JP5696798B2 - Polysiloxane - Google Patents
Polysiloxane Download PDFInfo
- Publication number
- JP5696798B2 JP5696798B2 JP2014012162A JP2014012162A JP5696798B2 JP 5696798 B2 JP5696798 B2 JP 5696798B2 JP 2014012162 A JP2014012162 A JP 2014012162A JP 2014012162 A JP2014012162 A JP 2014012162A JP 5696798 B2 JP5696798 B2 JP 5696798B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- polysiloxane
- mol
- integer
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JUBOISWHAUYTDY-UHFFFAOYSA-N COCC1CC2OC2CC1 Chemical compound COCC1CC2OC2CC1 JUBOISWHAUYTDY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
Landscapes
- Silicon Polymers (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Led Device Packages (AREA)
Description
本発明は、硬化性組成物、硬化物、光半導体装置およびポリシロキサンに関する。 The present invention relates to a curable composition, a cured product, an optical semiconductor device, and polysiloxane.
半導体発光装置(LED)の封止材などに使用されているヒドロシリル化反応硬化型のポリシロキサン組成物(以下、ヒドロシリル系ポリシロキサン組成物ともいう。)は、LEDパッケージなどに対する接着性を高める技術が求められている。 A hydrosilylation reaction curable polysiloxane composition (hereinafter also referred to as a hydrosilyl polysiloxane composition) used for a sealing material of a semiconductor light emitting device (LED) is a technology for improving adhesion to an LED package or the like. Is required.
ヒドロシリル系ポリシロキサン組成物の接着性の向上を図る技術として、ヒドロシリル系ポリシロキサン組成物にエポキシ基含有ポリシロキサンなどの接着促進剤を添加する技術が知られている。 As a technique for improving the adhesion of the hydrosilyl polysiloxane composition, a technique of adding an adhesion promoter such as an epoxy group-containing polysiloxane to the hydrosilyl polysiloxane composition is known.
特許文献1には、接着促進剤であるアルケニル基を有するエポキシ基含有ポリシロキサンを、主剤であるオルガノポリシロキサン100重量部に対して0.01〜50重量部含有するヒドロシリル系ポリシロキサン組成物が記載されている。
特許文献2には、接着促進剤であるエポキシ基含有ポリシロキサンを、主剤であるアルケニル基とフェニル基を含有するオルガノポリシロキサン樹脂100重量部に対して0.01〜20重量部含有するヒドロシリル系ポリシロキサン組成物が記載されている。
In
特許文献3には、接着促進剤であるアルケニル基を有するエポキシ基含有ポリシロキサンを、主剤であるアルケニル基を含むオルガノポリシロキサン成分100質量部に対して0.01〜10質量部含有するヒドロシリル系ポリシロキサン組成物が記載されている。
基板や金属配線と封止材との接着性を高めるためには、接着促進剤であるエポキシ基含有ポリシロキサンのエポキシ基含有量を多くする必要がある。しかしながら、このような接着促進剤を多く用いた場合、輝度が低下するおそれがある。 In order to improve the adhesion between the substrate or the metal wiring and the sealing material, it is necessary to increase the epoxy group content of the epoxy group-containing polysiloxane which is an adhesion promoter. However, when many such adhesion promoters are used, there is a risk that the luminance will decrease.
本発明の課題は、ヒドロシリル系ポリシロキサン組成物において、基板や金属配線などに対する接着性と輝度とを両立しうる硬化物を形成することができる硬化性組成物を提供することである。 The subject of this invention is providing the curable composition which can form the hardened | cured material which can make the adhesiveness with respect to a board | substrate, a metal wiring, etc. and a brightness | luminance compatible in a hydrosilyl type polysiloxane composition.
本発明は、 下記化学式(2): The present invention provides the following chemical formula (2):
前記ポリシロキサン中に含まれるSi原子の数を100モル%とするとき、前記ポリシロキサンのアルケニル基の含有量が3〜50モル%であり、前記ポリシロキサンのエポキシ基の含有量が0.01〜10モル%であり、前記ポリシロキサンのアリール基の含有量が30〜120モル%であるポリシロキサンである。
When the number of Si atoms contained in the polysiloxane is 100 mol%, the content of the alkenyl group of the polysiloxane is 3 to 50 mol%, and the content of the epoxy group of the polysiloxane is 0.01 10 to 10 mol%, and the polysiloxane has an aryl group content of 30 to 120 mol%.
前記ポリシロキサンにおいては、前記化学式において、a,b,c,d,e,f,g,hおよびiの合計に対するfの割合が20〜90%であることが好ましい。 In the polysiloxane, the ratio of f to the total of a, b, c, d, e, f, g, h and i in the chemical formula is preferably 20 to 90%.
本発明の硬化性組成物は、基板や金属配線などに対する接着性と輝度とを両立しうる硬化物を形成できるヒドロシリル系ポリシロキサン組成物である。
したがって、この硬化性組成物から得られる硬化物で半導体発光素子を被覆して得られた光半導体装置は、信頼性に優れた光半導体装置となる。
The curable composition of the present invention is a hydrosilyl-based polysiloxane composition capable of forming a cured product capable of achieving both adhesion to a substrate and metal wiring and luminance.
Therefore, an optical semiconductor device obtained by coating a semiconductor light emitting element with a cured product obtained from this curable composition is an optical semiconductor device with excellent reliability.
<硬化性組成物>
本発明の硬化性組成物は、アルケニル基および密着性基を有するポリシロキサン(A)と、1分子当たり少なくとも2個のケイ素原子結合水素原子を有するポリシロキサン(B)(ただし、ポリシロキサン(A)を除く)と、ヒドロシリル化反応用触媒(C)とを含有する硬化性組成物であって、該硬化性組成物中に含まれる全成分の含有量の合計を100質量%とするとき、ポリシロキサン(A)の含有割合が40〜90質量%であることを特徴とする。
なお、本発明において「ポリシロキサン」とは、シロキサン単位 (Si−O)が2個以上結合した分子骨格を有するシロキサンを意味する。
<Curable composition>
The curable composition of the present invention comprises a polysiloxane (A) having an alkenyl group and an adhesive group and a polysiloxane (B) having at least two silicon-bonded hydrogen atoms per molecule (provided that the polysiloxane (A )) And a hydrosilylation reaction catalyst (C), and when the total content of all components contained in the curable composition is 100% by mass, The content ratio of polysiloxane (A) is 40 to 90% by mass.
In the present invention, “polysiloxane” means a siloxane having a molecular skeleton in which two or more siloxane units (Si—O) are bonded.
ポリシロキサン(A)
ポリシロキサン(A)は、アルケニル基および密着性基を有するポリシロキサンである。ポリシロキサン(A)は本組成物の主成分であり、ポリシロキサン(B)とのヒドロシリル化反応により硬化し、硬化物の主体となる。また、ポリシロキサン(A)は、密着性基を有することから、硬化物とLEDパッケージ等との接着性を高める機能も有する。
Polysiloxane (A)
The polysiloxane (A) is a polysiloxane having an alkenyl group and an adhesive group. The polysiloxane (A) is a main component of the present composition and is cured by a hydrosilylation reaction with the polysiloxane (B) to become a main product of the cured product. Moreover, since polysiloxane (A) has an adhesive group, it also has a function of improving the adhesion between the cured product and the LED package.
ポリシロキサン(A)が有するアルケニル基としては、たとえば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘプテニル基、ヘキセニル基およびシクロヘキセニル基等が挙げられる。これらの中でも、ビニル基、アリル基およびヘキセニル基が好ましい。 Examples of the alkenyl group that the polysiloxane (A) has include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, a heptenyl group, a hexenyl group, and a cyclohexenyl group. Among these, a vinyl group, an allyl group, and a hexenyl group are preferable.
ポリシロキサン(A)におけるアルケニル基の含有量は、ポリシロキサン(A)中に含まれる全Si原子の数を100モル%とするとき、3〜50モル%であることが好ましく、より好ましくは5〜40モル%であり、さらに好ましくは10〜30モル%である。アルケニル基の含有量が前記範囲内であると、ポリシロキサン(A)とポリシロキサン(B)とのヒドロシリル化反応が好適範囲で起こり、強度の高い硬化物が得られる。 The alkenyl group content in the polysiloxane (A) is preferably 3 to 50 mol%, more preferably 5 when the number of all Si atoms contained in the polysiloxane (A) is 100 mol%. It is -40 mol%, More preferably, it is 10-30 mol%. When the content of the alkenyl group is within the above range, the hydrosilylation reaction between the polysiloxane (A) and the polysiloxane (B) occurs in a suitable range, and a cured product having high strength is obtained.
前記密着性基とは、半導体装置等の基材等の材料となる金属または有機樹脂等対して密着性を有する基を意味する。
ポリシロキサン(A)が有する密着性基としては、たとえば、エポキシ基、チオニル基、イソシアネート基、トリアリルイソシアネート基等を有する基を挙げることができる。
The adhesion group means a group having adhesion to a metal or an organic resin that is a material of a substrate such as a semiconductor device.
Examples of the adhesive group possessed by the polysiloxane (A) include groups having an epoxy group, a thionyl group, an isocyanate group, a triallyl isocyanate group, and the like.
これらの中でも、硬化性組成物を硬化する際に起こるヒドロシリル化反応を阻害しにくく、基板や金属配線などに対する接着性と輝度とを高度に両立しうる硬化物を形成することから、エポキシ基を有する基が好ましい。 Among these, it is difficult to inhibit the hydrosilylation reaction that occurs when the curable composition is cured, and forms a cured product that can achieve both high adhesion and brightness to a substrate or metal wiring. The group having is preferable.
前記エポキシ基を有する基としては、たとえば、グリシドキシ基、3−グリシドキシプロピル基等のグリシドキシアルキル基、並びに3,4−エポキシシクロペンチル基、3,4−エポキシシクロヘキシル基、2−(3,4−エポキシシクロペンチル)エチル基、および2−(3,4−エポキシシクロヘキシル)エチル基等のエポキシシクロアルキル基等が挙げられる。前記エポキシ基を有する基としては、具体的には、下記構造式(1)〜(4)で表される基が挙げられる。前記エポキシ基を有する基がこのような基であると、硬化物のmmオーダーでの成形が可能になる。 Examples of the group having an epoxy group include glycidoxyalkyl groups such as glycidoxy group and 3-glycidoxypropyl group, 3,4-epoxycyclopentyl group, 3,4-epoxycyclohexyl group, 2- (3 , 4-epoxycyclopentyl) ethyl group, and epoxycycloalkyl groups such as 2- (3,4-epoxycyclohexyl) ethyl group. Specific examples of the group having an epoxy group include groups represented by the following structural formulas (1) to (4). When the group having the epoxy group is such a group, the cured product can be molded in the mm order.
構造式(1)で表される基としては、具体的には、2−(3、4―エポキシシクロヘキシル)エチル基等が挙げられる。
構造式(2)で表される基としては、具体的には、グリシジル基等が挙げられる。
構造式(3)で表される基としては、具体的には、3−グリシドキシプロピル基等が挙げられる。
構造式(4)で表される基としては、具体的には、2−(4−メチル−3、4−エポキシシクロへキシル)エチル基等が挙げられる。
Specific examples of the group represented by the structural formula (1) include 2- (3,4-epoxycyclohexyl) ethyl group.
Specific examples of the group represented by the structural formula (2) include a glycidyl group.
Specific examples of the group represented by the structural formula (3) include a 3-glycidoxypropyl group.
Specific examples of the group represented by the structural formula (4) include a 2- (4-methyl-3, 4-epoxycyclohexyl) ethyl group.
ポリシロキサン(A)における密着性基の含有量は、ポリシロキサン(A)中に含まれる全Si原子の数を100モル%とするとき、0.01〜10モル%であることが好ましく、より好ましくは0.05〜5モル%であり、さらに好ましくは0.05〜3モル%である。密着性基の含有量が前記範囲内であると、本組成物から得られる硬化物とLEDパッケージ等との間の高い接着性と輝度の高い硬化膜が得られる。 The content of the adhesive group in the polysiloxane (A) is preferably 0.01 to 10 mol% when the number of all Si atoms contained in the polysiloxane (A) is 100 mol%, Preferably it is 0.05-5 mol%, More preferably, it is 0.05-3 mol%. When the content of the adhesive group is within the above range, a cured film having high adhesion and high brightness between the cured product obtained from the present composition and the LED package or the like can be obtained.
本発明の硬化性組成物中に含まれるポリシロキサン(A)の含有量は、本組成物中に含まれる全成分の含有量の合計を100質量%としたとき、40〜90質量%であり、好ましくは50〜85質量%であり、より好ましくは65〜85質量%である。 Content of polysiloxane (A) contained in the curable composition of this invention is 40-90 mass% when the sum total of content of all the components contained in this composition is 100 mass%. , Preferably it is 50-85 mass%, More preferably, it is 65-85 mass%.
従来のヒドロシリル系ポリシロキサン組成物においては、接着性を高めるために、主剤であるポリシロキサンとは別に、接着促進剤であるエポキシ基含有ポリシロキサンが組成物全体に対し0.01〜20質量%程度添加されていた。これに対し、本発明の硬化性組成物においては、エポキシ基含有ポリシロキサンであるポリシロキサン(A)を主剤として用い、その含有量が前記のとおり40〜90質量%である。ポリシロキサン(A)の含有量が前記範囲であると、本組成物から得られる硬化物は、基板や金属配線などに対する高い接着性を有し、かつLEDなど封止材として使用した場合にLEDなどの高い初期輝度を維持する。 In the conventional hydrosilyl-based polysiloxane composition, in order to enhance the adhesiveness, an epoxy group-containing polysiloxane as an adhesion promoter is 0.01 to 20% by mass based on the entire composition, in addition to the polysiloxane as the main component. To some extent added. On the other hand, in the curable composition of this invention, the polysiloxane (A) which is an epoxy group containing polysiloxane is used as a main ingredient, and the content is 40-90 mass% as above-mentioned. When the content of the polysiloxane (A) is in the above range, the cured product obtained from the composition has high adhesion to a substrate or a metal wiring, and when used as a sealing material such as an LED. Maintain a high initial brightness.
また、ポリシロキサン(A)はアリール基を有することが好ましい。ポリシロキサン(A)はアリール基を有すると、LED封止材として用いた時に高い輝度が得られるという特性が発現する。ポリシロキサン(A)中に含まれる全Si原子の数を100モル%とするとき、ポリシロキサン(A)に含まれるアリール基の含有量は30〜120モル%であることが好ましく、より好ましくは50〜110モル%、さらに好ましくは70〜100モル%である。アリール基の含有量が30〜120モル%の範囲内にあるとき、本組成物から輝度が高く、屈折率の高い硬化膜が得られる。前記アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。 The polysiloxane (A) preferably has an aryl group. When the polysiloxane (A) has an aryl group, a characteristic that high luminance is obtained when used as an LED sealing material is exhibited. When the number of all Si atoms contained in the polysiloxane (A) is 100 mol%, the content of aryl groups contained in the polysiloxane (A) is preferably 30 to 120 mol%, more preferably It is 50-110 mol%, More preferably, it is 70-100 mol%. When the aryl group content is in the range of 30 to 120 mol%, a cured film having high luminance and high refractive index can be obtained from the present composition. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
ポリシロキサン(A)は、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が100〜50000の範囲にあることが好ましく、500〜5000の範囲にあることがより好ましい。ポリシロキサン(A)の重量平均分子量が前記範囲内にあると、本組成物を用いて封止材を製造する際に取扱いやすく、また本組成物から得られる硬化物は光半導体封止材として十分な材料強度および特性を有する。
ポリシロキサン(A)としては、下記化学式(1):
Polysiloxane (A) preferably has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography in the range of 100 to 50000, and more preferably in the range of 500 to 5000. When the weight average molecular weight of the polysiloxane (A) is within the above range, it is easy to handle when producing a sealing material using the composition, and the cured product obtained from the composition is used as an optical semiconductor sealing material. Has sufficient material strength and properties.
As polysiloxane (A), the following chemical formula (1):
a、b、c、d、e、f、g、hおよびiの合計に対するaの割合は、前記合計を100%とした場合、好ましくは0%以上60%以下であり、より好ましくは、5%以上40%以下である。bの割合は、好ましくは0%以上50%以下であり、より好ましくは、0%以上20%以下である。cの割合は、好ましくは0%以上30%以下であり、より好ましくは、0%以上20%以下である。dの割合は、好ましくは0%以上10%以下であり、より好ましくは、0%以上5%以下である。eの割合は、好ましくは0%以上50%以下であり、より好ましくは、0%以上30%以下である。fの割合は、0%以上90%以下であり、好ましくは20%以上90%以下であり、より好ましくは、40%以上80%以下である。gの割合は、好ましくは0%以上10%以下であり、より好ましくは、0%以上5%以下である。hの割合は、好ましくは0%以上50%以下であり、より好ましくは、0%以上30%以下である。iの割合は、好ましくは0%以上10%以下であり、より好ましくは、0%以上5%以下である。ただし、a+cの割合は0%より大きく、d+gの割合は0%より大きい。 The ratio of a to the total of a, b, c, d, e, f, g, h and i is preferably 0% or more and 60% or less, more preferably 5%, when the total is 100%. % To 40%. The ratio of b is preferably 0% or more and 50% or less, and more preferably 0% or more and 20% or less. The ratio of c is preferably 0% or more and 30% or less, and more preferably 0% or more and 20% or less. The ratio of d is preferably 0% or more and 10% or less, and more preferably 0% or more and 5% or less. The ratio of e is preferably 0% or more and 50% or less, and more preferably 0% or more and 30% or less. The ratio of f is 0% or more and 90% or less, preferably 20% or more and 90% or less, and more preferably 40% or more and 80% or less. The ratio of g is preferably 0% or more and 10% or less, and more preferably 0% or more and 5% or less. The ratio of h is preferably 0% or more and 50% or less, and more preferably 0% or more and 30% or less. The ratio of i is preferably 0% or more and 10% or less, and more preferably 0% or more and 5% or less. However, the ratio of a + c is larger than 0%, and the ratio of d + g is larger than 0%.
前記化学式(1)で示されるポリシロキサンの中でも、下記化学式(2)で示されるポリシロキサンが、基板や金属配線などに対する接着性と輝度とを高度に両立しうる硬化物を形成することから好ましい。 Among the polysiloxanes represented by the chemical formula (1), the polysiloxane represented by the following chemical formula (2) is preferable because it forms a cured product that can achieve both high adhesion and brightness to a substrate or a metal wiring. .
アルケニル基を有する基としては、上述のアルケニル基を有する基と同じ基が例示される。密着性基を有する基としては、上述の密着性基と同じ基を有する基が例示される。エポキシ基を有する基としては、上述のエポキシ基を有する基と同じ基が例示される。1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基,ノナフルオロブチルエチル基等の置換アルキル基が例示される。 Examples of the group having an alkenyl group include the same groups as the above-described groups having an alkenyl group. Examples of the group having an adhesive group include groups having the same group as the above-mentioned adhesive group. As group which has an epoxy group, the same group as the group which has the above-mentioned epoxy group is illustrated. Examples of monovalent hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups; aryl groups such as phenyl, tolyl, xylyl, and naphthyl groups; Examples include aralkyl groups such as benzyl group and phenethyl group; and substituted alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, and nonafluorobutylethyl group.
ポリシロキサン(A)の製造方法としては、特開平6−9659号公報、特開2003−183582号公報、特開2007−008996号公報、特開2007−106798号公報、特開2007−169427号公報および特開2010−059359号公報等に記載された公知の方法、たとえば、各単位源となるクロロシランやアルコキシシランを共加水分解する方法や、共加水分解物をアルカリ金属触媒などにより平衡化反応する方法などが挙げられる。 As a method for producing the polysiloxane (A), JP-A-6-9659, JP-A-2003-183582, JP-A-2007-008996, JP-A-2007-106798, JP-A-2007-169427 are disclosed. And known methods described in JP 2010-059359 A, for example, a method of co-hydrolyzing chlorosilane and alkoxysilane serving as each unit source, and an equilibration reaction of the co-hydrolyzed product with an alkali metal catalyst or the like. The method etc. are mentioned.
このようなポリシロキサンを用いることにより、本願の硬化性組成物から得られる硬化物は、必要とする強度が得られ、金属や有機樹脂膜との密着性が発現し、しかもLED封止材として用いた時に高い輝度が得られるという特性が発現する。 By using such a polysiloxane, the cured product obtained from the curable composition of the present application has the required strength, exhibits adhesion to a metal or an organic resin film, and as an LED sealing material The characteristic that high brightness is obtained when used is developed.
ポリシロキサン(B)
ポリシロキサン(B)は、1分子当たり少なくとも2個のケイ素原子結合水素原子を有するポリシロキサンである(ただし、ポリシロキサン(A)を除く)。すなわちポリシロキサン(B)は、1分子当たり少なくとも2個のSi−H基(ヒドロシリル基)を有する。ポリシロキサン(B)はポリシロキサン(A)に対する架橋剤であり、ポリシロキサン(A)とのヒドロシリル化反応により硬化物を形成する。
Polysiloxane (B)
The polysiloxane (B) is a polysiloxane having at least two silicon-bonded hydrogen atoms per molecule (except for the polysiloxane (A)). That is, the polysiloxane (B) has at least two Si—H groups (hydrosilyl groups) per molecule. Polysiloxane (B) is a crosslinking agent for polysiloxane (A), and forms a cured product by a hydrosilylation reaction with polysiloxane (A).
ポリシロキサン(B)としては、従来のヒドロシリル系ポリシロキサン組成物において架橋剤として使用されている、1分子当たり少なくとも2個のケイ素原子結合水素原子を有するポリシロキサンであれば特に制限されることなく使用することができる。 The polysiloxane (B) is not particularly limited as long as it is a polysiloxane having at least two silicon-bonded hydrogen atoms per molecule, which is used as a crosslinking agent in the conventional hydrosilyl polysiloxane composition. Can be used.
ポリシロキサン(B)の具体例としては、特許文献1〜3に記載されたオルガノハイドロジェンポリシロキサンなどを挙げることができる。
ポリシロキサン(B)は、たとえば、フェニルトリメトキシシラン、ジフェニルジメトキシシランなどのアルコキシシランと、1,1,3,3−テトラメチルジシロキサンなどのハイドロジェンシロキサンとを公知の方法により反応させることにより得ることができる。
Specific examples of the polysiloxane (B) include organohydrogenpolysiloxanes described in
The polysiloxane (B) is obtained by, for example, reacting an alkoxysilane such as phenyltrimethoxysilane or diphenyldimethoxysilane with a hydrogensiloxane such as 1,1,3,3-tetramethyldisiloxane by a known method. Can be obtained.
本発明の硬化性組成物におけるポリシロキサン(B)の含有量としては、ポリシロキサン(A)中のアルケニル基量に対するポリシロキサン(B)中のケイ素原子結合水素原子量のモル比が0.1〜5となる量であることが好ましく、より好ましくは0.5〜2、さらに好ましくは0.7〜1.4となる量である。ポリシロキサン(B)の含有量が前記範囲内であると、組成物の硬化が十分に進行し、また、得られる硬化物に十分な耐熱性が得られる。 As content of polysiloxane (B) in the curable composition of this invention, the molar ratio of the silicon atom bond hydrogen atom amount in polysiloxane (B) with respect to the amount of alkenyl groups in polysiloxane (A) is 0.1-0.1. 5 is preferable, more preferably 0.5 to 2, and still more preferably 0.7 to 1.4. When the content of the polysiloxane (B) is within the above range, the composition is sufficiently cured, and sufficient heat resistance is obtained for the obtained cured product.
ヒドロシリル化反応用触媒(C)
ヒドロシリル化反応用触媒(C)は、ポリシロキサン(A)とポリシロキサン(B)とのヒドロシリル化反応の触媒である。
Catalyst for hydrosilylation reaction (C)
The catalyst for hydrosilylation reaction (C) is a catalyst for hydrosilylation reaction of polysiloxane (A) and polysiloxane (B).
ヒドロシリル化反応用触媒(C)としては、従来のヒドロシリル系ポリシロキサン組成物においてヒドロシリル化反応用触媒として使用されている触媒であれば特に制限されることなく使用することができる。 The hydrosilylation reaction catalyst (C) can be used without any particular limitation as long as it is a catalyst used as a hydrosilylation reaction catalyst in a conventional hydrosilyl polysiloxane composition.
ヒドロシリル化反応用触媒(C)の具体例としては、白金系触媒、ロジウム系触媒、パラジウム系触媒を挙げることができる。これらの中で、本組成物の硬化促進の観点から白金系触媒が好ましい。白金系触媒としては、たとえば、白金−アルケニルシロキサン錯体等が挙げられる。アルケニルシロキサンとしては、たとえば、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等が挙げられる。特に、錯体の安定性の観点から、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンが好ましい。 Specific examples of the hydrosilylation catalyst (C) include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst. Among these, a platinum-based catalyst is preferable from the viewpoint of promoting the curing of the present composition. Examples of the platinum-based catalyst include a platinum-alkenylsiloxane complex. Examples of the alkenylsiloxane include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane. Etc. In particular, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferable from the viewpoint of the stability of the complex.
本発明の硬化性組成物におけるヒドロシリル化反応用触媒(C)は、ポリシロキサン(A)とポリシロキサン(B)とのヒドロシリル化反応が現実的に進行する量を用いる。
本発明の硬化性組成物は、本発明の目的が達成されるかぎり、前記成分以外にも、必要に応じて、たとえば、フュームドシリカ、石英粉末等の微粒子状シリカ、酸化チタン、酸化亜鉛等の無機充填剤、シクロ−テトラメチルテトラビニルテトラシロキサン等の遅延剤、ジフェニルビス(ジメチルビニルシロキシ)シラン、フェニルトリス(ジメチルビニルシロキシ)シラン等の希釈剤、顔料、難燃剤、耐熱剤、酸化防止剤等を含有することができる。
The hydrosilylation reaction catalyst (C) in the curable composition of the present invention is used in such an amount that the hydrosilylation reaction of the polysiloxane (A) and the polysiloxane (B) can actually proceed.
As long as the object of the present invention is achieved, the curable composition of the present invention can contain, for example, fumed silica, fine particle silica such as quartz powder, titanium oxide, zinc oxide, etc. Inorganic fillers, retarders such as cyclo-tetramethyltetravinyltetrasiloxane, diluents such as diphenylbis (dimethylvinylsiloxy) silane, phenyltris (dimethylvinylsiloxy) silane, pigments, flame retardants, heat-resistant agents, antioxidants An agent etc. can be contained.
本発明の硬化性組成物は、前記各成分をミキサー等公知の方法により均一に混合することによって調製することができる。
本発明の硬化性組成物の25℃における粘度としては、好ましくは1〜1000000mPa・sであり、より好ましくは10〜10000mPa・sである。粘度がこの範囲内であると、本組成物の操作性が向上する。
The curable composition of this invention can be prepared by mixing each said component uniformly by well-known methods, such as a mixer.
As a viscosity in 25 degreeC of the curable composition of this invention, Preferably it is 1-1000000 mPa * s, More preferably, it is 10-10000 mPa * s. When the viscosity is within this range, the operability of the composition is improved.
本発明の硬化性組成物は、1液として調製することもできるし、2液に分けて調製し、使用時に2液を混合して使用することもできる。必要に応じて、アセチレンアルコール等の硬化抑制剤を少量添加してもよい。 The curable composition of the present invention can be prepared as one liquid, or can be prepared by dividing into two liquids, and the two liquids can be mixed and used at the time of use. If necessary, a small amount of a curing inhibitor such as acetylene alcohol may be added.
<硬化物>
本発明の硬化性組成物を硬化させることにより硬化物が得られる。本発明の硬化性組成物により半導体素子を封止し、これを硬化させれば、封止材である硬化物が得られる。
<Hardened product>
A cured product is obtained by curing the curable composition of the present invention. If a semiconductor element is sealed with the curable composition of the present invention and cured, a cured product as a sealing material is obtained.
本発明の硬化性組成物を硬化させる方法としては、たとえば、硬化性組成物を基板上に塗布した後、100〜180℃で1〜13時間加熱する方法などが挙げられる。
前述のとおり、本発明の硬化性組成物を硬化して得られる硬化物は、基板や金属配線などに対する接着性が高く、かつLEDなどの高い初期輝度を実現する。
Examples of the method for curing the curable composition of the present invention include a method in which the curable composition is applied on a substrate and then heated at 100 to 180 ° C. for 1 to 13 hours.
As described above, a cured product obtained by curing the curable composition of the present invention has high adhesion to a substrate, a metal wiring, and the like, and realizes high initial luminance such as an LED.
<光半導体装置>
本発明の光半導体装置は、半導体発光素子と、該半導体発光素子を被覆する前記硬化物とを有する。本発明の光半導体装置は、半導体発光素子に前記硬化性組成物を被覆し、その組成物を硬化させることによって得られる。硬化性組成物を硬化させる方法は上述のとおりである。
光半導体装置としては、LED(Light Emitting Diode、発光ダイオード)およびLD(Laser Diode)等が挙げられる。
<Optical semiconductor device>
The optical semiconductor device of the present invention includes a semiconductor light emitting element and the cured product that covers the semiconductor light emitting element. The optical semiconductor device of the present invention is obtained by coating a semiconductor light emitting element with the curable composition and curing the composition. The method for curing the curable composition is as described above.
Examples of the optical semiconductor device include an LED (Light Emitting Diode) and an LD (Laser Diode).
図1は、本発明の光半導体装置の一具体例の模式図である。光半導体装置1は、電極6と、電極6上に設置され、ワイヤー7により電極6と電気的に接続された半導体発光素子2と、半導体発光素子2を収容するように配置されたリフレクター3と、リフレクター3内に充填され、半導体発光素子2を封止する封止材4を有する。封止材4は、本発明の硬化性組成物を硬化させて得られる。封止材4中には、シリカや蛍光体などの粒子5が分散されている。
FIG. 1 is a schematic view of a specific example of the optical semiconductor device of the present invention. The
前述のとおり、本発明の硬化性組成物を硬化して得られる封止材は、リフレクターの材料である有機樹脂膜や電極の材料である金属等に対する接着力が強いので、ヒートサイクルを受けた場合でも封止材がLEDパッケージから剥がれることがない。また、前記封止材は、LEDなどの高い初期輝度を維持する。すなわち、高い接着性と高い初期輝度との両立が実現される。 As described above, the encapsulant obtained by curing the curable composition of the present invention has a strong adhesive force to an organic resin film that is a reflector material, a metal that is an electrode material, etc. Even in this case, the sealing material is not peeled off from the LED package. Moreover, the said sealing material maintains high initial luminance, such as LED. That is, both high adhesiveness and high initial luminance are realized.
(1)ポリシロキサンの合成
(1−1)ポリシロキサンの合成
[合成例1]ポリシロキサン(AR1)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン82g、フェニルトリメトキシシラン525g、水143g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に水酸化カリウム0.4gを加え、水分離管から水を除去しながら還流した。水の除去完了後、固形分濃度が75質量%となるまで濃縮し、さらに5時間還流した。冷却後、酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を水洗した。その後、減圧濃縮してポリシロキサン(AR1)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(AR1)のポリスチレン換算重量平均分子量を測定したところ、2000であった。ポリシロキサン(AR1)の化学式は(ViMe2SiO1/2)25(PhSiO3/2)75(Viはビニル基、Meはメチル基、Phはフェニル基を示す。添え字はmol%を示す)であった。
(1) Synthesis of polysiloxane (1-1) Synthesis of polysiloxane [Synthesis Example 1] Synthesis of polysiloxane (AR1) 1,3-divinyl- in a four-necked flask equipped with a stirrer, a reflux condenser, an inlet, and a thermometer 82 g of 1,1,3,3-tetramethyldisiloxane, 525 g of phenyltrimethoxysilane, 143 g of water, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were added and mixed, followed by heating under reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 0.4 g of potassium hydroxide was added and refluxed while removing water from the water separation tube. After the removal of water was completed, the solution was concentrated until the solid concentration became 75% by mass, and further refluxed for 5 hours. After cooling, 0.6 g of acetic acid was added to neutralize, and the toluene solution obtained by filtration was washed with water. Then, it concentrated under reduced pressure and obtained polysiloxane (AR1). It was 2000 when the polystyrene conversion weight average molecular weight of polysiloxane (AR1) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (AR1) is (ViMe 2 SiO 1/2 ) 25 (PhSiO 3/2 ) 75 (Vi represents a vinyl group, Me represents a methyl group, Ph represents a phenyl group, and the subscript represents mol%) Met.
[合成例2]ポリシロキサン(A1)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン82g、水143g、フェニルトリメトキシシラン521g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に3−グリシドキシプロピルメチルジメトキシシラン4gと水酸化カリウム0.5gとを加え1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。続いて4時間加熱還流した。反応後のトルエン溶液は冷却後、酢酸0.6gで中和し水洗した。水除去後、トルエンを減圧下に留去濃縮してアルケニル基25モル%及びエポキシ基0.5モル%を有する(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)ポリシロキサン(A1)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(A1)のポリスチレン換算重量平均分子量を測定したところ、2000であった。ポリシロキサン(A1)の化学式は(ViMe2SiO1/2)25(PhSiO3/2)74.5(EpMeSiO2/2)0.5(Viはビニル基、Meはメチル基、Phはフェニル基、Epはグリシドキシプロピル基を示す。添え字はmol%を示す)であった。ポリシロキサン(A1)中に含まれる全Si原子の数を100モル%とするとき、アルケニル基の含有割合は25mol%、エポキシ基の含有割合は0.5mol%、アリール基の含有割合は74.5mol%であった。
[Synthesis Example 2] Synthesis of polysiloxane (A1) Stirrer, reflux condenser, charging port, 4-neck flask with thermometer, 82 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 143 g of water Then, 521 g of phenyltrimethoxysilane, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were added and mixed, followed by heating under reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 4 g of 3-glycidoxypropylmethyldimethoxysilane and 0.5 g of potassium hydroxide were added and heated to reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. Subsequently, the mixture was heated to reflux for 4 hours. The toluene solution after the reaction was cooled, neutralized with 0.6 g of acetic acid and washed with water. After removing water, toluene is distilled off and concentrated under reduced pressure to have 25 mol% of alkenyl groups and 0.5 mol% of epoxy groups (the number of all Si atoms contained in the polysiloxane is 100 mol%). (A1) was obtained. It was 2000 when the polystyrene conversion weight average molecular weight of polysiloxane (A1) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (A1) is (ViMe 2 SiO 1/2 ) 25 (PhSiO 3/2 ) 74.5 (EpMeSiO 2/2 ) 0.5 (Vi is a vinyl group, Me is a methyl group, Ph is a phenyl group, Ep is a glycerin) It represents a sidoxypropyl group, and the subscript indicates mol%). When the number of all Si atoms contained in the polysiloxane (A1) is 100 mol%, the alkenyl group content is 25 mol%, the epoxy group content is 0.5 mol%, and the aryl group content is 74.%. It was 5 mol%.
[合成例3]ポリシロキサン(A2)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン82g、フェニルトリメトキシシラン518g、水143g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に3−グリシドキシプロピルメチルジメトキシシラン8gと水酸化カリウム0.5gとを加え1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。続いて4時間加熱還流した。反応後のトルエン溶液は冷却後、酢酸0.6gで中和し水洗した。水除去後、トルエンを減圧下に留去濃縮してアルケニル基25モル%及びエポキシ基1モル%を有する(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)ポリシロキサン(A2)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(A2)のポリスチレン換算重量平均分子量を測定したところ、2000であった。ポリシロキサン(A2)の化学式は(ViMe2SiO1/2)25(PhSiO3/2)74(EpMeSiO2/2)1(Viはビニル基、Meはメチル基、Phはフェニル基、Epはグリシドキシプロピル基を示す。添え字はmol%を示す)であった。ポリシロキサン(A2)中に含まれる全Si原子の数を100モル%とするとき、アルケニル基の含有割合は25mol%、エポキシ基の含有割合は1mol%、アリール基の含有割合は74mol%であった。
[Synthesis Example 3] Synthesis of polysiloxane (A2) Stirrer, reflux condenser, charging port, 4-neck flask with thermometer, 82 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, phenyltri 518 g of methoxysilane, 143 g of water, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were added and mixed, and the mixture was heated to reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 8 g of 3-glycidoxypropylmethyldimethoxysilane and 0.5 g of potassium hydroxide were added and heated under reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. Subsequently, the mixture was heated to reflux for 4 hours. The toluene solution after the reaction was cooled, neutralized with 0.6 g of acetic acid and washed with water. After removing water, toluene was distilled off and concentrated under reduced pressure to have 25 mol% of alkenyl groups and 1 mol% of epoxy groups (the number of all Si atoms contained in the polysiloxane was 100 mol%) (A2 ) It was 2000 when the polystyrene conversion weight average molecular weight of polysiloxane (A2) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (A2) is (ViMe 2 SiO 1/2 ) 25 (PhSiO 3/2 ) 74 (EpMeSiO 2/2 ) 1 (Vi is a vinyl group, Me is a methyl group, Ph is a phenyl group, and Ep is a glycerin. It represents a sidoxypropyl group, and the subscript indicates mol%). When the total number of Si atoms contained in the polysiloxane (A2) is 100 mol%, the alkenyl group content is 25 mol%, the epoxy group content is 1 mol%, and the aryl group content is 74 mol%. It was.
[合成例4]ポリシロキサン(A3)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン82g、フェニルトリメトキシシラン511g、水143g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に3−グリシドキシプロピルメチルジメトキシシラン16gと水酸化カリウム0.5gとを加え1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。続いて4時間加熱還流した。反応後のトルエン溶液は冷却後、酢酸0.6gで中和し水洗した。水除去後、トルエンを減圧下に留去濃縮して、アルケニル基25モル%及びエポキシ基2モル%を有する(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)ポリシロキサン(A3)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(A3)のポリスチレン換算重量平均分子量を測定したところ、2000であった。ポリシロキサン(A3)の化学式は(ViMe2SiO1/2)25(PhSiO3/2)73(EpMeSiO2/2)2(Viはビニル基、Meはメチル基、Phはフェニル基、Epはグリシドキシプロピル基を示す。添え字はmol%を示す)であった。ポリシロキサン(A3)中に含まれる全Si原子の数を100モル%とするとき、アルケニル基の含有割合は25mol%、エポキシ基の含有割合は2mol%、アリール基の含有割合は73mol%であった。
[Synthesis Example 4] Synthesis of polysiloxane (A3) Stirrer, reflux condenser, charging port, 4-neck flask with thermometer, 82 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, phenyltri 511 g of methoxysilane, 143 g of water, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were added and mixed, and the mixture was heated to reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 16 g of 3-glycidoxypropylmethyldimethoxysilane and 0.5 g of potassium hydroxide were added and heated to reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. Subsequently, the mixture was heated to reflux for 4 hours. The toluene solution after the reaction was cooled, neutralized with 0.6 g of acetic acid and washed with water. After water removal, toluene was distilled off and concentrated under reduced pressure to obtain 25% by mole of alkenyl groups and 2% by mole of epoxy groups (with the total number of Si atoms contained in the polysiloxane being 100% by mole) ( A3) was obtained. It was 2000 when the polystyrene conversion weight average molecular weight of polysiloxane (A3) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (A3) is (ViMe 2 SiO 1/2 ) 25 (PhSiO 3/2 ) 73 (EpMeSiO 2/2 ) 2 (Vi is a vinyl group, Me is a methyl group, Ph is a phenyl group, Ep is a glycerin) It represents a sidoxypropyl group, and the subscript indicates mol%). When the total number of Si atoms contained in the polysiloxane (A3) is 100 mol%, the alkenyl group content is 25 mol%, the epoxy group content is 2 mol%, and the aryl group content is 73 mol%. It was.
[合成例5]ポリシロキサン(A4)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン49g、フェニルトリメトキシシラン442g、ジメチルジメトキシシラン85g、水143g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に3−グリシドキシプロピルメチルジメトキシシラン8gと水酸化カリウム0.5gとを加え1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。続いて4時間加熱還流した。反応後のトルエン溶液は冷却後、酢酸0.6gで中和し水洗した。水除去後、トルエンを減圧下に留去濃縮して、アルケニル基15モル%及びエポキシ基1モル%を有する(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)ポリシロキサン(A4)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(A4)のポリスチレン換算重量平均分子量を測定したところ、1800であった。ポリシロキサン(A4)の化学式は(ViMe2SiO1/2)15(PhSiO3/2)64(Me2SiO2/2)20(EpMeSiO2/2)1(Viはビニル基、Meはメチル基、Phはフェニル基、Epはグリシドキシプロピル基を示す。添え字はmol%を示す)であった。ポリシロキサン(A4)中に含まれる全Si原子の数を100モル%とするとき、アルケニル基の含有割合は15mol%、エポキシ基の含有割合は1mol%、アリール基の含有割合は64mol%であった。
[Synthesis Example 5] Synthesis of polysiloxane (A4) 49 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane was added to a four-necked flask equipped with a stirrer, a reflux condenser, an inlet, and a thermometer, 442 g of methoxysilane, 85 g of dimethyldimethoxysilane, 143 g of water, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were added and mixed, followed by heating under reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 8 g of 3-glycidoxypropylmethyldimethoxysilane and 0.5 g of potassium hydroxide were added and heated under reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. Subsequently, the mixture was heated to reflux for 4 hours. The toluene solution after the reaction was cooled, neutralized with 0.6 g of acetic acid and washed with water. After removal of water, toluene is distilled off and concentrated under reduced pressure to obtain a polysiloxane having 15 mol% of alkenyl groups and 1 mol% of epoxy groups (with the total number of Si atoms contained in the polysiloxane being 100 mol%). A4) was obtained. It was 1800 when the polystyrene conversion weight average molecular weight of polysiloxane (A4) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (A4) is (ViMe 2 SiO 1/2 ) 15 (PhSiO 3/2 ) 64 (Me 2 SiO 2/2 ) 20 (EpMeSiO 2/2 ) 1 (Vi is a vinyl group, Me is a methyl group Ph represents a phenyl group, Ep represents a glycidoxypropyl group, and the subscript represents mol%). When the total number of Si atoms contained in the polysiloxane (A4) is 100 mol%, the alkenyl group content is 15 mol%, the epoxy group content is 1 mol%, and the aryl group content is 64 mol%. It was.
[合成例6]ポリシロキサン(A5)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン82g、フェニルトリメトキシシラン525g、水143g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に3−グリシドキシプロピルメチルジメトキシシラン314gと水130gと水酸化カリウム0.5gとを加え1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。続いて4時間加熱還流した。反応後のトルエン溶液は冷却後、酢酸0.6gで中和し水洗した。水除去後、トルエンを減圧下に留去濃縮して、アルケニル基25モル%及びエポキシ基40モル%を有する(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)ポリシロキサン(A5)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(A5)のポリスチレン換算重量平均分子量を測定したところ、1600であった。ポリシロキサン(A5)の化学式は(ViMe2SiO1/2)25(PhSiO3/2)75(EpMeSiO2/2)40(Viはビニル基、Meはメチル基、Phはフェニル基、Epはグリシドキシプロピル基を示す。添え字はmol%を示す)であった。ポリシロキサン(A5)中に含まれる全Si原子の数を100モル%とするとき、アルケニル基の含有割合は25mol%、エポキシ基の含有割合は40mol%、アリール基の含有割合は35mol%であった。
[Synthesis Example 6] Synthesis of polysiloxane (A5) Stirrer, reflux condenser, charging port, 4-neck flask with thermometer, 82 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, phenyltri 525 g of methoxysilane, 143 g of water, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were added and mixed, and the mixture was heated to reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 314 g of 3-glycidoxypropylmethyldimethoxysilane, 130 g of water and 0.5 g of potassium hydroxide were added and heated under reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. Subsequently, the mixture was heated to reflux for 4 hours. The toluene solution after the reaction was cooled, neutralized with 0.6 g of acetic acid and washed with water. After water removal, toluene was distilled off and concentrated under reduced pressure to obtain 25% by mole of alkenyl groups and 40% by mole of epoxy groups (with the total number of Si atoms contained in the polysiloxane being 100% by mole) ( A5) was obtained. It was 1600 when the polystyrene conversion weight average molecular weight of polysiloxane (A5) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (A5) is (ViMe 2 SiO 1/2 ) 25 (PhSiO 3/2 ) 75 (EpMeSiO 2/2 ) 40 (Vi is a vinyl group, Me is a methyl group, Ph is a phenyl group, and Ep is a glycerin. It represents a sidoxypropyl group, and the subscript indicates mol%). When the total number of Si atoms contained in the polysiloxane (A5) is 100 mol%, the alkenyl group content is 25 mol%, the epoxy group content is 40 mol%, and the aryl group content is 35 mol%. It was.
[合成例7]ポリシロキサン(A6)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコに1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン33g、フェニルトリメトキシシラン442g、ジメチルジメトキシシラン85g、ジフェニルジメトキシシラン43g、水155g、トリフルオロメタンスルホン酸0.4gおよびトルエン500gを投入して混合し、1時間加熱還流した。冷却後、下層を分離除去し、上層であるトルエン溶液層を水洗した。水洗したトルエン溶液層に3−グリシドキシプロピルメチルジメトキシシラン8gと水酸化カリウム0.5gとを加え1時間加熱還流した。続いて、メタノールを留去し、過剰の水を共沸脱水で除いた。続いて4時間加熱還流した。反応後のトルエン溶液は冷却後、酢酸0.6gで中和し水洗した。水除去後、トルエンを減圧下に留去濃縮して、アルケニル基10モル%及びエポキシ基1モル%を有する(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)ポリシロキサン(A6)を得た。ゲルパーミエーションクロマトグラフィーでポリシロキサン(A6)のポリスチレン換算重量平均分子量を測定したところ、1800であった。ポリシロキサン(A6)の化学式は(ViMe2SiO1/2)10(PhSiO3/2)64(Ph2SiO2/2)5(Me2SiO2/2)20(EpMeSiO2/2)1(Viはビニル基、Meはメチル基、Phはフェニル基、Epはグリシドキシプロピル基を示す。添え字はmol%を示す)であった。ポリシロキサン(A6)中に含まれる全Si原子の数を100モル%とするとき、アルケニル基の含有割合は10mol%、エポキシ基の含有割合は1mol%、アリール基の含有割合は74mol%であった。
[Synthesis Example 7] Synthesis of polysiloxane (A6) Stirrer, reflux condenser, charging port, 4-neck flask with thermometer, 33 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, phenyltri 442 g of methoxysilane, 85 g of dimethyldimethoxysilane, 43 g of diphenyldimethoxysilane, 155 g of water, 0.4 g of trifluoromethanesulfonic acid and 500 g of toluene were mixed and heated to reflux for 1 hour. After cooling, the lower layer was separated and removed, and the upper toluene solution layer was washed with water. To the toluene solution layer washed with water, 8 g of 3-glycidoxypropylmethyldimethoxysilane and 0.5 g of potassium hydroxide were added and heated under reflux for 1 hour. Subsequently, methanol was distilled off and excess water was removed by azeotropic dehydration. Subsequently, the mixture was heated to reflux for 4 hours. The toluene solution after the reaction was cooled, neutralized with 0.6 g of acetic acid and washed with water. After water removal, toluene was distilled off and concentrated under reduced pressure to have a polysiloxane having an alkenyl group of 10 mol% and an epoxy group of 1 mol% (the total number of Si atoms contained in the polysiloxane was 100 mol%). A6) was obtained. It was 1800 when the polystyrene conversion weight average molecular weight of polysiloxane (A6) was measured by the gel permeation chromatography. The chemical formula of polysiloxane (A6) is (ViMe 2 SiO 1/2 ) 10 (PhSiO 3/2 ) 64 (Ph 2 SiO 2/2 ) 5 (Me 2 SiO 2/2 ) 20 (EpMeSiO 2/2 ) 1 ( Vi represents a vinyl group, Me represents a methyl group, Ph represents a phenyl group, Ep represents a glycidoxypropyl group, and the subscript represents mol%). When the total number of Si atoms contained in the polysiloxane (A6) is 100 mol%, the alkenyl group content is 10 mol%, the epoxy group content is 1 mol%, and the aryl group content is 74 mol%. It was.
[合成例8]ポリシロキサン(B1)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコにフェニルトリメトキシシラン195gとトリフルオロメタンスルホン酸0.2gを投入して混合し、攪拌しつつ水13gを15分間で滴下し、滴下終了後、1時間加熱還流した。室温まで冷却した後、1,1,3,3−テトラメチルジシロキサン119gを加え、攪拌しつつ、酢酸88gを滴下した。滴下終了後、混合液を攪拌しつつ50℃に昇温し、3時間反応させた。室温まで冷却した後、トルエンと水を加え、良く混合して静置し、水層を分離除去した。上層であるトルエン溶液層を水洗した後、減圧濃縮して、メチルフェニルハイドロジェンポリシロキサン(B1)を得た。ポリシロキサン(B1)の化学式は(HMe2SiO1/2)60(PhSiO3/2)40(Meはメチル基、Phはフェニル基を示す。添え字はmol%を示す)であった。
[Synthesis Example 8] Synthesis of polysiloxane (B1) 195 g of phenyltrimethoxysilane and 0.2 g of trifluoromethanesulfonic acid were added to a stirrer, a reflux condenser, an inlet, and a four-necked flask equipped with a thermometer, mixed and stirred. While adding 13 g of water dropwise over 15 minutes, the mixture was heated to reflux for 1 hour after the completion of the dropwise addition. After cooling to room temperature, 119 g of 1,1,3,3-tetramethyldisiloxane was added, and 88 g of acetic acid was added dropwise with stirring. After completion of the dropwise addition, the mixture was heated to 50 ° C. with stirring and reacted for 3 hours. After cooling to room temperature, toluene and water were added, mixed well and allowed to stand, and the aqueous layer was separated and removed. The upper toluene solution layer was washed with water and then concentrated under reduced pressure to obtain methylphenylhydrogenpolysiloxane (B1). The chemical formula of the polysiloxane (B1) was (HMe 2 SiO 1/2 ) 60 (PhSiO 3/2 ) 40 (Me represents a methyl group, Ph represents a phenyl group, and the subscript represents mol%).
[合成例9]ポリシロキサン(B2)の合成
攪拌機、還流冷却管、投入口、温度計付き四口フラスコにジフェニルジメトキシシラン220gとトリフルオロメタンスルホン酸0.6gを投入して混合し、1,1,3,3−テトラメチルジシロキサン147gを加え、攪拌しつつ酢酸108gを30分間かけて滴下した。滴下終了後、混合液を攪拌しつつ50℃に昇温して3時間反応させた。室温まで冷却した後、トルエンと水を加え、良く混合して静置し、水層を分離除去した。上層であるトルエン溶液層を3回水洗した後、減圧濃縮して、ジフェニルハイドロジェンポリシロキサン(B2)を得た。ポリシロキサン(B2)の化学式は(HMe2SiO1/2)50(Ph2SiO2/2)50(Meはメチル基、Phはフェニル基を示す。添え字はmol%を示す)
であった。
[Synthesis Example 9] Synthesis of polysiloxane (B2) 220 g of diphenyldimethoxysilane and 0.6 g of trifluoromethanesulfonic acid were added to a stirrer, a reflux condenser, a charging port, and a four-necked flask with a thermometer, and mixed. , 3,3-tetramethyldisiloxane 147 g was added, and 108 g of acetic acid was added dropwise over 30 minutes while stirring. After completion of dropping, the mixture was stirred and heated to 50 ° C. and reacted for 3 hours. After cooling to room temperature, toluene and water were added, mixed well and allowed to stand, and the aqueous layer was separated and removed. The upper toluene solution layer was washed with water three times and then concentrated under reduced pressure to obtain diphenylhydrogenpolysiloxane (B2). The chemical formula of polysiloxane (B2) is (HMe 2 SiO 1/2 ) 50 (Ph 2 SiO 2/2 ) 50 (Me represents a methyl group, Ph represents a phenyl group, and the subscript represents mol%)
Met.
(1−2)重量平均分子量
得られたポリシロキサンの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定し、ポリスチレン換算値として求めた。
装置:HLC−8120C(東ソー社製)
カラム:TSK−gel MultiporeHXL−M(東ソー社製)
溶離液:THF、流量0.5mL/min、負荷量5.0%、100μL
(1-2) Weight average molecular weight The weight average molecular weight (Mw) of the obtained polysiloxane was measured by gel permeation chromatography (GPC) under the following conditions and determined as a polystyrene equivalent value.
Apparatus: HLC-8120C (manufactured by Tosoh Corporation)
Column: TSK-gel Multipore HXL-M (manufactured by Tosoh Corporation)
Eluent: THF, flow rate 0.5 mL / min, load 5.0%, 100 μL
(1−3)アルケニル基、エポキシ基およびアリール基の含有割合、ならびにポリシロキサンの化学式
得られたポリシロキサン中に含まれるアルケニル基、エポキシ基およびアリール基の含有割合(ポリシロキサン中に含まれる全Si原子の数を100モル%とする)、ならびにポリシロキサンの化学式は、29Si NMRおよび13C NMRにて算出した。
(1-3) Alkenyl Group, Epoxy Group, and Aryl Group Content Ratio, and Polysiloxane Chemical Formula The alkenyl group, epoxy group, and aryl group content ratios contained in the obtained polysiloxane (total content in the polysiloxane) The chemical formula of polysiloxane was calculated by 29 Si NMR and 13 C NMR.
(2)硬化性組成物の調製
[実施例1〜5ならびに比較例1および2]
常圧下95℃で、下記表1に示す成分を、表1に示す配合量で混合し、実施例1〜4および比較例1および2の硬化性組成物を得た。表1中の数値は質量部を示す。なお、表1中の各成分の詳細は以下の通りである。
(2) Preparation of curable composition [Examples 1 to 5 and Comparative Examples 1 and 2]
At 95 ° C. under normal pressure, the components shown in Table 1 below were mixed in the blending amounts shown in Table 1 to obtain curable compositions of Examples 1 to 4 and Comparative Examples 1 and 2. Numerical values in Table 1 indicate parts by mass. The details of each component in Table 1 are as follows.
D1:シクロ−テトラメチルテトラビニルテトラシロキサン
D2:ジフェニルビス(ジメチルビニルシロキシ)シラン
D3:フェニルトリス(ジメチルビニルシロキシ)シラン
D1: Cyclo-tetramethyltetravinyltetrasiloxane D2: Diphenylbis (dimethylvinylsiloxy) silane D3: Phenyltris (dimethylvinylsiloxy) silane
(3)硬化性組成物の評価
実施例1〜4および比較例1および2の硬化性組成物について、下記、(3−1)〜(3−6)の手法にて、評価した。評価結果を表2に示す。
(3−1)粘度
硬化性組成物の粘度は、E型粘度計を用いて25℃において測定した。
(3) Evaluation of curable composition About the curable composition of Examples 1-4 and Comparative Examples 1 and 2, it evaluated by the method of the following (3-1)-(3-6). The evaluation results are shown in Table 2.
(3-1) Viscosity The viscosity of the curable composition was measured at 25 ° C. using an E-type viscometer.
(3−2)硬度
硬化性組成物をテフロン(登録商標)の平板に2mm厚の枠をはめ枠の高さになるように塗布して、150℃の熱風循環式オーブンで5時間加熱することにより50mm×50mm×1mmの硬化物を作製した。この硬化物の硬さをJIS K6253に規定されたタイプDデュロメータにより測定した。
(3-2) Hardness Applying a curable composition to a Teflon (registered trademark) flat plate with a 2 mm thick frame so as to be the height of the fitting frame, and heating in a hot air circulation oven at 150 ° C. for 5 hours Thus, a cured product of 50 mm × 50 mm × 1 mm was produced. The hardness of the cured product was measured with a type D durometer defined in JIS K6253.
(3−3)屈折率
硬化性組成物を硬度測定用に作製した硬化物を使用して、25℃における屈折率をMetricon社製Model2010全反射式屈折率計で測定した。なお、測定波長は408nmである。
(3-3) Refractive Index Using a cured product prepared from a curable composition for hardness measurement, the refractive index at 25 ° C. was measured with a Model 2010 total reflection refractometer manufactured by Metricon. The measurement wavelength is 408 nm.
(3−4)光透過率変化
1mmの石英板上に円形(直径2cm、厚さ1mm)の枠をおき、この枠内に硬化性組成物を充填して、150℃の熱風循環式オーブンで5時間加熱することにより硬化して作製した硬化物(光路長1.0mm)の25℃における波長460nmの光透過率を測定した。次に、加速劣化試験後の着色の程度を調べるために、上記硬化物を150℃の熱循環式オーブンで1000時間加熱エージングした後の25℃における波長460nmの光透過率を同様に測定した。加熱エージング前の光透過率に対する加熱エージング後の光透過率の比から、下記の基準で光透過率変化を評価した。
A:前記比が98%以上
B:前記比が90%以上98%未満
C:前記比が90%未満
(3-4) Light transmittance change A circular (diameter: 2 cm, thickness: 1 mm) frame is placed on a 1 mm quartz plate, and the curable composition is filled in this frame. The light transmittance at a wavelength of 460 nm at 25 ° C. of a cured product (optical path length: 1.0 mm) prepared by curing by heating for 5 hours was measured. Next, in order to examine the degree of coloration after the accelerated deterioration test, the light transmittance at a wavelength of 460 nm at 25 ° C. after the cured product was heat-aged in a heat circulation oven at 150 ° C. for 1000 hours was similarly measured. From the ratio of the light transmittance after heating aging to the light transmittance before heating aging, the change in light transmittance was evaluated according to the following criteria.
A: The ratio is 98% or more B: The ratio is 90% or more and less than 98% C: The ratio is less than 90%
(3−5)接着強度
直径5mm高さ5mmのアルミ円の底面に硬化性組成物を塗り各種テストパネルに張付け、150℃の熱風循環式オーブン中で1時間放置することで、直径5mm高さ5mmのアルミ円柱を硬化性組成物にてテストパネルに密着させた試験片を得た。各種テストパネル上に密着したアルミ円柱を、測定装置にDage社製series-4000PXYを用い50μm/秒の速度で剥離させ、そのときの荷重を測定して接着強度とし、下記の基準で評価した。
A:接着強度が10kg重以上
B:接着強度が5kg重以上10kg重未満
C:接着強度が5kg重未満
(3-5)
A: Adhesive strength is 10 kg or more B: Adhesive strength is 5 kg or more and less than 10 kg
(3−6)耐熱性
硬化性組成物を乾燥膜厚が1mmになるように石英ガラス上に塗布した後、100℃で1時間乾燥硬化させ、次いで150℃で5時間乾燥硬化させて硬化物を作製した。この硬化物を150℃で500時間保管し、保管後の硬化物の外観を目視で観察し、下記の基準で耐熱性を評価した。
(色変化)
A:色変化なし
B:わずかに黄色化した
C:明らかに黄色化した
(3-6) Heat resistance After applying the curable composition on quartz glass so that the dry film thickness becomes 1 mm, it is dried and cured at 100 ° C. for 1 hour, and then dried and cured at 150 ° C. for 5 hours to obtain a cured product. Was made. This hardened | cured material was stored at 150 degreeC for 500 hours, the external appearance of the hardened | cured material after storage was observed visually, and heat resistance was evaluated on the following reference | standard.
(Color change)
A: No color change B: Slightly yellow C: Clearly yellow
(3−7)全放射束測定(輝度評価)
硬化性組成物を光学用半導体の表面実装型(トップビュータイプ、図1の光半導体2、電極6、ワイヤー7およびリフレクター3により構成される部分からなる)パッケージに塗布を行い、150℃で1時間加熱することで評価用サンプルの作成を行った。
(3-7) Total radiant flux measurement (luminance evaluation)
The curable composition is applied to an optical semiconductor surface-mounting type package (top view type, consisting of a portion composed of the
全放射束測定装置(瞬間マルチ測光検出器MCPD-3700、Φ300mm積分球(半球積分球))を使用して、上記評価用サンプルの放射束測定を実施した。封止材を塗布する前のパッケージに通電し発光させて測定された初期放射束に対する上記評価用サンプルの放射束の比率を%で算出し、下記の基準で評価した。
A:前記比率が110%以上
B:前記比率が110%未満100%以上
C:前記比率が100%未満
Using the total radiant flux measuring device (instant multiphotometric detector MCPD-3700, Φ300 mm integrating sphere (hemispheric integrating sphere)), the radiant flux of the sample for evaluation was measured. The ratio of the radiant flux of the sample for evaluation to the initial radiant flux measured by energizing the package before applying the sealing material to emit light was calculated in%, and evaluated according to the following criteria.
A: The ratio is 110% or more B: The ratio is less than 110% 100% or more C: The ratio is less than 100%
表2に示した結果より、エポキシ基含有ポリシロキサンであるポリシロキサン(A)を接着促進剤的に使用した比較例1および2においては、エポキシ基が多いポリシロキサン(A5)を使用した比較例1では全放射束すなわち輝度が低く、エポキシ基が少ないポリシロキサン(A3)を使用した比較例2では接着強度が低くなり、高輝度と高接着性との両立は実現されていなかった。これに対し、エポキシ基含有ポリシロキサンであるポリシロキサン(A)を主成分とする実施例1〜5においては、全放射束および接着強度がともに高く、高輝度と高接着性との両立が実現されていることがわかった。 From the results shown in Table 2, in Comparative Examples 1 and 2 in which polysiloxane (A), which is an epoxy group-containing polysiloxane, was used as an adhesion promoter, a comparative example in which polysiloxane (A5) having many epoxy groups was used. In Comparative Example 2 using Polysiloxane (A3) having a low total radiant flux, that is, a low brightness and a small number of epoxy groups, the adhesive strength was low, and both high brightness and high adhesiveness were not realized. On the other hand, in Examples 1 to 5 whose main component is polysiloxane (A), which is an epoxy group-containing polysiloxane, both the total radiant flux and the adhesive strength are high, realizing both high brightness and high adhesiveness. I found out.
本発明の硬化性組成物は、その硬化物が透明でありながら、高温雰囲気下に置かれても光透過率の低下が小さく、高い接着性を有するので、光学用半導体素子および光半導体部材の封止材、接着剤、ポッティング剤、保護コーティング剤、アンダーフィル剤等として有用である。本発明の硬化物は、高温に曝されても光透過率の低下が小さいので、高温条件下の製造工程においても光透過率の低下が小さく、長期信頼性に優れるという特徴がある。本発明の硬化物は、特に高輝度の発光素子などの光学用半導体装置に用いられたとき、全放射束が高くなるので、高輝度の光源の近傍に用いられる光学部材として有用である。 In the curable composition of the present invention, the cured product is transparent, and even when placed in a high-temperature atmosphere, the decrease in light transmittance is small and it has high adhesiveness. It is useful as a sealing material, adhesive, potting agent, protective coating agent, underfill agent and the like. The cured product of the present invention is characterized in that the decrease in light transmittance is small even when exposed to high temperatures, so that the decrease in light transmittance is small even in the production process under high temperature conditions, and the long-term reliability is excellent. The cured product of the present invention is useful as an optical member used in the vicinity of a high-intensity light source because the total radiant flux increases when used in an optical semiconductor device such as a high-intensity light emitting element.
1 光半導体装置
2 半導体発光素子
3 リフレクター
4 封止材
5 粒子
6 電極
7 ワイヤー
DESCRIPTION OF
Claims (2)
前記ポリシロキサン中に含まれるSi原子の数を100モル%とするとき、前記ポリシロキサンのアルケニル基の含有量が10〜25モル%であり、前記ポリシロキサンのエポキシ基の含有量が0.5〜2モル%であり、前記ポリシロキサンのアリール基の含有量が64〜74.5モル%であるポリシロキサン。 The following chemical formula (2):
When the number of Si atoms contained in the polysiloxane is 100 mol%, the content of alkenyl groups in the polysiloxane is 10 to 25 mol%, and the content of epoxy groups in the polysiloxane is 0.5. ~ a 2 mol%, the polysiloxane content of the aryl groups of said polysiloxane is from 64 to 74.5 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014012162A JP5696798B2 (en) | 2011-04-21 | 2014-01-27 | Polysiloxane |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011094922 | 2011-04-21 | ||
JP2011094922 | 2011-04-21 | ||
JP2014012162A JP5696798B2 (en) | 2011-04-21 | 2014-01-27 | Polysiloxane |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012034100A Division JP5505436B2 (en) | 2011-04-21 | 2012-02-20 | Curable composition, cured product, optical semiconductor device, and polysiloxane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014074183A JP2014074183A (en) | 2014-04-24 |
JP5696798B2 true JP5696798B2 (en) | 2015-04-08 |
Family
ID=47433784
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012034100A Active JP5505436B2 (en) | 2011-04-21 | 2012-02-20 | Curable composition, cured product, optical semiconductor device, and polysiloxane |
JP2014012162A Active JP5696798B2 (en) | 2011-04-21 | 2014-01-27 | Polysiloxane |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012034100A Active JP5505436B2 (en) | 2011-04-21 | 2012-02-20 | Curable composition, cured product, optical semiconductor device, and polysiloxane |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP5505436B2 (en) |
TW (2) | TWI499644B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101556274B1 (en) | 2012-12-28 | 2015-09-30 | 제일모직 주식회사 | Composition for encapsulant and encapsulant and electronic device |
KR102165826B1 (en) * | 2016-08-12 | 2020-10-15 | 와커 헤미 아게 | Curable organopolysiloxane composition, encapsulant and semiconductor device |
KR102625363B1 (en) * | 2017-07-24 | 2024-01-17 | 다우 도레이 캄파니 리미티드 | Multi-component curable thermally conductive silicone gel composition, thermally conductive member and heat dissipation structure |
JP2021161278A (en) * | 2020-03-31 | 2021-10-11 | 三菱ケミカル株式会社 | Organopolysiloxane composition |
JP2021161247A (en) * | 2020-03-31 | 2021-10-11 | 三菱ケミカル株式会社 | Organopolysiloxane composition |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062821B2 (en) * | 1989-11-28 | 1994-01-12 | 信越化学工業株式会社 | Method for producing epoxy group-containing silicone elastomer fine powder and fine powder produced by the method |
JP3469327B2 (en) * | 1994-08-03 | 2003-11-25 | 信越化学工業株式会社 | Method for producing organopolysiloxane |
JP2003192790A (en) * | 2001-12-27 | 2003-07-09 | Dow Corning Toray Silicone Co Ltd | Radically polymerizable organopolysiloxane mixture and method for producing the same |
JP5060074B2 (en) * | 2006-05-11 | 2012-10-31 | 東レ・ダウコーニング株式会社 | Adhesion promoter, curable organopolysiloxane composition, and semiconductor device |
JP4862032B2 (en) * | 2008-12-05 | 2012-01-25 | 信越化学工業株式会社 | Addition-curable silicone composition that provides a cured product having a high refractive index, and an optical element sealing material comprising the composition |
JP4913858B2 (en) * | 2009-04-14 | 2012-04-11 | 日東電工株式会社 | Composition for thermosetting silicone resin |
JP2011057755A (en) * | 2009-09-07 | 2011-03-24 | Shin-Etsu Chemical Co Ltd | Silicone composition and cured product thereof |
-
2012
- 2012-02-20 JP JP2012034100A patent/JP5505436B2/en active Active
- 2012-04-20 TW TW101114054A patent/TWI499644B/en active
- 2012-04-20 TW TW104108949A patent/TW201525073A/en unknown
-
2014
- 2014-01-27 JP JP2014012162A patent/JP5696798B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI499644B (en) | 2015-09-11 |
JP5505436B2 (en) | 2014-05-28 |
JP2012233153A (en) | 2012-11-29 |
TW201525073A (en) | 2015-07-01 |
JP2014074183A (en) | 2014-04-24 |
TW201247785A (en) | 2012-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101472829B1 (en) | Curable composition, cured product, photo-semiconductor device, and polysiloxane | |
KR101589936B1 (en) | Curable organopolysiloxane composition and semiconductor device | |
US9346954B2 (en) | Curable resin composition | |
JP5992666B2 (en) | Crosslinkable silicone composition and crosslinked product thereof | |
JP5793824B2 (en) | Organosilicon compound, thermosetting composition containing the organosilicon compound, and sealing material for optical semiconductor | |
JP2013139547A (en) | Curable composition, cured product, and optical semiconductor device | |
JP5696798B2 (en) | Polysiloxane | |
WO2016035285A1 (en) | Curable silicone composition, curable hot-melt silicone, and optical device | |
JP2007039483A (en) | Curable polyorganosiloxane composition | |
JP5858027B2 (en) | Curable composition, cured product, and optical semiconductor device | |
WO2015136820A1 (en) | Curable resin composition | |
JP2012233153A5 (en) | ||
JP5660145B2 (en) | Curable composition, cured product, and optical semiconductor device | |
JP5621819B2 (en) | Curable composition, cured product, and optical semiconductor device | |
KR20150119882A (en) | Curable resin composition | |
KR20130062869A (en) | Curable composition, cured product, and optical semiconductor device | |
JP6766334B2 (en) | Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors. | |
KR101594343B1 (en) | Curable composition and method for producing thereof, cured product, and optical semiconductor device | |
JP5943104B2 (en) | Curable composition, cured film, polysiloxane, and optical semiconductor device | |
JP5807427B2 (en) | Curable composition, cured film, polysiloxane, and optical semiconductor device | |
KR101733960B1 (en) | Curable composition, cured product and photo-semiconductor device | |
WO2021167052A1 (en) | Curable liquid silicone composition, cured product of curable liquid silicone composition, optical filler including curable liquid silicone composition, and display device including layer comprising cured product of curable liquid silicone composition | |
TW202436518A (en) | Curable hotmelt silicone composition,encapsulant, hotmelt adhesives, and optical semiconductor device | |
JP2017036391A (en) | Curable composition, cured product, polysiloxane, and optical semiconductor device | |
JP2020158692A (en) | Fluorine-containing condensed type organopolysiloxane prepolymer and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5696798 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |