JP5693646B2 - 画像形成装置の記録ヘッド - Google Patents

画像形成装置の記録ヘッド Download PDF

Info

Publication number
JP5693646B2
JP5693646B2 JP2013095933A JP2013095933A JP5693646B2 JP 5693646 B2 JP5693646 B2 JP 5693646B2 JP 2013095933 A JP2013095933 A JP 2013095933A JP 2013095933 A JP2013095933 A JP 2013095933A JP 5693646 B2 JP5693646 B2 JP 5693646B2
Authority
JP
Japan
Prior art keywords
recording
pass
sensor
density
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013095933A
Other languages
English (en)
Other versions
JP2013144468A (ja
Inventor
博之 堀井
博之 堀井
石川 尚
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013095933A priority Critical patent/JP5693646B2/ja
Publication of JP2013144468A publication Critical patent/JP2013144468A/ja
Application granted granted Critical
Publication of JP5693646B2 publication Critical patent/JP5693646B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ink Jet (AREA)

Description

本発明は、インクジェットプリンタ等の2値化されたデータを用いて写真等の画像を形成するプリンタに関するものであり、特に、カラー画像を形成するものに関する。
濃度ムラを補正する技術として、特許文献1には、画像記録の際に所定のタイミングで複数の記録素子の濃度ムラを検出し、その検出結果に基づいて、記録ヘッドに付与される駆動信号を調整する技術が開示されている。
また、特許文献2には、画像データにテストパターンデータを混合したデータによって、画像の記録及び記録媒体の間欠的な搬送を繰り返して得られた画像とテストパターンとを比較した結果に基づいて、記録媒体の搬送量を補正する技術が開示されている。
特開平02−286341号公報 特開2006−218774号公報
しかしながら、特許文献1に開示された技術では、記録枚数が所定の値に達したときや不動作期間が所定の値に達したときなどに画像データを補正するため、画像を形成する際に突発的に生じた濃度ムラを補正することができない。このため、リアルタイムに画像データを補正することができない。
また、特許文献2に開示された技術では、テストパターンを記録画像に混合しながら記録を行うため、搬送量の誤差による濃度ムラを抑制可能であるが、印刷すべき画像にテストパターンの画像を付加する必要があるため、見栄えを悪化させる要因となり得る。
従って、本発明の目的は、リアルタイムに濃度ムラを補正して画像品位のより高い画像を形成することにある。
上記課題を解決するため、本発明の一実施形態に係る画像形成装置の記録ヘッドは、
記録データを記録するノズル列と、前記ノズル列に先行する位置に配置され、記録媒体上に既に形成された画像の記録状態を検出するセンサとを含む、画像形成装置の記録ヘッドであって、
前記センサが検出した前記記録状態は、前記記録状態を前記センサを検出した走査と同じ走査において記録される、前記ノズル列に対応する記録データを生成するために用いられ、
前記ノズル列は、各ノズルが並ぶ方向と直交する方向に記録媒体上を相対的に走査することにより該記録媒体上に画像を形成することを特徴とする。
本発明によれば、リアルタイムに濃度ムラを補正して画像品位のより高い画像を形成することができる。
本発明の第1の実施形態に係るプリンタ10の機能的構成を示すブロック図である。 (a)乃至(c)は、記録媒体200及びキャリッジ210の配置状態を示す図である。 第1の実施形態に係る画像形成装置の機能的構成を示すブロック図である。 第1の実施形態に係る記録データ生成部370の機能的構成を示すブロック図である。 第1の実施形態に係る低階調化部450の機能的構成を示すブロック図である。 (a)は記録媒体200とキャリッジ210との位置関係を示す図であり、(b)はキャリッジ210によって走査される記録媒体200上の記録領域205を示す図である。 第1の実施形態の変形例1に係る記録データ生成部370の機能的構成を示すブロック図である。 第1の実施形態の変形例2に係る画像形成装置の機能的構成を示すブロック図である。 第2の実施形態に係る記録データ生成部370の機能的構成を示すブロック図である。 第2の実施形態の変形例に係る記録データ生成部370の機能的構成を示すブロック図である。 第3の実施形態に係る記録データ生成部370の機能的構成を示すブロック図である。 第3の実施形態の変形例に係る記録データ生成部370の機能的構成を示すブロック図である。 第4の実施形態に係る画像形成装置の機能的構成を示すブロック図である。 従来例及び第1の実施形態の変形例2における各パスで形成されるドットの位置を示す図である。 従来例における各パスで形成されるドットの位置を示す図である。 (a)乃至(d)は、第1の実施形態における各パスで形成されるドットの位置を示す図である。 マルチパス印字の従来例を示す図である。 第5の実施形態に係るインクジェットヘッド700及びセンサ710の配置状態を示す図である。 第5の実施形態に係る画像形成装置の機能的構成を示すブロック図である。 第5の実施形態に係る記録データ生成部720の機能的構成を示すブロック図である。 第6の実施形態に係る画像形成装置の機能的構成を示すブロック図である。 第6の実施形態の変形例に係る画像形成装置の機能的構成を示すブロック図である。 第6の実施形態の変形例に係る記録データ生成部375の機能的構成を示すブロック図である。 第7の実施形態に係るセンサ235、236、237、238及びインクジェットヘッド225の配置状態を示す図である。 第7の実施形態に係る画像形成装置の機能的構成を示すブロック図である。 シアンとマゼンタのドットの生成位置を示す図である。 (a)は筋ムラの発生状態を示す図であり、(b)は粒状性が悪化した状態を示す図である。 (a)及び(b)は本発明の記録ドット生成を行った結果を示す図である。
以下に、本発明の実施の形態について添付図面を参照して詳細に説明する。なお、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で以下の実施形態を修正又は変形したものに適用可能である。
<前提となる技術>
複数の記録素子を備えた記録ヘッドを用いる装置の一例として、従来から、複数のインクの吐出口を備えた記録ヘッドを用いるインクジェット記録装置が知られている。インクジェット記録装置では、インクの吐出量や吐出方向等のバラツキに起因して、インクで形成されるドットの大きさや位置がばらついて、印刷された画像に濃度ムラが生じることがある。このような記録ヘッドのノズル特性のバラツキに起因した濃度ムラは、筋状のムラ(筋ムラ)となって印刷された画像中に現れるため、視覚上、目立ち易く印刷された画像の品位の低下を招いていた。
また、シアン、マゼンタ、イエロー等の色材を用いてカラー画像を形成する際に、インクジェットプリンタでは、各色の記録ヘッドから各インク色のインクの吐出を行い、記録媒体上には、吐出したインクの液滴でドットを形成し、画像を形成している。一般的に、記録を行う画像を入力し、この画像を形成するためのインク色に変換を行い、インク色毎に画像を形成するための記録データの生成が行われる。この際に、インク色毎に独立に記録データを生成すると、各インク色の記録データの分散性を確保することができない。このため、画像の濃度が比較的淡い場合に、濃度に対する影響度の高いシアンとマゼンタのドットの分散性が悪くドットが近づく部位で粒状感が目立ってしまい、画像の品位の低下を招いていた。そこで、濃度に対する影響度の高いシアンとマゼンタのドットの分散性を確保するために、例えば次のような技術がある。シアンとマゼンタの記録データを生成する際に、独立に記録データを生成するのではなく、相手のインク色の記録濃度に応じて、互いに記録データの生成を制御する技術が提案されている(特開平03−241972他)。
また、上述した濃度ムラを補正するため、インクジェット記録方式による場合には、2値化処理等のハーフトーン処理を施した後の画像データ(ドットパターン)の1ラインを複数の異なる吐出口から吐出されるインクで形成する方式が提案されている。これは、例えば、記録ヘッドの幅未満の紙送りを行うことで、1ラインの画像データを複数の走査(スキャン又はパス)で補完することで実現することができる。この手法は、一般にマルチパス記録(又は印字)方式と呼ばれる。
マルチパス記録方式には、マスクパターンを用いる方式と、多値の記録すべき入力画像の濃度を複数の走査に分割し、その分割されたものに対して、それぞれ記録データを生成する方式とがある。
マスクパターンを用いてパス分割を行う方式は、一度生成した記録データに対して、複数回の記録に分割するため、パスに応じたマスクパターンを予め用意し、このマスクパターンと生成した記録データの論理積を取ることで記録していた。このマスクパターンは、複数回の記録によって、生成されたすべてのデータを打ち切ることができるように予め定められている。マルチパスのパス分割を行うため、マスクパターンは、記録可能なドットを100%として、各パス毎に記録可能なドットが決定され、各パス間では排他的であり、かつ、すべてのパスの記録可能なドットの論理和を取ると全領域に等しくなるように設定される。このため、マスクパターン自体は、ハーフトーン処理との干渉を避けるため、できるだけランダムになるように選択される。
また、記録すべき入力画像を走査に合わせて濃度分割を行うことでパス分割を行う方式は、本発明者らが提案している。この方式は、記録すべき入力画像を各走査運動に対応して記録する濃度比率を決定し、この走査毎の記録濃度比率に応じて決定された分割比率によって、記録すべき入力画像を濃度分割し、それぞれハーフトーン処理を行って、記録データを生成する方式である。マスクパターン方式や濃度分割方式のいずれの場合においても、記録すべき入力画像を複数回の走査に分割し、記録を行うものである。以下に、マルチパス記録の動作を説明する。
図13は、入力画像を4パスに分割する従来の手順を示す図である。横軸は入力画像の濃度であり、縦軸は記録媒体上での出力濃度である。入力濃度に対する出力濃度は、線形ではなく、通常、縦軸の正方向に膨らんだ曲線を描くが、従来の濃度分割では基本的には、4パスに分割する場合には、入力された濃度データを4つに均等に分割する。すなわち、1乃至4パス目までの入力濃度の分割比率k1、k2、k3、k4が、図13で示すように、k1:k2:k3:k4=1:1:1:1となるように分割する。また、マスクパターン法及び濃度分割法のいずれの場合でも、記録すべき入力画像を複数回の走査に分割して記録する。
図17は、マルチパス記録の従来例を示す図である。ここでは、インクジェットヘッドを4回走査して記録媒体310に画像を形成する4パス記録の例について説明する。
インクジェットヘッド300は、4つの領域300a、300b、300c、300dに分割されており、各領域には縦方向に複数のノズルが配置されている。領域300aは、インクジェットヘッド300の最下端の領域であり、領域300bは、領域300aの上方に隣接する領域である。また、領域300cは、領域300bの上方に隣接する領域であり、領域300dは、領域300cの上方に隣接する領域である。領域300a乃至300dは、前述の通り、インクジェットヘッド300の領域を4つに均等分割して形成されている。
プリンタは、インクジェットヘッド300が記録媒体310上を走査した後に、記録媒体310を紙送り機構でインクジェットヘッド300に対して上方に移動させて印刷を繰り返す。
図17(a)は、領域310−1に対する1パス目の走査を示す。まず、記録媒体310の領域310−1に記録する記録データのうち、1パス目で記録する記録データをインクジェットヘッド300の下側1/4の領域300aに送信し、記録媒体310上を左方向(又は右方向)に走査する。これにより、領域300aに配置されたノズルによって、記録媒体310の領域310−1に1パス目の記録を行う。なお、1パス目の記録では、インクジェットヘッド300の領域300b、300c、300dに配置されたノズルには記録データを送信せず、記録媒体310の領域には記録を行わない。
この記録処理が終了した場合には、記録媒体310を上側にインクジェットヘッド300の1/4の長さ(すなわち、領域300aでのノズル配列方向の幅)だけ紙送りを行う。
図17(b)は、領域310−1に対する2パス目の走査を示す。インクジェットヘッド300は、領域310−1に対する2パス目の走査時には、記録媒体310に対して、実線で図示された位置にある。なお、インクジェットヘッド300は、2パス目の1回前のパスである1パス目の走査時には、記録媒体310に対して、破線で図示する位置300−1にあった。
まず、インクジェットヘッド300の領域300aに対して、記録媒体310の領域310−2に記録する記録データのうち、1パス目で記録する記録データを送信し、記録媒体310の領域310−2を左方向(又は右方向)に走査する。これにより、領域300aに配置されたノズルによって、記録媒体310の領域310−2に1パス目の記録を行う。
また、インクジェットヘッド300の領域300bに対して、記録媒体310の領域310−1に記録する記録データのうち、2パス目に記録する記録データを送信し、記録媒体310の領域310−1を左方向(又は右方向)に走査する。これにより、領域300bに配置されたノズルによって、記録媒体310の領域310−3に2パス目の記録を行う。なお、インクジェットヘッド300の領域300c、300dは、まだ記録領域に入っていないため、記録媒体310の領域には記録データを送信せず、記録を行わない。
これらの記録処理が終了した場合には、記録媒体310を上側にインクジェットヘッド300の1/4の長さ(すなわち、領域300aのノズル配列方向の幅)だけ紙送りを行う。
図17(c)は、領域310−1に対する3パス目の走査を示す。インクジェットヘッド300は、領域310−1に対する3パス目の走査時には、記録媒体310に対して、実線で図示された位置にある。なお、インクジェットヘッド300は、3パス目の1回前のパスである2パス目の走査時には、記録媒体310に対して、破線で図示する位置300−1にあった。また、インクジェットヘッド300は、3パス目の2回前のパスである1パス目の走査時には、記録媒体310に対して、破線で図示された位置300−2にあった。
まず、インクジェットヘッド300の領域300aに対して、記録媒体310の領域310−3に記録する記録データのうち、1パス目で記録する記録データを送信し、記録媒体310の領域310−3を左方向(又は右方向)に走査する。これにより、領域300aに配置されたノズルによって、記録媒体310の領域310−3に1パス目の記録を行う。
また、インクジェットヘッド300の領域300bに対して、記録媒体310の領域310−2に記録する記録データのうち、2パス目で記録する記録データを送信し、記録媒体310の領域310−2を左方向(又は右方向)に走査する。これにより、領域300bに配置されたノズルによって、記録媒体310の領域310−2に2パス目の記録を行う。
更に、インクジェットヘッド300の領域300cに対して、記録媒体310の領域310−1に記録する記録データのうち、3パス目で記録する記録データを送信し、記録媒体310の領域310−1を左方向(又は右方向)に走査する。これにより、領域300cに配置されたノズルによって、記録媒体310の領域310−1に3パス目の記録を行う。なお、インクジェットヘッド300の領域300dは、まだ記録領域に入っていないため、記録媒体310の領域には記録データを送信せず、記録を行わない。
これらの記録処理が終了した場合には、記録媒体310を上側にインクジェットヘッド300の1/4の長さ(すなわち、領域300aのノズル配列方向の幅)だけ紙送りを行う。
図17(d)は、領域310−1に対する4パス目の走査を示す。インクジェットヘッド300は、領域310−1に対する4パス目の走査時には、記録媒体310に対して、実線で図示された位置にある。なお、インクジェットヘッド300は、4パス目の1回前のパスである3パス目の走査時には、記録媒体310に対して、破線で図示された位置300−1にあった。また、インクジェットヘッド300は、4パス目の2回前のパスである2パス目の走査時には、記録媒体310に対して、破線で図示された位置300−2にあった。更に、インクジェットヘッド300は、4パス目の3回前の1パス目の走査時には、記録媒体310に対して、破線で図示された位置300−3にあった。
まず、インクジェットヘッド300の領域300aに対して、記録媒体310の領域310−4に記録する記録データのうち、1パス目で記録する記録データを送信し、記録媒体310の領域310−4を左方向(又は右方向)に走査する。これにより、領域300aに配置されたノズルによって、記録媒体310の領域310−4に1パス目の記録を行う。
また、インクジェットヘッド300の領域300bに対して、記録媒体310の領域310−3に記録する記録データのうち、2パス目で記録する記録データを送信し、記録媒体310の領域310−3を左方向(又は右方向)に走査する。これにより、領域300bに配置されたノズルによって、記録媒体310の領域310−3に2パス目の記録を行う。
また、インクジェットヘッド300の領域300cに対して、記録媒体310の領域310−2に記録する記録データのうち、3パス目で記録する記録データを送信し、記録媒体310の領域310−2を左方向(又は右方向)に走査する。これにより、領域300cに配置されたノズルによって、記録媒体310の領域310−2に3パス目の記録を行う。
更に、インクジェットヘッド300の領域300dに対して、記録媒体310の領域310−1に記録する記録データのうち、4パス目で記録する記録データを送信し、記録媒体310の領域310−1を左方向(又は右方向)に走査する。これにより、領域300dに配置されたノズルによって、記録媒体310の領域310−1に4パス目の記録を行う。
これらの記録処理が終了した場合には、1乃至4パス目の記録処理が、インクジェットヘッド300の領域300a、領域300b、領域300c、及び領域300dでそれぞれ行われたこととなり、領域310−1については全ての画像形成が完了する。
領域310−1に対する4パス目の走査が終了した後は、記録媒体310を上側にインクジェットヘッド300の1/4の長さ(すなわち、領域300aのノズル配列方向の幅)だけ紙送りを行う。以降、インクジェットヘッド300の走査による記録と紙送りとを順次繰り返して、記録媒体310に画像を形成していく。
このように、駆動部の紙送り誤差やインクジェットヘッドのノズルのバラツキに起因する筋やムラ等の濃度ムラを低減するため、記録媒体上の領域を複数回の走査に分けて、各走査に記録データを分割して印刷するマルチパス記録方式が従来から行われている。
しかしながら、記録ヘッドを記録媒体に対して1回の走査で画像を形成する1パス記録では、マルチパス記録のような濃度ムラ低減手法を用いることはできない。また、濃度に対する影響度の高いシアンやマゼンタの記録データの生成を互いに制御する手法に関しても、インクジェットヘッドのノズルの吐出特性(吐出量や吐出方向等)のバラツキに対しては解決することができない。
また、1パス記録ではなく、マルチパス記録を行うことができる画像形成方式においても、駆動部による記録媒体310の搬送量やインクジェットヘッドのノズルの吐出特性等のバラツキに起因する筋状のムラ等の濃度ムラをある程度低減することはできてきた。しかしながら、記録画質の高画質化要求が高まる中で、記録液滴の小液滴化、記録解像度の高解像度化等によって、従来のマルチパス記録方式だけでは、上述のプリンタにおける問題を解決し、濃度ムラを抑制することが困難である。
次に、シアンとマゼンタのドットの形成位置による画質劣化について、図26及び図27を用いて説明する。図26は、シアンとマゼンタのドットの形成位置を示す図である。また、図27において、(a)は筋ムラの発生状態を示す図であり、(b)は粒状性が悪化した状態を示す図である。なお、ここでは、インクジェットヘッドのノズルの吐出特性のバラツキによる画質劣化をわかりやすく説明するために、必ずしも実際のプリンタの記録結果とは異なる部分もあることを断っておく。
図26では、シアンとマゼンタがほぼ同等の濃度である時に、それぞれのドットがほぼ同等の形成頻度でドットが形成されている。また、シアンとマゼンタの記録データ生成を互いに制御することによって、それぞれのインク色のドットの分散性が確保されている。この結果、シアン、マゼンタ共に記録データが均一に生成されている。この記録データに基づいて、インクジェットヘッドでインクの吐出を行い、記録媒体に画像を形成した時に、インクジェットヘッドのノズルの吐出特性のバラツキによって、記録媒体上に図27(a)のような状態で記録される。この結果、筋ムラが発生していることがわかる。また、図27(b)のように、記録濃度が低い状態では、インクジェットヘッドの吐出方向のバラツキによって、シアンのドットとマゼンタのドットの分散性が低くなり、この結果として、粒状性が悪くなってしまう。
図14及び図15は、従来例における各パスで形成されるドットの位置を示す図である。駆動部による記録媒体の搬送量やインクジェットヘッドのノズル特性(吐出量や吐出方向等)のバラツキによる筋状のムラ等の濃度ムラが発生する態様を説明する。但し、駆動部による記録媒体の搬送量のバラツキ、インクジェットヘッドのノズル特性(吐出量や吐出方向等)のバラツキによって発生する濃度ムラを明確に説明するため、実際の記録と異なる部分もある。
図14では、ある濃度の記録を4パス記録で行った時に理想的な位置に吐出されたドットを示している。丸印が記録ドットであり、丸印内の数字が1乃至4パス目までのいずれのパスで記録したドットであるかを示すパス番号である。ここでは、各パスに分割した分割係数は、それぞれ0.25として、各パスの記録比率が均等になることを想定して説明する。また、濃度ムラを明確に示すため、記録ラインの奇数ラインは1及び3パス目の記録を行い、偶数ラインは2及び4パス目の記録を行う状況を想定する(実際の記録とは異なる。)。インクジェットヘッドによる吐出特性(吐出量や吐出方向等)のバラツキが無く、また、プリンタの駆動部による記録媒体の搬送量のバラツキが無い状態とすると、図14で示すように記録ドットが格子状に整列し、均一な濃度として画像が形成される。
しかし、インクジェットヘッドの吐出特性や記録媒体の搬送量等のバラツキのような画質劣化要因が加わる場合には、図15で示すように、インクドットの配置等が理想状態よりずれるため、形成された画像の濃度は均一ではなくなる。図15では、1パス目の記録後と3パス目の記録後の記録媒体の搬送量が少し大きくなり、2パス目の記録後の記録媒体の搬送量が少し小さくなり、更に、吐出方向のバラツキが加わった状態である。この結果、理想的には図14のように均等にドットが配置されるべきものが、2ライン目と3ライン目との間が近接する一方で、1ライン目と2ライン目との間、及び3ライン目と4ライン目との間が離間し、この部分で濃度ムラが発生してしまう。このような濃度ムラを抑制するため、本発明では、以下の各実施形態を採用することができる。
<第1の実施形態>
図1は、本発明の一実施形態に係るプリンタ10の機能的構成を示すブロック図である。
プリンタ10は、本実施形態では、インクジェットプリンタであり、CPU100と、ROM110と、RAM120と、USBデバイスインターフェース130と、USBホストインターフェース140と、を備える。また、プリンタ10は、画像処理部150と、記録制御部160と、駆動制御部170と、プリンタエンジン部180とを備える。
CPU100は、プリンタ10を制御する中央処理装置であり、ROM110には、CPU100のプログラムやテーブルデータが格納されている。また、RAM120は、変数やデータを格納するメモリである。
また、USBデバイスインターフェース130は、パーソナルコンピュータ(PC)20からデータを受け取るインターフェース(I/F)である。また、USBホストインターフェース140は、デジタルカメラ30等の電子機器からデータを受け取るインターフェース(I/F)である。本実施形態では、USBデバイスインターフェース130には、パーソナルコンピュータ20が接続され、USBホストインターフェース140には、デジタルカメラ30が接続されるものとする。
画像処理部150は、デジタルカメラ30等の電子機器から入力された多値画像を色変換や2値化等の処理を行い、また、記録制御部160は、画像処理部150で2値化処理された記録データを後述のプリンタエンジン部180に送信して記録制御を行う。プリンタエンジン部180は、インクジェットヘッド、紙送り機構、及びキャリッジ送り機構を有し、記録制御部160からの制御信号に基づいて、記録媒体200上に階調画像を記録する。駆動制御部170は、プリンタエンジン部180の紙送り機構やキャリッジ送り機構等の駆動部(例えば、モータの回転数等)を制御する。
ここで、デジタルカメラ30で撮影された画像をパーソナルコンピュータ20を介さずに直接、プリンタ10に送信して印刷する場合を想定する。まず、プリンタエンジン部180にセットされた記録媒体(図示せず)は、その種類を検出するためのセンサ(図示せず)で記録媒体の情報が読み取られ、CPU100で記録媒体の種類が判別される。記録媒体の種類を検出するセンサは、種々提案されており、例えば、特定の波長の光を記録媒体に投射して反射光を読み取り、その反射光と予め記憶された複数の波長サンプルとを比べることによって、記録媒体を判別する方式が採用できる。
デジタルカメラ30で撮影された画像データは、JPEG画像としてデジタルカメラ30内のメモリ31に格納される。デジタルカメラ30は、接続ケーブルでプリンタ10のUSBホストインターフェース140に接続される。デジタルカメラ30のメモリ31に格納された撮像画像は、USBホストインターフェース140を介してプリンタ10内のRAM120に一時記憶される。デジタルカメラ30から受け取った画像データは、JPEG画像であるため、CPU100を用いて圧縮画像を解凍して画像データとし、その画像データをRAM120に格納する。RAM120に格納された画像データに基づいて、プリンタエンジン部180のインクジェットヘッドで印刷するための記録データを生成する。RAM120に格納された画像データは、画像処理部150で色変換処理や2値化処理等を行い、記録データ(ドットデータ)に変換され、更に、パス分割を行ってマルチパス記録に対応させる。なお、画像処理部150での処理手順の詳細については後述する。
記録データに変換され、パス分割されたデータは、記録制御部160に送信され、インクジェットヘッドの駆動順序に合わせて、プリンタエンジン部180のインクジェットヘッドに送信される。そして、駆動制御部170及びプリンタエンジン部180に同期して、記録制御部160で吐出パルスが生成されて、インク滴を吐出し、記録媒体(図示せず)上に画像が形成される。
なお、本実施形態では、画像処理部150で2値化処理を行うものとしたが、入力画像を印刷するために低階調化すればよいため、2値化に限定されるものではない。例えば、インクの濃度やインクの液滴の大きさ等が2段階ある場合に限らず、それらが3段階ある場合等のように、データ量削減のためのN(Nは2以上の整数)値化を含めるものである。
また、本実施形態では、プリンタエンジン部180に配置されたセンサ(図示せず)がプリンタ10にセットされた記録媒体の有無等を検出し、CPU100がセンサで検出した情報に基づいて、記録媒体の種類を判別した。しかし、ユーザがプリンタ10やデジタルカメラ30を操作して、記録媒体の種類を選択しても構わない。
図2において、(a)乃至(c)は、記録媒体200及びキャリッジ210の配置状態を示す図である。
キャリッジ210には、図2(a)で示すように、インクジェットヘッド220及びセンサ230が搭載されており、左右いずれの方向にも走査可能である。インクジェットヘッド220は、シアン用ヘッド220c、マゼンタ用ヘッド220m、イエロー用ヘッド220y、ブラック用ヘッド220bkの4色のヘッドを有し、各色毎に複数のノズルを有する。センサ230は、記録媒体200へのRGBの記録状態を検出するカラーセンサである。センサ230は、記録走査運動を行う方向(主走査方向X)に対して、インクジェットヘッド220よりも先行する位置(主走査方向Xの上流側)に隣接して配置される。すなわち、センサ230は、インクジェットヘッド220と同期して移動することとなる。なお、センサ230には、本実施形態では、RGBの記録状態を検出するカラーセンサを用いるが、CMYの補色センサやモノクロセンサ等を用いても構わない。
キャリッジ210は、記録媒体200上を主走査方向Xに走査する際に各色のインクジェットヘッド220のノズルからインク滴を吐出して記録を行う。1走査分の記録を終了した場合には、プリンタエンジン部180(図1参照)で記録媒体200を副走査方向Yに搬送し、次の走査の位置に記録媒体200をセットする。
本実施形態では、記録領域を複数回走査して記録するマルチパス記録を行うため、記録媒体200の1回の搬送量は、インクジェットヘッド220のノズル幅よりも小さい。すなわち、本実施形態では、インクジェットヘッド220のノズル幅の4分の1をキャリッジ210の1走査毎に搬送する。
センサ230は、図2(a)で示すように、主走査方向X(記録走査運動を行う方向)が図面上で右方向である場合には、主走査方向Xに対して、インクジェットヘッド220よりも先行する位置に位置することになる。このため、マルチパス記録を行う場合には、注目する記録走査(nパス目とする)よりも1回前の記録走査(すなわち、n−1パス目)までの記録状態を走査中に検出することができる。記録状態とは、インクジェットヘッド220の吐出特性(インクの吐出量や吐出方向のバラツキ)やプリンタエンジン部180(図1参照)による記録媒体200の搬送量のバラツキ等によって変化する実際に記録媒体200上に記録された状態を言う。従って、センサ230で検出された検出結果に基づいて、キャリッジ210の走査中にリアルタイムに濃度ムラを補正することが可能になる。なお、詳細については本実施形態で後述する。
一方、センサ230は、図2(b)で示すように、主走査方向X(記録走査運動を行う方向)が図面上で右方向である場合に、主走査方向Xに対して、インクジェットヘッド220よりも後続する位置に配置することもできる。この場合には、注目するパス(nパス目とする。)の記録データ生成時に、n−1パス目までの記録状態を検出することができない。すなわち、nパス目までの記録状態を検出することとなる。このため、走査中にリアルタイムに濃度ムラを補正するわけではなく、センサ230の出力を1走査分だけ保持して補正することとなる。なお、詳細については、第4の実施形態で後述する。
また、往復走査運動の往路及び復路の両方で記録媒体上への形成処理を行う場合には、図2(c)で示すように、センサ230を記録走査運動を行う方向に対して、インクジェットヘッド220の先行する位置及び後続する位置の両方に配置してもよい。なお、インクジェットヘッド220の左側(前述の後続する位置)に配置されるセンサ230をセンサ231とし、インクジェットヘッド220の右側(前述の先行する位置)に配置されるセンサ230をセンサ232とする。この場合には、主走査方向Xが右方向である走査の場合には、センサ232で記録状態を検出し、主走査方向Xが左方向である走査の場合には、センサ231で記録状態を検出する。従って、双方向記録を行う際に、左右いずれの方向に走査する際であっても同様に制御することが可能となる。
図3は、第1の実施形態に係る画像形成装置の機能的構成を示すブロック図である。画像形成装置は、記録媒体200上の同一領域に対して、インクジェットヘッド220を複数回往復走査運動させる。往復走査運動においては、往復走査運動の一方で記録媒体200上にドットの形成処理を行い、往復走査運動の他方で原位置への移動処理を行うマルチパス処理を用いて、記録媒体200上に階調画像を形成する。
まず、入力画像320は、色変換部330でRGB信号からプリンタ10(図1参照)で印刷するためのCMY信号335(シアン用信号335c、マゼンタ用信号335m、及びイエロー用信号335y)に変換される。また、記録状態を検出するセンサ340から検出されたRGB信号は、色変換部350でCMY信号355(シアン用信号355c、マゼンタ用信号355m、及びイエロー用信号355y)に変換される。色変換部350は、例えば、センサ340のRGB信号のカラーフィルタ特性、センサ340の検出領域に対して与える光源の特性、及び記録するインクの特性等に基づいて、CMY信号355への色変換を行う。
そして、色変換部330で変換されたCMY信号335と色変換部350で変換されたCMY信号355が記録データ生成部370(シアン用記録データ生成部370c、マゼンタ用記録データ生成部370m、イエロー用記録データ生成部370y)に入力される。記録データ生成部370では、センサ230で検出された記録状態に基づいて、プリンタエンジン部180による記録と同期して記録データを補正する。
記録データ生成部370では、インクジェットヘッドで記録を行うために2値化を行って、各記録走査運動毎の記録データを生成する。記録データ生成部370でインクジェットヘッドの記録データが生成された後、各色の記録制御部380(シアン用記録制御部380c、マゼンタ用記録制御部380m、イエロー用記録制御部380y)に入力される。記録制御部380は、低階調化された記録データに基づいて、インクジェットヘッド等のプリンタエンジン部180(図1参照)に対して記録制御を行って、記録媒体に対して画像を形成する。
図4は、第1の実施形態に係る記録データ生成部370の機能的構成を示すブロック図である。ここでは、図3で示す記録データ生成部370のうち、シアン用記録データ生成部370c、マゼンタ用記録データ生成部370m、イエロー用記録データ生成部370yのいずれか1色の機能的構成について例示する。記録画像信号400(図3のCMY信号335に相当する。)は、色変換部330(図3参照)で記録を行うための各インク色に変換される。
パス分割テーブル410は、マルチパスに分割するための分割比率k1、k2、k3、k4を格納する。乗算器420−1は、記録画像信号400に1パス目の分割比率k1(415−1)を乗算して1パス目の記録濃度を演算する。乗算器420−2は、記録画像信号400に2パス目の分割比率k2(415−2)を乗算して2パス目の記録濃度を演算する。乗算器420−3は、記録画像信号400に3パス目の分割比率k3(415−3)を乗算して3パス目の記録濃度を演算する。乗算器420−4は、記録画像信号400に4パス目の分割比率k4(415−4)を乗算して4パス目の記録濃度を演算する。
まず、センサ340からの信号430が記録データ制御部440に入力される。信号430は、図3で示したように、センサ340で検出されたRGB信号を色変換部350でCMY信号355に変換したものである。記録データ制御部440は、CMY信号に変換されたセンサ340からの信号430に対して、濃度レベルの補正及び記録データの生成のために用いられる制御データを生成し、各色の低階調化部450−1〜450−4にその信号を送信する。
低階調化部450−1は、1パス目の記録濃度を演算した乗算器420−1の出力から1パス目の記録データを生成する。低階調化部450−2は、2パス目の記録濃度を演算した乗算器420−2の出力に対してセンサ340による検出信号より記録データ生成に対する制御データを生成した記録データ制御部440による制御を受けて2パス目の記録データを生成する。低階調化部450−3は、3パス目の記録濃度を演算した乗算器420−3の出力に対してセンサ340による検出信号より記録データ生成に対する制御データを生成した記録データ制御部440による制御を受けて3パス目の記録データを生成する。低階調化部450−4は、4パス目の記録濃度を演算した乗算器420−4の出力に対してセンサ340による検出信号より記録データ生成に対する制御データを生成した記録データ制御部440による制御を受けて4パス目の記録データを生成する。
1パス目記録画像記憶部460−1は、1パス目の記録データを生成した低階調化部450−1の出力を1パス目の記録画像として一時記憶する。2パス目記録画像記憶部460−2は、2パス目の記録データを生成した低階調化部450−2の出力を2パス目の記録画像として一時記憶する。3パス目記録画像記憶部460−3は、3パス目の記録データを生成した低階調化部450−3の出力を3パス目の記録画像として一時記憶する。4パス目記録画像記憶部460−4は、4パス目の記録データを生成した低階調化部450−4の出力を4パス目の記録画像として一時記憶する。
図4では、4パス記録を行う場合を例示したが、各パスでの記録濃度を決定するものがパス分割テーブル410である。分割比率k1、k2、k3、k4は、それぞれが、0<=ki<=1 (i=1、2、3、4)、かつ、k1+k2+k3+k4=1で示される関係を満たす。分割比率k1、k2、k3、k4は、4パス記録の場合には、例えば、すべてのパスに均等に分割するように0.25とすることができる。また、1パス目の記録比率を低めに設定して、1パス目以降のパスの記録比率を高めに設定するように、k1=0.1、k2=0.2、k3=0.3、k4=0.4とすることができる。このように、パス分割テーブル410に種々の場面を想定した分割比率を格納しておくことによって、任意の濃度比率でパス分割を行うことができる。
各インク色に変換された記録信号は、乗算器420に入力され、パス分割テーブル410から読み出された分割比率k1、k2、k3、k4が乗算され、各パスの記録濃度が決定される。次に、各パス毎の記録データを生成する手順について説明する。
まず、1パス目の領域に記録する記録データを生成する際には、色変換部330(図3参照)で各インク色に分解された記録画像信号400は、パス分割テーブル410に記憶された分割比率k1と乗算器420−1で乗算され、1パス目の記録濃度が決定される。その後、1パス目の記録濃度を1パス目の低階調化部450−1で低階調化して1パス目の記録データを生成する。生成された1パス目の記録データは、1パス目記録画像として、1パス目記録画像記憶部460−1に記憶される。
次に、2パス目の領域に記録する記録データを生成する際には、各色の記録画像信号400は、パス分割テーブル410で与えられる分割比率k2と乗算器420−2で乗算され、2パス目の記録濃度が決定される。また、1パス目の記録状態を同時にセンサ340で検出し、この検出信号を色変換部350(図3参照)でCMY信号に変換した信号430に基づいて、記録データ制御部440で濃度レベルの補正、低階調化された制御データの生成等を行う。この制御データに基づいて、2パス目の記録濃度は、2パス目の低階調化部450−2で低階調化される。
すなわち、従来、単純に2パス目の記録データを生成したのに対し、センサ340でマルチパス記録における以前のキャリッジ走査による記録(1パス目の記録)の記録状態を検出する。これにより、低階調化部450−2による記録データの生成(ドットの形成割合や形成位置等)を制御しようとするものである。生成された2パス目の記録データは、2パス目記録画像として、2パス目記録画像記憶部460−2に記憶される。3及び4パス目の領域に記録する記録データを生成する際にも、2パス目の領域に記録する記録データを生成する際と同様に行うことができる。
図5は、第1の実施形態に係る低階調化部450の機能的構成を示すブロック図である。低階調化部450は、本実施形態では、誤差拡散法を用いて低階調化を行う。
入力画像信号500は、図4で示す乗算器420の出力信号に相当する。制御信号505は、図4で示す記録データ制御部440の出力信号に相当し、低階調化部450を制御する信号である。
加算器510は、入力画像信号500に量子化誤差を示す誤差信号575を加算し、量子化誤差が加算された信号515を出力する。閾値生成部520は、入力される制御信号505に基づいて、量子化を行うための閾値を生成し、生成した閾値を量子化器530に出力する。量子化器530は、誤差を含む入力画像の信号515を閾値生成部520から入力された閾値に基づいて量子化して低階調化し、出力信号535を出力する。
逆量子化器550は、低階調化された出力信号535を評価値540に基づいて逆量子化する。加算器560は、誤差を含む入力画像の信号515に対して、量子化を行った結果の誤差を演算し、量子化誤差信号565を出力する。拡散/収集部570は、量子化誤差信号565に基づいて、拡散又は収集を行い、誤差信号575を出力する。なお、拡散/収集部570には、CPUの処理速度とプリンタ等の処理速度とのギャップを埋めるための緩衝用メモリであって、量子化誤差を一時記憶する誤差バッファ580が接続されている。
通常、閾値生成部520で生成される閾値には定数が用いられ、入力画像信号500に対して誤差拡散を行いながら、量子化器530で2値化を行う。一方、本実施形態では、テクスチャやドット形成の遅延を補正するために変数を用いる。
閾値生成部520に入力される制御信号505は、図4で示すように、センサ340で検出された記録状態を示す信号430が記録データ制御部440で記録データを制御する信号に生成された制御データに相当する。従って、センサ340で検出した記録状態に応じて閾値を変動させることになるため、記録濃度を均一化するように、誤差拡散処理におけるデータ生成を制御することが可能となる。
すなわち、センサが複数回の走査運動のうち、少なくとも1回の走査運動において、注目する走査運動よりも1回前の走査運動までに、プリンタエンジン部180で記録媒体200上に記録された記録状態を検出して、その検出結果に基づいて、閾値を変化させる。これにより、新たに形成するドットを既に記録されたドットから離れた位置に形成するように制御する。
例えば、センサで検出された以前の走査までの記録状態に基づいて、既にドットが形成された位置又はドットが集中して形成されることによって濃度が高まった位置に対して、量子化を行うための閾値を高めに変更し、ドットの形成を抑制するように制御する。一方、ドットが形成されていない領域又は記録濃度の低い領域では、量子化を行うための閾値を低めに変更し、ドットの形成を促進するように制御する。
このように閾値を制御することによって、マルチパス記録におけるパス間のドットの分散性を高めることができる。これにより、誤差拡散法による低階調化処理で閾値を変化させるため、分割比率に基づいてパス分割され、パス毎の記録濃度が決定された画像信号に対し、ドットの形成率ではなく、ドットの形成位置を制御することによって、濃度ムラを低減することができる。
なお、1パス目の記録データを生成する際には、1パス目より前の記録データは存在しないため、記録データ制御部440(図4参照)は存在しない。このため、制御信号は入力されず、閾値生成部520で生成される閾値は固定値(又はテクスチャやドット形成遅延を補正するために変動させた値)となり、通常の量子化が行われる。
なお、低階調化部450は、本実施形態では、誤差拡散法を用いて低階調化処理を行ったが、ディザ法を用いて低階調化処理を行うこともできる。すなわち、ディザマトリクスの閾値を誤差拡散処理で説明したものと同様に制御することによって、記録データの生成を制御することができる。
図6において、(a)は記録媒体200とキャリッジ210との位置関係を示す図であり、(b)はキャリッジ210によって走査される記録媒体200上の記録領域205を示す図である。
キャリッジ210には、インクジェットヘッド220及びセンサ230が搭載されており、左右方向のいずれにも走査可能である。センサ230は、インクジェットヘッド220に対して、主走査方向Xの上流側に設けられる。拡散マトリクス240は、記録データを生成する着目画素及び誤差拡散を行う際に用いられる。
記録領域205は、キャリッジ210を走査して、インクジェットヘッド220からインクを吐出することによって画像が形成される領域である。1パス目領域205−1は、キャリッジ210の1パス目の走査によってインクジェットヘッド220で記録される領域である。2パス目領域205−2は、キャリッジ210の2パス目の走査によってインクジェットヘッド220で記録される領域である。3パス目領域205−3は、キャリッジ210の3パス目の走査によってインクジェットヘッド220で記録される領域である。4パス目領域205−4は、キャリッジ210の4パス目の走査によってインクジェットヘッド220で記録される領域である。
キャリッジ210は、図6(a)で示すように、記録媒体200上を主走査方向Xに走査する。これと同時に、センサ230は、注目する走査の1回前の走査までに記録された状態を検出している。注目する走査で記録媒体200上にインクジェットヘッド220からインクを吐出する。
センサ230は、インクジェットヘッド220の副走査方向Yにおける幅と同等であるか、又は1パス目を記録するノズル領域を除いた幅と同等の幅を有するラインセンサである。キャリッジ210の主走査方向Xに対して、インクジェットヘッド220に先行する位置に配置されたセンサ230は、キャリッジ210の主走査方向Xに従って、以前の走査で記録された記録媒体200上の記録状態を検出する。
センサ230で検出された記録状態は、センサ230がラインセンサであるため、ライン方向に読み出される。センサ230から読み出された検出信号は、現在の走査の記録領域205に対して縦方向(図中の上下方向)に読み出される。この処理と同期して、プリンタ10のRAM120(図1参照)に一時記憶された記録すべき入力画像は、現在の走査の記録領域205に対して、縦方向(図中上下方向)に読み出される。
このようにして、RAM120から読み出された記録すべき入力画像信号は、記録データを生成するための着目画素及び拡散マトリクス240を縦方向に動かし、センサ230で検出された記録状態に応じた制御を受けながら記録データを生成する。そして、生成した記録データをメモリに記憶させる。
ここで、メモリの容量は、センサ230とインクジェットヘッド220との間の距離によって規制される。例えば、センサ230をインクジェットヘッド220に隣接して配置した場合にはメモリの容量は小さくなる。一方、センサ230、インクジェットヘッド220、及びキャリッジ210の構造によって、センサ230を配置可能な場所は限定されてしまう。記録データのメモリの容量は、この位置関係に依存することになる。
また、記録データは、現在の走査による記録領域205を上下方向に生成していく。このため、現在の走査による記録領域205を1パス目領域205−1から4パス目領域205−4まで上下方向に縦断しながら記録データを生成することになる。このため、乗算器420、低階調化部450、及び記録画像記憶部460(図4参照)は、各色で独立して設けられる必要はなく、全色で合わせて1つだけ設けて、連続して行うことが可能である。
図16(a)乃至(d)は、各パスで形成されるドットの位置を示す図である。マルチパス記録で濃度ムラが発生する場合には、センサで以前の走査までの記録状態を検出し、その検出結果に基づいて、ドットの形成制御を行う。
まず、図16(a)で示すように、1パス目の記録を行う。次に、記録媒体の搬送を行い、図16(b)で示すように、2パス目の記録を行う。2パス目の記録を行う際に、1パス目の記録状態をセンサで検出している。記録状態とは、例えば、1パス目の記録の際のインクジェットヘッドの吐出方向や1パス目の記録終了後に記録媒体を搬送した際の搬送量等のバラツキを意味する。
そして、センサで検出された結果によって、これから行う記録処理に対応する記録データの生成を制御する。例えば、図16(b)で示すように、1パス目の記録終了時の記録媒体の搬送量が基準値より大きいという状態を検出することができる。また、1パス目で記録を行った3ライン目(図16(a)で示す上下3列中の中央のライン)のノズルの吐出方向が上側にずれているという状態を検出することができる。このように、検出された1パス目の記録状態に基づいて、2パス目で記録するデータを生成する。
このため、2パス目の記録ドット(丸印内に符号2で示す。)は、図16(b)で示すように、従来のように記録ドットを形成した場合に比べて、記録ドット(太い丸印内に符号2で示す。)が、記録ドットの形成位置(ノズルの吐出方向等)を補正して、記録データが生成される。そして、図16(b)で示すように、2パス目の記録が行われる。
次に、2パス目の記録が終了した後に、記録媒体が搬送され、1及び2パス目での記録が行われた記録状態をセンサで検出し、検出された結果に基づいて、3パス目の記録データが生成される。この結果、従来のように記録ドットを形成する場合に比べて、記録ドット(太い丸印内に符号3で示す。)が、記録ドットの形成位置(ノズルの吐出方向等)を修正して記録データを生成する。そして、図16(c)で示すように、3パス目の記録が行われる。
同様にして、3パス目の記録終了後に、記録媒体が搬送され、1乃至3パス目での記録が行われた記録状態をセンサで検出し、検出された結果に基づいて、4パス目の記録データが生成される。生成された4パス目の記録データに基づいて、図16(d)で示すように、4パス目の記録が行われ、記録媒体上に画像が形成される。図15で示す何も制御しない状態の画像と比べて、図16(d)では、明らかに濃度ムラが低減されていることが確認できる。
従って、センサで以前の走査の記録状態を検出し、この検出結果に基づいて、記録データを生成することによって、各記録走査運動毎の記録ドットの形成位置を補正することができる。これにより、マルチパス記録を行う際に、インクジェットヘッドの特性や記録媒体の搬送量等のバラツキが生じた場合であっても、各パス間のドットを均等に分散させることができ、濃度ムラを低減することができる。
[第1の実施形態の変形例1]
図7は、第1の実施形態の変形例1に係る記録データ生成部370の機能的構成を示すブロック図である。
乗算器420は、パス分割テーブル410からの入力に基づいて、記録画像信号400を各パスに濃度分割する。記録データ制御部440は、乗算器420で濃度分割された各パスの記録画像をセンサ340で検出された信号430に基づいて、記録データを制御する。低階調化部450は、記録データ制御部440の制御を受けて、乗算器420でパス分割された記録データを低階調化する。記録画像記憶部460は、低階調化部450で低階調化された各パスの記録データを記憶する。
CMY信号に変換された記録画像信号400及びセンサ340で検出されて、CMY信号に変換された信号430は、図6で示したように、記録領域205を縦方向にスキャンするようにキャリッジ210を制御する。記録画像信号400には、各パスの記録領域205に合わせた分割比率k1、k2、k3、k4がパス分割テーブル410から読み出され、乗算器420で各パスの記録領域205に応じた記録濃度が乗算される。そして、センサ340から出力される信号430に基づいて、記録データ制御部440で濃度レベルの補正や制御データの生成等が行われ、その結果に基づいて、低階調化部450で各パスに応じた記録データが生成される。生成された記録データは、記録画像記憶部460に一時記憶され、記録制御部380(図3参照)で記録媒体上に記録され、画像が形成される。この際に、記録媒体上に形成された1パス目領域205−1(図6参照)には、以前のパスでの記録が行われておらず、センサ340からの信号が存在しないため、低階調化部450では制御されずに入力された記録濃度がそのまま低階調化される。
[第1の実施形態の変形例2]
上述の第1の実施形態では、センサ342として、RGB純色フィルタを用いたが、本変形例のように、CMY補色フィルタを用いることもできる。
図8は、第1の実施形態の変形例2に係る画像形成装置の機能的構成を示すブロック図である。図14は、第1の実施形態の変形例2における各パスで形成されるドットの位置を示す図である。なお、図14中の丸印は記録媒体上に形成されるドットを示し、丸印内の数字1、2、3、4は、ドットが形成された走査番号を示す。
この場合には、センサ342で検出された記録状態は、図3で示すようなRGB信号ではなく、図8で示すように、信号C’、M’、Y’で示すCMY信号として、色変換部352に入力される。色変換部352では、センサ342から入力された信号C’、M’、Y’に基づいて、インク色であるCMY信号に変換する。これにより、センサ342として、CMY補色フィルタを用いた場合であっても、同様の効果を得ることができる。
<第2の実施形態>
上述の第1の実施形態では、センサで検出した記録状態に基づいて、ドットの位置を制御したが、本実施形態では、センサで検出した記録状態に基づいて、記録する濃度を補正する点で相違する。なお、これらの実施形態は、単独で実施してもよいし、両者を組み合わせて実施してもよい。また、上述の第1の実施形態と同様の構成については、同一の符号を付し、説明を省略する。
記録すべき入力画像320は、図3で示すように、色変換部330でプリンタ10(図1参照)で印刷を行うためのCMY信号に変換され、各色毎に記録データ生成部370に入力される。同様に、記録状態を検出するためのセンサ340で検出した信号は、色変換部350でCMY信号に変換され、各色毎に記録データ生成部370に入力される。
記録データ生成部370は、センサ340で検出された記録状態に基づいて、各ノズル毎で各記録走査運動毎の記録濃度比率を補正する。すなわち、記録データ生成部370では、センサ340で検出し、色変換部350でCMY信号に変換された信号に基づいて、入力画像320の濃度レベルの補正等が行われる。
図9は、第2の実施形態に係る記録データ生成部370の機能的構成を示すブロック図である。ここでは、図3で示す記録データ生成部370のうち、シアン用記録データ生成部370c、マゼンタ用記録データ生成部370m、イエロー用記録データ生成部370yのいずれか1色の機能的構成について例示する。
濃度変換部600は、センサ340で検出された信号430に基づいて、記録濃度に変換する。
パス分割テーブル610は、マルチパスに分割するための分割比率k1、k2、k3、k4を格納する。乗算器620−1は、記録画像信号400に1パス目の分割比率k1(615−1)を乗算する。乗算器620−2は、記録画像信号400に1及び2パス目の分割比率の合計k1+k2(615−2)を乗算する。乗算器620−3は、記録画像信号400に1乃至3パス目の分割比率の合計k1+k2+k3(615−3)を乗算する。
加算器630−1は、乗算器620−1で算出された1パス目の記録濃度とセンサ340で検出された記録濃度との差分を算出する。加算器630−2は、乗算器620−2で算出された1及び2パス目の合計の記録濃度とセンサ340で検出された記録濃度との差分を算出する。加算器630−3は、乗算器620−3で算出された1乃至3パス目の合計の記録濃度とセンサ340で検出された記録濃度との差分を算出する。
加算器640−2は、1パス目の記録濃度とセンサ340で検出された記録濃度との差分(加算器630−1の出力結果)を2パス目の記録濃度に加算する。加算器640−3は、1及び2パス目の合計の記録濃度とセンサ340で検出された記録濃度との差分(加算器630−2の出力結果)を3パス目の記録濃度に加算する。加算器640−4は、1乃至3パス目の合計の記録濃度とセンサ340で検出された記録濃度との差分(加算器630−3の出力結果)を4パス目の記録濃度に加算する。
低階調化部650−1は、1パス目の記録濃度を算出した乗算器420−1の出力に基づいて、1パス目の記録データを生成する。低階調化部650−2は、2パス目の記録濃度を算出した加算器640−2の出力に基づいて、2パス目の記録データを生成する。低階調化部650−3は、3パス目の記録濃度を算出した加算器640−3の出力に基づいて、3パス目の記録データを生成する。低階調化部650−4は、4パス目の記録濃度を算出した加算器640−4の出力に基づいて、4パス目の記録データを生成する。
ここで、本実施形態では、記録画像信号400に対して、各パスの分割比率を乗算器420で算出した累積濃度を各パスの目標出力濃度と表現する。これは、記録媒体上に記録された結果の濃度ではないが、処理を行う上で扱う値として記録濃度という言葉を用いる。
まず、各インク色に変換された記録画像信号は、各パス毎の記録濃度を算出する乗算器420に入力され、パス分割テーブル410から読み出された分割比率k1、k2、k3、k4が乗算され、各パスの目標出力濃度が算出される。
1パス目の記録データを生成する際には、第1の実施形態と同様に、1パス目の記録濃度が乗算器420−1で算出され、低階調化部650−1で記録データが生成され、1パス目記録画像記憶部460−1に記憶される。
2パス目以降の記録データを生成する際には、乗算器420で各パスの記録濃度を算出すると同時に、それ以前までの走査の目標出力濃度を乗算器620で算出する。
2パス目を記録する際には、1パス目の目標出力濃度を記録画像信号400に1パス目の分割比率k1を乗算器620−1で算出する。一方、センサ340で検出された記録状態を示す信号は、CMY信号に色変換された後に、濃度変換部600で検出濃度に変換される。1パス目の検出濃度は、計算上の目標出力濃度と比較して差分を算出するため、乗算器620−1の出力と共に加算器(減算器)630−1に入力される。加算器630−1で算出された1パス目の目標出力濃度と検出濃度との差分は、加算器640−2で2パス目の記録濃度に加算される。1パス目の目標出力濃度と検出された記録濃度との差分で補正された2パス目の記録濃度は、低階調化部650−2で記録データが生成され、生成された2パス目の記録データは、2パス目記録画像として、2パス目記録画像記憶部460−2に記憶される。
また、3パス目を記録する際には、3パス目の記録濃度が乗算器420−3で算出されると同時に、既に記録を行った1及び2パス目の合計の目標出力濃度を記録画像信号400に1及び2パス目の分割比率の合計k1+k2を乗算器620−2で乗算する。一方、センサ340で検出された記録状態に基づいて、2パス目の記録後の検出濃度が濃度変換部600で変換される。乗算器620−2で算出された2パス目の記録後の目標出力濃度とセンサ340で検出された検出濃度との差分が加算器630−2で算出され、3パス目の記録濃度に加算器640−3で加算される。2パス目の記録後の目標出力濃度と検出された記録濃度との差分で補正された3パス目の記録濃度は、低階調化部650−3で記録データが生成され、生成された3パス目の記録データは、3パス目記録画像として、3パス目記録画像記憶部460−3に記憶される。
また、4パス目を記録する際には、4パス目の記録濃度が乗算器420−4で算出されると同時に、既に記録した1乃至3パス目の合計の目標出力濃度を記録画像信号400に対して、1乃至3パス目の分割比率の合計を乗算する乗算器620−3で算出する。一方、センサ340で検出された記録状態に基づいて、3パス目の記録後の検出濃度が濃度変換部600で変換される。乗算器620−3で算出された3パス目の記録後の目標出力濃度とセンサ340で検出された検出濃度との差分が加算器630−3で算出され、3パス目の記録濃度に加算器640−4で加算される。3パス目の記録後の目標出力濃度と検出された記録濃度との差分で補正された4パス目の記録濃度は、低階調化部650−4で記録データが生成され、生成された4パス目の記録データは、4パス目記録画像として、4パス目記録画像記憶部460−4に記憶される。
従って、記録データ生成部370が、複数回の記録走査運動のうち、少なくとも1回の記録走査運動において、記録走査運動よりも1回前の記録走査運動までの記録媒体上に記録されるべき累積濃度を算出する累積濃度算出部として機能する。また、記録データ生成部370が、累積濃度算出部で算出された累積濃度とセンサで検出された濃度との差分を算出する差分算出部として機能する。これにより、記録データ生成部370は、差分算出部で算出された差分が0となるように、注目する記録走査運動以降の記録データを補正する。
このようにして、記録画像記憶部460に記憶された記録データは、記録制御部380(図3参照)でインクジェットヘッドを駆動して記録媒体に画像が形成される。
なお、本実施形態では、画像形成装置の構成を第1の実施形態(図3参照)と同様として、インク色であるCMY信号に色分解された後の処理を図9で示した。センサ340で記録状態を検出して、以前の走査による記録結果の記録濃度を検出して、本来記録を行うべき目標出力濃度との差分(すなわち、濃度誤差)を算出し、この濃度誤差の分だけ、次の走査の記録で補正するように記録データを生成する。このため、センサで検出された検出信号をインク色のCMYに色変換するのではなく、画像形成をする上での理想とするCMY系に色変換を行い、この理想系のCMY色空間に対する濃度誤差を算出し、記録データに補正するようにしてもよい。これにより、インクと記録媒体との組み合わせによって、計算上の色変換と、記録媒体上に形成される画像の発色とが相違するような場合であっても、補正することが可能である。
[第2の実施形態の変形例]
図10は、第2の実施形態の変形例に係る記録データ生成部370の機能的構成を示すブロック図である。
乗算器420は、パス分割テーブル610からの入力に基づいて、記録画像信号400を各パスに濃度分割する。乗算器620は、記録画像信号400と累積値を乗算して、目標出力濃度を算出する。加算器630は、乗算器620で算出された目標出力濃度と、センサ340で検出され、濃度変換部600で変換された濃度との差分を算出する。加算器640は、各パスの記録濃度に加算器630で算出された差分を加算する。低階調化部650は、加算器640で差分が加算された各パスの記録画像を低階調化し、記録データを生成する。記録画像記憶部460は、低階調化部650で低階調化された各パスの記録データを記憶する。
CMY信号に変換された記録画像信号400及びセンサ340で検出されて、CMY信号に変換された信号430は、図6で示したように、記録領域205を縦方向にスキャンするようにキャリッジ210を制御する。記録画像信号400には、各パスの記録領域205(図6参照)に対応する分割比率k1、k2、k3、k4がパス分割テーブル610から読み出され、乗算器420で記録領域205に応じた記録濃度が乗算される。同時に、2パス目以降では、パス分割テーブル610より、注目する走査がnパス目である場合には、nパス目の1回前の走査であるn−1パス目までの分割比率の合計(下式で算出される。)を出力し、乗算器620で目標出力濃度を算出する。
Figure 0005693646
これにより、nパス目を記録する際に、n−1パス目までの合計の目標出力濃度を算出する。
一方、センサ340で検出された信号430から濃度変換部600で検出濃度に変換され、加算器630で目標出力濃度と検出濃度との差分が算出される。算出された差分は、加算器640で各パスの記録濃度に補正され、低階調化部650で各パスに応じた記録データが生成される。生成された記録データは、記録画像記憶部460に一時記憶され、記録制御部で記録媒体に記録され、画像が形成される。
以上述べたように、本実施形態によれば、マルチパス記録の2パス目以降において、それ以前までの走査による目標出力濃度とセンサ340で検出された検出濃度との差分を次の記録に対して補正することによって、濃度ムラをより確実に低減することができる。すなわち、インクジェットヘッドの特性や記録媒体の搬送量等のバラツキによって、濃度誤差が生じた場合には、2パス目以降の走査でそれ以前の走査で記録した濃度をセンサ340で検出する。そして、その検出濃度と記録すべき目標出力濃度との差分(すなわち、発生した濃度誤差)を算出し、算出された差分を無くすように、そのパスでの記録データを補正することによって、濃度ムラをより確実に低減することができる。
<第3の実施形態>
図11は、第3の実施形態に係る記録データ生成部370の機能的構成を示すブロック図である。第1の実施形態(図3参照)では、記録すべき入力画像320のRGB信号を色変換部330でインクジェットプリンタで印刷を行うためのCMY信号に変換する。その後、センサ340で検出した信号も色変換部350でCMY信号に変換され、各色の記録データ生成部に入力される。記録データ生成部では、センサ340で検出され、色変換部350でCMY信号に変換された信号を用いて、濃度レベルの補正等が行われる。入力画像320のRGB信号、センサ340で検出された信号がそれぞれ色変換部330、350でCMY信号に変換され、それぞれ記録データ生成部370に入力される。なお、上述の第2の実施形態と同様の構成については、同一の符号を付し、説明を省略する。本実施形態では、第2の実施形態の図9で示す記録データ生成部370の構成との相違点を中心に説明する。
パス分割テーブル612は、マルチパスに分割する際の各走査までの累積濃度(目標出力濃度)を格納する。乗算器425−1は、記録画像信号400に1パス目の分割比率k1(417−1)を乗算する。乗算器425−2は、記録画像信号400に1及び2パス目の分割比率の合計k1+k2(417−2)を乗算して、2パス目までの累積濃度を算出する。乗算器425−3は、記録画像信号400に1乃至3パス目の分割比率の合計k1+k2+k3(417−3)を乗算して、3パス目までの累積濃度を算出する。
加算器645−2は、乗算器425−2で算出された2パス目までに記録を行うべき累積濃度(2パス目記録後の目標出力濃度)とセンサで検出した1パス目の記録濃度との差分を算出して2パス目の記録濃度を算出する。加算器645−3は、乗算器425−3で算出された3パス目までに記録を行うべき累積濃度(3パス目記録後の目標出力濃度)とセンサで検出した1及び2パス目の記録による記録濃度との差分を算出して、3パス目での記録濃度を算出する。加算器645−4は、最終パスまでに記録を行うべき累積濃度(すなわち、最終パスの目標出力濃度)とセンサで検出した3パス目までの記録による記録濃度との差分を算出して4パス目での記録濃度を算出する。
低階調化部650−1は、1パス目の記録濃度を算出した乗算器420−1の出力から1パス目の記録データを生成する。低階調化部650−2は、2パス目の記録濃度を算出した加算器640−2の出力から2パス目の記録データを生成する。低階調化部650−3は、3パス目の記録濃度を算出した加算器640−3の出力から3パス目の記録データを生成する。低階調化部650−4は、4パス目の記録濃度を算出した加算器640−4の出力から4パス目の記録データを生成する。
ここでは、第1及び第2の実施形態と同様に、図3で示す記録データ生成部370のうち、シアン用記録データ生成部370c、マゼンタ用記録データ生成部370m、イエロー用記録データ生成部370yのいずれか1色の機能的構成について例示する。本実施形態では、記録を行うパス(nパス目)及びそれ以前のパス(n−1パス目)までに記録される累積の目標出力濃度と以前の走査までに記録を行い、センサで検出された検出濃度との差分を求めて、この差分濃度を記録するものである。
まず、各インク色に変換された記録画像信号は、パス毎の累積の記録濃度を算出する乗算器425に入力され、パス分割テーブル612から読み出された係数(k1、k1+k2、k1+k2+k3)が乗算され、各パスの累積の記録濃度が決定される。
1パス目の記録データを生成する際には、図4と同様に、1パス目の記録濃度が乗算器425−1で算出され、低階調化部650−1で記録データが生成され、1パス目の記録画像記憶部460−1に記憶される。
2パス目の記録データを生成する際には、乗算器425−2で2パス目までの累積の記録濃度(1及び2パス目の記録濃度の合計)を算出する。一方、センサで記録状態を検出した検出信号は、CMY信号に色変換された後に、濃度変換部600で検出濃度に変換される。センサで検出された1パス目の検出濃度は、2パス目での累積の目標出力濃度と比較し、1及び2パス目の記録濃度を算出するため、加算器(減算器)645−2に入力される。加算器645−2で1及び2パス目の累積の目標出力濃度に対して、1パス目を記録した後の記録状態をセンサで検出した記録濃度との差分が算出され、2パス目で記録すべき濃度が算出される。算出された2パス目での記録濃度は、低階調化部650−2で記録データが生成され、生成された2パス目の記録データは、2パス目記録画像として、2パス目記録画像記憶部460−2に記憶される。
3パス目の記録データを生成する際には、1乃至3パス目の累積の記録濃度を乗算器425−3で算出する。一方、センサで検出した記録状態から2パス目を記録した後の検出濃度を濃度変換部600で変換する。センサで検出された1及び2パス目に記録した記録状態としての検出濃度は、1乃至3パス目の累積の目標出力濃度と比較し、3パス目での記録濃度を算出するため、加算器(減算器)645−3に入力される。加算器645−3で1乃至3パス目の累積の目標出力濃度に対して、2パス目を記録した後の記録状態をセンサで検出した記録濃度との差分が算出され、3パス目で記録すべき濃度が算出される。算出された3パス目での記録濃度は、低階調化部650−3で記録データが生成され、生成された3パス目の記録データは、3パス目記録画像として、3パス目記録画像記憶部460−3に記憶される。
4パス目の記録データを生成する際には、1乃至4パス目の累積の記録濃度は、4パス目が最終パスであり、入力された記録画像自体の濃度であるため、これ以前のパスでの累積の記録濃度を算出した乗算器425は不要となる。4パス目での目標出力濃度に対して、1乃至3パス目の記録状態をセンサで検出し、この検出した記録濃度と記録画像と比較し、4パス目の記録濃度を算出するために加算器(減算器)645−4に入力される。加算器645−4で1乃至4パス目の累積の目標出力濃度(記録画像の濃度)に対して、3パス目を記録した後の記録状態をセンサで検出した記録濃度との差分が算出され、4パス目で記録すべき濃度が算出される。算出された4パス目での記録濃度は、低階調化部650−4で記録データが生成され、生成された4パス目の記録データは、4パス目記録画像として、4パス目記録画像記憶部460−4に記憶される。
[第3の実施形態の変形例]
図12は、第3の実施形態の変形例に係る記録データ生成部370の機能的構成を示すブロック図である。
乗算器425は、記録画像信号400に現在の走査までの分割比率の合計(目標出力濃度)を乗算して、現在の走査の目標出力濃度を算出する。加算器645は、乗算器425で算出された目標出力濃度とセンサで検出された検出濃度との差分を算出する。低階調化部650は、各パスの記録画像に基づいて、記録データを生成する。記録画像記憶部460は、低階調化部650で低階調化された各パスの記録データを記憶する。
CMY変換された記録画像信号400、及びセンサで検出され、読み出され、CMY変換された信号430は、図6で示したように、記録領域205を縦方向にスキャンされる。記録画像信号400は、各パスの領域に対応する分割比率k1、k2、k3、k4による累積の分割比率の合計(目標出力濃度)k1、k1+k2、k1+k2+k3、1がパス分割テーブル612から読み出される。読み出される係数は、1乃至nパス目の分割比率の合計として、下式のように与えられる。
Figure 0005693646
パス分割テーブル612で与えられた分割比率と記録画像信号400は、乗算器425で乗算され、パス領域に応じた累積の目標出力濃度が算出される。一方、センサで検出された信号430が濃度変換部600で検出濃度へ変換され、目標出力濃度とそれ以前の走査で記録され、検出された検出濃度との差分が加算器645で算出される。算出結果は、現在の走査(nパス目)の記録濃度に現在の走査より1回前の走査(n−1パス目)の記録濃度誤差を加算したものであり、記録濃度が補正された結果として、低階調化部650で各パスに応じた記録データが生成される。生成された記録データは、記録画像記憶部460に一時記憶され、記録制御部380(図3参照)で記録媒体に記録され、画像が形成される。
以上述べた通り、本実施形態によれば、着目するパスより前の走査までに記録された濃度と、目標出力濃度との差分を算出して、その差分を無くすように濃度を補正することによって、濃度ムラをより確実に低減することができる。すなわち、インクジェットヘッドの特性や記録媒体の搬送量等のバラツキによって濃度誤差が生じた場合であっても、濃度ムラを補正することが可能となる。また、第2の実施形態と比べて、乗算器及び加算器を省略したため、制御回路を簡略化することができる。
<第4の実施形態>
上述の第1乃至第3の実施形態では、図2(a)で示すように、記録走査運動を行う方向(主走査方向X)に対して、センサ230をインクジェットヘッドよりも先行する位置に配置し、センサ230の検出信号を用いて、記録データの生成を制御した。一方、本実施形態では、センサ230をインクジェットヘッドよりも後続する位置に配置する点で相違する。なお、上述の第1の実施形態と同様の構成については、同一の符号を付し、説明を省略する。
センサ230をキャリッジの主走査方向Xに対して、インクジェットヘッドよりも先行する位置に配置する場合には、注目する走査で記録される記録状態は検出することができないが、注目する走査よりも1回前の走査までの記録状態を検出することができる。このため、インクジェットヘッドの特性(吐出量や吐出方向等)のバラツキだけでなく、記録媒体の搬送量のバラツキを含む記録状態を検出することができるものであった。
ただし、センサ230で検出した記録状態に基づいて、記録データを生成し、キャリッジの走査に従って、インクジェットヘッド220が、検出したセンサの位置に到達した際に、生成した記録データでインクジェットヘッド220を駆動する必要がある。このため、従来より一般的に行われているバンドメモリを用いた記録制御ではなく、センサで記録状態を検出しながら、記録データを生成し、更に、キャリッジの走査に従ってインクジェットヘッドを駆動する必要がある。ここで、バンドメモリを用いた記録制御とは、キャリッジの走査前に全ての記録データの生成を完了してバンドメモリに記憶し、記録制御部では、キャリッジの走査と同期してインクジェットヘッドを駆動し、吐出を行って画像を形成するものを意味する。このため、記録データを生成する方向を図6に示し、既に説明した。
一方、図2(b)で示すように、本実施形態では、主走査方向Xに対して、センサ230をインクジェットヘッド220よりも後続する位置に配置した場合を想定して説明する。
図13は、第4の実施形態に係る画像形成装置の機能的構成を示すブロック図である。
メモリ360cは、センサ340で検出された記録状態を色変換部350でインク色のCMY信号に変換したシアン用信号を一時記憶する。メモリ360mは、センサ340で検出された記録状態を色変換部350でインク色のCMY信号に変換したマゼンタ用信号を一時記憶する。メモリ360yは、センサ340で検出された記録状態を色変換部350でインク色のCMY信号に変換したイエロー用信号を一時記憶する。
本実施形態では、前述したように、センサ340をインクジェットヘッド220(図2参照)の下流側に設けるため、インクジェットヘッド220による記録が行われた直後に、センサ340で記録状態が検出される。
センサ340で検出された記録状態の検出信号は、色変換部350でインク色であるCMY信号355に変換される。CMY信号355は、一時的にメモリ360(シアン用メモリ360c、マゼンタ用メモリ360m、イエロー用メモリ360y)に記憶される。メモリ360に記憶された検出信号は、入力画像320のRGB信号から色変換部330でインク色であるCMY信号335に変換された記録画像信号と共に記録データ生成部370に入力され、記録データが生成される。
以上述べた通り、本実施形態によれば、キャリッジを走査しながら、センサによる記録状態の検出、記録データの生成、インクジェットヘッドによる記録をリアルタイムに行う必要がない。このため、これらの処理を別々に行うことができる。また、キャリッジの走査に伴って、リアルタイムに記録データを生成するものではないため、図6(a)で示すように、インクジェットヘッドのノズルの配列方向に記録データを生成する必要はなく、従来通り、主走査方向に記録データを生成することができる。これにより、ハードウェアが記録データの生成に対して制約(タイミング、誤差メモリのアクセスに対するレイテンシ等)となる場合が少なく、従来と同様に、バンドメモリを構成して、キャリッジの走査に合わせて記録を制御することができる。
従って、キャリッジの走査に先立って記録データを生成し、バンドメモリに格納された記録データに基づいて記録を行う実施形態にも本発明を適用することができる。
<第5の実施形態>
上述の第1の実施形態では、記録ヘッドを記録媒体の搬送方向(副走査方向)と直交する方向(主走査方向)に走査して記録媒体上に画像を形成するマルチパス記録を行ったが、本実施形態では、記録ヘッドを主走査方向に走査せずに1パス記録を行う点で異なる。
図18は、第5の実施形態に係るヘッド部H1の構成を示す図である。
本実施形態では、搬送される記録媒体200上に、各記録色成分CMYのヘッドを駆動することでカラー画像を形成する画像形成装置を想定する。
ヘッド部H1には、インクジェットヘッド(記録ヘッド)700とセンサ710−1、710−2とが格納されている。インクジェットヘッド700は、記録可能な最大サイズの記録媒体200の、搬送方向に対して直交する幅分Lを有し、搬送方向(副走査方向)に並んで配置された各記録色成分CMYのインクジェットヘッド700c、700m、700yを有する。すなわち、700cはシアンのインクジェットヘッド、700mはマゼンタのインクジェットヘッド、700yはイエローのインクジェットヘッドである。
センサ710−1、710−2は、各インクジェットヘッド700c、700m、700yの間毎に配置され、インクジェットヘッド700の幅L’と同一幅を有する。センサ710−1は、シアンの記録状態を検出するセンサであり、シアンのインクジェットヘッド700cの下流であって、マゼンタのインクジェットヘッド700mの上流に設けられる。センサ710−2は、シアンとマゼンタの記録状態を検出するセンサであり、マゼンタのインクジェットヘッド700mの下流であって、イエローのインクジェットヘッド700yの上流に設けられる。
すなわち、インクジェットヘッド700は、いわゆるラインヘッドでの記録を行うものであり、記録媒体200をインクジェットヘッド700と直交する方向(副操作方向)に搬送しながら、各インク色とも1回の記録走査だけで画像形成を行う(1パス記録)。
シアンのインクジェットヘッド700cで記録されたシアンインクの記録状態をシアンのインクジェットヘッド700cの副走査方向に対する下流側に配置したセンサ710−1で検出を行う。センサ710−1で検出された記録状態を、次のマゼンタの記録データ生成に用いる。同様に、インクジェットヘッド700mでマゼンタによる記録を行った後に、インクジェットヘッド700mの下流側に配置したセンサ710−2で検出したシアンとマゼンタの記録状態に基づいて、次のイエローの記録データ生成に用いる。
図19は、第5の実施形態に係る画像形成装置の機能的構成を示すブロック図である。
記録データ生成部720は、シアンの記録データ生成部720c、マゼンタの記録データ生成部720m、イエローの記録データ生成部720yを備える。ここでは、1回の走査だけで記録(1パス記録)を行うため、入力画像320のRGB信号から色変換部330で各色成分に変換されたCMY信号335は、それぞれシアン、マゼンタ、イエローの記録データ生成部720c、720m、720yに入力される。
シアンの記録データ生成部720cは、各画素に対する1回目の記録(すなわち、白画素領域への記録)であるため、シアンの記録信号335cに基づいて記録データ生成が行われる。一方、マゼンタの記録データ生成部720mでは、マゼンタの記録信号335mに加えて、センサ710−1で検出されたシアンの記録状態に基づいて記録データの生成を行う。同様に、イエローの記録データ生成部720yは、イエローの記録信号335yに加えて、センサ710−2で検出されたシアンとマゼンタの記録状態に基づいて記録データの生成を行う。
記録データ生成部720は、センサ710−1及びセンサ710ー2を有する検出部と、記録データ制御部440を有する修正部とを備える。検出部は、ヘッド部内の着目センサで検出した記録済みの画像の記録状態を検出する。修正部は、検出部で検出した記録状態に基づいて、着目センサよりも、搬送方向(副走査方向)に対して下流に位置するインクジェットヘッド700で記録される記録データを修正する。
なお、シアンの記録状態を検出するセンサ710−1及びシアンとマゼンタの記録状態を検出するセンサ710−2は、いずれもカラーセンサである必要はなく、モノクロのセンサであっても構わない。
図20は、第5の実施形態に係る画像形成装置の機能的構成を示すブロック図である。ここでは、マゼンタの記録データ生成部720m、イエローの記録データ生成部720yのうち、いずれかの構成を示している。また、本実施形態では、ラインヘッドを用いた1パス記録を行う形態であるため、図4で示すようなマルチパスのパス分割を行う必要はない。
記録データ生成部720は、入力された画像情報に基づいて、各記録色成分毎の記録データを生成する。なお、入力画像320は、RGBの色成分で表現されるため、色変換部330でCMYの色成分に色変換を行い、この色変換後のCMY信号335が記録データ生成部720に入力されることとなる。
低階調化部442は、記録データ生成部720で生成した各記録色成分CMYの記録データと、ヘッド部H1に設けられた各センサ710−1、710−2による検出結果に基づいて、ヘッド部H1の各記録色成分CMYのインクジェットヘッド700を駆動する。これにより、画像を記録する。
図19で示すセンサ710−1、710−2のうち、記録状態を検出したセンサの検出信号715は、図4と同様に、記録データ制御部440で濃度レベルの補正、低階調化制御データの生成等を行う。また、色変換部330で色変換されたマゼンタの記録信号335m又はイエローの記録信号335yは、記録データ制御部440によってセンサで検出される前に記録された記録状態に基づいて、記録データ制御信号335と共に、低階調化部442に入力される。そして、低階調化部442は、記録を行うための低階調化されたデータを生成し、インクジェットヘッド700(図18参照)によって画像を形成するための記録画像として、一旦、記録画像記憶部445に記憶される。
また、図19で示すシアンの記録データ生成部720cには、センサからの信号が入力されないため、CMY信号335のうち、シアンの記録信号335cのみが入力される。このため、センサで検出された記録状態に基づく記録データ制御部440による制御を受けずに低階調化部442で低階調化が行われる。
これは、第1の実施形態における第1パスの低階調化部450−1(図4参照)及び第2の実施形態における低階調化部650(図9参照)と同様である。記録画像記憶部445に記憶された記録画像データは、記録制御部730(図19参照)によって記録媒体に記録が行われて画像が形成される。
図28において、(a)及び(b)は本発明の記録ドットを形成した結果を示す図である。
従来技術として上述した図27(a)では、シアン及びマゼンタのノズルの吐出方向のバラツキによって筋ムラが生じた状態を示している。一方、図28(a)では、図27(a)の記録結果に対して、本発明を適用した際の記録結果を示している。
すなわち、先に記録を行ったシアンの記録状態をセンサで検出し、この検出された記録状態に基づいてマゼンタの記録データの生成を制御することによって、形成するドットの位置を変更する。これにより、図28(a)で示すように、吐出方向のバラツキに起因する筋ムラを低減することができる。なお、図28(a)では、太い丸印のMが、検出したシアンの記録状態に基づいて記録ドットの形成が制御され、形成されたドットが別のノズルに変更されたものを示している。
同様に、従来技術として上述した図27(b)では、シアン及びマゼンタのノズルの吐出方向のバラツキによって粒状性が悪化した状態を示している。一方、図28(b)では、図27(b)の記録結果に対して、本発明を適用した際の記録結果を示している。
すなわち、先に記録を行ったシアンの記録状態をセンサで検出し、マゼンタの記録データの生成を制御することによって形成するドットの位置を変更する。これにより、吐出方向のバラツキに起因する粒状性の低減を行うことができる。なお、図28(b)では、太い丸印のMが、検出したシアンの記録状態に基づいて記録ドットの形成が制御され、形成されたドットが別のノズルに変更されたものを示している。
以上述べた通り、本実施形態では、各ライン毎に1パスで記録を行うインクジェットヘッドを用いた記録において、インクジェットヘッドの下流側に配置されたセンサで検出した記録状態を次の記録を行う記録データの生成に用いる。これにより、以前の記録に対してドット形成の分散性を上げて、濃度ムラを低減することができる。特に、シアンとマゼンタの形成ドットの分散性を確保することによって、形成した画像における粒状感を低減することができる。
なお、イエローは濃度に対する影響度が小さいため、補正を行わなくても構わない。この場合、センサ710−1のみを用いてマゼンタのみで記録制御を行う。このようにしても、濃度ムラや粒状感を低減することは可能である。
<第6の実施形態>
上述の第5の実施形態では、ラインヘッドを用いて1パス記録を行う例を示した。一方、本実施形態では、第5の実施形態と同様のセンサを用いる点では共通するが、センサで検出した特定色成分とは異なる色成分の記録データ生成を制御するマルチパス記録を行う点で異なる。
図21は、第6の実施形態に係る画像形成装置の機能的構成を示すブロック図である。本実施形態の画像形成装置は、第1の実施形態の画像形成装置(図3参照)とほぼ同様の構成である。また、キャリッジに搭載されたインクジェットヘッド及びセンサの配置は、上述の第1の実施形態と同様の構成を用いることとする。
第1の実施形態では、センサ340で検出された記録状態の検出信号(RGB)は、色変換部350でインク色であるCMYに変換され、その変換後の信号355が各色に対応する記録データ生成部370に入力されるものであった。
一方、本実施形態では、センサ340で検出された記録状態の検出信号(RGB)を色変換部350でインク色であるシアンに変換した信号355cは、マゼンタの記録データ生成部370mに入力される。同様に、センサ340で検出された記録状態の検出信号を色変換部350でインク色であるマゼンタに変換した信号355mは、シアンの記録データ生成部370cに入力される。なお、イエローに変換した信号355yについては、同色であるイエローの記録データ生成部370yに入力されることとなる。
記録データ生成部370での処理は、第1の実施形態で説明した記録ドット形成制御法をそのまま適用することができる。すなわち、1回前のパスまでに検出されたシアンの記録状態に基づいて、次のマゼンタの記録データ生成を制御し、1回前のパスまでに検出されたマゼンタの記録状態に基づいて、次のシアンの記録データ生成を制御する。
従って、濃度に対する影響度の高いシアンとマゼンタの記録ドットの分散性を上げることによって、濃度ムラや粒状感を低減することが可能となった。
[第6の実施形態の変形例]
図22は、第6の実施形態の変形例に係る画像形成装置の機能的構成を示すブロック図である。
センサ340で検出された記録状態の検出信号(RGB)を色変換部350でCMYに変換した信号355を各色の記録データ生成部375c、375m、375yにそれぞれ入力し、この各色の信号355に基づいて記録データ生成を制御する。
図23は、第6の実施形態の変形例に係る記録データ生成部375の機能的構成を示すブロック図である。センサから色変換された信号355c、355m、355yは、記録データ制御部440に入力される。
記録データ制御部440は、センサの検出信号を色変換した各信号355c、355m、355yに対し、濃度レベルの補正を行い、各色のバランスに応じて低階調化制御データの生成等を行う。第2パスの記録濃度は、この低階調化制御データに基づいて、第2パスの低階調化部450−2で低階調化される。
また、記録データ制御部440は、センサの検出信号を色変換した各信号355c、355m、355yを低階調化部450で低階調化する。そして、記録を行うインク色に対して、記録データ生成を制御すべき色を選択的に又はバランスを考慮して一定比率で加算した値等によって低階調化制御データを生成する。
低階調化部450は、生成された低階調化制御データに基づいて低階調化を行う。この手順は、第1の実施形態で説明したように、図5で示す誤差拡散法やディザマトリクス法による閾値制御等を用いることができる。
上述の第5の実施形態では、シアンとマゼンタのドット形成の分散性を上げるために、センサからの信号を色変換したシアンの信号355cをマゼンタの記録データ生成部370mのみに入力した。一方、本実施形態では、マゼンタの記録データ生成部370mだけではなく、同時にシアンの記録データ生成部370cに入力し、シアン及びマゼンタの双方の記録データ生成を制御することも可能である。同様に、センサからの信号を色変換したマゼンタの信号355mをシアンの記録データ生成部370cだけではなく、同時にマゼンタの記録データ生成部370mに入力し、シアン及びマゼンタの双方の記録データ生成を制御することも可能である。
以上述べた通り、本実施形態によれば、センサで検出した各色の記録状態に基づいて、検出した色の記録データ生成だけでなく、他色の記録データ生成をも制御することができる。このため、マルチパス記録におけるパス間のドット形成の分散性を上げるだけではなく、濃度に対する影響度の高いシアンとマゼンタのドット形成の分散性も同時に上げることができる。これにより、ある濃度で目立ってしまう粒状感を低減することができる。
<第7の実施形態>
上述の第5、第6の実施形態では、主走査方向への走査を行わずにラインセンサを用いて1パス記録又はマルチパス記録を行ったが、本実施形態では、主走査方向への走査を行うマルチパス記録について説明する。
図24は、第7の実施形態に係るセンサ235、236、237、238及びインクジェットヘッド225の配置状態を示す図である。
260はインクジェットヘッド及びセンサを搭載したキャリッジ、225cはシアンのインクジェットヘッド、225mはマゼンタのインクジェットヘッド、225yはイエローのインクジェットヘッド、235、236、237、238はセンサである。
センサ235は、往路方向に対する最も上流側(図24では、右側)に配置され、インクジェットヘッド225cは、センサ235の下流側(図24では、左側)に配置される。また、センサ236は、インクジェットヘッド225cの下流側に配置され、インクジェットヘッド225mは、センサ236の下流側に配置される。更に、センサ237は、インクジェットヘッド225mの下流側に配置され、インクジェットヘッド225yは、センサ237の下流側に配置される。また、センサ238は、インクジェットヘッド225yの下流側、すなわち、往路方向に対する最も下流側に配置される。これにより、双方向記録に対応したセンサ配置としている。
往路方向の記録を行う際には、最上流に配置されたセンサ235の出力をシアンのインクジェットヘッド225cの記録データ生成に用いる。また、センサ236の出力をインクジェットヘッド225mのインク色であるマゼンタの記録データ生成に用いる。同様に、センサ237の出力をインクジェットヘッド225yのインク色であるイエローの記録データ生成に用いる。この際に、センサ236を用いて、マルチパス記録を行う場合に、以前のパスによるマゼンタの記録状態だけではなく、インクジェットヘッド225mの上流(右側)に配置されたシアンのヘッドで記録された記録状態を検出することができる。
このため、インクジェットヘッド225mによるマゼンタの以前の走査による記録状態及びインクジェットヘッド225cによるシアンの記録状態の双方に基づいて、マゼンタの記録データ生成を行うことが可能となる。同様に、往路方向に対して最も下流(左側)にあるイエローに関しては、イエローの上流に配置されたセンサ237を用いて、以前のパスによるイエローの記録だけではなく、イエローの上流に配置されたシアン及びマゼンタの記録状態をも検出することができる。このため、イエローの以前の走査による記録状態と共に、イエローの上流に配置したシアン及びマゼンタの記録状態の結果に応じて、イエローの記録データの生成を行うことが可能となる。
なお、往路方向のみで記録を行う場合には、センサ235の出力をシアンの記録データ生成に用い、センサ236の出力をマゼンタの記録データ生成に用い、更に、センサ237の出力をイエローの記録データ生成に用いることができる。
また、復路方向のみで記録を行う場合には、各色のインクジェットヘッドの上流側(左側)にあるセンサで記録状態を検出して記録データ生成を行う。すなわち、イエローの記録データ生成には、イエローのインクジェットヘッド225yの上流(左側)にあるセンサ238で検出された記録状態に基づいて記録データ生成を行う。マゼンタの記録データ生成には、マゼンタのインクジェットヘッド225mの上流(左側)にあるセンサ237で検出された記録状態に基づいて記録データ生成を行う。同様に、シアンの記録データ生成には、シアンのインクジェットヘッド225cの上流(左側)にあるセンサ236で検出された記録状態に基づいて記録データ生成を行う。このように、往路方向のみで記録を行う場合と復路方向のみで記録を行う場合のセンサを切り替える。
図25は、第7の実施形態に係る画像形成装置の機能的構成を示すブロック図である。
235、236、237、238は図24で示すように配置したセンサ、740−1、740−2、740−3はセンサ235、236、237、238を切り替えるためのスイッチである。742はスイッチ740−1、740−2、740−3を切り替えるための切り替え信号であるキャリッジの走査方向を示すキャリッジ方向信号である。シアン、マゼンタ、イエローのインクジェットヘッド225c、225m、225yは、各々の両側に位置するセンサの内、キャリッジの走査方向に応じて、走査方向の上流側に位置するセンサで検出した記録状態の信号を用いて、記録データの生成を行う。このため、キャリッジの走査方向に応じて、センサを切り替えるスイッチ740を設けて、キャリッジの走査方向を示すキャリッジ方向信号742によってこれを切り替えている。すなわち、往路方向(図24で示す左から右方向)での走査では、シアンの記録データ生成部720cには、センサ235の信号が入力される。また、マゼンタの記録データ生成部720mには、センサ236の信号が入力され、シアンの記録データ生成部720yには、センサ237の信号が入力される。逆に、復路方向(図24で示す右から左方向)での走査では、シアンの記録データ生成部720cには、センサ236の信号が入力され、マゼンタの記録データ生成部720mには、センサ237の信号が入力される。また、シアンの記録データ生成部720yには、センサ238の信号が入力される。
このようにして、双方向記録を行う際に、キャリッジの走査方向に合わせて、インクジェットヘッドの両側に配置したセンサのうち、用いるべきセンサを切り替える。これにより、走査方向によらずに、常にセンサで検出した記録状態に基づいて最適な記録データ生成を行うことができる。
以上述べた通り、本実施形態によれば、各インク色のインクジェットヘッドの両脇にセンサを設け、インクジェットヘッドの上流側にあるセンサの出力を用いて、記録データ生成を制御した。これにより、マルチパス記録を行う場合に、以前のパスの各色の記録による濃度ムラを低減できるだけではなく、そのヘッドの主走査方向に対する上流側にあるインク色のヘッドによるノズル特性のバラツキによる濃度ムラをも低減することができる。更に、往路方向及び復路方向の双方で記録を行う双方向記録の場合にも、記録状態を検出するセンサをヘッドの主走査方向に対する上流側に配置したセンサに切り替えることによって、最適な記録データ生成を行うことができる。
なお、本実施形態では、用いるべきセンサ235、236、237、238をキャリッジ方向信号742に基づいてスイッチ740によって切り替えて、そのまま各インク色の記録データ生成部720に入力する構成としたが、次のような構成としても構わない。
すなわち、カラーセンサを用いて、図3で示したようにそれぞれ色変換部を設けて、インク色に分解してから記録データ生成部に入力する構成としてもよい。また、同様にカラーセンサを用いて、色変換部でインク色に分解した後に、図22で示すように、記録データ生成部に対して、インクジェットヘッドの上流に配置されたインク色の信号を複数入力する構成も可能である。これにより、各インク色の記録状態に基づいて、最適な記録データ生成が可能である。
<その他の実施形態>
なお、本実施形態は、複数の機器(例えば、ホストコンピュータ、インターフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても、1つの機器からなる装置(例えば、複写機、複合機、ファクシミリ装置等)に適用してもよい。
また、本発明は、前述した実施形態の機能を実現するソフトウェアのコンピュータプログラムのコードを記憶したコンピュータ可読記憶媒体(又は記録媒体)を、システム又は装置に供給してもよい。また、そのシステム又は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み込み実行することに適用してもよい。この場合、記憶媒体から読み込まれたプログラムコード自体が前述の実施形態の機能を実現することになり、そのプログラムコードを記録した記憶媒体は本実施形態を構成することになる。また、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)等が実際の処理の一部又は全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
さらに、記憶媒体から読み込まれたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれる。その後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって前述した実施形態の機能が実現される場合も本発明に含まれることは言うまでもない。
また、本実施形態を上述のコンピュータ可読記憶媒体に適用する場合、その記憶媒体には、前述のフローチャートや機能構成に対応するコンピュータプログラムのコードが格納されることになる。

Claims (9)

  1. 記録データを記録するノズル列と、前記ノズル列に先行する位置に配置され、記録媒体上に既に形成された画像の記録状態を検出するセンサとを含む、画像形成装置の記録ヘッドであって、
    前記センサが検出した前記記録状態は、前記記録状態を前記センサを検出した走査と同じ走査において記録される、前記ノズル列に対応する記録データを生成するために用いられ、
    前記ノズル列は、各ノズルが並ぶ方向と直交する方向に記録媒体上を相対的に走査することにより該記録媒体上に画像を形成することを特徴とする画像形成装置の記録ヘッド。
  2. 記録データを記録するノズル列と、前記ノズル列を挟むように配置され、記録媒体上に既に形成された画像の記録状態を検出する第一のセンサ及び第二のセンサとを含む、画像形成装置の記録ヘッドであって、
    前記ノズル列は、各ノズルが並ぶ方向と直交する方向に記録媒体上を相対的に往復走査することにより該記録媒体上に画像を形成し、
    前記第一のセンサが先行する走査方向においては、前記第一のセンサが検出した前記記録状態が、前記記録状態を前記センサを検出した走査と同じ走査において記録される、前記ノズル列に対応する記録データを生成するために用いられ、
    前記第二のセンサが先行する走査方向においては、前記第二のセンサが検出した前記記録状態が、前記記録状態を前記センサを検出した走査と同じ走査において記録される、前記ノズル列に対応する記録データを生成するために用いられることを特徴とする画像形成装置の記録ヘッド。
  3. 前記記録ヘッドが、各ノズルが並ぶ方向と直交する方向に記録媒体上を相対的に走査することと、各ノズルが並ぶ長さよりも小さい搬送量だけ、各ノズル列が並ぶ方向に前記記録媒体を搬送することと、を繰り返すことにより、前記ノズル列は、前記記録媒体上の同一領域を複数回走査して画像を形成することを特徴とする、請求項1又は2に記載の画像形成装置の記録ヘッド。
  4. 記録データを記録するノズル列と、前記ノズル列を挟むように配置され、記録媒体上に既に形成された画像の記録状態を検出する第一のセンサ及び第二のセンサとを含む、画像形成装置の記録ヘッドであって、
    前記ノズル列は、各ノズルが並ぶ方向と直交する方向に記録媒体上を相対的に走査することにより該記録媒体上に画像を形成し、
    前記第一のセンサは、前記ノズル列に対して先行する位置に配置され、前記第一のセンサが検出した前記記録状態は、前記記録状態を前記センサを検出した走査と同じ走査において記録される、前記ノズル列に対応する記録データを生成するために用いられ、
    前記第二のセンサは、前記ノズル列に対して後続する位置に配置され、前記ノズル列によって記録された記録状態を、前記ノズル列による記録と同じ走査において検出するために用いられることを特徴とする画像形成装置の記録ヘッド。
  5. 複数の前記ノズル列を備えることを特徴とする、請求項1乃至4の何れか1項に記載の画像形成装置の記録ヘッド。
  6. 前記複数のノズル列のそれぞれは、複数の色成分のそれぞれに対応することを特徴とする、請求項に記載の画像形成装置の記録ヘッド。
  7. 前記複数の色成分は、ブラック、シアン、マゼンタ、及びイエローを含むことを特徴とする、請求項に記載の画像形成装置の記録ヘッド。
  8. 前記センサは、カラーセンサであることを特徴とする、請求項1乃至7の何れか1項に記載の画像形成装置の記録ヘッド。
  9. 請求項1乃至8の何れか1項に記載の画像形成装置の記録ヘッドと、
    前記記録状態を用いて前記記録データを生成する手段と、
    前記記録ヘッドの動作を制御する手段と、
    を備えることを特徴とする画像形成装置。
JP2013095933A 2013-04-30 2013-04-30 画像形成装置の記録ヘッド Expired - Fee Related JP5693646B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095933A JP5693646B2 (ja) 2013-04-30 2013-04-30 画像形成装置の記録ヘッド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095933A JP5693646B2 (ja) 2013-04-30 2013-04-30 画像形成装置の記録ヘッド

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008255243A Division JP5268535B2 (ja) 2008-09-30 2008-09-30 画像形成装置、画像形成装置の制御方法及び画像形成装置の記録ヘッド

Publications (2)

Publication Number Publication Date
JP2013144468A JP2013144468A (ja) 2013-07-25
JP5693646B2 true JP5693646B2 (ja) 2015-04-01

Family

ID=49040542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095933A Expired - Fee Related JP5693646B2 (ja) 2013-04-30 2013-04-30 画像形成装置の記録ヘッド

Country Status (1)

Country Link
JP (1) JP5693646B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200562A (ja) * 2002-01-07 2003-07-15 Canon Inc 記録装置及び記録方法
JP2005096447A (ja) * 2003-09-03 2005-04-14 Fuji Photo Film Co Ltd インクジェット記録装置及び吐出不良検出方法

Also Published As

Publication number Publication date
JP2013144468A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5139877B2 (ja) 画像形成装置及び画像形成方法
JP5139876B2 (ja) 画像形成装置及び画像形成方法
JP5505048B2 (ja) 印刷装置、印刷方法、印刷データ生成プログラム
JP2009262455A (ja) 画像形成装置、その制御手段及びコンピュータプログラム
JP5366561B2 (ja) 画像処理装置および画像処理方法
US6585353B1 (en) Printing information processing system, printing system, printing information processing method and printing method
JP5086705B2 (ja) 画像処理装置およびその方法
JP5843503B2 (ja) 画像記録システムおよび画像記録方法
JP2011087262A (ja) 画像処理装置及び画像処理方法
JP2010149385A (ja) 画像処理装置、記録装置および画像処理方法
JP5300353B2 (ja) 画像処理装置及び画像処理方法
JP5268535B2 (ja) 画像形成装置、画像形成装置の制御方法及び画像形成装置の記録ヘッド
JP5290689B2 (ja) 画像処理装置及びその制御方法
JP5404360B2 (ja) 画像処理装置及び画像処理方法
JP5693646B2 (ja) 画像形成装置の記録ヘッド
JP5460293B2 (ja) 画像処理装置及び画像処理方法
JP5517589B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP5213508B2 (ja) 画像形成装置及び画像形成方法
JP5489549B2 (ja) 画像形成装置、画像形成方法、画像処理装置、画像処理方法及びコンピュータプログラム
JP5564771B2 (ja) 印刷装置、印刷方法、コンピュータプログラム、記録媒体、印刷媒体、および、プリンタ
JP2011000829A (ja) 画像形成装置、画像形成方法、及びプログラム
JP2011116016A (ja) 画像処理装置及び画像処理方法
JP5300352B2 (ja) 画像処理装置及び画像処理方法
JP5341420B2 (ja) 画像処理装置及び画像処理方法
JP2010069802A (ja) 画像形成装置およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R151 Written notification of patent or utility model registration

Ref document number: 5693646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees