JP4086020B2 - LED lighting source - Google Patents

LED lighting source Download PDF

Info

Publication number
JP4086020B2
JP4086020B2 JP2004221312A JP2004221312A JP4086020B2 JP 4086020 B2 JP4086020 B2 JP 4086020B2 JP 2004221312 A JP2004221312 A JP 2004221312A JP 2004221312 A JP2004221312 A JP 2004221312A JP 4086020 B2 JP4086020 B2 JP 4086020B2
Authority
JP
Japan
Prior art keywords
led element
led
light source
illumination light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004221312A
Other languages
Japanese (ja)
Other versions
JP2006041323A (en
Inventor
正 矢野
高橋  清
正則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004221312A priority Critical patent/JP4086020B2/en
Publication of JP2006041323A publication Critical patent/JP2006041323A/en
Application granted granted Critical
Publication of JP4086020B2 publication Critical patent/JP4086020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Description

本発明は一般照明用のLED照明光源に関する。   The present invention relates to an LED illumination light source for general illumination.

発光ダイオード素子(以下、「LED素子」と称する。)は、小型で効率が良く鮮やかな色の発光を示す半導体素子であり、優れた単色性ピークを有している。LED素子を用いて白色発光をさせる場合、例えば赤色LED素子と緑色LED素子と青色LED素子とを近接して配置させて拡散混色を行わせる必要があるが、各LED素子が優れた単色性ピークを有するがゆえに、色ムラが生じやすい。すなわち、各LED素子からの発光が不均一で混色がうまくいかないと、色ムラが生じた白色発光となってしまう。このような色ムラの問題を解消するために、青色LED素子と黄色蛍光体とを組み合わせて白色発光を得る技術が開発されている(例えば、特許文献1、特許文献2)。   A light-emitting diode element (hereinafter referred to as an “LED element”) is a semiconductor element that is small, efficient, and emits brightly colored light, and has an excellent monochromatic peak. When emitting white light using an LED element, for example, it is necessary to arrange a red LED element, a green LED element, and a blue LED element in close proximity to perform diffusion color mixing, but each LED element has an excellent monochromatic peak. Therefore, color unevenness is likely to occur. That is, if the light emission from each LED element is not uniform and color mixing is not successful, white light emission with uneven color will occur. In order to solve the problem of such color unevenness, a technique for obtaining white light emission by combining a blue LED element and a yellow phosphor has been developed (for example, Patent Document 1 and Patent Document 2).

この特許文献1に開示されている技術によれば、青色LED素子からの発光と、その発光で励起され黄色を発光する黄色蛍光体からの発光とによって白色発光を得ている。この技術では、1種類のLED素子だけを用いて白色発光を得るので、複数種類のLED素子を近接させて白色発光を得る場合に生じる色ムラの問題を解消することができる。   According to the technique disclosed in Patent Document 1, white light emission is obtained by light emission from a blue LED element and light emission from a yellow phosphor that is excited by the light emission and emits yellow light. In this technique, since white light emission is obtained using only one type of LED element, the problem of color unevenness that occurs when white light emission is obtained by bringing a plurality of types of LED elements close to each other can be solved.

また、1個のLED素子では、光束が小さいため、今日一般照明用光源として広く普及している白熱電球や蛍光ランプと同程度の光束を得るためには、複数のLED素子を配置してLED照明光源を構成することが望ましい。そのようなLED照明光源は、例えば特許文献3、特許文献4に開示されている。
特開平10−242513号公報 特許第2998696号明細書
In addition, since one LED element has a small luminous flux, in order to obtain a luminous flux equivalent to that of incandescent bulbs and fluorescent lamps that are widely used today as a light source for general illumination, a plurality of LED elements are arranged and LEDs are arranged. It is desirable to construct an illumination light source. Such LED illumination light sources are disclosed in, for example, Patent Document 3 and Patent Document 4.
Japanese Patent Laid-Open No. 10-242513 Japanese Patent No. 2998696

特願2003−31634明細書(出願人;松下電器産業株式会社)には、特許文献2に開示された砲弾型LED照明光源が有する色ムラの問題を解決することができるLED照明光源が開示されている。まず、この色ムラの問題を解消できるLED照明光源について説明する。   Japanese Patent Application No. 2003-31634 (Applicant; Matsushita Electric Industrial Co., Ltd.) discloses an LED illumination light source that can solve the problem of color unevenness of the bullet-type LED illumination light source disclosed in Patent Document 2. ing. First, an LED illumination light source that can solve this color unevenness problem will be described.

特許文献2に開示された砲弾型LED照明光源は、図1に示すような構成を有している。すなわち、図1に示した砲弾型LED照明光源200は、LED素子121と、LED素子121をカバーする砲弾型の透明容器127と、LED素子121に電流を供給するためのリードフレーム122a、122bとから構成されており、そして、LED素子121が搭載されるフレーム122bのマウント部には、LED素子121の発光を矢印Dの方向に反射するカップ型反射板121が設けられている。LED素子121は、蛍光物質126が分散してなる第1の樹脂部124によって封止されており、第1の樹脂部124は、第2の樹脂部125によって覆われている。LED素子121から青色が発光される場合に、その光によって蛍光物質126が黄色を発光すると、両方の色が混じりあって白色が得られる。しかしながら、第1の樹脂部124はLED素子121を封止するようにカップ型反射板123内に充填させた後に硬化させて形成する関係上、図2に拡大して示すように、第1の樹脂部124の上面に凹凸が生じやすく、その結果、蛍光物質126を含有する樹脂の厚さにムラが生じて、LED素子121からの光が第1の樹脂部124を通過する経路(例えば、光路E、F)上に存在する蛍光物質126の量がばらつき色ムラを招くことになる。   The bullet-type LED illumination light source disclosed in Patent Document 2 has a configuration as shown in FIG. That is, the bullet-type LED illumination light source 200 shown in FIG. 1 includes an LED element 121, a bullet-shaped transparent container 127 that covers the LED element 121, and lead frames 122 a and 122 b for supplying current to the LED element 121. A cup-shaped reflector 121 that reflects light emitted from the LED element 121 in the direction of arrow D is provided on the mount portion of the frame 122b on which the LED element 121 is mounted. The LED element 121 is sealed with a first resin portion 124 in which a fluorescent material 126 is dispersed. The first resin portion 124 is covered with a second resin portion 125. When blue light is emitted from the LED element 121 and the fluorescent material 126 emits yellow light by the light, both colors are mixed to obtain white. However, because the first resin portion 124 is formed by filling the cup-shaped reflecting plate 123 so as to seal the LED element 121 and then curing it, the first resin portion 124 is enlarged as shown in FIG. Concavities and convexities are likely to occur on the upper surface of the resin part 124, resulting in unevenness in the thickness of the resin containing the fluorescent material 126, and the path through which the light from the LED element 121 passes through the first resin part 124 (for example, The amount of the fluorescent material 126 present on the optical paths E and F) varies, resulting in uneven color.

そのような問題を解消するために、特願2003−31634号明細書に開示したLED照明光源では、蛍光物質が分散された樹脂部の側面から、光反射部材(反射板)の反射面を離間させるように構成されている。図3(a)および(b)は、特願2003−31634号明細書に開示されたLED照明光源の一例を示す側面断面図および上面図である。図3(a)および(b)に示したLED照明光源300では、基板111に実装されたLED素子112が、蛍光物質が分散された樹脂部113によって覆われている。基板111には、反射面151aを有する反射板151が貼り付けされており、そして、樹脂部113の側面と、反射板151の反射面151aとは離間して形成されている。樹脂部113の側面が反射板151の反射面151aと離間して形成されていることによって、反射板151の反射面151aの形状によって拘束されずに樹脂部113の形状を自由に設計することができ、その結果、色ムラを軽減する効果を発揮することができる。   In order to solve such a problem, in the LED illumination light source disclosed in the specification of Japanese Patent Application No. 2003-31634, the reflecting surface of the light reflecting member (reflecting plate) is separated from the side surface of the resin portion in which the fluorescent material is dispersed. It is configured to let you. 3A and 3B are a side sectional view and a top view showing an example of an LED illumination light source disclosed in Japanese Patent Application No. 2003-31634. In the LED illumination light source 300 shown in FIGS. 3A and 3B, the LED element 112 mounted on the substrate 111 is covered with a resin portion 113 in which a fluorescent material is dispersed. A reflective plate 151 having a reflective surface 151 a is attached to the substrate 111, and the side surface of the resin portion 113 and the reflective surface 151 a of the reflective plate 151 are formed apart from each other. Since the side surface of the resin portion 113 is formed away from the reflection surface 151a of the reflection plate 151, the shape of the resin portion 113 can be freely designed without being restricted by the shape of the reflection surface 151a of the reflection plate 151. As a result, the effect of reducing color unevenness can be exhibited.

図3に示した構成を複数個マトリクス状に配置すると、図4に示すようになる。図4に示したLED照明光源300では、LED素子112を覆う樹脂部113が基板111上に行列状に配列され、そして、各樹脂部113に対応する反射面151aを持った反射板151が基板111に貼り付けられる。このような構成にすると、複数個のLED素子の光束を利用できるので、今日広く普及している一般照明用光源(例えば、白熱電球や蛍光ランプ)と同程度の光束を得ることが容易となる。   When a plurality of the configurations shown in FIG. 3 are arranged in a matrix, the configuration is as shown in FIG. In the LED illumination light source 300 shown in FIG. 4, the resin portions 113 covering the LED elements 112 are arranged in a matrix on the substrate 111, and the reflection plate 151 having the reflection surface 151a corresponding to each resin portion 113 is the substrate. 111 is attached. With such a configuration, since the light flux of a plurality of LED elements can be used, it becomes easy to obtain a light flux equivalent to that of a general illumination light source (for example, an incandescent bulb or a fluorescent lamp) that is widely used today. .

上記の手段を講じれば、理論上、色ムラは消滅し、色ムラのないLED照明光源を実現することができる。   If the above measures are taken, theoretically, the color unevenness disappears, and an LED illumination light source without color unevenness can be realized.

しかしながら、本発明者の更なる試作等の結果、実際には工程上の精度により色ムラが発生しやすい場合があることが明らかになった。この場合の例を図5に示す。LED素子501に対する樹脂部502の配置の精度は、樹脂部502を配置する装置の繰り返し精度に依存する。そのため、LED素子501の中心と樹脂部502の中心が一致しない場合がある。たとえば、図5(a)に示すように、LED素子501の右側面の樹脂部502の厚さ502aに対してLED素子501の左側面の樹脂部502の厚さ502bは薄くなる。その結果、LED素子501の上面部から発光された照射光510、LED素子501の右側面から発光され反射板503によって反射された照射光530、LED素子501の左側面から発光され反射板503によって反射された照射光520のそれぞれの光色は異なることから色ムラが生じる。樹脂部502aは樹脂部502bよりも蛍光体が含まれる樹脂部502の厚さが厚くなることから照射光510に比べて、照射光520は黄色みを帯び、逆に、照射光530は青色みを帯びた色になる。   However, as a result of further trial production by the present inventors, it has become clear that color unevenness may easily occur due to the accuracy in the process. An example of this case is shown in FIG. The accuracy of the arrangement of the resin part 502 with respect to the LED element 501 depends on the repeatability of the device in which the resin part 502 is arranged. For this reason, the center of the LED element 501 and the center of the resin portion 502 may not coincide with each other. For example, as shown in FIG. 5A, the thickness 502b of the resin portion 502 on the left side of the LED element 501 is thinner than the thickness 502a of the resin portion 502 on the right side of the LED element 501. As a result, the irradiation light 510 emitted from the upper surface portion of the LED element 501, the irradiation light 530 emitted from the right side surface of the LED element 501 and reflected by the reflection plate 503, and emitted from the left side surface of the LED element 501 and reflected by the reflection plate 503. Since the light colors of the reflected irradiation lights 520 are different, color unevenness occurs. In the resin portion 502a, the thickness of the resin portion 502 containing the phosphor is larger than that of the resin portion 502b. Therefore, the irradiation light 520 is yellowish compared to the irradiation light 510, and conversely, the irradiation light 530 is blue. It becomes a tinged color.

図5(b)に、図5(a)の図面の位置に対応させて描いた照射面に対する色ムラの状態の概念図を示す。横軸はLED照明光源のある照射面上で選んだ一つの軸の位置、縦軸はその軸上の色温度を示す。図5(b)のように、照射面における照射光520と照射光530との色差ΔE1は、6000Kとなる。   FIG. 5B shows a conceptual diagram of the state of color unevenness on the irradiated surface drawn corresponding to the position of the drawing of FIG. The horizontal axis represents the position of one axis selected on the irradiation surface with the LED illumination light source, and the vertical axis represents the color temperature on that axis. As shown in FIG. 5B, the color difference ΔE1 between the irradiation light 520 and the irradiation light 530 on the irradiation surface is 6000K.

ここで、今回の実施条件等は次の通りである。LED素子501は、正方形を用い、寸法は上面の面積が0.3mm、厚さ0.1mmのものを用いた。反射板503は下穴1.0mm、上穴2.5mm、厚さ10mmで穴形はパラボラ形状のものを用いた。樹脂部502の直径は0.75mm、厚さは0.25mmの円柱形状のものを用いた。なお、色温度測定では、反射板503の形状精度、配置精度の影響を排除するため、反射板503を取り除いた状態で樹脂部502の上面、側面からの光を測定して照射光520、530の色温度とした。具体的には、反射板503を取り除いた図5(a)のサンプルをx,y回転台に照射面を横にして設置し、照射面より100mm離れたところに分光測定装置を配置する。xy回転台を回転させることで樹脂部502の上面、側面から照射された色温度を測定できる。測定は5度毎とした。 Here, the implementation conditions and the like of this time are as follows. The LED element 501 has a square shape, and has dimensions of an upper surface area of 0.3 mm 2 and a thickness of 0.1 mm. The reflector 503 was prepared with a pilot hole of 1.0 mm, an upper hole of 2.5 mm, a thickness of 10 mm, and a parabolic shape. The resin portion 502 has a cylindrical shape with a diameter of 0.75 mm and a thickness of 0.25 mm. In the color temperature measurement, in order to eliminate the influence of the shape accuracy and arrangement accuracy of the reflecting plate 503, the light from the upper and side surfaces of the resin portion 502 is measured with the reflecting plate 503 removed, and the irradiated light 520, 530. Color temperature. Specifically, the sample of FIG. 5A from which the reflecting plate 503 is removed is placed on an x, y turntable with the irradiation surface sideways, and a spectroscopic measurement device is placed at a distance of 100 mm from the irradiation surface. By rotating the xy turntable, the color temperature irradiated from the upper surface and side surface of the resin portion 502 can be measured. Measurements were made every 5 degrees.

これらの色ムラは、LED素子501に樹脂部502を配置する装置の精度に起因するため、工程ばらつき等を考慮すると、色ムラを完全に無くすことは非常に困難である。そのため、出てきた色ムラを目立たなくする手段が必要不可欠である。   Since these color irregularities are caused by the accuracy of the device in which the resin portion 502 is arranged on the LED element 501, it is very difficult to completely eliminate the color irregularities in consideration of process variations and the like. Therefore, a means for making the color unevenness that has come out inconspicuous is indispensable.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、色ムラを目立たなくするために光学系を駆使したLED照明光源をを提供することにある。   The present invention has been made in view of such a point, and a main object thereof is to provide an LED illumination light source using an optical system in order to make color unevenness inconspicuous.

上記課題を解決するために、本願のLED照明光源は、LED素子と、LED素子が実装される基板と、前記LED素子の表面に塗布された蛍光体を含む樹脂部と、前記LED素子が配置される開口部を有し、前記基板に取り付けられた反射板と、を備えるLED照明光源であって、前記基板には、前記LED素子が実装される上面部の面積よりも前記基板に接触する下面部の面積の方が大きい、鏡面仕上げされた凸構造体が取り付けられており、前記反射板の開口部は、前記基板の接触部の開口部の面積よりも前記LED素子からの光が放出される開口部の面積の方が小さい。   In order to solve the above problems, the LED illumination light source of the present application includes an LED element, a substrate on which the LED element is mounted, a resin portion including a phosphor applied to the surface of the LED element, and the LED element. An LED illumination light source comprising: a reflective plate attached to the substrate, wherein the substrate contacts the substrate more than an area of an upper surface portion on which the LED element is mounted. A mirror-finished convex structure having a larger lower surface area is attached, and light from the LED element is emitted from the opening of the reflecting plate to the opening of the contact portion of the substrate. The area of the opening formed is smaller.

好適な実施形態として、前記反射板の開口部は円錐台の形状を有し、前記凸構造体は円錐台の形状を有する。   As a preferred embodiment, the opening of the reflector has a truncated cone shape, and the convex structure has a truncated cone shape.

好適な実施形態として、前記樹脂部を通過した前記LED素子からの光が、反射鏡によって反射され、当該反射された光が凸構造体によって更に反射されて、前記反射鏡の外部に出射される。   As a preferred embodiment, the light from the LED element that has passed through the resin portion is reflected by a reflecting mirror, and the reflected light is further reflected by a convex structure and emitted to the outside of the reflecting mirror. .

好適な実施形態として、前記反射板の開口部に設けられ、前記LED素子からの光を集光するレンズを更に有する。   As a preferred embodiment, it further includes a lens that is provided in the opening of the reflecting plate and collects light from the LED element.

以上のように、本発明のLED照明光源は、基板に前記LED素子が実装される上面部の面積よりも基板に接触する下面部の面積の方が大きい鏡面仕上げされた凸構造体が取り付けられており、反射板の開口部が基板の接触部の開口部の面積よりもLED素子からの光が放出される開口部の面積の方が小さい構成を有する。この構成により、LED素子の中心とLED素子に塗布された蛍光体を含む樹脂部の中心とがずれた場合においても色ムラを軽減することができる。   As described above, the LED illumination light source according to the present invention is provided with a mirror-finished convex structure in which the area of the lower surface portion in contact with the substrate is larger than the area of the upper surface portion on which the LED element is mounted on the substrate. In addition, the opening of the reflecting plate has a configuration in which the area of the opening from which the light from the LED element is emitted is smaller than the area of the opening of the contact portion of the substrate. With this configuration, color unevenness can be reduced even when the center of the LED element and the center of the resin portion including the phosphor applied to the LED element are deviated.

以下、本発明の実施形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図6は、本発明の第1の実施の形態におけるLED照明光源600を示すものである。
(Embodiment 1)
FIG. 6 shows an LED illumination light source 600 according to the first embodiment of the present invention.

図6において、LED照明光源600では、LED素子614と、LED素子614が実装される基板613と、LED素子614の表面に塗布された蛍光体を含む樹脂部615と、LED素子614が配置される開口部を有し基板613に取り付けられた反射板617とを備える。   6, in the LED illumination light source 600, an LED element 614, a substrate 613 on which the LED element 614 is mounted, a resin portion 615 including a phosphor applied to the surface of the LED element 614, and the LED element 614 are arranged. And a reflector 617 attached to the substrate 613.

反射板617の開口部は、基板613の接触部の開口部の面積よりもLED素子614からの光が放出される開口部の面積の方が小さい。本実施形態では、開口部が円錐台であり、円錐台の回転軸に垂直な断面積が大きくなる方向に基板が存在し、円錐台の回転軸に垂直な断面積が小さくなる方向にLED素子からの光が放出される。   The opening of the reflecting plate 617 has a smaller area of the opening from which light from the LED element 614 is emitted than the area of the opening of the contact portion of the substrate 613. In this embodiment, the opening is a truncated cone, the substrate exists in a direction in which the cross-sectional area perpendicular to the rotation axis of the truncated cone increases, and the LED element in the direction in which the cross-sectional area perpendicular to the rotation axis of the truncated cone decreases. Light is emitted.

基板613には、LED素子614が実装される凸構造体612が取り付けられている。凸構造体612は、LED素子614が実装されている上面部の面積よりも、基板613に接触する下面部の面積の方が大きい。本実施形態では、凸構造体612は円錐台であり、表面は鏡面仕上げされている。   A convex structure 612 on which the LED element 614 is mounted is attached to the substrate 613. As for the convex structure 612, the area of the lower surface part which contacts the board | substrate 613 is larger than the area of the upper surface part in which the LED element 614 is mounted. In this embodiment, the convex structure 612 is a truncated cone, and the surface is mirror-finished.

樹脂部615の側面は、反射板617の反射面616とは離間して形成されている。樹脂部615の側面が反射板617の反射面616と離間して形成されていることによって、樹脂部615の主に側面から出射された光は反射板617の反射面616に反射される。反射面616で反射した光は、凸構造体612の反射面611に照射される。照射された光は、反射面611で再び反射され、反射鏡617の開口部から照射光618として出社される。   The side surface of the resin portion 615 is formed away from the reflection surface 616 of the reflection plate 617. Since the side surface of the resin portion 615 is formed apart from the reflection surface 616 of the reflection plate 617, light emitted mainly from the side surface of the resin portion 615 is reflected by the reflection surface 616 of the reflection plate 617. The light reflected by the reflecting surface 616 is applied to the reflecting surface 611 of the convex structure 612. The irradiated light is reflected again by the reflecting surface 611 and enters the office as irradiated light 618 from the opening of the reflecting mirror 617.

本実施形態では、基板613の凸構造体612は円錐台であり、寸法は、上面φ0.9mm、下面φ1.7mm、高さ0.2mmを用いた。LED素子614は470nmにピーク波長をもつ青色LEDであり、寸法は0.3mm平方、厚さ0.1mmを用いた。蛍光物質が分散された樹脂部615の形状は円柱形状であり、φ0.8mm、高さ0.3mmを用いた。反射板617は円錐台であり、上部穴がφ1.9mm、下部穴がφ2.3mmであった。   In the present embodiment, the convex structure 612 of the substrate 613 is a truncated cone, and the dimensions are an upper surface φ0.9 mm, a lower surface φ1.7 mm, and a height 0.2 mm. The LED element 614 is a blue LED having a peak wavelength at 470 nm, and has a size of 0.3 mm square and a thickness of 0.1 mm. The shape of the resin portion 615 in which the fluorescent material is dispersed is a cylindrical shape, and φ0.8 mm and a height of 0.3 mm are used. The reflection plate 617 was a truncated cone, and the upper hole was φ1.9 mm and the lower hole was φ2.3 mm.

なお、これらの各部材の大きさは一例であって反射板617よりも樹脂部615側で照射光618が出射することができればどのような大きさであったも特に問題ないことは言うまでもない。すなわち、樹脂部615を通過したLED素子614からの光が反射板617で反射して、この反射光が凸構造体によって更に反射して反射鏡617から光が出射せるような、それぞれの大きさ、位置関係、角度になっていれば良い。   It should be noted that the size of each of these members is only an example, and it is needless to say that there is no particular problem even if the size is any size as long as the irradiation light 618 can be emitted closer to the resin portion 615 than the reflector 617. That is, each size is such that light from the LED element 614 that has passed through the resin portion 615 is reflected by the reflecting plate 617, and the reflected light is further reflected by the convex structure and emitted from the reflecting mirror 617. As long as it is in a positional relationship and an angle.

基板613の材料は、放熱性に優れるコンポジット基板を用いた。基板613の凸構造体612は鏡面反射するように、銀やクロムなどの金属メッキがされている。本実施形態ではクロムメッキをした。反射板617はアルミニウム板を切削加工し、鏡面反射できるようにした。基板613の凸構造体612のように樹脂材に金属メッキして鏡面を作成しても問題はない。また、反射率は光束をなるべく低下させないために70%以上が望ましい。   As a material for the substrate 613, a composite substrate having excellent heat dissipation was used. The convex structure 612 of the substrate 613 is plated with metal such as silver or chrome so as to be specularly reflected. In this embodiment, chrome plating was performed. The reflecting plate 617 was made by cutting an aluminum plate so that it could be mirror-reflected. There is no problem even if a mirror surface is formed by metal plating on a resin material like the convex structure 612 of the substrate 613. The reflectance is preferably 70% or more so as not to reduce the luminous flux as much as possible.

以上のように、構成することで、樹脂部615の側面から出射された光は樹脂部615を中心としてφ1.2mm付近に照射されるように設計されたため、図5のような構成よりも中心に集光される。   As described above, since the light emitted from the side surface of the resin portion 615 is designed to irradiate around φ1.2 mm around the resin portion 615, it is more central than the configuration shown in FIG. It is focused on.

図7(a)に、図6のように構成されたLED照明光源600において、LED素子701の中心と樹脂部113の中心とがずれた場合に、LED照明光源700から照射される光の様子を模式的に示した。図7(b)は、図7(a)の図面の位置に対応させて描いた照射面に対するムラの状態の概念図を示す。色温度測定は図5と同じである。横軸はLED照明光源700のある照射面上の位置を示し、縦軸はその軸上の色温度を示す。   7A, in the LED illumination light source 600 configured as shown in FIG. 6, the state of light emitted from the LED illumination light source 700 when the center of the LED element 701 and the center of the resin portion 113 are shifted. Is shown schematically. FIG.7 (b) shows the conceptual diagram of the state of the nonuniformity with respect to the irradiation surface drawn corresponding to the position of drawing of Fig.7 (a). The color temperature measurement is the same as in FIG. The horizontal axis indicates the position on the irradiation surface with the LED illumination light source 700, and the vertical axis indicates the color temperature on that axis.

図7(a)のLED素子701の上面部から発光された照射光720、LED素子701の右側面から発光され反射板710によって反射された照射光740、LED素子701の左側面から発光され反射板710によって反射された照射光730のそれぞれの光色は図5でも説明したとおり、異なる光色であることから色ムラが生じる。樹脂部702aは樹脂部702bよりも厚みが分厚いことから照射光720に比べて、照射光730は黄色みを帯び、照射光740は青色みを帯びた色になる。本実施形態の場合、図7(b)に示すように照射光740と照射光730との色差ΔE2は、3000K(=6500K−3500K)となる。これを図5(b)の従来のLED照明光源の場合と比較すると、本実施形態では図7(a)のように照射角が狭いこと照射光720,730,740が混色し、図5(b)の色差ΔE1(=6000K)よりも小さくなる。   The irradiation light 720 emitted from the upper surface portion of the LED element 701 in FIG. 7A, the irradiation light 740 emitted from the right side surface of the LED element 701 and reflected by the reflecting plate 710, and emitted from the left side surface of the LED element 701 and reflected. Each light color of the irradiation light 730 reflected by the plate 710 is a different light color as described in FIG. Since the resin portion 702a is thicker than the resin portion 702b, the irradiation light 730 has a yellowish color and the irradiation light 740 has a blueish color compared to the irradiation light 720. In this embodiment, as shown in FIG. 7B, the color difference ΔE2 between the irradiation light 740 and the irradiation light 730 is 3000K (= 6500K-3500K). Compared with the case of the conventional LED illumination light source of FIG. 5B, in this embodiment, the irradiation light 720, 730, 740 is mixed due to the narrow irradiation angle as shown in FIG. It becomes smaller than the color difference ΔE1 (= 6000K) of b).

以上、図6のようにLED照明光源600を構成することで、LED素子614の中心と樹脂部615の中心とがずれた場合でも、色ムラを軽減することができる。   As described above, by configuring the LED illumination light source 600 as shown in FIG. 6, even when the center of the LED element 614 and the center of the resin portion 615 are deviated, color unevenness can be reduced.

すなわち、本実施の形態のLED照明光源では、LEDチップと、LEDチップが実装され、かつ、上面部の面積よりも下面部の面積が大きく、かつ、鏡面である凸部を上面に有する基板と、LEDチップの光を吸収して、前記光よりも長波長光を発光する蛍光体と、上面部穴よりも下面部穴が大きく、鏡面である反射板を備えることにより、LEDチップを覆う樹脂部の側面から照射された光と上面から照射された光がより混色されることとなり、色ムラを軽減することができる。   That is, in the LED illumination light source according to the present embodiment, the LED chip, the substrate on which the LED chip is mounted, the area of the lower surface part is larger than the area of the upper surface part, and the convex surface is a mirror surface on the upper surface. A resin that covers the LED chip by including a phosphor that absorbs light from the LED chip and emits light having a longer wavelength than the light, and a reflector plate having a lower surface hole larger than the upper surface hole and a mirror surface The light emitted from the side surface of the part and the light emitted from the upper surface are further mixed in color, and color unevenness can be reduced.

(実施の形態2)
図8は、本発明の第2の実施形態におけるLED照明光源800を示すものである。図8において、実施形態1の構成と異なるところはレンズ810を設けた点である。実施形態1と同一の構成は同一の符号を記して説明を省略する。
(Embodiment 2)
FIG. 8 shows an LED illumination light source 800 according to the second embodiment of the present invention. In FIG. 8, the difference from the configuration of the first embodiment is that a lens 810 is provided. The same configurations as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

レンズ810によって、照射光820はさらに集光されるため色ムラは更に軽減される結果となる。   Since the irradiation light 820 is further condensed by the lens 810, the color unevenness is further reduced.

以上のように、本実施の形態のLED照明光源800では、LED素子の照射面側にレンズを有することにより、照射光が集光されることになり、照射光の色ムラが軽減されることができる。   As described above, in the LED illumination light source 800 of the present embodiment, the illumination light is collected by having the lens on the illumination surface side of the LED element, and the color unevenness of the illumination light is reduced. Can do.

図9は、レンズ910を構成する樹脂によって、反射板617と基板613が覆われてLED素子614が封止された状態を示すものである。レンズ910に使用される樹脂によってこのように完全に封止されることによって、LED素子614付近の湿度が一定に保たれるため、イオンマイグレーション等の問題を起こさなくてもすむようにできる。   FIG. 9 shows a state where the reflecting plate 617 and the substrate 613 are covered with the resin constituting the lens 910 and the LED element 614 is sealed. By being completely sealed by the resin used for the lens 910, the humidity in the vicinity of the LED element 614 is kept constant, so that problems such as ion migration can be avoided.

図10は、図10からLED素子を覆う蛍光体を含む樹脂部615を取り除いた構成を示す。色ムラという観点ではないが、図5の照射照射光520,530と比較して明らかなように、照射光1010は集光によって配光を狭めるという効果に有用であることがわかる。   FIG. 10 shows a configuration in which the resin part 615 including the phosphor covering the LED element is removed from FIG. Although it is not a viewpoint of color unevenness, as is clear from the irradiation light beams 520 and 530 in FIG. 5, the irradiation light 1010 is useful for the effect of narrowing the light distribution by condensing.

本発明のLED照明光源は、色ムラを軽減させることができるので、一般照明用のLED照明光源等として有用である。   Since the LED illumination light source of the present invention can reduce color unevenness, it is useful as an LED illumination light source for general illumination.

従来のLED照明光源の断面を示す図The figure which shows the cross section of the conventional LED illumination light source 従来のLED照明光源の反射部の断面を示す拡大図The enlarged view which shows the cross section of the reflection part of the conventional LED illumination light source (a)は、出願人が以前に発明したLED照明光源の断面図、(b)は出願人が以前に発明したLED光源の上面図(A) is a cross-sectional view of an LED illumination light source previously invented by the applicant, and (b) is a top view of the LED light source previously invented by the applicant. 出願者らが以前に発明したLED照明光源をモジュール化した状態の斜視図A perspective view of the LED illumination light source previously invented by the applicants in a modularized state (a)は出願者らが以前に考案したにLED照明光源の反射の様子を示す断面図、(b)は(a)のLED照明光源の色温度を示すグラフ(A) is sectional drawing which shows the mode of reflection of a LED illumination light source which the applicants devised before, (b) is a graph which shows the color temperature of the LED illumination light source of (a) 本発明における一実施形態のLED照明光源600の断面図Sectional drawing of the LED illumination light source 600 of one Embodiment in this invention (a)は本発明における一実施形態のLED照明光源700の反射の様子を示す断面図、(b)は(a)の本発明における一実施形態のLED照明光源700の色温度を示すグラフ(A) is sectional drawing which shows the mode of reflection of the LED illumination light source 700 of one Embodiment in this invention, (b) is a graph which shows the color temperature of the LED illumination light source 700 of one Embodiment in this invention of (a). 本発明における一実施形態のLED照明光源800の断面図Sectional drawing of the LED illumination light source 800 of one Embodiment in this invention 本発明における一実施形態のLED照明光源900の断面図Sectional drawing of the LED illumination light source 900 of one Embodiment in this invention 本発明における一実施形態のLED照明光源1000の断面図Sectional drawing of the LED illumination light source 1000 of one Embodiment in this invention

符号の説明Explanation of symbols

111 基板
112 LED素子
113 樹脂部
151 反射板
151a 反射面
152 照射光
121 LED素子
122a リードフレーム
123 カップ内反射板
124 第1の樹脂部
125 第2の樹脂部
126 蛍光物質
127 透明容器
200 砲弾型LED照明光源
300 LED照明光源
501 LED素子
502 樹脂部
502a 樹脂部
502b 樹脂部
503 反射板
510 照射光
520 照射光
530 照射光
600 LED光源
611 反射面
612 凸構造体
613 基板
614 LED素子
615 樹脂部
616 反射面
617 反射板
618 照射光
701 LED素子
702a 樹脂部
702b 樹脂部
720 照射光
730 照射光
740 照射光
810 レンズ
820 照射光
910 封止部
1010 照射光
DESCRIPTION OF SYMBOLS 111 Board | substrate 112 LED element 113 Resin part 151 Reflector 151a Reflective surface 152 Irradiation light 121 LED element 122a Lead frame 123 In-cup reflector 124 First resin part 125 Second resin part 126 Fluorescent substance 127 Transparent container 200 Cannonball type LED Illumination light source 300 LED illumination light source 501 LED element 502 Resin part 502a Resin part 502b Resin part 503 Reflection plate 510 Irradiation light 520 Irradiation light 530 Irradiation light 600 LED light source 611 Reflecting surface 612 Convex structure 613 Substrate 614 LED element 615 Resin part 616 Reflection Surface 617 Reflector 618 Irradiation light 701 LED element 702a Resin part 702b Resin part 720 Irradiation light 730 Irradiation light 740 Irradiation light 810 Lens 820 Irradiation light 910 Sealing part 1010 Irradiation light

Claims (4)

LED素子と、
LED素子が実装される基板と、
前記LED素子の表面に塗布された蛍光体を含む樹脂部と、
前記LED素子が配置される開口部を有し、前記基板に取り付けられた反射板と、
を備えるLED照明光源であって、
前記基板には、前記LED素子が実装される上面部の面積よりも前記基板に接触する下面部の面積の方が大きい、鏡面仕上げされた凸構造体が取り付けられており、
前記反射板の開口部は、前記基板の接触部の開口部の面積よりも前記LED素子からの光が放出される開口部の面積の方が小さい、LED照明光源。
An LED element;
A substrate on which the LED element is mounted;
A resin part containing a phosphor applied to the surface of the LED element;
A reflector having an opening in which the LED element is disposed and attached to the substrate;
An LED illumination light source comprising:
The substrate is attached with a mirror-finished convex structure having a larger area of the lower surface portion contacting the substrate than the area of the upper surface portion on which the LED element is mounted,
The LED illumination light source, wherein the opening of the reflecting plate has a smaller area of the opening from which light from the LED element is emitted than the area of the opening of the contact portion of the substrate.
前記反射板の開口部は円錐台の形状を有し、
前記凸構造体は円錐台の形状を有する、請求項1に記載のLED照明光源。
The opening of the reflector has a truncated cone shape,
The LED projection light source according to claim 1, wherein the convex structure has a truncated cone shape.
前記樹脂部を通過した前記LED素子からの光が、反射鏡によって反射され、当該反射された光が凸構造体によって更に反射されて、前記反射鏡の外部に出射される、請求項1または2に記載のLED照明光源。 The light from the LED element that has passed through the resin portion is reflected by a reflecting mirror, and the reflected light is further reflected by a convex structure and emitted to the outside of the reflecting mirror. The LED illumination light source described in 1. 前記反射板の開口部に設けられ、前記LED素子からの光を集光するレンズを更に有する、請求項1から3までの何れか一つに記載のLED照明光源。 The LED illumination light source according to any one of claims 1 to 3, further comprising a lens that is provided at an opening of the reflection plate and collects light from the LED element.
JP2004221312A 2004-07-29 2004-07-29 LED lighting source Expired - Fee Related JP4086020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221312A JP4086020B2 (en) 2004-07-29 2004-07-29 LED lighting source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221312A JP4086020B2 (en) 2004-07-29 2004-07-29 LED lighting source

Publications (2)

Publication Number Publication Date
JP2006041323A JP2006041323A (en) 2006-02-09
JP4086020B2 true JP4086020B2 (en) 2008-05-14

Family

ID=35905974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221312A Expired - Fee Related JP4086020B2 (en) 2004-07-29 2004-07-29 LED lighting source

Country Status (1)

Country Link
JP (1) JP4086020B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506685B2 (en) 2006-02-17 2010-07-21 トヨタ自動車株式会社 Mobile robot
JP2007294621A (en) * 2006-04-24 2007-11-08 Sharp Corp Led lighting system
JP5701502B2 (en) * 2009-12-25 2015-04-15 日亜化学工業株式会社 Light emitting device
JP6118437B1 (en) * 2015-12-21 2017-04-19 ルーメンス カンパニー リミテッド LED module

Also Published As

Publication number Publication date
JP2006041323A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US20200393089A1 (en) Led lamp
JP5883646B2 (en) Method for manufacturing light emitting device
US20110148270A1 (en) Spherical light output LED lens and heat sink stem system
JP2008084990A (en) Light-emitting apparatus and illumination appliance
KR20110126430A (en) Light emitting device
JP2007329068A (en) Vehicular lighting fixture
KR20070029743A (en) Led spotlight having funnel-shaped lens
JP2003173712A (en) Light-emitting device and display
WO2005083805A1 (en) Led light source
JP2012506140A5 (en)
JP6311856B2 (en) lighting equipment
JP2009193902A (en) Illuminating device, signboard illuminating device, and direct backlight for liquid panel
JP4924337B2 (en) Lighting device
JP2007012792A (en) Package for light emitting device storage, light source and light emitting device
KR20160092761A (en) Illumination device
JP4086020B2 (en) LED lighting source
US8618723B2 (en) Luminaire
JP2018129492A (en) Light-emitting device, and illuminating device
JP2001126515A (en) Illuminating device using illuminant
US11879621B2 (en) Lighting device with light-emitting filaments
WO2013145049A1 (en) Lamp
JP2007150255A (en) Light emitting diode illumination module and illumination device
JP2014110120A (en) Led lighting fixture
JP2007180288A (en) Light emitting device and illuminator
JP4770676B2 (en) Light emitting device and lighting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4086020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees