構成する面の形状は特に限定されないが、凸部は、その中心軸を光軸とする凸曲面を各々有していることが好ましい。これにより、光源部30から発光された光を、各凸部の中心軸方向に集光させると共に装置外部に効率良く出射させることができ、装置内部及び外部において一次光と二次光の重畳を促進させることができる。また凸部44,45は、その形状、突出量に依存して光出射面41からの発光の配向性を調整でき、中心軸方向に短く、例えば本実施の形態のように、断面幅の半幅より短く、凸部の回転体の回転軸における軸長さを回転体の元の平面の幅より短く、すると各凸部への指向性が弱まり、色ムラ、輝度ムラの低減作用が低くなるものの、凸部の指向性が弱まり、全放射角で比較的均一な強度の発光が得られる。他方、他の実施の形態のように、中心軸の長さが凸部の軸に対して横断面の幅の半分より長くなることで、各凸部への指向性が高まり、また凸部からの出射光が輝度ムラ、色ムラが大きく低減できる。このような凸部指向性の強い光は、凸部の光出射面の形状を調整して、広い配向分布のものとしたり、外部の反射器、光学レンズ、例えば照明器具などにおいて、反射・集光構造、を組み合わせた発光装置として用いることができる。凸部の表面は、凸曲面を少なくとも一部に有することが、上述した部材内の光の集光、分散並び光出射面の放射において好ましく、凸部側面及び凸部の端面にそれぞれ有していることが好ましく、全体の形状は、球面や回転体のように一体の曲面で形成されると、比較的光出射を均一化しやすく好ましい。一方で、光源部の一次・二次光の配向に、より適合するように部材内部での集光、反射と、所望の放射特性の光出射となるように、各反射部、導光部、光出射部でそれぞれ異なる表面、凸曲面とすることができる。例えば、他の実施の形態に観るように、端部、突端部の領域、及びその近傍領域と、それらの領域と拡散領域の間の領域で、これらの領域ごとに、異なる表面、曲面、凸曲面とできる。また光透過部材の光出射面41における各凸部を互いに連結する連結部は、特に形状が限定されるものではなく、隣接する凸部同士を結合する部位であって、光出射面41として凸部と一体に成形されていればよい。この連結部は、該連結部に入射される一次光及び二次光を、装置外部に拡散させて放出したり、またその内面で反射させて凸部へ集光させたりすることができる。   The convex portions 44 and 45 of the present invention are provided on the light emitting surface 41 of the light transmitting member as a portion protruding in the central axis direction toward the outside of the device as compared with the above-described conventional light emitting device. Although the shape of the surface which comprises the convex parts 44 and 45 is not specifically limited, It is preferable that each convex part has a convex curved surface which makes the central axis the optical axis. As a result, the light emitted from the light source unit 30 can be condensed in the direction of the central axis of each convex portion and can be efficiently emitted to the outside of the device, and the primary light and the secondary light can be superimposed inside and outside the device. Can be promoted. Further, the convex portions 44 and 45 can adjust the orientation of light emission from the light emitting surface 41 depending on the shape and the protruding amount, and are short in the central axis direction. For example, as in the present embodiment, the half width of the cross-sectional width If the shaft length at the rotation axis of the rotating body of the convex part is shorter than the width of the original plane of the rotating body, the directivity to each convex part is weakened, and the effect of reducing color unevenness and brightness unevenness is reduced. The directivity of the convex portion is weakened, and light emission with relatively uniform intensity can be obtained at all radiation angles. On the other hand, as in the other embodiments, the length of the central axis is longer than half of the width of the cross section with respect to the axis of the convex portion, thereby increasing the directivity to each convex portion, and from the convex portion. The emitted light can greatly reduce luminance unevenness and color unevenness. Such light with strong convexity directivity is adjusted to the shape of the light exit surface of the convex part to have a wide orientation distribution, or reflected or collected by an external reflector, an optical lens such as a lighting fixture. It can be used as a light-emitting device combining an optical structure. It is preferable that the surface of the convex part has a convex curved surface at least in part in the light condensing, dispersion, and radiation of the light emitting surface in the above-described member, and the convex part side surface and the end face of the convex part are respectively provided. It is preferable that the entire shape is formed as an integral curved surface such as a spherical surface or a rotating body. On the other hand, each reflection unit, light guide unit, so as to be light collection and reflection inside the member and light emission of a desired radiation characteristic so as to better match the orientation of the primary and secondary light of the light source unit The light emitting portion can have different surfaces and convex curved surfaces. For example, as seen in other embodiments, the end portion, the tip end region, and the vicinity thereof, and the region between these regions and the diffusion region, a different surface, curved surface, convexity for each of these regions. Can be curved. In addition, the connecting portion that connects the convex portions on the light emitting surface 41 of the light transmitting member to each other is not particularly limited in shape, and is a portion that connects adjacent convex portions, and is convex as the light emitting surface 41. What is necessary is just to be shape | molded integrally with the part. The connecting part can diffuse the primary light and the secondary light incident on the connecting part to the outside of the apparatus and emit the light, or reflect the primary light and the secondary light on the inner surface to collect the light on the convex part.

また光源部30から発光された光は、光出射面41の凸部44,45においてその凸曲面の中心軸方向へ集光され、他方凸部間の連結部では拡散されて、装置外部に放出される。したがって、凸部44,45や連結部の面形状、配置により、この集光・拡散作用を利用して装置の配光を制御することが可能である。例えば本実施の形態の発光装置100では、xy平面において、4つの凸部45が各々有する凸曲面によりその各中心軸C〜C方向への集光作用が働き、光が各中心軸方向に集光されることで、装置外部において一次光と二次光の重畳を促進することができる。xz平面、yz平面におけるz軸を中心軸Bとする凸部44についても同様に、中心軸方向への集光作用が働き、装置の光軸方向の輝度を高めることができる。 The light emitted from the light source unit 30 is collected in the central axis direction of the convex curved surface at the convex portions 44 and 45 of the light emitting surface 41, diffused at the connecting portion between the other convex portions, and emitted outside the apparatus. Is done. Therefore, it is possible to control the light distribution of the apparatus by utilizing the light condensing / diffusing action according to the surface shape and arrangement of the convex portions 44 and 45 and the connecting portion. For example, in the light emitting device 100 of the present embodiment, the light condensing action in the directions of the central axes C 1 to C 4 works by the convex curved surfaces of the four convex portions 45 in the xy plane, and the light is in the directions of the central axes. By condensing the light, it is possible to promote the superimposition of the primary light and the secondary light outside the apparatus. Similarly, the convex portion 44 having the z axis in the xz plane and the yz plane as the central axis B has a condensing action in the central axis direction, and can increase the luminance in the optical axis direction of the apparatus.

なお、実装基体50上面の一部に光透過部材40が形成される、本実施の形態のような発光装置では、図1に示すように、光透過部材の光出射面41と実装基板50上面とが結合する結合部が該光透過部材40の最も外側に位置していることによって、光透過部材40を圧縮成形などで容易に成形可能となり、後述する他の実施の形態に比べて生産性が良好である。   In the light emitting device according to the present embodiment in which the light transmitting member 40 is formed on a part of the upper surface of the mounting substrate 50, the light emitting surface 41 of the light transmitting member and the upper surface of the mounting substrate 50 as shown in FIG. Is located on the outermost side of the light transmissive member 40, the light transmissive member 40 can be easily formed by compression molding or the like, and is more productive than other embodiments described later. Is good.

次に、本発明の発光装置の各構成部材について、以下に詳述する。   Next, each component of the light emitting device of the present invention will be described in detail below.

(発光素子)
発光素子10は公知のもの、具体的には半導体発光素子を利用でき、特にGaN系化合物半導体であれば、蛍光物質を効率良く励起できる短波長の可視光や紫外光が発光可能であるため好ましい。具体的な発光ピーク波長は240nm以上560nm以下、好ましくは380nm以上470nm以下である。なお、このほか、ZnSe系、InGaAs系、AlInGaP系半導体の発光素子でもよい。半導体層による発光素子構造は、少なくとも第1導電型(n型)層と第2導電型(p型)層とにより構成され、更にその間に活性層を有する構造が好ましい。また、電極構造は、一方の主面側に第1導電型(負)、第2導電型(正)の両電極が設けられる同一面側電極構造が好ましいが、半導体層の各主面に対向して電極が各々設けられる対向電極構造でも良い。発光素子10の実装形態も、例えば上記同一面側電極構造では、電極形成面を実装面として、それに対向する基板側を主な出射面とするフリップチップ実装が、その出射面と波長変換部材との光学的な接続上好ましい。この他、電極形成面側を主な出射面として、その上に波長変換部材20を結合する実装、フェイスアップ実装、また配線構造を備えた光透過部材にフリップチップ実装、上記対向電極構造で光透過部材と実装基板に接続すること、ができ、好ましくは発光素子10と波長変換部材20に配線、電極を備えない実施例の実装が良い。なお、半導体層の成長基板は、発光素子構造を構成しない場合には除去してもよく、成長基板が除去された半導体層に、支持基板、例えば導電性基板または別の透光性部材・基板を接着した構造とすることもできる。その他、ガラス、樹脂などの光透過部材により半導体層が接着・被覆されて、支持された構造の素子でもよい。成長基板の除去は、例えば支持体、装置又はサブマウントに実装又は保持して、剥離、研磨、若しくはLLO(Laser Lift Off)で実施できる。また、発光素子10は光反射構造を有することができ、具体的には、半導体層の互いに対向する2つの主面の内、光取り出し側(出射面側)と対向する他方の主面を光反射側(図1における下側)とし、この光反射側の半導体層内や電極などに光反射構造を設けることができる。光反射構造の例として、半導体層内に多層膜反射層が設ける構造、あるいは半導体層の上にAg、Al等の光反射性の高い金属膜や誘電体多層膜を有する電極、反射層を設けた構造がある。
(Light emitting element)
The light-emitting element 10 can be a known element, specifically a semiconductor light-emitting element, and is particularly preferably a GaN-based compound semiconductor because it can emit visible light and ultraviolet light having a short wavelength that can excite a fluorescent substance efficiently. . A specific emission peak wavelength is 240 nm or more and 560 nm or less, preferably 380 nm or more and 470 nm or less. In addition, a light emitting element of ZnSe, InGaAs, or AlInGaP semiconductor may be used. The light-emitting element structure using a semiconductor layer is preferably composed of at least a first conductivity type (n-type) layer and a second conductivity type (p-type) layer, and further having an active layer therebetween. Further, the electrode structure is preferably the same surface side electrode structure in which both electrodes of the first conductivity type (negative) and the second conductivity type (positive) are provided on one main surface side, but facing each main surface of the semiconductor layer. Thus, a counter electrode structure in which electrodes are provided may be used. As for the mounting form of the light emitting element 10, for example, in the same-surface electrode structure described above, the flip chip mounting in which the electrode forming surface is the mounting surface and the substrate side facing it is the main emitting surface, the emitting surface, the wavelength conversion member, It is preferable in terms of optical connection. In addition, the electrode forming surface side is a main emission surface, the wavelength conversion member 20 is mounted on the surface, the face-up mounting is performed, and the light transmitting member having a wiring structure is flip-chip mounted. The transmissive member can be connected to the mounting substrate, and preferably the embodiment in which the light emitting element 10 and the wavelength conversion member 20 are not provided with wiring and electrodes is preferable. The growth substrate of the semiconductor layer may be removed when the light emitting element structure is not formed, and a support substrate such as a conductive substrate or another light transmissive member / substrate may be added to the semiconductor layer from which the growth substrate has been removed. It can also be set as the structure which adhered. In addition, an element having a structure in which a semiconductor layer is bonded and covered with a light transmission member such as glass or resin may be supported. The removal of the growth substrate can be performed by peeling, polishing, or LLO (Laser Lift Off) by mounting or holding the growth substrate on a support, device, or submount, for example. In addition, the light emitting element 10 can have a light reflecting structure. Specifically, of the two main surfaces of the semiconductor layer facing each other, the other main surface facing the light extraction side (outgoing surface side) is irradiated with light. A light reflection structure can be provided in the semiconductor layer on the light reflection side or on the electrode, etc., on the reflection side (lower side in FIG. 1). As an example of the light reflecting structure, a structure in which a multilayer reflective layer is provided in the semiconductor layer, or an electrode having a highly light reflective metal film such as Ag or Al or a dielectric multilayer film, or a reflective layer is provided on the semiconductor layer. There is a structure.

(窒化物半導体発光素子)
発光素子10の一例として、窒化物半導体の発光素子では、成長基板であるC面サファイア基板の上に、第1の窒化物半導体層であるn型半導体層、活性層である発光層、第2の窒化物半導体層であるp型半導体層が順にエピタキシャル成長されている。そして、n型層の一部が露出されて第1の電極であるn型パッド電極が形成され、p型層のほぼ全面にITO等の透光性導電層、第2の電極であるp型パッド電極が形成されている。さらに、保護膜が、n型、p型パッド電極の表面を露出し、半導体層を被覆して設けられる。なお、n型パッド電極は、p型同様に透光性導電層を介して形成してもよい。成長基板は、C面サファイアの他、R面、及びA面、スピネル(MgAl24)のような絶縁性基板、また炭化珪素(6H、4H、3C)、Si、ZnS、ZnO、GaAs、GaNやAlN等の半導体の導電性基板がある。窒化物半導体の例としては、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)の他、BやP、Asを混晶してもよい。また、n型、p型半導体層は、単層、多層を特に限定されず、活性層は単一(SQW)又は多重量子井戸構造(MQW)が好ましい。青色発光の素子構造の例としては、サファイア基板上に、バッファ層などの窒化物半導体の下地層、例えば低温成長薄膜GaNとGaN層、を介して、n型半導体層として、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層が積層され、続いてInGaN/GaNのMQWの活性層、更にp型半導体層として、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層が積層された構造がある。
(Nitride semiconductor light emitting device)
As an example of the light-emitting element 10, in a nitride semiconductor light-emitting element, an n-type semiconductor layer that is a first nitride semiconductor layer, a light-emitting layer that is an active layer, a second layer on a C-plane sapphire substrate that is a growth substrate. A p-type semiconductor layer which is a nitride semiconductor layer is epitaxially grown in order. Then, a part of the n-type layer is exposed to form an n-type pad electrode which is a first electrode, a light-transmitting conductive layer such as ITO, and a p-type which is a second electrode over almost the entire surface of the p-type layer. A pad electrode is formed. Further, a protective film is provided to expose the surface of the n-type and p-type pad electrodes and cover the semiconductor layer. Note that the n-type pad electrode may be formed through a light-transmitting conductive layer as in the p-type. In addition to C-plane sapphire, the growth substrate is an R-plane and A-plane, an insulating substrate such as spinel (MgAl 2 O 4 ), silicon carbide (6H, 4H, 3C), Si, ZnS, ZnO, GaAs, There are semiconductor conductive substrates such as GaN and AlN. Examples of the nitride semiconductor, the general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) of the other, B and P, may be mixed with As. The n-type and p-type semiconductor layers are not particularly limited to a single layer or a multilayer, and the active layer is preferably a single (SQW) or multiple quantum well structure (MQW). As an example of a blue light emitting device structure, an n-type semiconductor layer such as Si-doped GaN is formed on a sapphire substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature growth thin film GaN and a GaN layer. An n-type contact layer and an n-type multilayer film layer of GaN / InGaN are stacked, followed by an InGaN / GaN MQW active layer, and a p-type semiconductor layer, for example, an Mg-doped InGaN / AlGaN p-type multilayer film layer There is a structure in which p-type contact layers of Mg-doped GaN are stacked.

(波長変換部材)
波長変換部材20は、発光素子10が発する一次光に励起され、その波長変換光の二次光を発する蛍光体を含有しており、一次光と二次光の混色により、所望の色相を有する出射光を実現できる複合光源を構成する部材である。波長変換部材20は、透光性部材を母材とし、その透光性部材中に光変換材料としての蛍光体を混在させた構造で構成されることが好ましく、これにより発光素子10を好適に被覆することができる。波長変換部材20の母材となる透光性部材の材料としては、例えば、樹脂、ガラス、無機物を用いることができる。また下記蛍光体の成形体、結晶体などでもよい。より具体的な波長変換部材20としては、蛍光体を含有するガラス、あるいは蛍光体結晶若しくはその相を有する単結晶体、多結晶体、アモルファス体、セラミック体などが挙げられる。この他、蛍光体粒子と適宜付加される透光性材料との焼結体、凝集体、多孔質体、更にそれらに透光性部材、例えば透光性樹脂を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の成形体等から構成される。波長変換部材20の被覆形態は特に限定されず、上記のように蛍光体粒子を含有する透光性樹脂若しくは溶融ガラスを発光素子10の周囲にポッティングやスクリーン印刷で設けてもよく、又は板状の焼結体やガラス板を透光性の接着材により発光素子10に貼付してもよい。波長変換部材20は、その厚みが略一定に形成されることで、混色の割合を安定させ、光源部30表面において色ムラの発生を抑止できる。なお、波長変換部材20の厚みは、発光効率や色度調整において、10μm以上500μm以下であることが好ましく、さらには50μm以上300μm以下であることがより好ましい。また、1つの波長変換部材20により被覆される発光素子10の個数は特に限定されず、複数にすれば、光束を大きくでき光源部30の放出光の輝度を高めることができる。発光素子10を複数とする場合、例えば一列状に配置、等間隔に格子位置に配置する。このように発光素子10を複数とする場合においても、波長変換部材20の厚みが略一定であることで、個々の発光素子10の配置に起因する光源部30表面での輝度や色度のムラを低減することができる。
(Wavelength conversion member)
The wavelength conversion member 20 contains a phosphor that is excited by the primary light emitted from the light emitting element 10 and emits secondary light of the wavelength converted light, and has a desired hue due to color mixing of the primary light and the secondary light. It is a member constituting a composite light source capable of realizing emitted light. The wavelength conversion member 20 is preferably configured to have a structure in which a translucent member is used as a base material and a phosphor as a light conversion material is mixed in the translucent member. Can be coated. As a material of the translucent member that is a base material of the wavelength conversion member 20, for example, resin, glass, or an inorganic substance can be used. Further, the following phosphor molded body and crystal body may be used. More specific examples of the wavelength conversion member 20 include phosphor-containing glass, phosphor crystals or single crystals having a phase thereof, polycrystals, amorphous bodies, ceramic bodies, and the like. In addition, sintered bodies, aggregates, and porous bodies of phosphor particles and an appropriately added translucent material, and further, a translucent member such as a translucent resin mixed and impregnated, or fluorescent It is comprised from the translucent member containing a body particle, for example, the molded object etc. of translucent resin. The coating form of the wavelength conversion member 20 is not particularly limited. As described above, a translucent resin or molten glass containing phosphor particles may be provided around the light emitting element 10 by potting or screen printing, or a plate shape. Alternatively, a sintered body or a glass plate may be attached to the light-emitting element 10 with a translucent adhesive. Since the wavelength conversion member 20 is formed to have a substantially constant thickness, the ratio of color mixing can be stabilized and the occurrence of color unevenness on the surface of the light source unit 30 can be suppressed. In addition, the thickness of the wavelength conversion member 20 is preferably 10 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less in terms of luminous efficiency and chromaticity adjustment. In addition, the number of light emitting elements 10 covered by one wavelength conversion member 20 is not particularly limited. If a plurality of light emitting elements 10 are used, the luminous flux can be increased and the luminance of the light emitted from the light source unit 30 can be increased. When a plurality of light emitting elements 10 are used, they are arranged in a line, for example, and arranged at lattice positions at equal intervals. As described above, even when a plurality of light emitting elements 10 are provided, the thickness of the wavelength conversion member 20 is substantially constant, so that unevenness in luminance and chromaticity on the surface of the light source unit 30 due to the arrangement of the individual light emitting elements 10 is obtained. Can be reduced.

波長変換部材20は、青色発光素子と好適に組み合わせて白色発光とできるものが好ましい。このような波長変換部材20に用いられる代表的な蛍光体としては、ガーネット構造のセリウムで付括されたYAG系蛍光体(イットリウム・アルミニウム・ガーネット)及びLAG系蛍光体(ルテチウム・アルミニウム・ガーネット)が挙げられ、特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。またYAG、LAG、BAM、BAM:Mn、(Zn、Cd)Zn:Cu、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euからなる群から選択される少なくとも1種を含む蛍光体が使用できる。黄〜赤色発光を有する窒化物系蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子10の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることで、その蛍光体間と発光素子10とで結ばれる色度図上の任意の点を発光させることができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒化物蛍光体、珪酸塩蛍光体を用いることができる。例えば、L2SiO4:Eu(Lはアルカリ土類金属)、特に(SrxMae1-x2SiO4:Eu(MaeはCa、Baなどのアルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi222:Eu、一般式LxSiy(2/3x+4/3y):Eu若しくはLxSiyz(2/3x+4/3y-2/3z):Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。 The wavelength conversion member 20 is preferably one that can emit white light in combination with a blue light emitting element. Typical phosphors used in such a wavelength conversion member 20 include YAG phosphors (yttrium, aluminum, garnet) and LAG phosphors (lutetium, aluminum, garnet) that are attached with cerium having a garnet structure. . particularly, in a high luminance mode and prolonged use (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1,0 ≦ y ≦ 1 However, Re is at least one element selected from the group consisting of Y, Gd, La, and Lu. Further, a phosphor containing at least one selected from the group consisting of YAG, LAG, BAM, BAM: Mn, (Zn, Cd) Zn: Cu, CCA, SCA, SCESN, SESN, CESN, CASBN, and CaAlSiN 3 : Eu. Can be used. It is also possible to increase the reddish component using a nitride-based phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the emission wavelength of the light emitting element 10, the phosphors are connected to each other by the light emitting element 10. Any point on the chromaticity diagram can be illuminated. In addition, nitride phosphors, oxynitride phosphors, and silicate phosphors that convert near-ultraviolet to visible light into a yellow to red region can be used. For example, L 2 SiO 4 : Eu (L is an alkaline earth metal), particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca and Ba) and the like. Examples of nitride phosphors and oxynitride (oxynitride) phosphors include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, and Sr—Ca—Si. —O—N: Eu, Ca—Si—O—N: Eu, Sr—Si—O—N: Eu, and the like. As the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2 : Eu , general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z): Eu (L is, Sr, Ca, One of Sr and Ca).

(光透過部材)
光透過部材40は、光源部30を覆っていれば、光源部30と離間して設けられてもよいが、光源部30、特にその波長変換部材20の表面と接合されて設けられることで、光の取り出し効率を向上させることができる。光透過部材40は、例えばエポキシ樹脂、シリコーン樹脂、変成シリコーン樹脂、ユリア樹脂、ウレタン樹脂、アクリル樹脂、ポリカーボネイト樹脂、ポリイミド樹脂などの樹脂材料を用いて形成することができる。なお、光透過部材40は、発光素子10や波長変換部材20を保護する封止材としての役割も果たすため、耐候性、耐熱性、硬度に優れる材料が好ましく、エポキシ樹脂、又は硬質のシリコーン樹脂が好ましい。また、ガラスを用いてもよい。さらに、光透過部材40に、上述のような蛍光体、及び/又はTiO等の光散乱粒子、及び/又は石英ガラス等のフィラー、その他、顔料などを適宜添加して所望の発光特性とすることができる。また、光透過部材40は圧縮成形、トランスファー成形などにより、所望の大きさ、並びに所望の形状に成形することができる。
(Light transmission member)
The light transmitting member 40 may be provided apart from the light source unit 30 as long as it covers the light source unit 30, but by being bonded to the light source unit 30, particularly the surface of the wavelength conversion member 20, The light extraction efficiency can be improved. The light transmitting member 40 can be formed using a resin material such as an epoxy resin, a silicone resin, a modified silicone resin, a urea resin, a urethane resin, an acrylic resin, a polycarbonate resin, or a polyimide resin. In addition, since the light transmissive member 40 also serves as a sealing material for protecting the light emitting element 10 and the wavelength conversion member 20, a material excellent in weather resistance, heat resistance, and hardness is preferable. An epoxy resin or a hard silicone resin is preferable. Is preferred. Further, glass may be used. Furthermore, the phosphor as described above and / or light scattering particles such as TiO 2 and / or fillers such as quartz glass, and other pigments are appropriately added to the light transmitting member 40 to obtain desired light emission characteristics. be able to. Further, the light transmitting member 40 can be formed into a desired size and a desired shape by compression molding, transfer molding, or the like.

(実装基体)
発光素子10が実装される実装基体50は、少なくとも表面が素子の電極と接続される配線55を形成した実装基板が利用でき、また外部接続用の配線56(後述の実施の形態2,3,4では、実装基板50の下面に設けられ、スルーホールを介して上面の配線55と接続されている)などが設けられても良い。基板50の材料は、例として窒化アルミニウム(AlN)で構成され、単結晶、多結晶、焼結基板、他の材料としてアルミナ等のセラミック、ガラス、Si等の半金属あるいは金属基板、またそれらの積層体、複合体が使用でき、金属性、セラミックは放熱性が高いため好ましい。なお、基板50は配線が無くてもよく、例えば成長基板側を実装して素子の電極を装置の電極にワイヤー接続する形態でもでもよい。また実装基体50は、少なくともその表面が高反射性材料で構成されることが好ましく、短絡防止のため配線55を被覆する絶縁膜58(又は誘電体多層膜でもよい)などの反射層(59)が設けられてもよい。実装基体50はこのほか、一対のリードフレームであってもよく、その発光素子10の載置部は凹部(カップ、キャビティ)が設けられていてもよいが、平坦面であれば高角度域にも発光が可能であり、例えば光源部10・実装基体50の下方を除いて球状に発光することも可能である。また発光素子10は、導電性接着材60により配線55上に接着されて外部と電気的に接続される。導電性接着材60は、半田、Agペースト、Auバンプなどが利用できる。
(Mounting substrate)
As the mounting substrate 50 on which the light emitting element 10 is mounted, a mounting substrate on which a wiring 55 having at least a surface connected to the electrode of the element can be used, and an external connection wiring 56 (Embodiments 2 and 3 described later). 4 may be provided on the lower surface of the mounting substrate 50 and connected to the wiring 55 on the upper surface through a through hole. The material of the substrate 50 is composed of aluminum nitride (AlN) as an example, and is a single crystal, polycrystal, sintered substrate, ceramics such as alumina as other materials, glass, semi-metal or metal substrate such as Si, and those materials Laminates and composites can be used, and metallic and ceramics are preferred because of their high heat dissipation. The substrate 50 may have no wiring. For example, the substrate 50 may be mounted on the growth substrate side and the electrode of the element may be wire-connected to the electrode of the device. The mounting substrate 50 preferably has at least a surface made of a highly reflective material, and a reflective layer (59) such as an insulating film 58 (or a dielectric multilayer film) covering the wiring 55 to prevent a short circuit. May be provided. In addition to this, the mounting substrate 50 may be a pair of lead frames, and the mounting portion of the light emitting element 10 may be provided with a recess (cup, cavity). Can also emit light, for example, light can be emitted in a spherical shape except under the light source unit 10 and the mounting substrate 50. The light emitting element 10 is bonded on the wiring 55 by the conductive adhesive 60 and is electrically connected to the outside. As the conductive adhesive 60, solder, Ag paste, Au bump, or the like can be used.

<実施の形態2>
図4(b)は、本発明の実施の形態2に係る発光装置の概略上面図であり、図4(a)は図4(b)のA−A概略断面図である。図4に示す例の発光装置200において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 2>
4B is a schematic top view of the light-emitting device according to Embodiment 2 of the present invention, and FIG. 4A is a schematic cross-sectional view taken along line AA in FIG. 4B. In the light emitting device 200 of the example shown in FIG. 4, the same reference numerals are given to substantially the same configurations as those of the first embodiment described above, and description thereof will be omitted as appropriate.

図4に示す例の発光装置200において、光源部30は実施の形態1とほぼ同様であって、実装面と発光素子10との間の領域に蛍光体が配置されている点で異なり、光透過部材40は、実装基板50の幅より大きい幅を有し、実装基板50の側面より側方に突出、延在して設けられている。また光透過部材の光出射面41には、凸曲面を各々有する凸部45が4つ設けられている。この各凸部45の中心軸D,D,D,Dは、z軸(H軸)に対して60°の角度をなし、且つ実施の形態1と同様に、xy平面で光源部30を中心として90°間隔で略等配されている。このように、全ての凸部45の中心軸がz軸以外の軸で構成される場合、各凸部45の中心軸は、xz平面、yz平面でz軸方向に傾斜していることが好ましい。これにより、装置の光軸方向へ出射される光の輝度を高めながら、その光軸方向へ出射される一次光と二次光の重畳が促進されて色ムラを低減することができる。なお、図中のH軸は光軸を表し、実施の形態1におけるB軸に同じであり、図5も同様である。 In the light emitting device 200 of the example shown in FIG. 4, the light source unit 30 is substantially the same as in the first embodiment, and differs in that a phosphor is disposed in a region between the mounting surface and the light emitting element 10. The transmissive member 40 has a width larger than the width of the mounting substrate 50, and is provided so as to protrude and extend laterally from the side surface of the mounting substrate 50. The light emitting surface 41 of the light transmitting member is provided with four convex portions 45 each having a convex curved surface. The central axes D 1 , D 2 , D 3 , and D 4 of the convex portions 45 form an angle of 60 ° with respect to the z axis (H axis), and the light source is on the xy plane as in the first embodiment. The portions 30 are arranged approximately equally at intervals of 90 ° with the center as the center. Thus, when the central axis of all the convex parts 45 is comprised by axes other than az axis, it is preferable that the central axis of each convex part 45 is inclined in the z-axis direction on the xz plane and the yz plane. . Thereby, while increasing the luminance of the light emitted in the optical axis direction of the apparatus, the superimposition of the primary light and the secondary light emitted in the optical axis direction is promoted, and color unevenness can be reduced. The H axis in the figure represents the optical axis, which is the same as the B axis in the first embodiment, and the same applies to FIG.

さらに、この発光装置200では、光透過部材40が実装基板50の側面に結合されており、このように光透過部材40が実装基板50の側面の少なくとも一部を被覆して光源部30を封止していてもよい。これにより、延出部の光透過部材40の実装基板50上面より下方側にも光出射面41が設けられて、この光源部30下方の光出射面41からも一次光及び二次光を放出でき、すなわち、実装基板の外側で出射可能な底面を有する。また一方で、その光源部30下方の光透過部材40内面での反射により凸部45に対して集光させることで、更に一次光と二次光の重畳を促進することができる。このような光透過部材40と空気との界面での反射であれば、実装基板面や配線55などによる光吸収(光損失)の影響を受けずに光を反射させることができ、光源部30から装置外部に効率良く光を取り出すことができる。また、この底面からの出射光は、装置外部の反射器、光学レンズなどの光学機能を組み合わせて、放射角を調整した発光装置とすることもできる。   Further, in the light emitting device 200, the light transmitting member 40 is coupled to the side surface of the mounting substrate 50, and thus the light transmitting member 40 covers at least part of the side surface of the mounting substrate 50 and seals the light source unit 30. It may be stopped. As a result, a light emitting surface 41 is also provided below the upper surface of the mounting substrate 50 of the light transmitting member 40 in the extending portion, and primary light and secondary light are also emitted from the light emitting surface 41 below the light source portion 30. In other words, it has a bottom surface that can emit light outside the mounting substrate. On the other hand, the superimposition of the primary light and the secondary light can be further promoted by condensing the convex part 45 by reflection on the inner surface of the light transmitting member 40 below the light source part 30. With such reflection at the interface between the light transmitting member 40 and air, the light can be reflected without being affected by light absorption (light loss) by the mounting substrate surface, the wiring 55, or the like, and the light source unit 30. Thus, light can be efficiently extracted outside the apparatus. Further, the light emitted from the bottom surface can be a light emitting device in which the emission angle is adjusted by combining optical functions such as a reflector and an optical lens outside the device.

このような実施の形態2の発光装置200は、各凸部45の中心軸とz軸とのなす角度が光軸の高角度域にあるため、一次光及び二次光がその中心軸方向に集光され、また光源部30直上の連結部によってz軸上に出射される一次光及び二次光が拡散されて放出される。それにより、他の実施の形態に比べ、一次光及び二次光を、装置の光軸を中心としてその周囲に広く拡散させて装置外部に放出することができ、色ムラが少ない、広い配光を得ることができる。一方で、凸部の中心軸、すなわち向きが、光軸側、上方側に傾いているため、光軸方向への出射光についても、第2の凸部44を有する形態に比べると劣るが、好適に取り出される。   In the light emitting device 200 according to the second embodiment, since the angle formed by the central axis of each convex portion 45 and the z axis is in the high angle range of the optical axis, the primary light and the secondary light are in the direction of the central axis. The primary light and the secondary light that are collected and emitted on the z-axis by the connecting part directly above the light source part 30 are diffused and emitted. As a result, compared to other embodiments, primary light and secondary light can be diffused widely around the optical axis of the device and emitted to the outside of the device, resulting in a wide light distribution with less color unevenness. Can be obtained. On the other hand, since the central axis of the convex portion, that is, the direction is inclined to the optical axis side and the upper side, the emitted light in the optical axis direction is also inferior to the form having the second convex portion 44, It is preferably taken out.

なお、xy平面における発光素子10の構成面(複数の発光素子10が配列される場合はその発光素子10により形成される発光領域の外郭を構成する面)に対する凸部45の中心軸の方向は、特に限定されない。xy平面において、発光素子・領域が略正方形である場合、発光素子10の側面から発光される一次光は、略正方形の素子の対角方向よりも各側面の側方に対して輝度が高くなる傾向がある。したがって、実施の形態1や2のように、凸部45が発光素子10の各側面に対向し、凸部45の連結部が発光素子10の各角部に対向するように設けられていることで、発光素子10の側面から発光される一次光を効率良く取り出すことができ、高輝度の発光を実現することができる。また他方、xy平面において、凸部45が、発光素子10又は発光領域の各角部に対向するように設けられてもよく、好ましくはxy平面において凸部45の中心軸が発光素子10の対角線に略一致するように設けられることにより、素子の対角方向の一次光の輝度を補って色ムラを低減することができる。また、光源部30、波長変換部材20のxy平面の構成面、すなわち発光側の側面についても、上記発光素子10の第2の主面となる側面に対向する側面を有する場合は同様であり、異なる表面を有する場合には、光源部の発光における光取り出し効率が低下する傾向がある。異なる表面の形態としては、発光素子10の側面とは異なる側面、例えば、光軸周りに回転させた形態、側面の数が異なる形態、があり、その他に、曲面、球面などがあり、その場合は、上述した従来の発光装置の問題は低下する傾向にある。しかし、さらに改善するためには、発光素子の配向性への依存度が高いため、発光素子の側面に対応させる方が好ましい。但し、複数の発光素子を有する光源部の場合には、互いの側面が略平行な場合にはその側面に、異なる場合には光源部の側面に、依存する傾向が高くなる。   The direction of the central axis of the convex portion 45 with respect to the constituent surface of the light emitting element 10 in the xy plane (the surface constituting the outline of the light emitting region formed by the light emitting elements 10 when a plurality of light emitting elements 10 are arranged) There is no particular limitation. In the xy plane, when the light emitting element / region is substantially square, the primary light emitted from the side surface of the light emitting element 10 has higher luminance with respect to the side of each side surface than the diagonal direction of the substantially square element. Tend. Therefore, as in Embodiments 1 and 2, the convex portion 45 is provided to face each side surface of the light emitting element 10, and the connecting portion of the convex portion 45 is provided to face each corner portion of the light emitting element 10. Thus, primary light emitted from the side surface of the light emitting element 10 can be efficiently extracted, and light emission with high luminance can be realized. On the other hand, in the xy plane, the convex portion 45 may be provided so as to face each corner of the light emitting element 10 or the light emitting region. Preferably, the central axis of the convex portion 45 is a diagonal line of the light emitting element 10 in the xy plane. By being provided so as to substantially match, the luminance of the primary light in the diagonal direction of the element can be compensated to reduce color unevenness. Further, the light source 30 and the component surface of the wavelength conversion member 20 in the xy plane, that is, the side surface on the light emitting side are the same when the side surface is opposite to the side surface that is the second main surface of the light emitting element 10. In the case of having different surfaces, the light extraction efficiency in the light emission of the light source part tends to decrease. Examples of different surface forms include a side face different from the side face of the light emitting element 10, for example, a form rotated around the optical axis, a form having a different number of side faces, and a curved surface, a spherical surface, and the like. The problem of the conventional light emitting device described above tends to be reduced. However, for further improvement, since the degree of dependence on the orientation of the light emitting element is high, it is preferable to correspond to the side surface of the light emitting element. However, in the case of a light source unit having a plurality of light emitting elements, there is a higher tendency to depend on the side surface when the side surfaces are substantially parallel to each other, and on the side surface of the light source unit when different.

<実施の形態3>
図5(b)は、本発明の実施の形態3に係る発光装置の概略上面図であり、図5(a)は図5(b)のA−A概略断面図であり、図6は、本発光装置の実装基体とその配線構造を説明する概略上面図である。図5および図6に示す例の発光装置300において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 3>
5 (b) is a schematic top view of the light emitting device according to Embodiment 3 of the present invention, FIG. 5 (a) is a schematic cross-sectional view along AA in FIG. 5 (b), and FIG. It is a schematic top view explaining the mounting base | substrate of this light-emitting device, and its wiring structure. In the light emitting device 300 of the example shown in FIGS. 5 and 6, components substantially similar to those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted as appropriate.

図5,6に示す例の発光装置300では、実装基板50上に、上面視形状が略正方形の板状体の発光素子10が4個、略矩形状の発光領域を形成するように略等間隔の格子位置(2×2)に配列されており、その発光領域の周囲すなわち各発光素子10の上面及び側面が波長変換部材20により被覆されて、光源部30を構成している。ここで、図5に示すように、実装基板50上に設けられた配線55a,55b,55cにより、各発光素子10は互いに直列接続されフリップチップ実装されている。このように光源部30が複数の発光素子10を含む場合には、発光素子10の配置や波長変換部材20の厚みに起因する色ムラが発生しやすくなるが、本発明の発光装置では、光透過部材の光出射面41に設けられた複数の凸部45によって、上述した装置内部及び外部で一次光と二次光とを重畳させることでこのような色ムラを低減できるので、色ムラの少ない高光束の発光が可能となる。   In the light emitting device 300 of the example shown in FIGS. 5 and 6, on the mounting substrate 50, approximately four plate-shaped light emitting elements 10 having a substantially square shape in a top view are formed so as to form a substantially rectangular light emitting region. The light source section 30 is configured by covering the light emitting area, that is, the upper surface and the side surface of each light emitting element 10 with the wavelength conversion member 20. Here, as shown in FIG. 5, the light emitting elements 10 are connected in series with each other and flip chip mounted by wirings 55a, 55b, and 55c provided on the mounting substrate 50. As described above, when the light source unit 30 includes a plurality of light emitting elements 10, color unevenness due to the arrangement of the light emitting elements 10 and the thickness of the wavelength conversion member 20 is likely to occur. Such a color unevenness can be reduced by superimposing the primary light and the secondary light inside and outside the apparatus by the plurality of convex portions 45 provided on the light emitting surface 41 of the transmission member. Light emission with a small amount of high luminous flux is possible.

また光源部30は、図5に示す形態のほか、発光素子10が各々別の波長変換部材20により被覆されている形態、例えば波長変換部材20により予め被覆されている発光素子10が、互いに離間されて配列されていてもよい。このような形態においても、波長変換部材20に被覆された発光素子10から各々発光される一次光と二次光とを凸部による機能でもって、発光素子10の配置や波長変換部材20の厚みに起因する色ムラを低減することができる。また、光源部30における複数の発光素子10の配置に対する凸部の配置、その中心軸の向きは特に限定されない。但し、図5に示すように、光源部30において複数の発光素子10が該光源部の中心に対し対称性を有して配置されている場合には、凸部45、その中心軸がxy平面において光源部30を中心としてその周囲に等配されて設けられることで、装置の光軸周りに均衡の取れた色ムラの低減を実現することができる。他方、光源部30において複数の発光素子10が該光源部の中心に対し非対称に配置されている場合には、例えば発光素子10が少ない側の凸部の形成密度を高くするなど、発光素子10の配置に対応して凸部、その中心軸を偏らせて設けてもよい。   In addition to the form shown in FIG. 5, the light source unit 30 has a form in which the light emitting elements 10 are each covered with another wavelength conversion member 20, for example, the light emitting elements 10 previously covered with the wavelength conversion member 20 are separated from each other. May be arranged. Even in such a form, the primary light and the secondary light respectively emitted from the light emitting element 10 covered with the wavelength conversion member 20 have the function of the convex portion, and the arrangement of the light emitting elements 10 and the thickness of the wavelength conversion member 20 Color unevenness due to the color can be reduced. Further, the arrangement of the protrusions relative to the arrangement of the plurality of light emitting elements 10 in the light source unit 30 and the direction of the central axis thereof are not particularly limited. However, as shown in FIG. 5, in the light source unit 30, when the plurality of light emitting elements 10 are arranged symmetrically with respect to the center of the light source unit, the convex portion 45 and the center axis thereof are the xy plane. In FIG. 5, the light source unit 30 is provided in a uniform arrangement around the light source unit 30, so that it is possible to reduce color unevenness balanced around the optical axis of the apparatus. On the other hand, when the plurality of light emitting elements 10 are arranged asymmetrically with respect to the center of the light source unit 30 in the light source unit 30, for example, the formation density of convex portions on the side where the light emitting elements 10 are few is increased. Corresponding to the arrangement of the projections, the projections and the central axis thereof may be offset.

なお図6に示すように、例えばセラミックやガラスエポキシなどの実装基板50では、光源部30からの光が該基板50を透過して装置下方側へ漏出するのを防止するために、その上面の光源部30周囲、並びに光透過部材40の結合部に反射層59が設けられてもよい。このような反射層59としては、配線55と同じ構成の配線層、又はその上に高反射性の金属層、例えばAgやAlの層を形成したもの、さらにその上に誘電体多層膜を形成したものなどが挙げられる。   As shown in FIG. 6, in the mounting substrate 50 such as ceramic or glass epoxy, in order to prevent light from the light source unit 30 from passing through the substrate 50 and leaking to the lower side of the apparatus, A reflective layer 59 may be provided around the light source unit 30 and at the coupling portion of the light transmitting member 40. As such a reflective layer 59, a wiring layer having the same configuration as the wiring 55, or a highly reflective metal layer such as an Ag or Al layer formed thereon, and a dielectric multilayer film formed thereon are further formed. And the like.

本実施の形態3における光透過部材40は、実装基板50の幅より大きい幅を有し、実装基板50の側面より側方に突出、延在して設けられている。また光透過部材の光出射面41には、凸曲面を各々有する凸部45が3つ設けられている。この各凸部45の中心軸E,E,Eは、z軸に対して45°の角度をなし且つxy平面で光源部30を中心として120°間隔で略等配されている。さらに、光透過部材40は、実装基板50の側面に結合され、実装面に略同一な底部を構成する底部を延出部に有しており、この底部は平坦面となっている。これにより、実施の形態2の凸曲面に比して、光源部30から実装基板50上面より下方に発光される一次光及び二次光の該底部で全反射される成分が増加し、装置上方に反射させて効率良く取り出すとともに、それにより凸部に対して集光することで更に一次光と二次光の重畳を促進することができる。また、この光透過部材40のように、連結部が凹曲面であれば光出射面41を成形しやすく、特に装置の光軸方向の配光を良好な状態に維持するために、光源部30の直上に位置する連結部は凹曲面に成形されていることが好ましい。 The light transmissive member 40 according to the third embodiment has a width larger than the width of the mounting substrate 50, and is provided to project and extend from the side surface of the mounting substrate 50 to the side. The light emitting surface 41 of the light transmitting member is provided with three convex portions 45 each having a convex curved surface. The central axes E 1 , E 2 , E 3 of the convex portions 45 form an angle of 45 ° with respect to the z-axis and are substantially equally spaced at 120 ° intervals around the light source unit 30 on the xy plane. Further, the light transmission member 40 is coupled to the side surface of the mounting substrate 50 and has a bottom portion that forms a bottom portion substantially the same as the mounting surface in the extending portion, and the bottom portion is a flat surface. As a result, compared to the convex curved surface of the second embodiment, the components of the primary light and the secondary light that are emitted from the light source unit 30 to the lower side of the upper surface of the mounting substrate 50 are totally reflected at the bottom, and the upper part of the device is increased. It is possible to further efficiently superimpose the primary light and the secondary light by collecting the light on the convex portion and thereby collecting the light efficiently. Further, if the connecting portion is a concave curved surface like the light transmitting member 40, the light emitting surface 41 can be easily formed, and in particular, in order to maintain the light distribution in the optical axis direction of the apparatus in a good state, the light source portion 30. It is preferable that the connecting portion located immediately above is formed in a concave curved surface.

このような実施の形態3の発光装置300は、各凸部45の中心軸のz軸に対する傾斜角が、実施の形態2に比べ小さく、各凸部45が装置の光軸方向に密集して配置されており、装置の光軸方向への集光作用が比較的強く、他の実施の形態に比べ、装置の光軸方向(z軸)の輝度が高く、高光束の放出光を得ることができる。   In the light emitting device 300 of the third embodiment, the inclination angle of the central axis of each convex portion 45 with respect to the z axis is smaller than that of the second embodiment, and the convex portions 45 are densely arranged in the optical axis direction of the device. It is arranged, has a relatively strong light condensing action in the optical axis direction of the device, has higher brightness in the optical axis direction (z-axis) of the device than other embodiments, and obtains a high luminous flux emission light Can do.

<実施の形態4>
図7(c)は、本発明の実施の形態4に係る発光装置の概略上面図であり、図7(a)は図7(b)のA−A概略断面図である。図7に示す例の発光装置400において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 4>
FIG.7 (c) is a schematic top view of the light-emitting device concerning Embodiment 4 of this invention, Fig.7 (a) is AA schematic sectional drawing of FIG.7 (b). In the light emitting device 400 of the example shown in FIG. 7, components substantially similar to those of the above-described first embodiment are denoted by the same reference numerals and description thereof is omitted as appropriate.

図7に示す例の発光装置400において、光源部30は実施の形態1と同様であって、光透過部材40は、実装基板50の幅より大きい幅を有し、実装基板50の側面より側方に突出、延在して設けられている。この光透過部材の光出射面41は、z軸を中心軸Bとする1つの第2の凸部44と、z軸と中心軸とのなす角度が互いに略等しい4つの凸部45を各々含む2つの凸部群46,47を有している。図7(a)に示すように、第1凸部群46の各凸部45の中心軸F,F,F,Fは各々xy平面内にあって(z軸とのなす角度は90°)、他方、図7(b)に示すように、第2凸部群47の各凸部45の中心軸G,G,G,Gとz軸とのなす角度は各々45°である。また図7(b)に示すように、xy平面において、各凸部群46,47における凸部45の中心軸はそれぞれ、光源部30を中心として90°間隔で略等配されており、第1凸部群46の凸部45の中心軸(F〜F)と第2凸部群47の凸部45の中心軸(G〜G)とは、45°回転された位置関係に設けられている。さらにxy平面において、第1凸部群46の凸部45の中心軸(F〜F)は、発光素子10の各対角線に略一致するように各々設けられ、他方第2凸部群47の凸部45の中心軸(G〜G)は、発光素子10の側面の略垂直二等分線となるように設けられている。なお、各凸部45は、その中心軸を光軸とする凸曲面を有している。 In the light emitting device 400 of the example shown in FIG. 7, the light source unit 30 is the same as that of the first embodiment, and the light transmission member 40 has a width larger than the width of the mounting substrate 50 and is on the side of the side surface of the mounting substrate 50. Projecting and extending in the direction. The light emitting surface 41 of the light transmitting member includes one second convex portion 44 having the z axis as the central axis B, and four convex portions 45 having substantially the same angle between the z axis and the central axis. Two convex portion groups 46 and 47 are provided. As shown in FIG. 7A, the central axes F 1 , F 2 , F 3 , and F 4 of the respective convex portions 45 of the first convex portion group 46 are in the xy plane (the angle formed with the z axis). On the other hand, as shown in FIG. 7B, the angle formed between the central axes G 1 , G 2 , G 3 , G 4 of the convex portions 45 of the second convex portion group 47 and the z axis is Each is 45 °. Further, as shown in FIG. 7B, in the xy plane, the central axes of the convex portions 45 in the convex portion groups 46 and 47 are substantially equally spaced at 90 ° intervals with the light source portion 30 as the center. The central axis (F 1 to F 4 ) of the convex portion 45 of the first convex portion group 46 and the central axis (G 1 to G 4 ) of the convex portion 45 of the second convex portion group 47 are rotated by 45 °. Is provided. Further, in the xy plane, the central axes (F 1 to F 4 ) of the convex portions 45 of the first convex portion group 46 are provided so as to substantially coincide with the diagonal lines of the light emitting element 10, respectively, and the second convex portion group 47. The central axis (G 1 to G 4 ) of the convex portion 45 is provided so as to be a substantially vertical bisector of the side surface of the light emitting element 10. Each convex portion 45 has a convex curved surface with the central axis as the optical axis.

このように、光透過部材の光出射面41に、その中心軸とz軸となす角度が互いに略等しい複数の凸部45を含む凸部群が、z軸となす角度を変えて複数設けられていることで、装置の光軸(z軸)周りの色ムラの低減効果を更に高めることができる。なお、このような形態においても、1つの凸部群内に設けられる凸部45は、上述のようにxy平面において光源部30を中心として略等配されていることが好ましい。また、このような凸部群の数は特に限定されないが、例えば本実施の形態4のように2つとすれば、各凸部45の間隔(形成密度)を適度に保ち効率良く光を重畳させることができ、また光出射面41を比較的容易に成形することができる。さらに、本実施の形態のように、1つの凸部群における凸部45の連結部(凹部)に対応して、その上若しくは下に他の凸部群の凸部45が配置されていれば、1つの凸部群の連結部による光の拡散を、隣接する他の凸部群の凸部45による集光により補填し合って、装置の光軸回りの色ムラに加え輝度ムラも低減することができる。なお、z軸を中心軸とする第2の凸部44は省略してもよい。   As described above, the light emitting surface 41 of the light transmitting member is provided with a plurality of convex portions including a plurality of convex portions 45 whose angles formed with the central axis and the z axis are substantially equal to each other, with the angles formed with the z axis being changed. Therefore, the effect of reducing color unevenness around the optical axis (z-axis) of the device can be further enhanced. Even in such a form, it is preferable that the convex portions 45 provided in one convex portion group are substantially equally arranged around the light source portion 30 in the xy plane as described above. In addition, the number of such convex portion groups is not particularly limited. For example, if the number is two as in the fourth embodiment, the interval (formation density) between the convex portions 45 is appropriately maintained and light is efficiently superimposed. In addition, the light emitting surface 41 can be formed relatively easily. Furthermore, as in the present embodiment, if the convex portion 45 of another convex portion group is disposed above or below the connecting portion (concave portion) of the convex portion 45 in one convex portion group, The diffusion of light by the connecting portion of one convex portion group is compensated by condensing light by the convex portion 45 of another adjacent convex portion group to reduce luminance unevenness in addition to color unevenness around the optical axis of the device. be able to. The second convex portion 44 having the z axis as the central axis may be omitted.

<実施の形態5>
図8(b)は、本発明の実施の形態5に係る発光装置の概略上面図であり、図8(a)は図8(b)のA−A概略断面図である。図8に示す例の発光装置500において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 5>
FIG. 8B is a schematic top view of the light-emitting device according to Embodiment 5 of the present invention, and FIG. 8A is a schematic cross-sectional view taken along the line AA in FIG. In the light emitting device 500 of the example shown in FIG. 8, components substantially similar to those of the first embodiment described above are denoted with the same reference numerals, and description thereof is omitted as appropriate.

図8に示す例の発光装置500において、光透過部材の光出射面41は、実施の形態1における発光装置100の各凸部44,45が砲弾型形状に形成されたものとなっている。このように、1つの凸部44,45が凸曲面と円筒状の面(以降、円筒面と呼ぶ)の組み合わせにより構成されてもよい。この場合、円筒面内面での反射により、光透過部材40内部での一次光と二次光との重畳を促進できると共に、凸部から発光される一次光及び二次光の中心軸方向の指向性、集光性を高めることができる。   In the light emitting device 500 of the example shown in FIG. 8, the light emitting surface 41 of the light transmitting member has the projecting portions 44 and 45 of the light emitting device 100 according to Embodiment 1 formed in a cannonball shape. Thus, one convex part 44 and 45 may be comprised by the combination of a convex curved surface and a cylindrical surface (henceforth a cylindrical surface). In this case, the reflection on the inner surface of the cylindrical surface can promote the superimposition of the primary light and the secondary light inside the light transmitting member 40, and direct the primary light and secondary light emitted from the convex portion in the direction of the central axis. And light collecting properties can be improved.

また発光装置500において、光源部30は、実施の形態3と同様に互いに直列接続された複数の発光素子10による発光領域が波長変換部材20により覆われて構成されており、該光源部30は封止部材70により被覆、封止されている。この封止部材70は、上述の光透過部材40、波長変換部材と同様に樹脂材料などで構成することができ、その発光側の表面は半球面状に形成されることが好ましく、これにより該部材内面での反射を抑制して光を効率良く取り出すことができる。また、封止部材内で、拡散剤を添加して、部材70内で、光源部の配向を第1段階で緩和して、その外側の光透過部材により、さらに第2段階で、集光させ、光出射させる多段的な緩和構造を形成することもできる。また、光透過部材と屈折率差を設けて、屈折率を多段的に緩和する構造とすることもできる。このように、封止部材70は、上述した光源部から一定距離に設けられた光拡散領域として機能させることができる。   Further, in the light emitting device 500, the light source unit 30 is configured such that the light emitting region by the plurality of light emitting elements 10 connected in series with each other is covered with the wavelength conversion member 20, as in the third embodiment. Covered and sealed by a sealing member 70. The sealing member 70 can be formed of a resin material or the like, similar to the light transmitting member 40 and the wavelength converting member described above, and the light emitting side surface is preferably formed in a hemispherical shape. It is possible to efficiently extract light while suppressing reflection on the inner surface of the member. Further, in the sealing member, a diffusing agent is added, the orientation of the light source part is relaxed in the first stage in the member 70, and the light is transmitted further on the outer side through the light transmitting member to be condensed in the second stage. A multistage relaxation structure for emitting light can also be formed. Further, a refractive index difference can be provided between the light transmitting member and the refractive index can be relaxed in multiple stages. Thus, the sealing member 70 can function as a light diffusion region provided at a constant distance from the light source unit described above.

さらに光透過部材40は、上述のような光出射面41を有するように樹脂やガラスなどで予め成形された成形体であって、該成形体が光源部30を有する実装基板50に搭載されている。このような光透過部材の光出射面41の反対側の表面、つまり該光透過部材40の搭載側の面には、その略中央部に、光源部30が配置されるように凹部が設けられている。このような凹部は、図示するように封止部材70の表面形状と同様に、半球面状に設けられることにより、該凹部表面での光反射を抑制して、光源部30からの光を光透過部材40に効率良く結合することができる。   Further, the light transmitting member 40 is a molded body that is pre-molded with resin, glass or the like so as to have the light emitting surface 41 as described above, and the molded body is mounted on a mounting substrate 50 having the light source unit 30. Yes. On the surface opposite to the light emitting surface 41 of the light transmitting member, that is, the surface on the mounting side of the light transmitting member 40, a recess is provided at the substantially central portion so that the light source unit 30 is disposed. ing. As shown in the figure, such a recess is provided in a hemispherical shape, similar to the surface shape of the sealing member 70, thereby suppressing light reflection on the surface of the recess and transmitting light from the light source unit 30. The transmission member 40 can be efficiently coupled.

このような光透過部材40は、光源部30又はそれを被覆する封止部材70などに接して設けられる場合、樹脂など透光性の接着材(不図示)により接合されることが好ましい。また光透過部材40と封止部材70、さらには両部材を接着する接着材は、効率良く光を導光するために、互いに近い値の屈折率を有することが好ましく、より好ましくは同種の材料により構成するとよい。或いは、光透過部材40の屈折率を封止部材70の屈折率より小さくするなど、意図的に光透過部材40と封止部材70の屈折率を異ならしめ、光透過部材40と封止部材70の屈折率の相違による光の屈折、反射を利用して一次光と二次光を重畳させて色ムラを低減してもよい。更には、例えば封止部材70の表面においても、光透過部材の光出射面41のように、上面視で複数の凸部が設けられてもよく、その封止部材70の凸部表面の屈折率界面を利用して一次光と二次光の重畳作用をさらに高めてもよい。また、接着材のほか係止又は嵌合により光透過部材40を封止部材70に固定されてもよく、このような場合には光透過部材40は実装基体50と離間して設けられてもよい。   When such a light transmitting member 40 is provided in contact with the light source unit 30 or the sealing member 70 covering the light source unit 30, it is preferable that the light transmitting member 40 be joined by a light transmitting adhesive (not shown) such as a resin. Further, the light transmitting member 40 and the sealing member 70, and further, the adhesive for bonding both members preferably have refractive indexes close to each other, more preferably the same kind of material in order to guide light efficiently. It is good to comprise. Alternatively, the refractive index of the light transmitting member 40 and the sealing member 70 are intentionally made different, for example, by making the refractive index of the light transmitting member 40 smaller than the refractive index of the sealing member 70, and the light transmitting member 40 and the sealing member 70. Color unevenness may be reduced by superimposing primary light and secondary light using refraction and reflection of light due to the difference in refractive index. Further, for example, a plurality of convex portions may be provided on the surface of the sealing member 70 as viewed from above, like the light emitting surface 41 of the light transmitting member. The superposition action of the primary light and the secondary light may be further enhanced by using the index interface. In addition to the adhesive, the light transmitting member 40 may be fixed to the sealing member 70 by locking or fitting. In such a case, the light transmitting member 40 may be provided apart from the mounting substrate 50. Good.

他方、光透過部材40が光源部30又は封止部材70と離間して設けられる場合は透光性の接着材に限らず、金属など光反射性材料により実装基体50に接合させてもよいし、実装基体50若しくは他の基体に係止若しくは嵌合により固定されてもよい。なお、本発光装置500においても、光透過部材40の各凸部45が結合する実装基板50の上面には反射層59が設けられており、装置下方への光の漏出を防止している。   On the other hand, when the light transmissive member 40 is provided apart from the light source unit 30 or the sealing member 70, the light transmissive member 40 is not limited to the light transmissive adhesive, and may be bonded to the mounting substrate 50 by a light reflective material such as metal. Alternatively, it may be fixed to the mounting substrate 50 or another substrate by locking or fitting. In the light emitting device 500 as well, a reflective layer 59 is provided on the upper surface of the mounting substrate 50 to which the convex portions 45 of the light transmitting member 40 are coupled, thereby preventing light from leaking downward from the device.

このように予め個別に成形した光透過部材40を接着させる、実施の形態5の発光装置500であれば、光透過部材40の形状が、実装基板面などに制限を受けず、より多数の凸部45を含むような比較的複雑な形状の光出射面41でも成形することができ、凸部45による色ムラの低減および装置の配光を制御しやすい。   In the case of the light emitting device 500 of Embodiment 5 in which the light transmitting members 40 individually molded in this way are bonded, the shape of the light transmitting member 40 is not limited by the mounting substrate surface or the like, and more convexes are formed. The light emitting surface 41 having a relatively complicated shape including the portion 45 can also be molded, and it is easy to control the color unevenness due to the convex portion 45 and the light distribution of the apparatus.

また図8に示す例の発光装置において、光透過部材40は、必ずしも予め成形されたものでなくてもよく、封止部材70が設けられた後、その上に直接成形されてもよい。例えば封止部材70をガラスで成形し、その上に凸部45を有する光透過部材40を樹脂で成形してもよい。このような形態であれば、光透過部材の凸部45により色ムラの低減された発光を実現すると共に、樹脂材料より熱伝導性の高いガラスで光源部30が封止されることで、発光素子10や波長変換部材20の放熱性を高めることができ、装置の信頼性を向上させることができる。   Further, in the light emitting device of the example shown in FIG. 8, the light transmitting member 40 does not necessarily have to be formed in advance, and may be directly formed thereon after the sealing member 70 is provided. For example, the sealing member 70 may be formed of glass, and the light transmitting member 40 having the convex portions 45 thereon may be formed of resin. If it is such a form, while light emission by which the color unevenness was reduced by the convex part 45 of a light transmission member will be realized, light source part 30 will be sealed by glass with heat conductivity higher than a resin material, and light emission will be carried out. The heat dissipation of the element 10 and the wavelength conversion member 20 can be improved, and the reliability of the apparatus can be improved.

<変形例>
本発明の発光装置において、図9に示すように、光透過部材の光出射面41に設けられる各凸部44,45は、凸曲面を有さず、例えば複数の平坦面を含む多面体により構成された発光装置550でもよい。凸部44,45を構成する面、特にその凸部の中心軸を光軸とする構成面が平坦面である場合には、中心軸を光軸とする凸曲面を有する形態に比べて内部反射が増加することによって、光透過部材40内部での光の重畳が促進され、光出射面41より放出される光の色ムラを低減することができる。また、このように凸部44,45の中心軸を光軸とする構成面が平坦面である場合、この平坦面から光が拡散されて外部に放出されるため、各凸部からその中心軸に直交する方向に光、特に一次光が拡散されることで、装置外部における一次光と二次光との重畳を促進することができる。また、凸部の中心軸を光軸とする構成面を凹曲面として更に光を拡散させてもよいし、多面体の凸部の角部に丸みを帯びさせて、例えば角部を凸曲面として、角部の集光作用を高めてもよい。さらに、凸部は錘形状、例えば多角錘状や円錘状に形成することもできる。
<Modification>
In the light emitting device of the present invention, as shown in FIG. 9, each of the convex portions 44 and 45 provided on the light emitting surface 41 of the light transmitting member does not have a convex curved surface, and is constituted by, for example, a polyhedron including a plurality of flat surfaces. The light emitting device 550 may be used. When the surface constituting the convex portions 44 and 45, particularly the constituent surface having the central axis of the convex portion as the optical axis, is a flat surface, the internal reflection is compared with a form having a convex curved surface having the central axis as the optical axis. By increasing the light, the superposition of the light inside the light transmitting member 40 is promoted, and the color unevenness of the light emitted from the light emitting surface 41 can be reduced. In addition, when the constituent surface having the central axis of the convex portions 44 and 45 as the optical axis in this way is a flat surface, light is diffused from the flat surface and emitted to the outside. By diffusing light, particularly primary light, in a direction orthogonal to the direction, it is possible to promote superimposition of primary light and secondary light outside the apparatus. Further, the constituent surface with the central axis of the convex portion as the optical axis may be further diffused as a concave curved surface, or the corner of the convex portion of the polyhedron is rounded, for example, the corner portion as a convex curved surface, You may heighten the condensing effect | action of a corner | angular part. Furthermore, the convex portion can be formed in a weight shape, for example, a polygonal pyramid shape or a conical shape.

また、以上に説明した形態のように、光透過部材の光出射面41の各凸部が同じ形状に揃えられていることで、その各中心軸方向に対して略均等な光学的作用を奏させることができるが、他方、光源部30が有する一次光及び二次光の配光に合わせて、光透過部材の各凸部の形状を個別に変化させてもよい。例えば図8に示す例の発光装置500において、z軸を中心軸(B)とする第2の凸部44を凸曲面、例えば球面により構成し、中心軸(C〜C)がそれぞれxy平面内にあって光源部30を中心として90°間隔で略等配されている4つの砲弾型形状の凸部45をその中心軸方向に延伸させ、例えば円筒面の中心軸方向の長さを凸曲面のそれより大きくして各々構成する。このような形態の光出射面41であれば、光源部30からz軸上に強く出射される一次光に対して、光源部30直上の凸曲面により効率良く取り出しながら、延伸された円筒面から二次光を取り出しやすくして、装置の光軸方向の一次光及び二次光の重畳を促進することができる。 Further, as in the embodiment described above, the convex portions of the light emitting surface 41 of the light transmitting member are arranged in the same shape, so that substantially uniform optical action is achieved in the direction of each central axis. On the other hand, the shape of each convex portion of the light transmitting member may be individually changed according to the light distribution of the primary light and the secondary light that the light source unit 30 has. For example, in the light emitting device 500 shown in FIG. 8, the second convex portion 44 having the z axis as the central axis (B) is formed by a convex curved surface, for example, a spherical surface, and the central axes (C 1 to C 4 ) are xy. Four bullet-shaped convex portions 45 that are in a plane and are substantially equally spaced at 90 ° intervals with the light source portion 30 as the center are extended in the direction of the central axis, for example, the length of the cylindrical surface in the direction of the central axis Each is configured larger than that of the convex curved surface. With the light emission surface 41 having such a configuration, the primary light strongly emitted from the light source unit 30 on the z-axis is efficiently extracted by the convex curved surface directly above the light source unit 30 while being drawn from the extended cylindrical surface. The secondary light can be easily extracted, and the superimposition of the primary light and the secondary light in the optical axis direction of the apparatus can be promoted.

本発明において、凸部の中心軸は、凸部形状の回転対称軸である場合の他に、その対称軸、凸部の光出射面としての光軸を有さない形態の場合には、例えば、凸部の主要な光出射面、例えば凸部の端部において、その中心を通って、光源部を通る軸、又は凸部の突出方向に平行な軸が中心軸となる。また、各実施の形態では、中心軸が光源部を通る形態についてのみ説明したが、光源部に離間した軸であっても、光拡散領域を通る軸であれば、その効果を得られる。本発明の発光装置では、光透過部材中に、光源部から一定の距離で周囲を囲む光拡散領域を有して、それを介して、各凸部に至る集光領域を備える。   In the present invention, in addition to the case where the central axis of the convex part is a rotationally symmetric axis of the convex part shape, in the case of the form not having the symmetrical axis and the optical axis as the light exit surface of the convex part, The main light exit surface of the convex part, for example, the end part of the convex part, the axis passing through the center and passing through the light source part, or the axis parallel to the protruding direction of the convex part becomes the central axis. In each embodiment, only the mode in which the central axis passes through the light source unit has been described. However, even if the axis is spaced from the light source unit, the effect can be obtained as long as the axis passes through the light diffusion region. In the light emitting device of the present invention, the light transmitting member includes a light diffusion region surrounding the periphery at a certain distance from the light source unit, and a light condensing region reaching each convex portion through the light diffusion region.

さらに本発明の発光装置は、このほか、実装基体を一対のリードフレームとし、一方のリードの載置部上に光源部を設けて、これを光出射面に凸部が設けられた光透過部材により封止する形態でもよく、このような装置であれば、装置下方側の光出射面にも凸部を設けることができ、光源部及びリードフレームの下方を除いて球状に色ムラの少ない光を発光することが可能である。   Furthermore, the light emitting device of the present invention has a light transmitting member in which the mounting base is a pair of lead frames, a light source part is provided on the mounting part of one lead, and a convex part is provided on the light emitting surface. In such a device, a convex portion can also be provided on the light emitting surface on the lower side of the device, and light with a small color unevenness is obtained except for the lower portion of the light source portion and the lead frame. It is possible to emit light.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
本実施例1では、図1に示すような構造の発光装置を以下の方法で作製する。上面の大きさが約14.0mm×10.0mm、厚さ約1.0mmのAlNのセラミックス基板50上に、Ti/Pt/Auからなる正電極及び負電極用の配線55を形成する。さらに、発光素子の実装部、外部接続端子部以外の領域にはTi/Alからなる金属反射層と、その上にSiO/Nbからなる誘電体多層膜58と、を順次形成して反射層(59)とする。次に、その配線55上に、約1mm×1mmの大きさの窒化ガリウム系青色LEDチップ10(発光波長450nm)を1個搭載してフリップチップ実装する。このときLEDチップ10と配線55との接合は、ペースト状のAu−Sn(60)を用いた共晶接合によって行い、窒素雰囲気のリフロー装置によって最高到達温度320℃にて接合させる。次に、LEDチップ10の側面(4面)及び上面に熱硬化性のシリコーン樹脂を適量塗布して、黄色発光するYAGの蛍光体とアルミナ(Al23)とを焼結させた蛍光体板20をLEDチップ10の側面(4面)及び上面に貼付して、150℃で600秒加熱してシリコーン樹脂を硬化させる。このようにして、蛍光体板20に覆われたLEDチップ10からなる白色発光可能な光源部30が得られる。そして、光源部30が設けられたセラミックス基板50を下側金型に載置して、液状のシリコーン樹脂をセラミックス基板50及び下側金型上に滴下する。その後、上側金型を閉じ、金型内でシリコーン樹脂を150℃で180秒1次硬化させ、金型から取り出して更に150℃で4時間2次硬化させる。この結果、上側金型の内面に形成されたレンズ型に対応した光出射面41を有する光透過部材40により光源部30が封止される。この光透過部材40の各凸部45が有する凸曲面は、長径約6mm、短径約5mmの回転楕円体の長軸を中心軸とする該回転楕円体の表面の一部よりなっており、中心軸がそれぞれxy平面内にあり且つ光源部30の周囲に90°間隔で等配されている4つの凸部45と、中心軸がz軸に略一致し光源部30の直上に配置された1つの凸部45とが、光源部30を中心とする直径約8mmの球面に内接するように設けられ、これらが互いに連結された光出射面41となっている。以上のようにして実施例1の発光装置が得られる。
<Example 1>
In Example 1, a light emitting device having a structure as shown in FIG. 1 is manufactured by the following method. A positive electrode and negative electrode wiring 55 made of Ti / Pt / Au is formed on an AlN ceramic substrate 50 having an upper surface size of about 14.0 mm × 10.0 mm and a thickness of about 1.0 mm. Further, a metal reflective layer made of Ti / Al and a dielectric multilayer film 58 made of SiO 2 / Nb 2 O 5 are sequentially formed on regions other than the light emitting element mounting portion and the external connection terminal portion. The reflective layer (59). Next, one gallium nitride blue LED chip 10 (with a light emission wavelength of 450 nm) having a size of about 1 mm × 1 mm is mounted on the wiring 55 and flip-chip mounted. At this time, the LED chip 10 and the wiring 55 are bonded by eutectic bonding using paste-like Au—Sn (60) and bonded at a maximum temperature of 320 ° C. by a reflow apparatus in a nitrogen atmosphere. Next, an appropriate amount of a thermosetting silicone resin is applied to the side surfaces (four surfaces) and the upper surface of the LED chip 10 to sinter YAG phosphor that emits yellow light and alumina (Al 2 O 3 ). The plate 20 is attached to the side surfaces (four surfaces) and the upper surface of the LED chip 10 and heated at 150 ° C. for 600 seconds to cure the silicone resin. In this manner, the light source unit 30 that can emit white light is obtained, which is composed of the LED chip 10 covered with the phosphor plate 20. Then, the ceramic substrate 50 provided with the light source unit 30 is placed on the lower mold, and a liquid silicone resin is dropped onto the ceramic substrate 50 and the lower mold. Thereafter, the upper mold is closed, and the silicone resin is primarily cured at 150 ° C. for 180 seconds in the mold, taken out from the mold, and further secondarily cured at 150 ° C. for 4 hours. As a result, the light source unit 30 is sealed by the light transmitting member 40 having the light emitting surface 41 corresponding to the lens mold formed on the inner surface of the upper mold. The convex curved surface of each convex portion 45 of the light transmitting member 40 is composed of a part of the surface of the spheroid whose major axis is the major axis of the spheroid having a major axis of about 6 mm and a minor axis of about 5 mm, Four convex portions 45 each having a central axis in the xy plane and equally distributed around the light source unit 30 at intervals of 90 °, and the central axis substantially coincide with the z axis and are disposed immediately above the light source unit 30. One convex portion 45 is provided so as to be inscribed in a spherical surface having a diameter of about 8 mm with the light source portion 30 as the center, and serves as a light emitting surface 41 connected to each other. The light emitting device of Example 1 is obtained as described above.

<比較例1>
比較例1の発光装置は、上記実施例1において、直径約8mmの半球状のレンズ型が設けられた上側金型を用いて光透過部材を成形する以外は、実施例1の作製方法と同様に作製する。
<Comparative Example 1>
The light emitting device of Comparative Example 1 is the same as the manufacturing method of Example 1 except that the light transmitting member is molded using the upper mold provided with a hemispherical lens mold having a diameter of about 8 mm in Example 1. To make.

比較例1の発光装置では、装置の光軸(z軸)の略全周に亘ってその高角度域に黄色味を帯びた白色光が観測されるが、実施例1の発光装置ではこのような色ムラが低減される。   In the light emitting device of the comparative example 1, white light with a yellowish color is observed in the high angle region over substantially the entire circumference of the optical axis (z axis) of the device. Color unevenness is reduced.

本発明の発光装置は、照明用光源、LEDディスプレイ、液晶表示装置などのバックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light emitting device of the present invention can be suitably used for backlight light sources such as illumination light sources, LED displays, liquid crystal display devices, traffic lights, illumination switches, various sensors, various indicators, and the like.

10…発光素子
20…波長変換部材
30…光源部
40…光透過部材(41…光出射面、44…第2の凸部、45…凸部(第1の凸部)、46,47…凸部群、B,C〜C,D〜D,E〜E,F〜F,G〜G…凸部の中心軸)
50…実装基体(55,56…配線、58…絶縁膜、59…反射層)
60…導電性接着材
70…封止部材
100,200,300,400,500…発光装置(150,550…発光装置)
DESCRIPTION OF SYMBOLS 10 ... Light emitting element 20 ... Wavelength conversion member 30 ... Light source part 40 ... Light transmission member (41 ... Light-projection surface, 44 ... 2nd convex part, 45 ... Convex part (1st convex part), 46, 47 ... Convex part group, B, C 1 ~C 4, D 1 ~D 4, E 1 ~E 3, F 1 ~F 4, G 1 ~G 4 ... protrusion center axis of)
50 ... Mounting substrate (55, 56 ... Wiring, 58 ... Insulating film, 59 ... Reflective layer)
60 ... conductive adhesive 70 ... sealing member 100, 200, 300, 400, 500 ... light emitting device (150, 550 ... light emitting device)

Claims (6)

実装面に実装されて一次光を発光する板状体の発光素子と、該発光素子を被覆して前記一次光の波長と異なる波長の二次光を発光する波長変換部材と、を有する光源部と、
前記光源部を被覆して、前記一次光及び二次光を外部に出射する光出射面を有する光透過部材と、を備え、
前記光出射面に、複数の凸部が設けられており、
前記光透過部材は、前記光源部から前記凸部に至るまで一定の距離で周囲を囲む領域と、該領域より外側に突出した複数の前記凸部と、前記凸部を互いに連結する凹部とが設けられており、
前記発光素子又は前記光源部の発光表面は上面視が略正方形であり
前記凸部は、前記発光素子又は前記光源部の4つの側面に対向する表面領域に設けられ、かつ該各々の凸部の中心軸は前記発光素子又は前記光源部を通るとともに前記発光素子又は前記光源部の光軸に対して傾斜しており、
さらに、前記凸部は、前記中心軸を回転中心軸とする凸曲面を有している発光装置。
A light source unit having a plate-like light emitting element that is mounted on a mounting surface and emits primary light, and a wavelength conversion member that covers the light emitting element and emits secondary light having a wavelength different from the wavelength of the primary light. When,
A light transmissive member that covers the light source part and has a light emitting surface that emits the primary light and the secondary light to the outside, and
A plurality of convex portions are provided on the light exit surface,
The light transmission member has a region surrounding at a certain distance from the light source unit up to the convex portion, and a plurality of the convex portion protruding outward from the region, and a recess for connecting to each other said protrusion Provided,
The light emitting surface of the light emitting element or the light source unit is substantially square in top view ,
The convex portion is provided in the surface region facing the four sides of the light emitting element or the light source unit and the light emitting element with the central axis of the convex portion of the each said light emitting element also passes through the light source unit Or inclined with respect to the optical axis of the light source unit ,
Furthermore, the convex portion has a convex curved surface having the central axis as a rotation central axis.
前記光源部が、実装基板上に載置され、
前記領域が、前記実装基板を囲んで、該実装基板より外側にまで延出して設けられる請求項1に記載の発光装置。
The light source unit is mounted on a mounting substrate;
The light emitting device according to claim 1, wherein the region is provided so as to surround the mounting substrate and extend outward from the mounting substrate.
前記光源部が、実装基板上に載置され、
前記領域が、前記実装基板上に配置される請求項1に記載の発光装置。
The light source unit is mounted on a mounting substrate;
The light emitting device according to claim 1, wherein the region is disposed on the mounting substrate.
前記光源部が実装基板上に配置されると共に、
前記実装基板の上面を基準として、
前記光透過部材が、前記実装基板より外側に延出されて、前記光出射面が実装基板より外側に設けられ、
前記凸部は、該中心軸が前記光源部の上方に向かって前記光軸に対して傾斜している請求項1乃至のいずれか1項に記載の発光装置。
The light source unit is disposed on a mounting substrate,
Based on the upper surface of the mounting substrate,
The light transmitting member extends outside the mounting substrate, and the light exit surface is provided outside the mounting substrate;
The convex portion, the light emitting device according to any one of claims 1 to 3 the central axis is tilted with respect to the optical axis toward above the light source unit.
前記凸部は、光軸に対する傾斜角が45°以上90°以下である請求項1乃至のいずれか1項に記載の発光装置。 The convex portion, the light emitting device according to any one of claims 1 to 4 inclination angle with respect to the optical axis is 45 ° to 90 °. 前記光軸が、前記実装面に略垂直であり、前記光透過部材は、該光軸を中心軸として、該中心軸方向に突出する第2の凸部を有する請求項1乃至のいずれか1項に記載の発光装置。 Wherein the optical axis is substantially perpendicular to the mounting surface, the light transmitting member, as a center axis the optical axis, any one of claims 1 to 5 having a second protrusion protruding in the central axis direction 2. The light emitting device according to item 1.
JP2009296047A 2009-12-25 2009-12-25 Light emitting device Active JP5701502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296047A JP5701502B2 (en) 2009-12-25 2009-12-25 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296047A JP5701502B2 (en) 2009-12-25 2009-12-25 Light emitting device

Publications (2)

Publication Number Publication Date
JP2011138815A JP2011138815A (en) 2011-07-14
JP5701502B2 true JP5701502B2 (en) 2015-04-15

Family

ID=44349987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296047A Active JP5701502B2 (en) 2009-12-25 2009-12-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP5701502B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126900A1 (en) * 2010-08-09 2013-05-23 Panasonic Corporation Semiconductor light-emitting device
JP5580707B2 (en) * 2010-09-29 2014-08-27 日立マクセル株式会社 Lighting device
JP5848252B2 (en) * 2010-09-29 2016-01-27 日立マクセル株式会社 Light source device, light source lens, and illumination device
JP2015228277A (en) * 2012-09-04 2015-12-17 コニカミノルタ株式会社 Optical element and led illumination device
JP6318495B2 (en) 2013-08-07 2018-05-09 日亜化学工業株式会社 Light emitting device
JP6201617B2 (en) 2013-10-17 2017-09-27 日亜化学工業株式会社 Light emitting device
CN105940262B (en) * 2014-01-23 2020-01-07 亮锐控股有限公司 Light emitting device with self-aligned preformed lens
USD747817S1 (en) 2014-03-27 2016-01-19 Nichia Corporation Light emitting diode
JP6252302B2 (en) 2014-03-28 2017-12-27 日亜化学工業株式会社 Method for manufacturing light emitting device
US9508907B2 (en) * 2014-09-15 2016-11-29 Koninklijke Philips N.V. Light emitting device on a mount with a reflective layer
US10032969B2 (en) 2014-12-26 2018-07-24 Nichia Corporation Light emitting device
JP6693044B2 (en) * 2015-03-13 2020-05-13 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2018152402A (en) * 2017-03-10 2018-09-27 シチズン電子株式会社 Light-emitting device
JP6971705B2 (en) * 2017-03-17 2021-11-24 スタンレー電気株式会社 Manufacturing method of resin molded body and light emitting device and light emitting device
JP6659612B2 (en) 2017-03-31 2020-03-04 Hoya Candeo Optronics株式会社 Light emitting device, light irradiation module, and light irradiation device
JP6926613B2 (en) * 2017-04-14 2021-08-25 市光工業株式会社 Semiconductor structures and vehicle lamps
JP6432656B2 (en) * 2017-08-22 2018-12-05 日亜化学工業株式会社 Light emitting device
JP7295437B2 (en) * 2019-11-29 2023-06-21 日亜化学工業株式会社 light emitting device
JP7007606B2 (en) * 2020-04-15 2022-01-24 日亜化学工業株式会社 Light emitting device and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148722A (en) * 1994-11-18 1996-06-07 Fujitsu General Ltd Led device
JP4182783B2 (en) * 2003-03-14 2008-11-19 豊田合成株式会社 LED package
JP4086020B2 (en) * 2004-07-29 2008-05-14 松下電器産業株式会社 LED lighting source
JP2007157911A (en) * 2005-12-02 2007-06-21 Yukio Takahashi Light-emitting diode lump, and light-emitting diode lamp device
JP2009185120A (en) * 2008-02-04 2009-08-20 Sony Corp Curable resin material-fine particle composite material and method for producing the same, optical material, and light-emitting device
CN102210030B (en) * 2008-11-10 2014-04-23 夏普株式会社 Light-emitting device, surface light source, and display device

Also Published As

Publication number Publication date
JP2011138815A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5701502B2 (en) Light emitting device
JP5326705B2 (en) Light emitting device
JP5326837B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP5799988B2 (en) Light emitting device
JP5463901B2 (en) Light emitting device
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP6020657B2 (en) Light emitting device
JP5967269B2 (en) Light emitting device
JP5610036B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP6222325B2 (en) Light emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP7469719B2 (en) Light-emitting device
JP5761391B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP6825636B2 (en) Light emitting device
JP2016189488A (en) Light emitting device
JP6680302B2 (en) Light emitting device
JP6274240B2 (en) Light emitting device
JP7299537B2 (en) light emitting device
JP7071680B2 (en) Light emitting device
JP7011196B2 (en) Luminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140307

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150218

R150 Certificate of patent or registration of utility model

Ref document number: 5701502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250