JP5690650B2 - Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program - Google Patents

Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program Download PDF

Info

Publication number
JP5690650B2
JP5690650B2 JP2011104602A JP2011104602A JP5690650B2 JP 5690650 B2 JP5690650 B2 JP 5690650B2 JP 2011104602 A JP2011104602 A JP 2011104602A JP 2011104602 A JP2011104602 A JP 2011104602A JP 5690650 B2 JP5690650 B2 JP 5690650B2
Authority
JP
Japan
Prior art keywords
heat
heat source
temperature
pump system
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104602A
Other languages
Japanese (ja)
Other versions
JP2012233669A (en
Inventor
中村 靖
靖 中村
隆生 葛
隆生 葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011104602A priority Critical patent/JP5690650B2/en
Publication of JP2012233669A publication Critical patent/JP2012233669A/en
Application granted granted Critical
Publication of JP5690650B2 publication Critical patent/JP5690650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、熱媒を循環させる地中熱交換器を利用する地盤熱特性解析方法及び装置、土壌熱源ヒートポンプシステムの運転調整方法及び装置、並びにプログラムに関する。 The present invention relates to a ground thermal characteristic analysis method and apparatus using a ground heat exchanger that circulates a heat medium, an operation adjustment method and apparatus for a soil heat source heat pump system, and a program.

近年では、地盤を熱源として、地中熱交換器に熱媒を循環させてヒートポンプにより採放熱し、負荷側に温熱又は冷熱を供給する土壌熱源ヒートポンプシステムが広く認知され始めている。土壌熱源ヒートポンプシステムは、大気と違い地中温度が年間を通して大きな変化がなく安定していることから、省エネルギー性、安価なランニングコスト、二酸化炭素(CO2)排出量の抑制といった優位性があり、今後更なる導入が期待されるものと考えられる。 In recent years, a soil heat source heat pump system that uses the ground as a heat source, circulates a heat medium in an underground heat exchanger, collects and dissipates heat with a heat pump, and supplies hot or cold to the load side has begun to be widely recognized. Unlike the atmosphere, the soil heat source heat pump system is stable with no significant changes throughout the year, so it has advantages such as energy saving, low running costs, and suppression of carbon dioxide (CO 2 ) emissions. Further introduction is expected in the future.

土壌熱源ヒートポンプシステムを高効率に運転するためには、例えば冷暖房に利用する場合であれば、冷房運転しているときの地中への放熱量と、暖房運転しているときの地中からの採熱量とのバランスをとることが重要である。この種の技術として、特許文献1には、地中熱交換器と補助熱交換器とを熱源とし、これらを暖房負荷による地中採熱量と、冷房負荷による地中放熱量とが等しくなるように択一的に切り換えて使用して空気調和する地中熱交換器を利用した空気調和システムが開示されている。また、特許文献2には、温度センサで測定したヒートポンプから地中熱交換器への熱媒水の出口温度に基づいて採放熱の限界値を設定し、設定した採放熱の限界値を超えないようにヒートポンプの運転を制御するようにした地中熱利用ヒートポンプ装置が開示されている。   In order to operate the soil heat source heat pump system with high efficiency, for example, when used for air conditioning, the amount of heat released to the ground during cooling operation and from the ground during heating operation It is important to balance the amount of heat collected. As this type of technology, Patent Document 1 discloses that a ground heat exchanger and an auxiliary heat exchanger are used as heat sources, and the amount of ground heat collected by the heating load is equal to the amount of ground heat radiation by the cooling load. An air conditioning system using a ground heat exchanger that performs air conditioning by switching to an alternative is disclosed. Moreover, in patent document 2, the limit value of heat collection / radiation is set based on the exit temperature of the heat transfer water from the heat pump to the underground heat exchanger measured by the temperature sensor, and does not exceed the set limit value of heat collection / radiation. As described above, a heat pump device using geothermal heat that controls the operation of the heat pump is disclosed.

また、本願出願人は、特許文献3において、ヒートポンプを用いて地盤を熱源として地中熱交換器に熱媒を循環させて採放熱し、負荷側に温熱又は冷熱を供給する土壌熱源ヒートポンプシステムの設計手法であって、暖房期間及び冷房期間を含む条件を用いて算出される土壌熱源ヒートポンプシステムで処理する熱負荷の時系列変化、地盤環境条件、並びに、前記地中熱交換器の仕様及びヒートポンプの仕様を含む土壌ヒートポンプシステムの仕様を設定して、前記土壌熱源ヒートポンプシステムの運転をシミュレーションして熱収支を解析し、熱源側の温度の時系列変化を求める解析手順と、暖房期間開始時と次年の冷房期間終了時、及び、冷房期間開始時と次年の暖房期間終了時のうち少なくともいずれかにおいて、前記解析手順によるシミュレーションの結果である熱源側の温度が略一致するように前記土壌熱源ヒートポンプシステムで処理する熱負荷及び前記土壌熱源ヒートポンプシステムの仕様のうち少なくともいずれかを変更しながら前記シミュレーションを繰り返して前記土壌熱源ヒートポンプシステムで処理する熱負荷及び前記土壌熱源ヒートポンプシステムの仕様を決める仕様決定手順とを行う設計手法を提案している。   In addition, the applicant of the present application discloses a soil heat source heat pump system in Patent Document 3 that uses a heat pump to circulate a heat medium in a ground heat exchanger using the ground as a heat source, collects and dissipates heat, and supplies hot or cold to the load side. Time-series change of heat load to be processed by the soil heat source heat pump system calculated using conditions including a heating period and a cooling period, ground environmental conditions, and specifications of the underground heat exchanger and heat pump Set the specifications of the soil heat pump system including the specifications of the above, simulate the operation of the soil heat source heat pump system, analyze the heat balance, and obtain the time series change of the temperature on the heat source side, According to the analysis procedure at the end of the cooling period of the next year and at least one of the start of the cooling period and the end of the heating period of the next year The simulation is repeated while changing at least one of the heat load to be processed by the soil heat source heat pump system and the specifications of the soil heat source heat pump system so that the temperature on the heat source side as a result of the simulation is substantially the same. A design method is proposed in which the heat load to be processed by the heat source heat pump system and the specification determination procedure for determining the specifications of the soil heat source heat pump system are proposed.

特開2003−130494号公報JP 2003-130494 A 特開2006−292310号公報JP 2006-292310 A 特開2007−85675号公報JP 2007-85675 A

土壌熱源ヒートポンプシステムを高効率に運転するためには、例えば冷房負荷(放熱)の暖房負荷(採熱)に対する過多による地中温度の長期的な上昇を解消させることが課題となっている。これについては、感知できる以上の範囲の地下水流動が期待できるのであれば、地下水の移流効果で地中への過剰な採放熱を抑えることと、冷却塔等を付加して地中への放熱を低減させること等が対処法として挙げられる。   In order to operate the soil heat source heat pump system with high efficiency, for example, it is a problem to eliminate a long-term increase in underground temperature due to excessive cooling load (heat radiation) with respect to a heating load (heat collection). In this regard, if groundwater flow beyond the perceivable range can be expected, it is possible to suppress excessive heat radiation to the ground by the advection effect of groundwater and to add heat to the ground by adding a cooling tower etc. Reduction can be mentioned as a countermeasure.

そのうち地下水流動については、地下水流速の測定方法はある程度確立されたものの、測定方法の精度にはまだ改善の余地が残っている上に、データの蓄積が少ないため、測定値を鵜呑みにして計画、設計段階で地下水の効果を織り込むのは難しい状況となっている。   For groundwater flow, the groundwater flow velocity measurement method has been established to some extent, but there is still room for improvement in the accuracy of the measurement method, and the accumulation of data is small. It is difficult to incorporate groundwater effects at the design stage.

一方で、特許文献3に提案しているような解析計算モデルによるシミュレーションを応用すれば、運転期間中の地中温度実測データを用いて、有効熱伝導率等の地盤熱特性を把握することは可能である。このようにして把握した地盤熱特性については、地下水流動も考慮したものとなることから、上述したように計画、設計段階で織り込むことが難しい地下水の効果を、運用段階で反映させることが可能となる。   On the other hand, if the simulation based on the analytical calculation model proposed in Patent Document 3 is applied, it is possible to grasp the ground thermal characteristics such as effective thermal conductivity using the underground temperature measurement data during the operation period. Is possible. Since the ground thermal characteristics obtained in this way are considered in consideration of groundwater flow, it is possible to reflect the effects of groundwater that is difficult to incorporate in the planning and design stages as described above in the operation stage. Become.

本発明は上記のような点に鑑みてなされたものであり、地盤熱特性を随時把握できるようにし、さらには、それに基づいて土壌熱源ヒートポンプシステムの運転、性能予測を行い、土壌熱源ヒートポンプシステムの運転時間や採放熱量を調整できるようにすることを目的とする。   The present invention has been made in view of the above points, and allows the ground heat characteristics to be ascertained at any time, and further, based on that, performs the operation and performance prediction of the soil heat source heat pump system, and the soil heat source heat pump system. The purpose is to be able to adjust the operating time and the amount of heat collected.

本発明地盤熱特性解析方法は、熱媒を循環させる地中熱交換器を利用する地盤熱特性解析方法であって、地盤熱特性値としての有効熱伝導率を仮定し、その有効伝導率を用いて、所定の期間、時々刻々に測定した計算条件を用いて、熱源側の温度の時系列変化を計算する第1のシミュレーション手順と、前記第1のシミュレーション手順による熱源側の温度の計算値の前記所定の期間での初期地中温度からの変化量と、熱源側の温度の実測値の前記所定の期間での前記初期地中温度からの変化量とが所定の条件を満たすか否かを判定する第1の判定手順とを有し、前記計算値の変化量と前記実測値の変化量とが前記所定の条件を満たすまで前記有効熱伝導率を変更して前記第1のシミュレーション手順及び第1の判定手順を繰り返し、前記所定の条件を満たす有効熱伝導率を求めることを特徴とする。
また、本発明地盤熱特性解析方法の他の特徴とするところは、熱源側の温度とは、地中熱交換器出口温度であり、前記第1のシミュレーション手順では、前記所定の期間、時々刻々に測定した地中熱交換器入口温度及び熱媒の循環流量を計算条件として与え、地中熱交換器内部の熱収支、無限の周囲地盤との熱伝導を解析し、熱源側の温度として地中熱交換器出口温度の時系列変化を計算する。
本発明の土壌熱源ヒートポンプシステムにおける運転調整方法は、本発明の地盤熱特性解析方法により有効熱伝導率を求める地盤熱特性解析手順と、運転期間の採放熱量積算値に基づいて、予定されている土壌熱源ヒートポンプシステム運転熱負荷を再設定する再設定手順と、前記地盤熱特性解析手順による有効熱伝導率及び前記再設定手順による土壌熱源ヒートポンプシステム運転熱負荷を用いて、現時点後の単位期間について、前記土壌熱源ヒートポンプシステムの運転のシミュレーションを実行して熱収支を解析し、熱源側の温度の時系列変化を計算する第2のシミュレーション手順と、前記第2のシミュレーション手順による熱源側の温度の計算値が所定の温度条件を満たすか否かを判定する第2の判定手順とを有し、前記熱源側の温度の計算値が前記所定の温度条件を満たすまで土壌熱源ヒートポンプシステム運転基準に関係する値を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステム運転基準を求めることを特徴とする。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、二次側(負荷側)補助熱源機と組み合わせた土壌熱源ヒートポンプシステムの運転調整方法であって、前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、前記熱源側の温度の計算値が前記所定の温度条件を満たすまで前記年間負荷量を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす前記年間負荷量に基づいて、前記土壌熱源ヒートポンプシステム運転基準である前記土壌熱源ヒートポンプシステムの運転を停止させる第1の採放熱量積算値、又は、前記土壌熱源ヒートポンプシステムと前記二次側補助熱源機との併用運転への切り替えを行う第2の採放熱量積算値を求める。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、一次側(熱源側)補助熱源機と組み合わせた土壌熱源ヒートポンプシステムの運転調整方法であって、前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、前記熱源側の温度の計算値が前記所定の温度条件を満たすまで、前記土壌熱源ヒートポンプシステム運転基準である前記一次側補助熱源機を運転する熱源側の温度(以下、基準温度と称する。)を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす前記基準温度を求める。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、温熱需要と冷熱需要とが混在し、共通の熱源水配管を介して、加熱運転ヒートポンプの冷排熱を冷却運転ヒートポンプ熱源に、冷却運転ヒートポンプの温排熱を加熱運転ヒートポンプ熱源に相互利用する熱回収システムに適用し、熱源不足の場合には一次側補助熱源機を併用する土壌熱源ヒートポンプシステムの運転調整方法であって、1年間を冷却負荷の方が大きい冷却期と加熱負荷の方が大きい加熱期と分け、冷却期においては前記冷却運転ヒートポンプを前記土壌熱源ヒートポンプシステム、前記加熱運転ヒートポンプ冷排熱を一次側(熱源側)補助熱源機として扱い、加熱期においては前記加熱運転ヒートポンプを前記土壌熱源ヒートポンプシステム、前記冷却運転ヒートポンプ温排熱を一次側補助熱源機として扱い、前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、前記熱源側の温度の計算値が前記所定の温度条件を満たすまで前記土壌熱源ヒートポンプシステムの運転基準に関係する値を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステムの運転基準を求める。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、共通の熱源水配管を介して、排熱回収を行う熱回収システムに適用し、熱源不足の場合には一次側補助熱源機を併用する土壌熱源ヒートポンプシステムの運転調整方法であって、回収した排熱を補助熱源として扱い、前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、前記熱源側の温度の計算値が前記所定の温度条件を満たすまで前記土壌熱源ヒートポンプシステムの運転基準に関係する値を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステムの運転基準を求める。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、前記所定の温度条件には、前記第2のシミュレーション手順による熱源側の温度の計算値が上限値及び下限値を超えない、或いは、上限値又は下限値を超えないという条件を含む。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、前記所定の温度条件には、前記第2のシミュレーション手順による熱源側の最高温度と最低温度の計算値における経年変化値がともに所定の条件値を超えないという条件を含む。
また、本発明の土壌熱源ヒートポンプシステムの運転調整方法の他の特徴とするところは、前記単位期間ごとに、前記地盤熱特性解析手順、前記再設定手順、前記第2のシミュレーション手順、及び前記第2の判定手順により前記土壌熱源ヒートポンプシステム運転基準を求め、その土壌熱源ヒートポンプシステム運転基準に基づいて前記土壌熱源ヒートポンプシステムの運転調整を実行する。
The ground thermal property analysis method of the present invention is a ground thermal property analysis method using a ground heat exchanger that circulates a heat medium , assuming an effective thermal conductivity as a ground thermal property value, and its effective conductivity. The first simulation procedure for calculating the time series change of the temperature on the heat source side using the calculation conditions measured every moment for a predetermined period, and the calculation of the temperature on the heat source side by the first simulation procedure Whether the change amount of the value from the initial underground temperature in the predetermined period and the change amount of the measured value of the temperature on the heat source side from the initial underground temperature in the predetermined period satisfy a predetermined condition the and a first determining step determines whether the calculated value of the variation between the first simulation variation and is by changing the effective thermal conductivity to the predetermined condition is satisfied in the measured value Repeating the procedure and the first determination procedure, And obtaining a satisfying effective thermal conductivity constant.
In addition, another feature of the ground thermal characteristic analysis method of the present invention is that the temperature on the heat source side is the outlet temperature of the underground heat exchanger, and in the first simulation procedure, the predetermined time period is sometimes changed. The ground heat exchanger inlet temperature and the circulating flow rate of the heat medium measured every moment are given as calculation conditions, the heat balance inside the underground heat exchanger and the heat conduction with the infinite surrounding ground are analyzed, and the temperature on the heat source side is calculated. Calculate the time series change of the outlet temperature of the underground heat exchanger.
The operation adjustment method in the soil heat source heat pump system of the present invention is scheduled based on the ground thermal characteristic analysis procedure for obtaining the effective thermal conductivity by the ground thermal characteristic analysis method of the present invention, and the integrated heat dissipation amount during the operation period. Resetting procedure to reset the operating heat load of the soil heat source heat pump system, the effective thermal conductivity by the ground thermal characteristics analysis procedure and the soil heat source heat pump system operating heat load by the resetting procedure, A second simulation procedure for executing a simulation of the operation of the soil heat source heat pump system to analyze a heat balance and calculating a time-series change in temperature on the heat source side, and a temperature on the heat source side according to the second simulation procedure A second determination procedure for determining whether or not the calculated value satisfies a predetermined temperature condition, and the heat source side Until the calculated value of the degree satisfies the predetermined temperature condition, the value related to the soil heat source heat pump system operation standard is changed and the second simulation procedure and the second determination procedure are repeated to satisfy the predetermined temperature condition It is characterized by obtaining a soil heat source heat pump system operation standard.
Further, another feature of the operation adjustment method of the soil heat source heat pump system of the present invention is an operation adjustment method of the soil heat source heat pump system combined with a secondary side (load side) auxiliary heat source machine, wherein the soil heat source The heat load of the heat pump system operation is an annual load amount, and the second simulation procedure and the second determination procedure are performed by changing the annual load amount until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition. The first heat radiation amount integrated value for stopping the operation of the soil heat source heat pump system, which is the soil heat source heat pump system operation standard, based on the annual load amount satisfying the predetermined temperature condition, or the soil Obtaining a second integrated heat extraction amount value for switching to combined operation of the heat source heat pump system and the secondary side auxiliary heat source machine .
In addition, another feature of the operation adjustment method of the soil heat source heat pump system of the present invention is an operation adjustment method of the soil heat source heat pump system combined with a primary side (heat source side) auxiliary heat source machine, the soil heat source heat pump The system operation heat load is an annual load amount, and until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition, the heat source side operating the primary side auxiliary heat source machine that is the soil heat source heat pump system operation standard The reference temperature that satisfies the predetermined temperature condition is obtained by changing the temperature (hereinafter referred to as a reference temperature) and repeating the second simulation procedure and the second determination procedure.
In addition, another feature of the operation adjustment method of the soil heat source heat pump system according to the present invention is that the heat demand and the cold demand are mixed, and the cold exhaust heat of the heating operation heat pump is cooled through a common heat source water pipe. Applying to the heat recovery system that mutually uses the heat exhaust heat of the cooling operation heat pump as the operating heat pump heat source for the heating operation heat pump heat source, and adjusting the operation of the soil heat source heat pump system that uses the primary auxiliary heat source machine in combination when the heat source is insufficient The one year is divided into a cooling period in which the cooling load is larger and a heating period in which the heating load is larger. In the cooling period, the cooling operation heat pump is replaced with the soil heat source heat pump system, and the heating operation heat pump cold exhaust heat. Treated as a primary side (heat source side) auxiliary heat source machine, and during the heating period, the heating operation heat pump is the soil heat source heat pump. Stem, said handle cooling operation the heat pump temperature exhaust heat as the primary-side auxiliary heat source machine, the soil source heat pump system operating heat load is annual load, the calculated temperature of the heat source side until the predetermined temperature condition is satisfied A value related to an operation standard of the soil heat source heat pump system is changed and the second simulation procedure and the second determination procedure are repeated to obtain an operation standard of the soil heat source heat pump system satisfying the predetermined temperature condition.
Further, another feature of the operation adjustment method of the soil heat source heat pump system of the present invention is that it is applied to a heat recovery system that recovers exhaust heat through a common heat source water pipe. An operation adjustment method of a soil heat source heat pump system that uses a side auxiliary heat source device together , the recovered exhaust heat is treated as an auxiliary heat source, the soil heat source heat pump system operation heat load is an annual load, and the temperature of the temperature on the heat source side Until the calculated value satisfies the predetermined temperature condition, the value related to the operation standard of the soil heat source heat pump system is changed, the second simulation procedure and the second determination procedure are repeated, and the predetermined temperature condition is satisfied. Determine the operating standards of the soil heat source heat pump system .
Further, another feature of the operation adjustment method of the soil heat source heat pump system of the present invention is that, in the predetermined temperature condition, the calculated value of the temperature on the heat source side according to the second simulation procedure is an upper limit value and a lower limit value. Or the condition that the upper limit value or the lower limit value is not exceeded.
In addition, another feature of the operation adjustment method of the soil heat source heat pump system of the present invention is that the predetermined temperature condition includes the aging in the calculated values of the maximum temperature and the minimum temperature on the heat source side according to the second simulation procedure. It includes a condition that both change values do not exceed a predetermined condition value.
Further, another feature of the operation adjustment method of the soil heat source heat pump system according to the present invention is that, for each unit period, the ground thermal characteristic analysis procedure, the resetting procedure, the second simulation procedure, and the first The soil heat source heat pump system operation standard is obtained by the determination procedure of 2, and the operation adjustment of the soil heat source heat pump system is executed based on the soil heat source heat pump system operation standard.

本発明によれば、地下水流動の影響についても含まれる有効熱伝導率を随時把握することができる。さらには、その有効熱伝導率に基づいて土壌熱源ヒートポンプシステムの運転、性能予測を行い、土壌熱源ヒートポンプシステムの運転時間や採放熱量を調整することができる。すなわち、地下水による採放熱促進効果や冷暖負荷アンバランス解消効果をその実態に即して利用することができる。   According to the present invention, the effective thermal conductivity included in the influence of groundwater flow can be grasped at any time. Furthermore, the operation and performance prediction of the soil heat source heat pump system can be performed based on the effective thermal conductivity, and the operation time and the heat radiation amount of the soil heat source heat pump system can be adjusted. That is, it is possible to use the heat collection / radiation promotion effect by groundwater and the cooling / heating load imbalance elimination effect according to the actual situation.

本発明を適用可能な土壌熱源ヒートポンプシステムの概略構成を示す図である。It is a figure which shows schematic structure of the soil heat source heat pump system which can apply this invention. 本発明を適用したGSHPシステムの制御装置の概略構成を示す図である。It is a figure which shows schematic structure of the control apparatus of the GSHP system to which this invention is applied. 地盤熱特性解析プログラムによる処理を示すフローチャートである。It is a flowchart which shows the process by a ground thermal characteristic analysis program. 地中熱交換器出口温度の計算値と実測値とを比較して、有効熱伝導率を求めた例を示す特性図である。It is a characteristic view which shows the example which calculated | required the effective thermal conductivity by comparing the calculated value and measured value of an underground heat exchanger exit temperature. (a)は土壌熱源ヒートポンプシステムと空冷チラー及びボイラといった二次側(負荷側)補助熱源機とを組み合わせたシステムの概略構成を示す図、(b)は土壌熱源ヒートポンプシステムと一次側(熱源側)補助冷熱源機である冷却塔とを組み合わせたシステムの概略構成を示す図である。(A) is a figure which shows schematic structure of the system which combined the soil heat source heat pump system and secondary side (load side) auxiliary heat source machines, such as an air cooling chiller and a boiler, (b) is a soil heat source heat pump system and a primary side (heat source side) FIG. 2 is a diagram showing a schematic configuration of a system in combination with a cooling tower which is an auxiliary cooling heat source machine. 土壌熱源ヒートポンプシステム及び二次側補助熱源機の系統図である。It is a systematic diagram of a soil heat source heat pump system and a secondary side auxiliary heat source machine. 図6の各ケースにおける負荷量の関係を示す図である。It is a figure which shows the relationship of the load amount in each case of FIG. 第1の実施形態におけるGSHPシステムの運転調整プログラムによる処理を示すフローチャートである。It is a flowchart which shows the process by the driving | operation adjustment program of the GSHP system in 1st Embodiment. 第1の実施形態における地中熱運転評価プログラムによる処理を示すフローチャートである。It is a flowchart which shows the process by the geothermal operation evaluation program in 1st Embodiment. 長期安定性の確認処理を示すフローチャートである。It is a flowchart which shows the confirmation process of long-term stability. 時間と採放熱量との関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between time and the amount of heat dissipation. 予め計算条件として与えるGSHPシステム運転熱負荷と再設定後のGSHPシステム運転熱負荷との関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between the GSHP system operation | movement heat load given as calculation conditions previously, and the GSHP system operation | movement heat load after reset. 予め計算条件として与えるGSHPシステム運転熱負荷で計算した地中熱交換器出口温度と再設定後のGSHPシステム運転熱負荷で計算した地中熱交換器出口温度との関係の例を示す特性図である。It is a characteristic diagram showing an example of the relationship between the underground heat exchanger outlet temperature calculated with the GSHP system operating heat load given as the calculation condition in advance and the underground heat exchanger outlet temperature calculated with the GSHP system operating heat load after resetting is there. コミッショニング単位期間での負荷量の例を示す特性図である。It is a characteristic view which shows the example of the load amount in a commissioning unit period. 第2の実施形態におけるGSHPシステムの運転調整プログラムによる処理を示すフローチャートである。It is a flowchart which shows the process by the driving | operation adjustment program of the GSHP system in 2nd Embodiment. 第2の実施形態における地中熱運転評価プログラムによる処理を示すフローチャートである。It is a flowchart which shows the process by the geothermal operation evaluation program in 2nd Embodiment. 熱回収システムに土壌熱源ヒートポンプシステムを加えた構成例を示す図である。It is a figure which shows the structural example which added the soil heat source heat pump system to the heat recovery system.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
(第1の実施形態)
図1に、本発明を適用可能な土壌熱源ヒートポンプ(Ground Source Heat Pump:以下GSHPと記す。)システム100の概略構成を示す。
GSHPシステム100は、地中に埋設された複数本の地中熱交換器101と、各地中熱交換器101に循環させている熱媒を介して採放熱するためのヒートポンプ102と、ヒートポンプ102により冷却又は加熱された熱媒を介して室内を冷房又は暖房する空調機103とを主要な構成要素として構成される。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
(First embodiment)
FIG. 1 illustrates a schematic configuration of a soil source heat pump (Ground Source Heat Pump: GSHP) system 100 to which the present invention can be applied.
The GSHP system 100 includes a plurality of underground heat exchangers 101 buried in the ground, a heat pump 102 for collecting and radiating heat through a heat medium circulated through the various regional heat exchangers 101, and a heat pump 102. The main component is an air conditioner 103 that cools or heats the room via a cooled or heated heat medium.

GSHPシステム100では、ヒートポンプ102に対して、熱源である地盤側(すなわち、地中熱交換器101側)を一次側(熱源側)、室内側(すなわち、空調機103側)を二次側(負荷側)という。そして、一次側の熱量を採放熱量、二次側の熱量を負荷量といい、ヒートポンプ102とは、
放熱量=冷房負荷量+消費電力
採熱量=暖房負荷量−消費電力
という関係にある。また、成績係数COPとの関係は、
COP=(冷房又は暖房)負荷量/消費電力
となる。
In the GSHP system 100, with respect to the heat pump 102, the ground side (that is, the underground heat exchanger 101 side) that is the heat source is the primary side (heat source side), and the indoor side (that is, the air conditioner 103 side) is the secondary side ( (Load side). The amount of heat on the primary side is referred to as heat extraction / radiation amount, and the amount of heat on the secondary side is referred to as load amount.
Heat dissipation amount = cooling load amount + power consumption Heat extraction amount = heating load amount−power consumption. The relationship with the coefficient of performance COP is
COP = (cooling or heating) load amount / power consumption.

図2には、本発明を適用した地盤熱特性解析装置及びGSHPシステムの運転調整装置として機能するGSHPシステムの制御装置1の概略構成を示す。2はGSHPシステム100の運転状況を解析する運転状況解析部である。3は地盤熱特性を解析する地盤熱特性解析部である。4は運転状況や地盤熱特性に応じてGSHPシステム100の運転調整を行う運転調整部である。GSHPシステムの制御装置1は、具体的にはCPU、ROM、RAM等を備えたコンピュータシステムにより構成することができ、CPUがプログラムを実行することによって実現される。なお、GSHPシステムの制御装置1は一つの機器により構成されてもよいし、複数の機器により構成されてもよい。   FIG. 2 shows a schematic configuration of a control device 1 of the GSHP system that functions as a ground thermal characteristic analysis device to which the present invention is applied and an operation adjustment device of the GSHP system. Reference numeral 2 denotes an operation status analysis unit that analyzes the operation status of the GSHP system 100. Reference numeral 3 denotes a ground thermal characteristic analysis unit that analyzes the ground thermal characteristics. Reference numeral 4 denotes an operation adjustment unit that adjusts the operation of the GSHP system 100 in accordance with the operation status and the ground thermal characteristics. Specifically, the control device 1 of the GSHP system can be configured by a computer system including a CPU, a ROM, a RAM, and the like, and is realized by the CPU executing a program. Note that the control device 1 of the GSHP system may be configured by a single device or may be configured by a plurality of devices.

(GSHPシステムの運転状況の解析)
GSHPシステム100の運転状況を解析するために、図1に示すように、地中熱交換器出入口に温度センサ104a、104bが、地中熱交換器出口に流量センサ105が設置される。データロガーによってこれらセンサ104a、104b、105から採取したデータは、GSHPシステムの制御装置1に取り込まれる。
(Analysis of the operating status of the GSHP system)
In order to analyze the operation status of the GSHP system 100, as shown in FIG. 1, temperature sensors 104a and 104b are installed at the underground heat exchanger inlet and outlet, and a flow sensor 105 is installed at the underground heat exchanger outlet. Data collected from the sensors 104a, 104b, and 105 by the data logger is taken into the control device 1 of the GSHP system.

運転状況解析部2において、地中からの採放熱量qp[W]を計算する場合、地中からの採放熱量qpは、地中熱交換器出入口温度Tpout、Tpin[℃]、熱媒の循環流量Gfp[m3/s]を用いて、下式(1)により求めることができる。cpfは熱媒の定圧比熱[kJ/(kg・K)]、ρfは熱媒の密度[kg/m3]である。地中からの採放熱量qpが正の場合には採熱量、負の値の場合には放熱量となる。 When the operating condition analysis unit 2 calculates the heat extraction / dissipation amount q p [W] from the underground, the heat extraction / dissipation amount q p from the underground is determined by the underground heat exchanger inlet / outlet temperatures T pout and T pin [° C.]. Using the circulation flow rate G fp [m 3 / s] of the heat medium, it can be obtained by the following equation (1). c pf is the constant-pressure specific heat [kJ / (kg · K)] of the heat medium, and ρ f is the density [kg / m 3 ] of the heat medium. Adopted when adopting heat radiation q p from the ground is positive heat, the heat radiation amount is a negative value.

Figure 0005690650
Figure 0005690650

また、運転状況解析部2において、ヒートポンプ102の出力qhp[W]及びCOPを計算する場合、ヒートポンプ102の一次側出入口に温度センサ106a、106bが、ヒートポンプ102の一次側入口に流量センサ107が設定される。また、ヒートポンプ102の消費電力Eの測定のための電力計108a、108bが設置される。ヒートポンプ102の出力qhp及びCOPは、ヒートポンプ102の一次側出入口温度T1out、T1in[℃]、熱媒の循環流量Gf1[m3/s]、消費電力E[W]を用いて、下式(2)〜(4)により求めることができる。 Further, when the operating state analysis unit 2 calculates the output q hp [W] and COP of the heat pump 102, the temperature sensors 106 a and 106 b are provided at the primary side inlet / outlet of the heat pump 102, and the flow rate sensor 107 is provided at the primary side inlet of the heat pump 102. Is set. Moreover, wattmeters 108a and 108b for measuring the power consumption E of the heat pump 102 are installed. Output q hp and COP of the heat pump 102, the primary-side inlet and outlet temperatures T 1out of the heat pump 102, T 1in [° C.], the circulation flow rate G f1 of the heat medium [m 3 / s], using the power E [W], It can obtain | require by following Formula (2)-(4).

Figure 0005690650
Figure 0005690650

なお、地中熱交換器101とヒートポンプ102との間での熱損失等を無視できるとした場合、Tpin=T1out、Tpout=T1in、Gfp=Gf1/n(n:並列回路の数)の関係にあり、相互に代用することも可能である。 Note that when a negligible heat loss, etc. between the underground heat exchanger 101 and the heat pump 102, T pin = T 1out, T pout = T 1in, G fp = G f1 / n (n: a parallel circuit The number can be substituted for each other.

(地盤熱特性の解析)
GSHPシステム100において最も影響を与える地盤熱特性値として有効熱伝導率が挙げられる。地盤熱特性解析部3は、以下の計算により有効熱伝導率を求めるが、その有効熱伝導率はいわゆる見かけ上の有効熱伝導率であり、これは地下水流動の影響についても含まれる。
(Analysis of ground thermal characteristics)
An effective thermal conductivity is an example of the ground thermal characteristic value that most affects the GSHP system 100. The ground thermal characteristic analysis unit 3 calculates the effective thermal conductivity by the following calculation, and the effective thermal conductivity is a so-called apparent effective thermal conductivity, which includes the influence of groundwater flow.

図3は、地盤熱特性解析部3における地盤熱特性解析プログラムによる処理を示すフローチャートである。なお、必要に応じて、実測値には添え字mを、計算値には添え字cを付す。まず計算条件を入力する(ステップS101)。計算条件は、地中熱交換器101の種類、口径、長さ等の仕様である。   FIG. 3 is a flowchart showing processing by the ground thermal property analysis program in the ground thermal property analysis unit 3. If necessary, a subscript m is added to the actual measurement value, and a subscript c is added to the calculated value. First, calculation conditions are input (step S101). The calculation conditions are specifications such as the type, diameter, and length of the underground heat exchanger 101.

次に、有効熱伝導率λs[W/(m・K)]を仮定する(ステップS102)。そして、温度センサ104bで測定される地中熱交換器入口温度の時系列変化の実測値Tpinm、流量センサ105で測定される熱媒の循環流量の時系列変化の実測値Gfpmを計算条件として与え、下式(5)〜(9)に示す解析計算モデルによりGSHPシステム100の運転のシミュレーションを実行して熱収支を解析し、地中熱交換器出口温度の時系列変化Tpoutc等を計算する(ステップS103〜S106)。地中熱交換器出口温度Tpoutcは、式(5)、(6)のように、地中熱交換器内部の熱収支式をたてて計算する。また、地中から採放熱を行うと、地中熱交換器101の周囲温度が上昇するため、そのときの地中熱交換器表面温度は無限円筒理論を応用して、式(7)〜(9)によって計算する。このように無限の周辺地盤からの熱伝導を考慮した自然回復要素を考慮して解析を行っている。Vfは熱媒の体積[m3]、Kp-outは地中熱交換器外側の熱貫流率[W/(m2・K)]、Ap-outは地中熱交換器外側の面積[m2]、Tsは土壌の温度[℃]、rp-outは地中熱交換器の半径[m]、q´0は単位面積あたり放熱量(熱流)[W/m2]、T*は無次元温度、t*はフーリエ数、τは時間に関する変数、βは積分変数、Jxはx次の第一種ベッセル関数、Yxはx次の第二種ベッセル関数である。 Next, an effective thermal conductivity λ s [W / (m · K)] is assumed (step S102). Then, the actual value T pinm of the time series change of the underground heat exchanger inlet temperature measured by the temperature sensor 104b and the actual value G fpm of the time series change of the circulating flow rate of the heat medium measured by the flow sensor 105 are calculated. The simulation of the operation of the GSHP system 100 is executed by the analytical calculation model shown in the following equations (5) to (9) to analyze the heat balance, and the time series change T poutc etc. of the underground heat exchanger outlet temperature is calculated . Calculate (steps S103 to S106). The underground heat exchanger outlet temperature T poutc is calculated based on a heat balance equation inside the underground heat exchanger as shown in equations (5) and (6). In addition, when heat is extracted from the ground, the ambient temperature of the underground heat exchanger 101 rises. Therefore, the surface temperature of the underground heat exchanger at that time can be expressed by equations (7) to (7) by applying infinite cylinder theory. Calculate according to 9). In this way, the analysis is performed in consideration of the natural recovery factor considering the heat conduction from the infinite surrounding ground. V f is the volume of the heat medium [m 3 ], K p-out is the heat flow rate outside the underground heat exchanger [W / (m 2 · K)], and A p-out is the outside of the underground heat exchanger. Area [m 2 ], T s is the soil temperature [° C.], r p-out is the radius of the underground heat exchanger [m], and q ′ 0 is the amount of heat released per unit area (heat flow) [W / m 2 ]. , T * is a dimensionless temperature, t * is a Fourier number, τ is a variable related to time, β is an integration variable, J x is a first-order Bessel function of x order, and Y x is a Bessel function of second order of x order. .

Figure 0005690650
Figure 0005690650

具体的には、式(9)に基づいて地中熱交換器表面温度応答を計算する(ステップS103)。次に、温度センサ104bで測定される地中熱交換器入口温度の実測値Tpinm、流量センサ105で測定される熱媒の循環流量の実測値Gfpmを計算条件として与える(ステップS104)。そして、式(5)、(6)に基づいて地中熱交換器出口温度Tpoutcを計算する(ステップS105)。また、式(7)、(8)に基づいて地中熱交換器表面温度を計算する(ステップS106)。これらステップS103〜S106を、時間t[h]を進めながら(ステップS108)、所定の期間の終わりまで繰り返す(ステップS107)。すなわち、時々刻々に測定した地中熱交換器入口温度Tpinm及び熱媒の循環流量Gfpmを計算条件として与え、地中熱交換器出口温度の時系列変化Tpoutcを計算していく。 Specifically, the ground heat exchanger surface temperature response is calculated based on the equation (9) (step S103). Next, the measured value T pinm of the underground heat exchanger inlet temperature measured by the temperature sensor 104b and the measured value G fpm of the circulating flow rate of the heat medium measured by the flow sensor 105 are given as calculation conditions (step S104). And underground heat exchanger exit temperature Tpoutc is calculated based on Formula (5), (6) (step S105). Further, the surface temperature of the underground heat exchanger is calculated based on the equations (7) and (8) (step S106). These steps S103 to S106 are repeated until the end of the predetermined period (step S107) while the time t [h] is advanced (step S108). That is, the time series change T poutc of the underground heat exchanger outlet temperature is calculated by giving the ground heat exchanger inlet temperature T pinm and the circulating flow rate G fpm of the heat medium measured as moments as calculation conditions.

ステップS103〜S108の結果として得られる地中熱交換器出口温度の計算値Tpoutcの初期地中温度Ts0からの変化量(ΔTpoutc(t0)=Tpoutc−Ts0)と、実測値Tpoutmの初期地中温度Ts0からの変化量(ΔTpoutm(t0)=Tpoutm−Ts0)とを比較して(ステップS109)、その差が十分に小さい場合、仮定した有効熱伝導係数λsを見かけ上の有効熱伝導係数λaとして採用する(ステップS110)。差が十分に小さくない場合、有効熱伝導率λsを変更して(ステップS111)、ステップS103〜S109の計算及び判定を繰り返す。 The amount of change (ΔT poutc (t 0 ) = T poutc −T s0 ) from the initial underground temperature T s0 of the calculated value T poutc of the underground heat exchanger outlet temperature obtained as a result of steps S103 to S108, and the actual measurement value The amount of change of T poutm from the initial underground temperature T s0 (ΔT poutm (t 0 ) = T poutm −T s0 ) is compared (step S109), and if the difference is sufficiently small, the assumed effective heat conduction The coefficient λ s is adopted as the apparent effective heat conduction coefficient λ a (step S110). If the difference is not sufficiently small, the effective thermal conductivity λ s is changed (step S111), and the calculations and determinations of steps S103 to S109 are repeated.

見かけ上の有効熱伝導率λaの計算については、経過期間毎に測定の全データを用いて、最後の時間における計算値Tpoutcと実測値Tpoutmとを比較する。図4に示す例では、経過時間200[h]において、初期に設定した有効熱伝導率1.5[W/(m・K)]で地中熱交換器出口温度Tpoutcを計算して、実測値Tpoutmと比較すると、両者には誤差がみられる。そこで、有効熱伝導率を2.4[W/(m・K)]に変更すると、両者が略一致することがわかる。したがって、この時間における見かけ上の有効熱伝導率λaを2.4[W/(m・K)]として採用する。 For the calculation of the apparent effective thermal conductivity λ a , the calculated value T poutc at the last time and the actually measured value T poutm are compared using all measured data for each elapsed period. In the example shown in FIG. 4, at an elapsed time of 200 [h], the underground heat exchanger outlet temperature T poutc is calculated with an initial effective thermal conductivity of 1.5 [W / (m · K)]. When compared with the actual measurement value T poutm , there is an error in both. Therefore, when the effective thermal conductivity is changed to 2.4 [W / (m · K)], it can be seen that the two substantially coincide. Therefore, the apparent effective thermal conductivity λ a at this time is adopted as 2.4 [W / (m · K)].

一方、経過時間540[h]においては、経過時間200[h]における有効熱伝導率2.4[W/(m・K)]の条件では計算値Tpoutcと実測値Tpoutmとが一致しなくなっている。そこで、有効熱伝導率を3.01[W/(m・K)]に変更すると、両者が一致することがわかる。したがって、この時間における見かけ上の有効熱伝導率λaを3.0[W/(m・K)]として採用する。 On the other hand, at the elapsed time 540 [h], the calculated value T poutc and the actually measured value T poutm agree with each other under the condition of effective thermal conductivity 2.4 [W / (m · K)] at the elapsed time 200 [h]. It is gone. Therefore, when the effective thermal conductivity is changed to 3.01 [W / (m · K)], it can be seen that both coincide. Therefore, the apparent effective thermal conductivity λ a at this time is adopted as 3.0 [W / (m · K)].

なお、温度センサ104bで測定される地中熱交換器入口温度の時系列変化の実測値Tpinmを計算条件として与えたが、地中熱交換器入口温度の時系列変化は、地中熱交換器出口温度に対し、時々刻々の負荷と、ヒートポンプ102の性能特性と、熱媒の循環流量とを用いて、上式(1)を利用して求めるようにしてもよい。 Although the actual value T pinm of the time series change of the underground heat exchanger inlet temperature measured by the temperature sensor 104b was given as a calculation condition, the time series change of the underground heat exchanger inlet temperature is You may make it obtain | require with respect to a device exit temperature using the said Formula (1) using the load every moment, the performance characteristic of the heat pump 102, and the circulation flow rate of a heat medium.

(GSHPシステムの運転調整)
上述したGSHPシステム100の運転状況と地盤熱特性の解析に基づいて、GSHPシステム100の運転を調整する。以下では、GSHPシステム100の運転状況と地盤熱特性を解析して運転の調整を行う単位期間をコミッショニング単位期間といい、例えば1週間を設定する。
(Operation adjustment of GSHP system)
The operation of the GSHP system 100 is adjusted based on the above-described operation status of the GSHP system 100 and the analysis of the ground thermal characteristics. Below, the unit period which adjusts driving | running | working by analyzing the operating condition and ground thermal characteristic of the GSHP system 100 is called a commissioning unit period, for example, 1 week is set.

本実施形態では、図5(a)に示すように、GSHPシステム100と、空冷チラー及びボイラといった二次側(負荷側)補助熱源機200とを組み合わせたシステムについて考える。図6(a)〜(d)に、GSHPシステム100及び二次側補助熱源機200の系統図を示す。GSHPシステム100及び二次側補助熱源機200の熱源容量については、以下の4つのケースが想定される。
(1)GSHPシステム100及び二次側補助熱源機200の双方の熱源容量がピーク負荷を満たしている場合(図6(a)を参照)。
(2)GSHPシステム100の熱源容量のみがピーク負荷を満たしている場合(図6(b)を参照)。
(3)二次側補助熱源機200の熱源容量のみがピーク負荷を満たしている場合(図6(c)を参照)。
(4)GSHPシステム100及び二次側補助熱源機200の双方の熱源容量がピーク負荷を満たしていない場合(図6(d)を参照)。
なお、熱源機とは二次側(負荷側)で冷暖房、給湯等に要する熱を製造する装置をいう。これに対し、熱源とはその熱源機が熱を製造するために利用するもととなる熱を保有するものを指し、大気、土壌、河川水等がこれに当たる。GSHPシステムにおいては、土壌熱源ヒートポンプ(GSHP)が熱源機であり、土壌が熱源である。前記の空冷チラーやボイラは熱源機であるGSHPの製造する二次側で要する熱の不足分を補う装置であるため二次側(負荷側)補助熱源機と呼ぶ。
これに対し、図5(b)に示す冷却塔は熱源である土壌の熱不足を補う装置であるため一次側(熱源側)補助熱源機と呼ぶ。また、熱不足を補うものは装置とは限らず、排湯からの回収熱等も利用できるため、これらを総称して補助熱源と呼ぶ。
In the present embodiment, as shown in FIG. 5A, a system in which a GSHP system 100 and a secondary side (load side) auxiliary heat source device 200 such as an air cooling chiller and a boiler are combined is considered. 6A to 6D are system diagrams of the GSHP system 100 and the secondary side auxiliary heat source unit 200. FIG. About the heat source capacity | capacitance of the GSHP system 100 and the secondary side auxiliary heat source machine 200, the following four cases are assumed.
(1) When the heat source capacities of both the GSHP system 100 and the secondary side auxiliary heat source unit 200 satisfy the peak load (see FIG. 6A).
(2) When only the heat source capacity of the GSHP system 100 satisfies the peak load (see FIG. 6B).
(3) When only the heat source capacity of the secondary side auxiliary heat source unit 200 satisfies the peak load (see FIG. 6C).
(4) When the heat source capacities of both the GSHP system 100 and the secondary side auxiliary heat source unit 200 do not satisfy the peak load (see FIG. 6D).
In addition, a heat source machine means the apparatus which manufactures the heat | fever required for air conditioning, hot water supply, etc. by the secondary side (load side). On the other hand, the heat source refers to the one that retains the heat that the heat source machine uses to produce heat, such as air, soil, and river water. In the GSHP system, a soil heat source heat pump (GSHP) is a heat source machine, and soil is a heat source. The air-cooled chiller or boiler is a device that compensates for the shortage of heat required on the secondary side manufactured by GSHP, which is a heat source device, and is therefore called a secondary side (load side) auxiliary heat source device.
On the other hand, since the cooling tower shown in FIG. 5B is a device that compensates for the heat shortage of the soil, which is a heat source, it is called a primary side (heat source side) auxiliary heat source machine. Moreover, what compensates for the lack of heat is not limited to an apparatus, and heat recovered from the exhaust water can also be used, so these are collectively referred to as an auxiliary heat source.

まず、ケース(1)の場合は、図7(a)に示すように、コミッショニング単位期間におけるGSHPシステム100の総負荷量(GSHP総負荷量)Qgが可能採放熱量積算値を満たす運転時間を超えた場合に、二次側補助熱源機200へ切り替える必要がある。GSHP総負荷量Qgは、総負荷量Q2を用いて、下式(10)によって求められる。ここで、Cは可能採放熱量積算値を満たす補正係数であるが、その決定方法については後述する。また、二次側補助熱源200の総負荷量(補助熱源総負荷量)QAssは、下式(11)によって求められる。 First, the case (1), as shown in FIG. 7 (a), the total loading of GSHP system 100 in Commissioning unit period (GSHP total load) Q g meet can adopt heat radiation amount integrated value operation time When it exceeds, it is necessary to switch to the secondary side auxiliary heat source apparatus 200. The GSHP total load amount Q g is obtained by the following equation (10) using the total load amount Q 2 . Here, C is a correction coefficient that satisfies the integrated value of possible heat extraction, and the determination method will be described later. Further, the total load amount (auxiliary heat source total load amount) Q Ass of the secondary side auxiliary heat source 200 is obtained by the following equation (11).

Figure 0005690650
Figure 0005690650

ケース(2)の場合も、GSHP総負荷量Qgは、式(10)によって求められる。一方で、図7(b)に示すように、二次側補助熱源機200と同時に運転しなければならないGSHPシステム100の負荷量Qg2は、ピーク負荷q2maxと、二次側補助熱源機最大出力qAssmaxとを用いると、下式(12)によって求められる。結局、GSHPシステム100が総負荷で運転できる負荷量Qg1は、下式(13)で表わされ、これを超えた場合には二次側補助熱源機200との併用運転となる。 Also in the case (2), the GSHP total load amount Q g is obtained by the equation (10). On the other hand, as shown in FIG. 7B, the load amount Q g2 of the GSHP system 100 that must be operated simultaneously with the secondary side auxiliary heat source unit 200 is the peak load q 2max and the secondary side auxiliary heat source unit maximum. When the output q Assmax is used, it is obtained by the following equation (12). Eventually, the load amount Q g1 that the GSHP system 100 can operate with the total load is expressed by the following equation (13), and when it exceeds this, the combined operation with the secondary side auxiliary heat source device 200 is performed.

Figure 0005690650
Figure 0005690650

ケース(3)の場合、図7(c)に示すように、ケース1と同様に、コミッショニング単位期間におけるGSHP総負荷量Qgが可能採放熱量積算値を満たす運転時間を超えた場合に、二次側補助熱源機200へ切り替える必要がある。 For case (3), as shown in FIG. 7 (c), similarly to the case 1, if it exceeds the operation time to meet the heat dissipation amount integrated value adopted can GSHP total load Q g in commissioning unit period, It is necessary to switch to the secondary side auxiliary heat source machine 200.

ケース(4)の場合、図7(d)に示すように、まずGSHPシステム100の出力の不足により発生する二次側補助熱源機200の負荷量QAss1を仮定する必要がある。二次側補助熱源機200の負荷量QAss1は、総負荷量Q2と、ピーク負荷q2maxと、GSHP最大出力qgmaxとを用いて、下式(14)によって求められる。したがって、残りの補助熱源負荷量QAss2は、下式(15)となる。一方、出力を低下させるときのGSHPシステム100の負荷量Qg2は、下式(16)で表わされるので、結局、GSHPシステム100が最大負荷で運転できる負荷量Qg1は、下式(17)によって求められる。 In the case (4), as shown in FIG. 7D, first, it is necessary to assume the load amount Q Ass1 of the secondary side auxiliary heat source device 200 generated due to insufficient output of the GSHP system 100. The load amount Q Ass1 of the secondary side auxiliary heat source device 200 is obtained by the following equation (14) using the total load amount Q 2 , the peak load q 2max, and the GSHP maximum output q gmax . Therefore, the remaining auxiliary heat source load amount Q Ass2 is expressed by the following equation (15). On the other hand, the load amount Q g2 of the GSHP system 100 when the output is reduced is expressed by the following equation (16). Consequently, the load amount Q g1 that the GSHP system 100 can operate at the maximum load is expressed by the following equation (17). Sought by.

Figure 0005690650
Figure 0005690650

このように、ケース(1)、(3)に該当するシステムでは、GSHPシステム100の運転を停止させる採放熱量積算値Qpset1を決定する必要がある。採放熱量積算値Qpset1は、図7(a)に示すケース(1)の例でいえば、GSHP総負荷量Qgに応じてGSHPシステムを運転したときの採放熱量であり、次に示すように、GSHP総負荷量Qg及びその運転時間での消費電力で表わされる。なお、COPaveは当該運転時間における平均COPである。
pset1=Qg+Qg/COPave(冷房時)
pset1=Qg−Qg/COPave(暖房時)
As described above, in the system corresponding to cases (1) and (3), it is necessary to determine the heat extraction amount integrated value Q pset1 for stopping the operation of the GSHP system 100. Adopted radiating amount integrated value Q pset1 is, in the example of the case (1) shown in FIG. 7 (a), an adopted radiating amount when the driving GSHP system according to GSHP total load Q g, then As shown, it is represented by the GSHP total load amount Q g and the power consumption during the operation time. COP ave is an average COP during the operation time.
Q pset1 = Q g + Q g / COP ave (when cooling)
Q pset1 = Q g -Q g / COP ave (during heating)

また、ケース(2)、(4)に該当するシステムでは、二次側補助熱源機200との併用運転への切り替えを行う採放熱量積算値Qpset2を決定する必要がある。採放熱量積算値Qpset2は、図7(b)に示すケース(2)の例でいえば、負荷量Qg1に応じてGSHPシステムを運転したときの採放熱量であり、次に示すように、負荷量Qg1及びその運転時間の消費電力で表わされる。
pset2=Qg1+Qg1/COPave(冷房時)
pset2=Qg1−Qg1/COPave(暖房時)
Further, in the system corresponding to cases (2) and (4), it is necessary to determine a heat extraction amount integrated value Q pset2 for switching to the combined operation with the secondary side auxiliary heat source device 200. In the case (2) shown in FIG. 7 (b), the integrated heat removal amount Q pset2 is the heat collection amount when the GSHP system is operated according to the load amount Q g1 , as shown below. Is expressed by the load amount Q g1 and the power consumption during the operation time.
Q pset2 = Q g1 + Q g1 / COP ave (when cooling)
Q pset2 = Q g1 -Q g1 / COP ave (during heating)

以下に述べる地中熱運転評価プログラムでは、時々刻々と変化する負荷と温度に依存するCOPで上記の計算が行われ、コミッショニング単位期間で積算してQpset1が算定される。Qpset2についても同様である。採放熱量積算値Qpset1、Qpset2の符号は暖房時が+(プラス)で、冷房時が−(マイナス)となる。なお、式(18)においてi=1はΣの下に、nはΣの上に付されているものとする。
pset1=Σi=1 n(Qgi+Qgi/COPi)(冷房時)
pset1=Σi=1 n(Qgi−Qgi/COPi)(暖房時)・・・(18)
In the geothermal operation evaluation program described below, the above calculation is performed with a COP that depends on the load and temperature that change from time to time, and Q pset1 is calculated by accumulating in the commissioning unit period. The same applies to Q pset2 . The signs of the heat extraction and heat collection integrated values Q pset1 and Q pset2 are + (plus) when heating and- (minus) when cooling. In equation (18), i = 1 is attached below Σ and n is attached above Σ.
Q pset1 = Σ i = 1 n (Q gi + Q gi / COP i) ( during cooling)
Q pset1 = Σ i = 1 n (Q gi −Q gi / COP i ) (during heating) (18)

以上を踏まえて、二次側(負荷側)補助熱源機200と組み合わせたGSHPシステム100の運転調整方法について説明する。まず、図3に示した地盤熱特性解析プログラムを組み込んだ地中熱運転評価プログラム(以下、CGCとも記す。)について説明する。図9は、地中熱運転評価プログラムによる処理を示すフローチャートである。土壌データ、初期設定冷暖房負荷、地中熱交換器101の仕様及びヒートポンプ102の仕様を含むGSHPシステム100の仕様、二次側補助熱源機200の仕様、許容温度、運転開始日等の初期条件が入力された状態で、図3のフローチャートで説明したように、運転開始時から現時点までの地中熱交換器出口温度、入口温度、熱媒の循環流量の時系列変化の実測値を用いて、見かけ上の有効熱伝導率λaを決定する(ステップS301)。 Based on the above, the operation adjustment method of the GSHP system 100 combined with the secondary side (load side) auxiliary heat source device 200 will be described. First, a geothermal operation evaluation program (hereinafter also referred to as CGC) incorporating the ground thermal characteristic analysis program shown in FIG. 3 will be described. FIG. 9 is a flowchart showing processing by the geothermal operation evaluation program. Initial conditions such as soil data, initial setting heating / cooling load, specifications of the GSHP system 100 including the specifications of the underground heat exchanger 101 and the specifications of the heat pump 102, the specifications of the secondary auxiliary heat source apparatus 200, the allowable temperature, the operation start date, etc. In the input state, as described in the flowchart of FIG. 3, using the measured values of the time series change of the underground heat exchanger outlet temperature, the inlet temperature, and the circulating flow rate of the heat medium from the start of operation to the present time, Apparent effective thermal conductivity λ a is determined (step S301).

次に、暖房運転時には、下式(19)によって求められる、運転開始時刻又は冷暖房の運転切り替え時刻tsstからの採放熱量qpの積算値Qsmが、採放熱量の積算予想値Qspを超えるか否か判定する(ステップS302)。その結果、Qsm>QspでなければステップS306に進む。Qsm>QspであればステップS303に進み、暖房年間負荷予測変動値Q2hをQsm/Qspだけ大きくするように再設定した後、ステップS306に進む。同様に、冷房運転時には、運転開始時刻tsstからの採放熱量qpの積算値Qsmが採放熱量の積算予想値Qspを下回るか否か判定する(ステップS304)。その結果、Qsm>QspでなければステップS306に進む。Qsm>QspであればステップS305に進み、冷房年間負荷予測変動値Q2cをQsm/Qspだけ大きくするように再設定した後、ステップS306に進む。 Next, during the heating operation, the integrated value Q sm of the heat extraction amount q p obtained from the operation start time or the cooling / heating switching time t sst obtained by the following equation (19) is the integrated estimated value Q sp of the heat extraction amount. It is determined whether or not (step S302). As a result, if Q sm > Q sp is not established, the process proceeds to step S306. If Q sm > Q sp , the process proceeds to step S303, the heating annual load predicted fluctuation value Q 2h is reset so as to be increased by Q sm / Q sp , and then the process proceeds to step S306. Similarly, during the cooling operation, it is determined whether or not the integrated value Q sm of the heat extraction amount q p from the operation start time t sst is less than the estimated integrated value Q sp of the heat extraction amount (step S304). As a result, if Q sm > Q sp is not established, the process proceeds to step S306. If Q sm > Q sp , the process proceeds to step S305, the cooling annual predicted load fluctuation value Q 2c is reset so as to be increased by Q sm / Q sp , and then the process proceeds to step S306.

Figure 0005690650
Figure 0005690650

ここで、Q2h、Q2cは予定されている年間(冷房期間(例えば5月1日〜10月31日)+暖房期間(例えば11月1日〜4月30日))の負荷量の時刻毎の変動予測データである。一方、Qsm、Qspは冷房又は暖房運転開始からその時点までの運転期間の採放熱量の積算値であり、Qsmは実際の運転開始からその時点までの運転期間の採放熱量積算値(図11を参照)、Qspは運転開始からその時点までの運転期間の採放熱量積算予測値である。ステップS302〜S305では、一つ前のCGC起動で修正された年間負荷予測変動値Q2h、Q2cに基づいて上式(18)で算定される運転期間採放熱量積算予測値Qspと、現時点最新の運転期間採放熱量積算値Qsmとを比較して、後者が大きければ、その比率だけ年間負荷予測変動値Q2h、Q2c、ひいては採放熱量積算予測値Qspを修正する。 Here, Q 2h and Q 2c are load times in a planned year (cooling period (for example, May 1 to October 31) + heating period (for example, November 1 to April 30)). It is fluctuation prediction data for every. On the other hand, Q sm and Q sp are integrated values of the heat extraction amount during the operation period from the start of the cooling or heating operation to the time point, and Q sm is the integrated heat extraction amount value of the operation period from the start of the actual operation to the time point. (Refer to FIG. 11), Q sp is a heat collection amount integrated predicted value for the operation period from the start of operation to that time. In steps S302 to S305, the operation period heat radiation amount integrated prediction value Q sp calculated by the above equation (18) based on the annual load prediction fluctuation values Q 2h and Q 2c corrected by the previous CGC activation, Compared with the current operating period heat radiation integrated value Q sm of the latest operation period, if the latter is large, the annual load predicted fluctuation values Q 2h and Q 2c and eventually the heat extracted integrated heat estimated value Q sp are corrected by that ratio.

次に、ステップS301において決定した見かけ上の有効熱伝導率λaを設定して(ステップS306)、式(9)に基づいて地中熱交換器表面温度応答を計算する(ステップS307)。次に、年間負荷予測変動値Q2h、Q2cに基づいてGSHP時刻別負荷を決定し(ステップS308)、一次側循環流量を計算する(ステップS309)。次に、ヒートポンプ102のCOP、地中からの採放熱量qp、地中熱交換器入口温度Tpinを計算し(ステップS310)、式(5)、(6)に基づいて地中熱交換器出口温度Tpoutを計算し(ステップS311)、式(7)、(8)に基づいて地中熱交換器表面温度を計算する(ステップS312)。これらステップS308〜S312を、時間tを進めながら(ステップS314)、現時点後のコミッショニング単位期間の終わりまで繰り返す(ステップS313)。 Next, the apparent effective thermal conductivity λ a determined in step S301 is set (step S306), and the ground heat exchanger surface temperature response is calculated based on equation (9) (step S307). Next, a load for each GSHP time is determined based on the predicted annual load fluctuation values Q 2h and Q 2c (step S308), and the primary circulation flow rate is calculated (step S309). Next, the COP of the heat pump 102, the amount of heat extracted from the ground q p , and the underground heat exchanger inlet temperature T pin are calculated (step S310), and the underground heat exchange is performed based on the equations (5) and (6). The reactor outlet temperature T pout is calculated (step S311), and the ground heat exchanger surface temperature is calculated based on the equations (7) and (8) (step S312). These steps S308 to S312 are repeated until the end of the commissioning unit period after the current time (step S313) while the time t is advanced (step S314).

次に、冷房運転時の場合、地中熱交換器出口最高温度Tpoutmaxが所定の設定値Tpoutmaxset以下であるか否かを判定し(ステップS315)、所定の設定値Tpoutmaxset以下でなければステップS316に進む。ステップS316では、可能採放熱量積算値を満たす補正係数Cを再設定し、冷房年間負荷予測変動値Q2cを再設定し、ステップS308に戻る。すなわち、可能採放熱量積算値を満たす補正係数Cについて、冷房期間については、負荷条件に対して計算によって得られる地中熱交換器出口最高温度Tpoutmaxが所定の設定値Tpoutmaxsetを超える場合に計算され、再度性能予測計算が行われる。この場合、補正係数Cの計算は下式(20)によって求められる。なお、Ts0は初期地中温度、Sは安全率である。 Then, during the cooling operation, the underground heat exchanger outlet maximum temperature T Poutmax is equal to or less than a predetermined setting value T poutmaxset (step S315), if less than a predetermined setting value T Poutmaxset The process proceeds to step S316. In step S316, the correction coefficient C satisfying the possible heat extraction amount integrated value is reset, the cooling annual load predicted fluctuation value Q 2c is reset, and the process returns to step S308. That is, with respect to the correction coefficient C that satisfies the possible heat radiation integrated value, for the cooling period, the maximum underground heat exchanger outlet temperature T poutmax obtained by calculation with respect to the load condition exceeds a predetermined set value T poutmaxset. The performance prediction calculation is performed again. In this case, the correction coefficient C is calculated by the following equation (20). T s0 is the initial underground temperature, and S is the safety factor.

Figure 0005690650
Figure 0005690650

また、ステップS315において最高温度Tpoutmaxが所定の設定値Tpoutmaxset以下であればステップS317に進む。ステップS317では、最高温度Tpoutmaxの初期地中温度Ts0からの変化量が、下式(21)に示す条件を満たすか否かを判定し、満たしていなければステップS318に進む。ステップS318では、可能採放熱量積算値を満たす補正係数Cを再設定し、冷房年間負荷予測変動値Q2cを再設定し、ステップS308に戻る。すなわち、可能採放熱量積算値を満たす補正係数Cについて、冷房期間については、負荷条件に対して計算によって得られる地中熱交換器出口最高温度Tpoutmaxが、下式(21)に示す条件を満たさない場合に計算され、再度性能予測計算が行われる。この場合、補正係数Cの計算は下式(22)によって求められる。 If the maximum temperature T poutmax is equal to or lower than the predetermined set value T poutmaxset in step S315, the process proceeds to step S317. In step S317, it is determined whether or not the amount of change of the maximum temperature T poutmax from the initial underground temperature T s0 satisfies the condition shown in the following expression (21). If not, the process proceeds to step S318. In step S318, the correction coefficient C satisfying the possible heat extraction amount integrated value is reset, the cooling annual load predicted fluctuation value Q 2c is reset, and the process returns to step S308. That is, for the correction coefficient C that satisfies the possible heat extraction integrated value, for the cooling period, the maximum underground heat exchanger outlet temperature T poutmax obtained by calculation with respect to the load condition is the condition shown in the following equation (21). When it does not satisfy, it is calculated, and the performance prediction calculation is performed again. In this case, the correction coefficient C is calculated by the following equation (22).

Figure 0005690650
Figure 0005690650

また、暖房運転時の場合、地中熱交換器出口最低温度Tpoutminが所定の設定値Tpoutminset以上であるか否かを判定し(ステップS319)、所定の設定値Tpoutminset以上でなければステップS320に進む。ステップS320では、可能採放熱量積算値を満たす補正係数Cを再設定し、暖房年間負荷予測変動値Q2hを再設定し、ステップS308に戻る。すなわち、可能採放熱量積算値を満たす補正係数Cについて、暖房期間については、負荷条件に対して計算によって得られる地中熱交換器出口最低温度Tpoutminが所定の設定値Tpoutminsetを下回る場合に計算され、再度性能予測計算が行われる。この場合、補正係数Cの計算は下式(23)によって求められる。 Also, during the heating operation, the underground heat exchanger outlet lowest temperature T Poutmin it is determined whether a predetermined set value T Poutminset more (step S319), if a predetermined set value T Poutminset more steps The process proceeds to S320. In step S320, the correction coefficient C satisfying the possible heat extraction amount integrated value is reset, the heating annual load predicted fluctuation value Q2h is reset, and the process returns to step S308. That is, with respect to the correction coefficient C that satisfies the possible heat removal amount integrated value, for the heating period, when the underground heat exchanger outlet minimum temperature T poutmin obtained by calculation with respect to the load condition is below a predetermined set value T poutminset The performance prediction calculation is performed again. In this case, the correction coefficient C is calculated by the following equation (23).

Figure 0005690650
Figure 0005690650

また、ステップS319において最低温度Tpoutminが所定の設定値Tpoutminset以上であればステップS321に進む。ステップS321では、最低温度Tpoutminの初期地中温度Ts0からの変化量が、下式(24)に示す条件を満たすか否かを判定し、満たしていなければステップS322に進む。ステップS322では、可能採放熱量積算値を満たす補正係数Cを再設定し、暖房年間負荷予測変動値Q2hを再設定し、ステップS308に戻る。すなわち、可能採放熱量積算値を満たす補正係数Cについて、暖房期間については、負荷条件に対して計算によって得られる地中熱交換器出口最低温度Tpoutminが、下式(24)に示す条件を満たさない場合に計算され、再度性能予測計算が行われる。この場合、補正係数Cの計算は下式(25)によって求められる。なお、安全率Sには、例えば0.02が与えられる。 If the minimum temperature T poutmin is equal to or higher than the predetermined set value T poutminset in step S319, the process proceeds to step S321. In step S321, it is determined whether or not the amount of change from the initial underground temperature T s0 of the minimum temperature T poutmin satisfies the condition shown in the following expression (24). If not, the process proceeds to step S322. In step S322, the correction coefficient C satisfying the possible heat extraction amount integrated value is reset, the heating annual load predicted fluctuation value Q2h is reset, and the process returns to step S308. That is, with respect to the correction coefficient C that satisfies the possible heat radiation integrated value, for the heating period, the minimum underground heat exchanger outlet temperature T poutmin obtained by calculation with respect to the load condition satisfies the condition shown in the following equation (24). When it does not satisfy, it is calculated, and the performance prediction calculation is performed again. In this case, the correction coefficient C is calculated by the following equation (25). The safety factor S is given, for example, 0.02.

Figure 0005690650
Figure 0005690650

以上のようにステップS315〜S322では、地中熱交換器出口温度Tpoutを試算し、その値が上下限値を超えた場合には、採放熱量積算値Qpset1、Qpset2を求めるのに必要な年間負荷予測変動値Q2h、Q2cの再設定を行う。 As described above, in steps S315 to S322, the underground heat exchanger outlet temperature T pout is estimated, and when the value exceeds the upper and lower limit values, the heat extraction / radiation amount integrated values Q pset1 and Q pset2 are obtained. The necessary annual load forecast fluctuation values Q 2h and Q 2c are reset.

次に、ステップS323では、長期安定性の確認を行う。図10は、ステップS323の長期安定性の確認処理を示すフローチャートである。GSHP時刻別負荷を決定し(ステップS401)、一次側循環流量を計算する(ステップS402)。次に、ヒートポンプ102のCOP、地中からの採放熱量qp、地中熱交換器入口温度Tpinを計算し(ステップS403)、式(5)、(6)に基づいて地中熱交換器出口温度Tpoutを計算し(ステップS404)、式(7)、(8)に基づいて地中熱交換器表面温度を計算する(ステップS405)。次に、月別採放熱量を計算し(ステップS406)、t÷730(730:1年8760時間を12ヶ月で除算した値)の余りが0となるか否かを確認しながら(ステップS407)、月積算採放熱量を保存する(ステップS408)。これらステップS401〜S408を、時間tを進めながら(ステップS410)、時間t=tend1(運転年数+1年(運転中の年)の終了時間)となるまで繰り返す(ステップS409)。ステップS401〜S410では、運転している年までの計算を行っており、長期間予測のための月別採放熱量の計算を行っている。 Next, in step S323, long-term stability is confirmed. FIG. 10 is a flowchart showing the long-term stability confirmation processing in step S323. The GSHP time load is determined (step S401), and the primary circulation flow rate is calculated (step S402). Next, the COP of the heat pump 102, the amount of heat radiated from the ground q p , and the underground heat exchanger inlet temperature T pin are calculated (step S403), and the underground heat exchange is performed based on the equations (5) and (6). The reactor outlet temperature T pout is calculated (step S404), and the ground heat exchanger surface temperature is calculated based on the equations (7) and (8) (step S405). Next, the monthly heat radiation amount is calculated (step S406), and it is confirmed whether or not the remainder of t ÷ 730 (730: a value obtained by dividing one year 8760 hours by 12 months) is 0 (step S407). The monthly integrated heat radiation amount is stored (step S408). These steps S401 to S408 are repeated until time t = t end1 (end time of operation years + 1 year (year during operation)) while the time t is advanced (step S410) (step S409). In steps S401 to S410, calculation up to the year of operation is performed, and a monthly heat removal amount for long-term prediction is calculated.

次に、GSHP月別採放熱量を決定し(ステップS411)、ヒートポンプ102のCOP、地中からの採放熱量qp、地中熱交換器入口温度Tpinを計算し(ステップS412)、式(5)、(6)に基づいて地中熱交換器出口温度Tpoutを計算し(ステップS413)、式(7)、(8)に基づいて地中熱交換器表面温度を計算する(ステップS414)。これらステップS411〜S414を、時間tを進めながら(ステップS416)、時間t=tend2(運転年数+予測したい年数の終了時間)となるまで繰り返す(ステップS415)。ステップS411〜S416では、予測を行いたい年数までの計算を行っている。 Next, determine the GSHP monthly adopting heat radiation amount (step S411), COP of the heat pump 102, adopted heat radiation q p from the ground, the underground heat exchanger inlet temperature T pin calculated (step S412), the formula ( 5) The ground heat exchanger outlet temperature T pout is calculated based on (6) (step S413), and the ground heat exchanger surface temperature is calculated based on equations (7) and (8) (step S414). ). These steps S411 to S414 are repeated until time t = tend2 (the number of years of operation + the end time of the year to be predicted) while the time t is advanced (step S416) (step S415). In steps S411 to S416, calculations up to the number of years for which prediction is desired are performed.

次に、x年目の地中熱交換器出口最高温度Tpoutmax(x)と(x+4)年目の地中熱交換器出口最高温度Tpoutmax(x+4)との差が所定の条件を満たし、かつ、x年目の地中熱交換器出口最低温度Tpoutmin(x)と(x+4)年目の地中熱交換器出口最低温度Tpoutmin(x+4)との差が所定の条件を満たすように、可能採放熱量積算値を満たす補正係数Cを再設定し、暖房年間負荷予測変動値Q2h、冷房年間負荷予測変動値Q2cを再設定する(ステップS417〜S421)。ここでの所定の条件は、1〜5年目の差が0.5[℃]、6〜10年目の差が0.25[℃]となっている。なお、ステップS323の処理は、図9のフローチャートで毎回行わなくてもよく、数回に1回(月に1回程度)行われるようにしてもよい。 Then, x-th year of underground heat exchanger outlet maximum temperature T Poutmax and (x) a (x + 4) the difference is a predetermined condition of the th year of underground heat exchanger outlet maximum temperature T poutmax (x + 4) filled, and, x-th year of underground heat exchanger outlet lowest temperature T Poutmin and (x) (x + 4) the difference is a predetermined condition of the th year of underground heat exchanger outlet lowest temperature T poutmin (x + 4) Then, the correction coefficient C satisfying the integrated value of the possible heat extraction amount is reset so that the heating annual load predicted fluctuation value Q 2h and the cooling annual load predicted fluctuation value Q 2c are reset (steps S417 to S421). The predetermined condition here is that the difference in the first to fifth years is 0.5 [° C.], and the difference in the sixth to tenth years is 0.25 [° C.]. Note that the process of step S323 may not be performed every time in the flowchart of FIG. 9, and may be performed once every several times (about once a month).

図9に説明を戻して、ステップS324では、GSHPシステム100の運転を停止させる採放熱量積算値Qpset1、又は、二次側補助熱源機200との併用運転への切り替えを行う採放熱量積算値Qpset2を決定する。また、GSHPシステム100の運転調整を行う期間中にCGCを最初に起動させる採放熱量積算値Qpset3を決定する。 Returning to FIG. 9, in step S324, the heat extraction amount integrated value Q pset1 for stopping the operation of the GSHP system 100 or the heat extraction amount integration for switching to the combined operation with the secondary side auxiliary heat source device 200 is performed. The value Q pset2 is determined. In addition, the heat collection amount integrated value Q pset3 that activates the CGC first is determined during the period in which the operation adjustment of the GSHP system 100 is performed.

ここで、採放熱量積算値Qpset1、Qpset2はコミッショニング単位期間の採放熱量の積算値である。採放熱量積算値Qpset1、Qpset2と期間を一致させたコミッショニング単位期間負荷量としてQ2hcom又はQ2ccomを定義する(図14を参照)。なお、冷房運転のため放熱量でマイナス値がありえる。これは、再設定された年間負荷予測変動値Q2h、Q2cからの次のコミッショニング単位期間における負荷を抜き出した変動データである。そして、このQ2hcom、Q2ccomを式(18)のQgとすれば、Qpset1、Qpset2が導き出される。 Here, the integrated heat radiation amount values Q pset1 and Q pset2 are the integrated values of the heat extraction amounts in the commissioning unit period. Q2hcom or Q2ccom is defined as a commissioning unit period load amount in which the period of time is equal to the amount of heat extraction and heat radiation integrated value Qpset1 , Qpset2 (see FIG. 14). In addition, there can be a negative value in the amount of heat release due to the cooling operation. This is fluctuation data obtained by extracting the load in the next commissioning unit period from the reset annual predicted load fluctuation values Q 2h and Q 2c . Then, if these Q 2hcom and Q 2ccom are defined as Q g in equation (18), Q pset1 and Q pset2 are derived.

採放熱量積算値Qpset1、Qpset2については、上述の通り、冷房期間の地中熱交換器出口最高温度もしくは暖房期間の地中熱交換器出口最低温度を計算する必要があるため、年間運転シミュレーションを実施し、それをもとに設定する。すなわち、図12に示すように、予め計算条件として与えるGSHPシステム運転熱負荷、すなわち最初に与えられる年間負荷予測変動値Q2h、Q2c(図12中の年間負荷Q2)に対して、実際の運転開始時から現時点までの運転データ、すなわち採放熱量積算値Qsmをもとに、GSHPシステム運転熱負荷(年間負荷予測変動値Q2h、Q2c)を再設定し(図12中の負荷Q2´)(ステップS302〜S305)、年間運転シミュレーションを実施する。そして、図13に示すように、地中熱交換器出口温度Tpoutが上下限値を超えた場合には、上下限値に収まるように年間負荷予測変動値Q2h、Q2cを再設定する(ステップS315、S316,S319、S320)。最終的には、図14に示すように、コミッショニング単位期間が例えば運転開始から経過時間846〜1014hであれば、運転シミュレーションによって得られるこの期間の採放熱量がQpset1、Qpset2となる。なお、実際のシステム構成は、図6、図7のケース(1)〜(4)のいずれかとなる。したがって、実質的に求められるのはQpset1及びQpset2のいずれかとなる。求められない方の値は実際には達しえない大きい値を設定する。 As described above, the integrated heat collection / dissipation value Q pset1 and Q pset2 must be calculated annually because it is necessary to calculate the maximum underground heat exchanger outlet temperature during the cooling period or the minimum underground heat exchanger outlet temperature during the heating period. Perform simulation and set based on it. That is, as shown in FIG. 12, the GSHP system operating heat load given as a calculation condition in advance, ie, the annual load predicted fluctuation values Q 2h and Q 2c (annual load Q 2 in FIG. 12) given first are actually GSHP system operation heat load (annual load predicted fluctuation values Q 2h , Q 2c ) is reset based on the operation data from the start of operation to the present time, that is, the integrated heat removal amount Q sm (see FIG. 12). Load Q 2 ′) (steps S302 to S305) and an annual operation simulation are performed. Then, as shown in FIG. 13, when the underground heat exchanger outlet temperature T pout exceeds the upper and lower limit values, the annual load predicted fluctuation values Q 2h and Q 2c are reset so as to be within the upper and lower limit values. (Steps S315, S316, S319, S320). Finally, as shown in FIG. 14, if the commissioning unit period is, for example, the elapsed time 846 to 1014h from the start of operation, the heat extraction amount in this period obtained by the operation simulation is Q pset1 and Q pset2 . Note that the actual system configuration is one of cases (1) to (4) in FIGS. Therefore, what is substantially determined is either the Q pset1 and Q pset2. The larger value that cannot be reached is set for the value that cannot be obtained.

また、採放熱量積算値Qpset3については、暖房、冷房それぞれの暖房負荷積算値、冷房負荷積算値がピークとなる週の4日分の採放熱量をシミュレーション中で計算し、算出している。 In addition, the heat extraction / radiation amount integrated value Q pset3 is calculated by calculating the heat extraction / radiation amount for the four days of the week when the heating load integrated value and the cooling load integrated value for heating and cooling respectively peak during the simulation. .

このようにした地中熱運転評価プログラムでは、次のコミッショニング単位期間のGSHP運転可能量であるQpset1もしくはQpset2を計算することができる。GSHP運転可能量は、一次側温度について冷暖房それぞれの期間内の予測計算を行い、GSHPシステム100が所定の出力を確保でき、他の熱源機よりも高い効率を確保できる上限温度(冷房時)、下限温度(暖房時)に収まるように収束計算することで算出される。すなわち、余力がある場合には増加させ、期間内に出力不足、効率悪化の可能性がある場合には減少させる。 In the geothermal operation evaluation program thus configured, it is possible to calculate Q pset1 or Q pset2 that is the GSHP operable amount in the next commissioning unit period. The GSHP operable amount is calculated by predicting the primary side temperature within each period of cooling and heating, and the GSHP system 100 can secure a predetermined output, and an upper limit temperature (during cooling) that can ensure higher efficiency than other heat source units, It is calculated by convergence calculation so as to be within the lower limit temperature (during heating). That is, when there is a surplus capacity, it is increased, and when there is a possibility of output shortage and efficiency deterioration within the period, it is decreased.

なお、ステップS323の長期安定性の確認により、次年度に先送りした、負荷アンバランス吸収のための長期判断についても、時刻変動データを月間変動データ程度に負荷データを粗くした上で、同様の収束計算を数年間にわたり行うことで可能にしている。   The long-term judgment for absorbing load imbalance, which was postponed to the next fiscal year by confirming the long-term stability in step S323, is similar to the convergence after the load data is roughly reduced to the monthly fluctuation data. It is made possible by performing calculations over several years.

次に、図8は、GSHPシステムの運転調整プログラムによる処理を示すフローチャートである。図9に示したCGCは、この運転調整プログラムのサブプログラムとして組み込まれており、定期的にCGCを起動させ、次のコミッショニング単位期間においてGSHPシステムを運転可能な採放熱量積算値を決定する。運転調整プログラムは、CGCに対して時刻毎の地中熱交換器出入口温度、循環流量、採放熱量の冷暖房期間積算値等を出力して、CGCの計算結果から採放熱量積算値Qpset1、Qpset2、Qpset3を受け取る。 Next, FIG. 8 is a flowchart showing processing by the operation adjustment program of the GSHP system. The CGC shown in FIG. 9 is incorporated as a subprogram of this operation adjustment program, and periodically activates the CGC to determine a heat extraction amount integrated value capable of operating the GSHP system in the next commissioning unit period. The operation adjustment program outputs the underground heat exchanger inlet / outlet temperature, circulation flow rate, integrated value of the heat extraction / cooling period, etc. to the CGC, and the integrated heat extraction amount Q pset1 from the calculation result of the CGC. Q pset2 and Q pset3 are received.

まず運転開始直後にCGCを起動させ、次回にCGCを起動させる採放熱量積算値Qpset3を決定する(ステップS201)。 First, the CGC is activated immediately after the start of operation, and the heat radiation amount integrated value Q pset3 that activates the CGC next time is determined (step S201).

次に、コミッショニングに必要なデータである、温度センサ104a、104bで測定される地中熱交換器出入口温度Tpout、Tpin、流量センサ105で測定される熱媒の循環流量Gfpを取得し(ステップS202)、地中からの採放熱量qpを上式(1)により求める(ステップS203)。そして、上式(19)によって冷暖房期間採放熱量積算値Qsmを求め、下式(26)によってコミッショニング単位期間積算値Qcmを求める(図11を参照)(ステップS204)。 Next, the ground heat exchanger inlet / outlet temperatures T pout and T pin measured by the temperature sensors 104a and 104b and the circulating flow rate G fp of the heat medium measured by the flow sensor 105, which are data necessary for commissioning, are obtained. (step S202), obtained by the above equation (1) the adoption heat radiation q p from the ground (step S203). Then, the cooling / heating period heat radiation amount integrated value Q sm is obtained by the above equation (19), and the commissioning unit period integrated value Q cm is obtained by the following equation (26) (see FIG. 11) (step S204).

Figure 0005690650
Figure 0005690650

次に、暖房運転時には、コミッショニング単位期間積算値Qcmが採放熱量積算値Qpset1を超えるか否か判定する(ステップS205)。その結果、Qcm>Qpset1でなければステップS208に進む。Qcm>Qpset1であればステップS207に進み、GSHPシステム100を停止させるとともに、二次側(負荷側)補助熱源機200を起動させて運転を開始させた(又は二次側補助熱源器200の運転を促進させた)後、ステップS208に進む。一方、冷房運転時には、コミッショニング単位期間積算値Qcmが採放熱量積算値Qpset1を下回るか否か判定する(ステップS206)。その結果、Qcm<Qpset1でなければステップS209に進む。Qcm<Qpset1であればステップS207に進み、GSHPシステム100を停止させるとともに、二次側補助熱源機200を起動させて運転を開始させた(又は二次側補助熱源器200の運転を促進させた)後、ステップS208に進む。 Next, during the heating operation, it is determined whether or not the commissioning unit period integrated value Q cm exceeds the heat extraction amount integrated value Q pset1 (step S205). As a result, if Q cm > Q pset1 , the process proceeds to step S208. If Q cm > Q pset1 , the process proceeds to step S207, where the GSHP system 100 is stopped and the secondary side (load side) auxiliary heat source unit 200 is activated to start operation (or the secondary side auxiliary heat source unit 200). Then, the operation proceeds to step S208. On the other hand, during the cooling operation, it is determined whether or not the commissioning unit period integrated value Q cm is less than the heat extraction amount integrated value Q pset1 (step S206). As a result, if Q cm <Q pset1, the process proceeds to step S209. If Q cm <Q pset1 , the process proceeds to step S207, where the GSHP system 100 is stopped and the secondary side auxiliary heat source device 200 is started to start operation (or the operation of the secondary side auxiliary heat source device 200 is promoted). After that, the process proceeds to step S208.

次に、暖房運転時には、コミッショニング単位期間積算値Qcmが採放熱量積算値Qpset2を超えるか否か判定する(ステップS208)。その結果、Qcm>Qpset2でなければステップS211に進む。Qcm>Qpset2であればステップS210に進み、二次側補助熱源機200をベースとする運転への切り替えを行った後、ステップS211に進む。一方、冷房運転時には、コミッショニング単位期間積算値Qcmが採放熱量積算値Qpset2を下回るか否か判定する(ステップS209)。その結果、Qcm<Qpset2でなければステップS211に進む。Qcm<Qpset2であればステップS210に進み、二次側補助熱源機200をベースとする運転への切り替えを行った後、ステップS211に進む。なお、Qpset1及びQpset2のうち求められない方の値は実際には達しえない大きい値が設定されているので、ステップS205とステップS208、ステップS206とステップS209が同時にYesとなることはありえない。 Next, at the time of heating operation, it is determined whether or not the commissioning unit period integrated value Q cm exceeds the heat extraction amount integrated value Q pset2 (step S208). As a result, if Q cm > Q pset2 is not reached , the process proceeds to step S211. If Q cm > Q pset2 , the process proceeds to step S210, and after switching to the operation based on the secondary side auxiliary heat source apparatus 200, the process proceeds to step S211. On the other hand, during the cooling operation, it is determined whether or not the commissioning unit period integrated value Q cm is less than the heat extraction amount integrated value Q pset2 (step S209). As a result, if Q cm <Q pset2 , the process proceeds to step S211. If Q cm <Q pset2 , the process proceeds to step S210, and after switching to the operation based on the secondary side auxiliary heat source apparatus 200, the process proceeds to step S211. In addition, since the larger value that cannot be actually reached is set as the value that cannot be obtained from Q pset1 and Q pset2 , step S205 and step S208, and step S206 and step S209 cannot be Yes at the same time. .

これらステップS202〜S210を、時間tを所定の時間ステップΔtずつ進めながら(ステップS212)、時間t=tnextとなるまで繰り返す(ステップS211)。例えば最初は1時間が設定されており、Δtは1分すなわち1/60時間と設定されている。tは戻りループに回るたびに1/60、2/60、3/60、・・・と増えていき、60/60=1時間に達したときにt=tnextとなって、次のステップS213に進み、その時点での地中熱交換器出入口温度、循環流量を保存する。 These steps S202~S210, while advancing time t by a predetermined time step Delta] t (step S212), and repeats until the time t = t next (step S211). For example, initially, 1 hour is set, and Δt is set to 1 minute, that is, 1/60 hours. t increases to 1/60, 2/60, 3/60,... each time it goes to the return loop, and when 60/60 = 1 hour is reached, t = t next and the next step Proceeding to S213, the underground heat exchanger inlet / outlet temperature and circulating flow rate at that time are stored.

次に、暖房運転時には、冷暖房運転切り替え後CGC未起動であり、かつ、採放熱量積算値Qsmが採放熱量積算値Qpset3を超えるか否か判定する(ステップS214)。その結果、冷暖房運転切り替え後CGC未起動であり、かつ、Qsm>Qpset3でなければステップS217、S219、S220に進む。冷暖房運転切り替え後CGC未起動であり、かつ、Qsm>Qpset3であればステップS216に進み、CGCを起動させて、次のコミッショニング単位期間での採放熱量積算値Qpset1、Qpset2を決定するとともに、コミッショニング単位期間積算値Qcmを初期化した後、ステップS217、S219、S220に進む。一方、冷房運転時には、冷暖房運転切り替え後CGC未起動であり、かつ、採放熱量積算値Qsmが採放熱量積算値Qpset3を下回るか否か判定する(ステップS215)。その結果、冷暖房運転切り替え後CGC未起動であり、かつ、Qsm<Qpset3でなければステップS217、S219、S220に進む。冷暖房運転切り替え後CGC未起動であり、かつ、Qsm<Qpset3であればステップS216に進み、CGCを起動させて、次のコミッショニング単位期間での採放熱量積算値Qpset1、Qpset2を決定するとともに、コミッショニング単位期間積算値Qcmを初期化した後、ステップS217、S219、S220に進む。 Next, at the time of heating operation, it is determined whether CGC has not been started after switching to the cooling / heating operation, and whether the heat extraction / radiation amount integrated value Q sm exceeds the heat extraction / radiation amount integrated value Q pset3 (step S214). As a result, if the CGC is not started after switching to the cooling / heating operation and Q sm > Q pset3, the process proceeds to steps S217, S219, and S220. If CGC has not been started after switching to the cooling / heating operation and Q sm > Q pset3 , the process proceeds to step S216, where CGC is started to determine the heat removal amount integrated values Q pset1 and Q pset2 in the next commissioning unit period. In addition, after the commissioning unit period integrated value Q cm is initialized, the process proceeds to steps S217, S219, and S220. On the other hand, at the time of the cooling operation, it is determined whether CGC has not been started after switching to the cooling / heating operation, and whether the heat extraction / radiation amount integrated value Q sm is lower than the heat extraction / radiation amount integrated value Q pset3 (step S215). As a result, if the CGC is not started after switching to the cooling / heating operation and Q sm <Q pset3 is not established, the process proceeds to steps S217, S219, and S220. If CGC has not been started after switching to the cooling / heating operation and Q sm <Q pset3 , the process proceeds to step S216, where the CGC is activated to determine the integrated heat removal amount Q pset1 and Q pset2 in the next commissioning unit period. In addition, after the commissioning unit period integrated value Q cm is initialized, the process proceeds to steps S217, S219, and S220.

冷暖房運転が切り替わった後、あまりに負荷が少ないとCGCでの評価が有効とは言えない。そこで、ステップS214、S215では、冷房(暖房)期間の採放熱量積算値QsmがQpset3に達するまではCGCを起動させないようにしている。すなわち、助走期間から本格的な自律制御期間への切り替え判定を行っている。 After the cooling / heating operation is switched, if the load is too small, the evaluation by CGC is not effective. Therefore, in steps S214 and S215, the CGC is not started until the integrated heat radiation amount Q sm during the cooling (heating) period reaches Q pset3 . That is, the switching determination from the running period to the full-fledged autonomous control period is performed.

次に、冷暖房運転切り替え後CGC起動済みであり(ステップS219)、GSHPシステム100の運転時間が1時間以上であり(ステップS217)、コミッショニング指定曜日にCGCが未起動である(ステップS220)場合(ステップS218)、ステップS221に進み、CGCを起動させて、採放熱量積算値Qpset1、Qpset2を決定するとともに、コミッショニング単位期間積算値Qcmを初期化する。 Next, when the CGC has been started after switching to the heating / cooling operation (step S219), the operation time of the GSHP system 100 is 1 hour or longer (step S217), and the CGC is not started on the commissioning designated day (step S220) ( In step S218), the process proceeds to step S221, where the CGC is activated to determine the heat radiation amount integrated values Q pset1 and Q pset2 and initialize the commissioning unit period integrated value Q cm .

ステップS217、S219、S220では、採放熱量積算値QsmがQpset3に達した後、すなわち本格的な自律制御運転に入った後のCGCの起動条件に照らし合わせて、コミッショニング単位期間経過後にCGCを起動させる判定を行っている。中心となる起動条件は、ステップS220の「コミッショニング指定曜日のCGC未起動」である。月曜日が指定曜日ならば火、水、・・・日までは直前の月曜日にCGCが起動しているのでNoとなるが、次の月曜日が来るとCGCを起動させなければYesとなるので、ステップS221に進み、CGCを起動させる。ステップS217の「GSHPシステム運転時間1時間以上」は、こちらもあまりに負荷が少なくGSHPシステム100が発停を繰り返す状況下においては見かけ上の有効熱伝導率の計算の誤差が大きくなる傾向があるため、CGCでの評価が有効とは言えないため、その場合はCGCを起動させないようにする。ステップS219の「冷暖房運転切替後CGC起動済」は、ステップS214、S215を経ているか否かを確認している。なお、コミッショニング単位期間は1週間を想定しているが、これを変更する場合は、ステップS220の判定において、コミッショニング指定曜日ではなく、単位期間を10日にするならば、コミッショニング指定日を10の倍数の日にする等の対応となる。 In steps S217, S219, and S220, the CGC after the commissioning unit period elapses after the heat extraction integrated value Q sm reaches Q pset3 , that is, in light of the CGC start-up conditions after entering full-scale autonomous control operation. Judgment to start up. The central activation condition is “CGC not activated on commissioning designated day” in step S220. If Monday is the designated day, Tuesday, Wednesday, ... until the day, CGC is activated on the previous Monday, so No, but if the next Monday comes, it will be Yes if CGC is not activated, step Proceeding to S221, CGC is activated. In step S217, “GSHP system operation time of 1 hour or more”, because the load of the GSHP system 100 is too small and the GSHP system 100 repeatedly starts and stops, the error in the calculation of the apparent effective thermal conductivity tends to increase. Since it cannot be said that the evaluation by the CGC is effective, the CGC is not activated in that case. In step S219, “CGC activated after switching to cooling / heating operation” has confirmed whether or not steps S214 and S215 have been performed. Note that the commissioning unit period is assumed to be one week. However, when changing this, if the unit period is set to 10 days instead of the commissioning specified day in the determination of step S220, the commissioning specified day is set to 10. It becomes correspondence such as making it the day of multiple.

次に、t÷730(730:1年8760時間を12ヶ月で除算した値)の余りが0となるか否かを確認しながら(ステップS222)、月積算採放熱量を保存する(ステップS223)。また、冷暖房運転の切り替え時には(ステップS224)、採放熱量積算値Qsmを初期化する(ステップS225)。 Next, while confirming whether the remainder of t ÷ 730 (730: a value obtained by dividing 8730 hours of one year by 12 months) becomes 0 (step S222), the monthly integrated heat radiation amount is stored (step S223). ). Further, at the time of switching between the cooling and heating operations (step S224), the heat radiation amount integrated value Q sm is initialized (step S225).

これらステップS202〜S225を、時間tを所定の時間ステップΔtずつ進めるとともにtnextをインクリメントして(ステップS226)繰り返す。すなわち、ステップS202〜213では、1時間おきに地中熱交換器出入口温度、循環流量を保存していく。 These steps S202~S225, increments the t next with advancing time t predetermined time by step Δt is repeated (step S226). That is, in steps S202 to 213, the underground heat exchanger inlet / outlet temperature and circulation flow rate are stored every other hour.

以上のように、予め設定されたコミッショニング指定曜日にCGCを起動させて、採放熱量積算値Qpset1、Qpset2を決定する。地中熱は温度変化を監視しながら運転している限りは安定した熱源であり、短期的な負荷変動に合わせて制御しなければならないものではない。したがって、一つのコミッショニング単位期間中の制御は一度の停止又は切り替え制御で十分対応できる。 As described above, the CGC is activated on the commissioning designated day set in advance, and the heat radiation amount integrated values Q pset1 and Q pset2 are determined. Geothermal heat is a stable heat source as long as it operates while monitoring temperature changes, and it does not have to be controlled in accordance with short-term load fluctuations. Therefore, the control during one commissioning unit period can be sufficiently handled by one stop or switching control.

以上述べたように、GSHPシステム100の運転状況と地盤熱特性を随時把握して、それに基づいてGSHPシステム100の運転、性能予測を行い、GSHPシステム100の運転時間や採放熱量を調整することができる。   As described above, the operation status and ground thermal characteristics of the GSHP system 100 are ascertained at any time, and the operation and performance prediction of the GSHP system 100 are performed based on the operation status, and the operation time and heat extraction amount of the GSHP system 100 are adjusted. Can do.

この場合に、比較的短期のコミッショニング単位期間毎に有効熱伝導率と負荷変動とを見直し、その見直した値に基づいて一次側温度が上下限値に収まるように次のコミッショニング単位期間までの地中熱利用可能量を算定し、運転制御することができる。したがって、例えば特許文献2にあるように採放熱の限界値を超えないように逐次制御するのではなく、同期間の負荷の多寡にある程度幅を持って対応することができ、例えばシーズン前半に利用が少なければ、後半に利用促進するようなことが可能になる。   In this case, the effective thermal conductivity and load fluctuation are reviewed for each relatively short commissioning unit period, and the ground until the next commissioning unit period is set so that the primary temperature falls within the upper and lower limits based on the revised values. The amount of medium heat available can be calculated and controlled. Therefore, for example, as described in Patent Document 2, instead of sequentially controlling so as not to exceed the heat extraction limit value, it is possible to cope with a certain amount of load during the same period, for example, in the first half of the season. If there are few, it becomes possible to promote the use in the second half.

(第2の実施形態)
第2の実施形態では、図5(b)に示すように、GSHPシステム100と、冷却塔や補助熱源ボイラ等の一次側(熱源側)補助熱源機とを組み合わせたシステムについて考える。ここでは、一次側補助冷熱源機である冷却塔300を組み合わせたシステムを例示する。冷却塔300の運転制御を行う際には、冷却塔系統の温度の測定等は特に必要とせず、図1に示した地中熱交換器出口温度Toutの実測データに基づいて行う。
(Second Embodiment)
In 2nd Embodiment, as shown in FIG.5 (b), the system which combined the GSHP system 100 and primary side (heat source side) auxiliary heat source machines, such as a cooling tower and an auxiliary heat source boiler, is considered. Here, the system which combined the cooling tower 300 which is a primary side auxiliary | assistant cooling-heat source machine is illustrated. When performing the operation control of the cooling tower 300, measurement of the temperature of the cooling tower system is not particularly necessary, performed on the basis of the measured data of the underground heat exchanger outlet temperature T out as shown in FIG.

冷却塔300を組み合わせる場合、第1の実施形態のように、GSHPシステム100の運転を停止させる採放熱量積算値Qpset1、及び、二次側補助熱源機200との併用運転への切り替えを行う採放熱量積算値Qpset2を設定するのではなく、基準温度として冷却塔300の運転を開始させる地中熱交換器出口温度Tpoutsetを設定する。 When the cooling tower 300 is combined, as in the first embodiment, switching to the combined operation with the heat collection / radiation amount integrated value Q pset1 for stopping the operation of the GSHP system 100 and the secondary side auxiliary heat source device 200 is performed. The ground heat exchanger outlet temperature T poutset for starting the operation of the cooling tower 300 is set as a reference temperature instead of setting the heat extraction / radiation amount integrated value Q pset2 .

以下、冷却塔300と組み合わせたGSHPシステム100の運転調整について説明する。まず、図16に示した地盤熱特性解析プログラムを組み合わせたCGCについて説明する。図16は、地中熱運転評価プログラムによる処理を示すフローチャートである。なお、第1の実施形態の図9との相違点を中心に説明し、同様の処理については詳細な説明は省略する。   Hereinafter, the operation adjustment of the GSHP system 100 combined with the cooling tower 300 will be described. First, CGC combining the ground thermal characteristic analysis program shown in FIG. 16 will be described. FIG. 16 is a flowchart showing processing by the geothermal operation evaluation program. In addition, it demonstrates centering around difference with FIG. 9 of 1st Embodiment, and abbreviate | omits detailed description about the same process.

ステップS601〜S613は図9のステップS301〜S313と同様である。冷房期間の地中熱交換器出口最高温度Tpoutmaxが所定の設定値Tpoutmaxset以下であるか否か、又は、温度条件Tpoutsetが20[℃]を下回るか否かを判定する(ステップS615)。いずれの条件も満たさなければステップS616に進む。ステップS616では、基準温度Tpoutsetを1[℃]下げて、ステップS608に戻る。 Steps S601 to S613 are the same as steps S301 to S313 in FIG. It is determined whether or not the underground heat exchanger outlet maximum temperature T poutmax during the cooling period is equal to or lower than a predetermined set value T poutmaxset or whether the temperature condition T poutset is lower than 20 [° C.] (step S615). . If neither condition is satisfied, the process proceeds to step S616. In step S616, the reference temperature T poutset is lowered by 1 [° C.] and the process returns to step S608.

最高温度Tpoutmaxが所定の設定値Tpoutmaxset以下である、又は、温度条件Tpoutsetが20[℃]を下回ればステップS617に進む。ステップS617では、最高温度Tpoutmaxの初期地中温度Ts0からの変化量が、下式(27)に示す条件を満たすか否か、又は、温度条件Tpoutsetが35[℃]を超えるか否かを判定する。いずれの条件も満たさなければステップS618に進む。ステップS618では、基準温度Tpoutsetを1[℃]上げて、ステップS608に戻る。 If the maximum temperature T poutmax is equal to or lower than the predetermined set value T poutmaxset or the temperature condition T poutset falls below 20 [° C.], the process proceeds to step S617 . In step S617 , whether or not the amount of change of the maximum temperature T poutmax from the initial underground temperature T s0 satisfies the condition shown in the following expression (27), or whether the temperature condition T poutset exceeds 35 [° C.]. Determine whether. If neither condition is satisfied, the process proceeds to step S618. In step S618 , the reference temperature T poutset is increased by 1 [° C.], and the process returns to step S608.

Figure 0005690650
Figure 0005690650

ステップS619では、長期安定性の確認を行う。この処理は、図10と同様であり、相違点としては、ステップS421でTpoutsetを1[℃]上げ、ステップS425でTpoutsetを1[℃]下げる点である。 In step S619, long-term stability is confirmed. This process is similar to FIG. 10, as the difference, the T Poutset raised 1 [° C.] in step S421, is that the lower 1 [° C.] The T Poutset in step S425.

そして、ステップS620では、GSHPシステム100の運転調整を行う期間中にCGCを最初に起動させる採放熱量積算値Qpset3を決定する。 In step S620, a heat extraction amount integrated value Q pset3 that activates the CGC first is determined during a period in which operation adjustment of the GSHP system 100 is performed.

次に、図15は、GSHPシステムの運転調整プログラムによる処理を示すフローチャートである。なお、第1の実施形態の図8との相違点を中心に説明し、同様の処理については詳細な説明は省略する。冷却塔の運転開始は、冷房期間の地中熱交換器出口温度Tpoutが基準温度Tpoutsetを超えたときに行われる(ステップS507、S508)。すなわち、Tpout>Tpoutsetとなっている間は冷却塔300を運転する。 Next, FIG. 15 is a flowchart showing processing by the operation adjustment program of the GSHP system. In addition, it demonstrates centering around difference with FIG. 8 of 1st Embodiment, and abbreviate | omits detailed description about the same process. The operation of the cooling tower is started when the underground heat exchanger outlet temperature T pout during the cooling period exceeds the reference temperature T poutset (steps S507 and S508). That is, the cooling tower 300 is operated while T pout > T poutset .

また、冷却塔300の能力が冷房負荷と比較して100%賄えるようなバックアップ機能を有している場合には、その能力に応じてファン動力等の消費電力も増大するため、バックアップ運転の時間帯を除いては、出力(ファンの回転数等)を小さくする必要がある。そこで、基準温度Tpoutsetが20[℃]を下回るような極端に冷却塔300の出力を必要とする条件を除いては、冷却塔300を最大出力運転とはせず、ファンの回転数等を抑える運転を行うようにする(ステップS505、S506)。 In addition, when the cooling tower 300 has a backup function that can cover 100% of the cooling load, the power consumption of the fan power and the like increases according to the capacity, so the backup operation time Except for the belt, it is necessary to reduce the output (fan speed, etc.). Therefore, except for conditions that require the output of the cooling tower 300 to be extremely low such that the reference temperature T poutset is lower than 20 [° C.], the cooling tower 300 is not set to the maximum output operation, and the rotational speed of the fan is set. The operation to be suppressed is performed (steps S505 and S506).

なお、一次側(熱源側)補助温熱源機である補助熱源ボイラを用いる場合も、図15の地中熱交換器出口温度設定が変わり、図16のステップS615、S617の上限値が下限値に変わる等の他は概ね同じである。また、冷暖の一次側補助熱源機を併用することも、二次側(負荷側)補助熱源機の場合と同様、可能である。   In addition, also when using the auxiliary | assistant heat source boiler which is a primary side (heat source side) auxiliary | assistant heat source machine, the underground heat exchanger exit temperature setting of FIG. 15 changes, and the upper limit of step S615 of FIG. 16, S617 becomes a lower limit. It is almost the same except for changes. Moreover, it is also possible to use a primary / secondary auxiliary heat source device for cooling and heating as in the case of the secondary (load side) auxiliary heat source device.

(第3の実施形態)
例えば給湯による温熱需要と冷房による冷熱需要とが混在するような場合、互いの排熱を利用する熱回収ループを構築した熱回収システムが有効である。熱回収システムでは、冷房の温排熱を給湯に、給湯の冷排熱を冷房に相互利用することで省エネを図ることができる。ただし、温熱需要と冷熱需要は常に同時に存在するわけではなく、排熱に時間差があるので、実際には、熱源水配管を主管として建物内に巡らせ、冷温排熱のバランス差に応じて補助熱源(補助ボイラや冷却等)を運転し、ヒートポンプが高効率で運転できる中温域(10〜30[℃]程度)に熱源水を維持し、そこから採熱したり放熱したりする。
(Third embodiment)
For example, when there is a mixture of hot and cold demand due to hot water supply and cooling, a heat recovery system that builds a heat recovery loop that uses the mutual exhaust heat is effective. In the heat recovery system, energy can be saved by mutually using the warm exhaust heat of the cooling for hot water supply and the cold exhaust heat of the hot water supply for cooling. However, the thermal demand and the cold demand do not always exist at the same time, and there is a time difference in the exhaust heat, so in fact, the heat source water piping is used as the main pipe in the building, and the auxiliary heat source according to the balance difference in the cold and exhaust heat (Auxiliary boiler, cooling, etc.) is operated, heat source water is maintained in a medium temperature range (about 10 to 30 [° C.]) where the heat pump can be operated with high efficiency, and heat is collected or radiated therefrom.

図17(a)、(b)に示す例は、温熱需要と冷熱需要とが混在し、共通の熱源水配管を介して、加熱運転ヒートポンプの冷排熱を冷却運転ヒートポンプ熱源に、冷却運転ヒートポンプの温排熱を加熱運転ヒートポンプ熱源に相互利用する熱回収システムである。このように地盤の蓄熱性を利用し、一般的な熱回収システムの熱源水配管にGSHPシステムを加えることにより、冷温排熱のバランス差により生じた余剰冷温排熱を地盤に蓄熱することができる。地盤に蓄熱することで冷温熱需要の時間差を吸収し、補助熱源の運転を最小に抑えることができ、さらに省エネを図ることができる。冷却・加熱熱源すなわち冷温排熱の混在するヒートポンプシステムにおいて、バランス差により生じた余剰冷温排熱を地盤とやり取りする熱収支解析を行えば、逐次的ではなく、シーズン単位で最適な冷温熱利用が可能な熱回収システムの運転が可能となる。かかる熱回収システムに本発明を適用する場合は、1年間を冷却負荷の方が大きい冷却期と加熱負荷の方が大きい加熱期と分け、冷却期においては冷却運転ヒートポンプを土壌熱源ヒートポンプシステム、加熱運転ヒートポンプ冷排熱を一次側(熱源側)補助熱源機として扱い、加熱期においては加熱運転ヒートポンプを土壌熱源ヒートポンプシステム、冷却運転ヒートポンプ温排熱を一次側補助熱源機として扱う。なお、一次側補助熱源機として扱うヒートポンプの排熱は排熱を作るのが本来の目的ではなく、成行き熱源となるため、熱源不足の場合は一次側補助熱源機(冷却塔、補助熱源ボイラ等)の運転が必要となる。   In the example shown in FIGS. 17A and 17B, the heat demand and the cold demand are mixed, and the cold exhaust heat of the heating operation heat pump is used as the cooling operation heat pump heat source via the common heat source water pipe. It is a heat recovery system that mutually uses the exhaust heat from the heat source as a heat pump heat source for heating operation. In this way, by utilizing the heat storage property of the ground and adding the GSHP system to the heat source water piping of a general heat recovery system, it is possible to store the excess cold heat exhaust heat generated due to the balance difference of the cold heat exhaust heat in the ground. . By storing heat in the ground, the time difference between cold and hot demand can be absorbed, the operation of the auxiliary heat source can be minimized, and further energy saving can be achieved. In a heat pump system that mixes cooling and heating heat sources, that is, cold exhaust heat, if heat balance analysis is performed to exchange surplus cold exhaust heat generated due to the balance difference with the ground, optimal use of cool heat is possible in season units, not sequentially. A possible heat recovery system can be operated. When the present invention is applied to such a heat recovery system, one year is divided into a cooling period in which the cooling load is larger and a heating period in which the heating load is larger. In the cooling period, the cooling operation heat pump is replaced with the soil heat source heat pump system, heating The operating heat pump cold exhaust heat is treated as a primary side (heat source side) auxiliary heat source machine, and the heating operation heat pump is treated as a soil heat source heat pump system and the cooling operation heat pump temperature exhaust heat is treated as a primary side auxiliary heat source machine in the heating period. The exhaust heat of the heat pump handled as the primary side auxiliary heat source machine is not the original purpose of generating exhaust heat, but it becomes the source of the final heat, so if the heat source is insufficient, the primary side auxiliary heat source machine (cooling tower, auxiliary heat source boiler) Etc.) is required.

また、図17(c)に示す例は、共通の熱源水配管を介して排熱回収を行う熱回収システムであり、回収した排熱を補助熱源として扱う。図示例では、厨房や浴室等の排湯熱、太陽熱集熱器による回収熱や燃料電池の排熱等を補助熱源として扱う。このように厨房や浴室等の排湯熱、太陽熱集熱器による回収熱や燃料電池の排熱等も排熱仕様(温度、流量、熱量等)を加えて熱収支解析を行えば、さらに高効率運転が可能となる。なお、補助熱源は成行き熱源となるため、熱源不足の場合は一次側(熱源側)補助熱源機(冷却塔、補助熱源ボイラ等)の運転が必要となる。   The example shown in FIG. 17C is a heat recovery system that performs exhaust heat recovery via a common heat source water pipe, and treats the recovered exhaust heat as an auxiliary heat source. In the illustrated example, waste heat from a kitchen or bathroom, heat recovered by a solar heat collector, exhaust heat from a fuel cell, and the like are handled as auxiliary heat sources. In this way, waste heat from kitchens and bathrooms, recovered heat from solar collectors, exhaust heat from fuel cells, etc. can be further increased if heat balance analysis is performed by adding waste heat specifications (temperature, flow rate, amount of heat, etc.). Efficient operation is possible. In addition, since an auxiliary heat source becomes a final heat source, when the heat source is insufficient, it is necessary to operate a primary side (heat source side) auxiliary heat source machine (a cooling tower, an auxiliary heat source boiler, etc.).

なお、ヒートポンプの冷温排熱、給湯排熱、燃料電池排熱等いずれも作用するのは、第2の実施形態で示した冷却塔等の一次側(熱源側)補助熱源機と同じであるが、いずれも熱源として出力調整するものではなく、熱利用は成行き利用であるため、冷却塔等の一次側補助熱源機と併用し、運転調整のフローは、地中熱の採放熱量で管理する第1の実施形態に準ずることとなる。この場合、土壌熱源ヒートポンプシステムの地中熱交換器からの採放熱を停止させる第1の採放熱量積算値、土壌熱源ヒートポンプシステムの地中熱交換器と併用して一次側補助熱源機を含む補助熱源から採放熱を行う第2の採放熱量積算値を求める。   In addition, although it is the same as primary heat | fever (heat source side) auxiliary heat source machines, such as a cooling tower shown in 2nd Embodiment, cold heat exhaust heat of a heat pump, hot water supply exhaust heat, fuel cell exhaust heat, etc. act. However, none of them adjust the output as a heat source, and the use of heat is intended for use, so it is used together with the primary side auxiliary heat source equipment such as a cooling tower, and the operation adjustment flow is managed by the amount of heat extracted from the underground heat. This is in accordance with the first embodiment. In this case, a primary side auxiliary heat source device is used in combination with the first heat radiation amount integrated value for stopping heat radiation from the ground heat exchanger of the soil heat source heat pump system, and the ground heat exchanger of the soil heat source heat pump system. A second heat radiation amount integrated value for performing heat radiation from the auxiliary heat source is obtained.

1:土壌熱源ヒートポンプシステムの制御装置、2:運転状況解析部、3:地盤熱特性解析部、4:運転調整部、100:土壌熱源ヒートポンプシステム、101:地中熱交換器、102:ヒートポンプ、103:空調機、104a、104b、106a、106b:温度センサ、105、107:流量センサ、108a、108b:電力計   1: control device of soil heat source heat pump system, 2: operating condition analysis unit, 3: ground heat characteristic analysis unit, 4: operation adjustment unit, 100: soil heat source heat pump system, 101: underground heat exchanger, 102: heat pump, 103: Air conditioner, 104a, 104b, 106a, 106b: Temperature sensor, 105, 107: Flow rate sensor, 108a, 108b: Wattmeter

Claims (16)

熱媒を循環させる地中熱交換器を利用する地盤熱特性解析方法であって、
地盤熱特性値としての有効熱伝導率を仮定し、その有効伝導率を用いて、所定の期間、時々刻々に測定した計算条件を用いて、熱源側の温度の時系列変化を計算する第1のシミュレーション手順と、
前記第1のシミュレーション手順による熱源側の温度の計算値の前記所定の期間での初期地中温度からの変化量と、熱源側の温度の実測値の前記所定の期間での前記初期地中温度からの変化量とが所定の条件を満たすか否かを判定する第1の判定手順とを有し、
前記計算値の変化量と前記実測値の変化量とが前記所定の条件を満たすまで前記有効熱伝導率を変更して前記第1のシミュレーション手順及び第1の判定手順を繰り返し、前記所定の条件を満たす有効熱伝導率を求めることを特徴とする地盤熱特性解析方法。
Geothermal heat characteristic analysis method using underground heat exchanger that circulates heat medium ,
Assuming an effective thermal conductivity as the ground thermal characteristic value, a first time series is used to calculate a time-series change in temperature on the heat source side using a calculation condition measured every moment for a predetermined period using the effective conductivity. And the simulation procedure of
The amount of change from the initial underground temperature in the predetermined period of the calculated value of the temperature on the heat source side according to the first simulation procedure , and the initial underground temperature in the predetermined period of the measured value of the temperature on the heat source side And a first determination procedure for determining whether or not the amount of change from the first condition satisfies a predetermined condition,
The variation of the calculated value and the change amount of the measured value by changing the effective thermal conductivity to the predetermined condition is satisfied repeat the first simulation procedure and the first determining step, said predetermined condition A method for analyzing ground thermal characteristics, characterized by obtaining an effective thermal conductivity satisfying the above condition.
熱源側の温度とは、地中熱交換器出口温度であり、The temperature on the heat source side is the underground heat exchanger outlet temperature,
前記第1のシミュレーション手順では、前記所定の期間、時々刻々に測定した地中熱交換器入口温度及び熱媒の循環流量を計算条件として与え、地中熱交換器内部の熱収支、無限の周囲地盤との熱伝導を解析し、熱源側の温度として地中熱交換器出口温度の時系列変化を計算することを特徴とする請求項1に記載の地盤熱特性解析方法。In the first simulation procedure, the ground heat exchanger inlet temperature and the circulating flow rate of the heat medium measured every moment during the predetermined period are given as calculation conditions, the heat balance inside the underground heat exchanger, infinite surroundings The ground thermal characteristic analysis method according to claim 1, wherein the heat conduction with the ground is analyzed, and the time-series change of the underground heat exchanger outlet temperature is calculated as the temperature on the heat source side.
請求項1又は2に記載の地盤熱特性解析方法により有効熱伝導率を求める地盤熱特性解析手順と、
運転期間の採放熱量積算値に基づいて、予定されている土壌熱源ヒートポンプシステム運転熱負荷を再設定する再設定手順と、
前記地盤熱特性解析手順による有効熱伝導率及び前記再設定手順による土壌熱源ヒートポンプシステム運転熱負荷を用いて、現時点後の単位期間について、前記土壌熱源ヒートポンプシステムの運転のシミュレーションを実行して熱収支を解析し、熱源側の温度の時系列変化を計算する第2のシミュレーション手順と、
前記第2のシミュレーション手順による熱源側の温度の計算値が所定の温度条件を満たすか否かを判定する第2の判定手順とを有し、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで土壌熱源ヒートポンプシステム運転基準に関係する値を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステム運転基準を求めることを特徴とする土壌熱源ヒートポンプシステムの運転調整方法。
A ground thermal property analysis procedure for obtaining an effective thermal conductivity by the ground thermal property analysis method according to claim 1 or 2,
A resetting procedure for resetting the planned soil heat source heat pump system operating heat load based on the accumulated heat removal amount during the operation period;
Using the effective thermal conductivity by the geothermal thermal characteristic analysis procedure and the soil heat source heat pump system operation heat load by the resetting procedure, a simulation of the operation of the soil heat source heat pump system is performed for the unit period after the current time, and the heat balance And a second simulation procedure for calculating a time-series change in temperature on the heat source side,
A second determination procedure for determining whether the calculated value of the temperature on the heat source side according to the second simulation procedure satisfies a predetermined temperature condition,
Until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition, the value related to the soil heat source heat pump system operation standard is changed and the second simulation procedure and the second determination procedure are repeated, and the predetermined An operation adjustment method for a soil heat source heat pump system, characterized in that an operation standard for a soil heat source heat pump system satisfying a temperature condition is obtained.
二次側(負荷側)補助熱源機と組み合わせた土壌熱源ヒートポンプシステムの運転調整方法であって、
前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで前記年間負荷量を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす前記年間負荷量に基づいて、前記土壌熱源ヒートポンプシステム運転基準である前記土壌熱源ヒートポンプシステムの運転を停止させる第1の採放熱量積算値、又は、前記土壌熱源ヒートポンプシステムと前記二次側補助熱源機との併用運転への切り替えを行う第2の採放熱量積算値を求めることを特徴とする請求項3に記載の土壌熱源ヒートポンプシステムの運転調整方法。
An operation adjustment method of a soil heat source heat pump system combined with a secondary (load side) auxiliary heat source machine,
The soil heat source heat pump system operating heat load is an annual load,
The annual load amount is changed until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition, and the second simulation procedure and the second determination procedure are repeated, and the annual condition satisfying the predetermined temperature condition is satisfied. Based on the load amount, the first heat radiation amount integrated value for stopping the operation of the soil heat source heat pump system, which is the soil heat source heat pump system operation standard, or the soil heat source heat pump system and the secondary auxiliary heat source machine The operation adjustment method of the soil heat source heat pump system according to claim 3, wherein a second heat radiation amount integrated value for switching to the combined operation is obtained.
一次側(熱源側)補助熱源機と組み合わせた土壌熱源ヒートポンプシステムの運転調整方法であって、
前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで、前記土壌熱源ヒートポンプシステム運転基準である前記一次側補助熱源機を運転する熱源側の温度(以下、基準温度と称する。)を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす前記基準温度を求めることを特徴とする請求項3に記載の土壌熱源ヒートポンプシステムの運転調整方法。
An operation adjustment method of a soil heat source heat pump system combined with a primary side (heat source side) auxiliary heat source machine,
The soil heat source heat pump system operating heat load is an annual load,
Until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition, the temperature on the heat source side that operates the primary auxiliary heat source machine that is the soil heat source heat pump system operation standard (hereinafter referred to as a reference temperature). The method of adjusting the operation of the soil heat source heat pump system according to claim 3, wherein the reference temperature condition that satisfies the predetermined temperature condition is obtained by changing and repeating the second simulation procedure and the second determination procedure. .
温熱需要と冷熱需要とが混在し、共通の熱源水配管を介して、加熱運転ヒートポンプの冷排熱を冷却運転ヒートポンプ熱源に、冷却運転ヒートポンプの温排熱を加熱運転ヒートポンプ熱源に相互利用する熱回収システムに適用し、熱源不足の場合には一次側補助熱源機を併用する土壌熱源ヒートポンプシステムの運転調整方法であって、
1年間を冷却負荷の方が大きい冷却期と加熱負荷の方が大きい加熱期と分け、冷却期においては前記冷却運転ヒートポンプを前記土壌熱源ヒートポンプシステム、前記加熱運転ヒートポンプ冷排熱を一次側(熱源側)補助熱源機として扱い、加熱期においては前記加熱運転ヒートポンプを前記土壌熱源ヒートポンプシステム、前記冷却運転ヒートポンプ温排熱を一次側補助熱源機として扱い、
前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで前記土壌熱源ヒートポンプシステムの運転基準に関係する値を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステムの運転基準を求めることを特徴とする請求項3に記載の土壌熱源ヒートポンプシステムの運転調整方法。
Heat and cold demand coexist and heat is shared between the heat exhaust heat pump's cold exhaust heat as a cooling operation heat pump heat source and the cooling operation heat pump's hot exhaust heat as a heat operation heat pump heat source through a common heat source water pipe Applying to the recovery system, in the case of a shortage of heat source, the operation adjustment method of the soil heat source heat pump system that uses the primary side auxiliary heat source machine together ,
One year is divided into a cooling period in which the cooling load is larger and a heating period in which the heating load is larger. In the cooling period, the cooling operation heat pump is connected to the soil heat source heat pump system, and the heating operation heat pump is cooled to the primary side (heat source Side) treated as an auxiliary heat source machine, in the heating period, the heating operation heat pump is treated as the soil heat source heat pump system, the cooling operation heat pump temperature exhaust heat is treated as a primary side auxiliary heat source machine,
The soil heat source heat pump system operating heat load is an annual load,
Until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition , the value related to the operation standard of the soil heat source heat pump system is changed and the second simulation procedure and the second determination procedure are repeated, The operation adjustment method of the soil heat source heat pump system according to claim 3, wherein an operation standard of the soil heat source heat pump system satisfying a predetermined temperature condition is obtained.
共通の熱源水配管を介して、排熱回収を行う熱回収システムに適用し、熱源不足の場合には一次側補助熱源機を併用する土壌熱源ヒートポンプシステムの運転調整方法であって、
回収した排熱を補助熱源として扱い、
前記土壌熱源ヒートポンプシステム運転熱負荷は年間負荷量であり、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで前記土壌熱源ヒートポンプシステムの運転基準に関係する値を変更して前記第2のシミュレーション手順及び前記第2の判定手順を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステムの運転基準を求めることを特徴とする請求項3に記載の土壌熱源ヒートポンプシステムの運転調整方法。
It is applied to a heat recovery system that recovers exhaust heat through a common heat source water pipe, and is a method for adjusting the operation of a soil heat source heat pump system that uses a primary auxiliary heat source machine in combination when the heat source is insufficient ,
Treat the recovered exhaust heat as an auxiliary heat source,
The soil heat source heat pump system operating heat load is an annual load,
Until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition , the value related to the operation standard of the soil heat source heat pump system is changed and the second simulation procedure and the second determination procedure are repeated, The operation adjustment method of the soil heat source heat pump system according to claim 3, wherein an operation standard of the soil heat source heat pump system satisfying a predetermined temperature condition is obtained.
前記所定の温度条件には、前記第2のシミュレーション手順による熱源側の温度の計算値が上限値及び下限値を超えない、或いは、上限値又は下限値を超えないという条件を含むことを特徴とする請求項3乃至7のいずれか1項に記載の土壌熱源ヒートポンプシステムの運転調整方法。   The predetermined temperature condition includes a condition that the calculated value of the temperature on the heat source side according to the second simulation procedure does not exceed the upper limit value and the lower limit value, or does not exceed the upper limit value or the lower limit value. The operation adjustment method of the soil heat source heat pump system according to any one of claims 3 to 7. 前記所定の温度条件には、前記第2のシミュレーション手順による熱源側の最高温度と最低温度の計算値における経年変化値がともに所定の条件値を超えないという条件を含むことを特徴とする請求項3乃至7のいずれか1項に記載の土壌熱源ヒートポンプシステムの運転調整方法。   The predetermined temperature condition includes a condition that a secular change value in a calculated value of the maximum temperature and the minimum temperature on the heat source side according to the second simulation procedure does not exceed a predetermined condition value. The operation adjustment method of the soil heat source heat pump system of any one of 3 thru | or 7. 前記単位期間ごとに、前記地盤熱特性解析手順、前記再設定手順、前記第2のシミュレーション手順、及び前記第2の判定手順により前記土壌熱源ヒートポンプシステム運転基準を求め、その土壌熱源ヒートポンプシステム運転基準に基づいて前記土壌熱源ヒートポンプシステムの運転調整を実行することを特徴とする請求項3乃至9のいずれか1項に記載の土壌熱源ヒートポンプシステムの運転調整方法。   For each unit period, the soil heat source heat pump system operation standard is obtained by the ground heat characteristic analysis procedure, the resetting procedure, the second simulation procedure, and the second determination procedure, and the soil heat source heat pump system operation standard is obtained. The operation adjustment method of the soil heat source heat pump system according to any one of claims 3 to 9, wherein the operation adjustment of the soil heat source heat pump system is executed based on the method. 熱媒を循環させる地中熱交換器を利用する地盤熱特性解析装置であって、
地盤熱特性値としての有効熱伝導率を仮定し、その有効伝導率を用いて、所定の期間、時々刻々に測定した計算条件を用いて、熱源側の温度の時系列変化を計算する第1のシミュレーション手段と、
前記第1のシミュレーション手段による熱源側の温度の計算値の前記所定の期間での初期地中温度からの変化量と、熱源側の温度の実測値の前記所定の期間での前記初期地中温度からの変化量とが所定の条件を満たすか否かを判定する第1の判定手段とを備え、
前記計算値の変化量と前記実測値の変化量とが前記所定の条件を満たすまで前記有効熱伝導率を変更して前記第1のシミュレーションによる計算及び前記第1の判定手段による判定を繰り返し、前記所定の条件を満たす有効熱伝導率を求めることを特徴とする地盤熱特性解析装置。
A geothermal heat characteristic analysis device using an underground heat exchanger that circulates a heat medium ,
Assuming an effective thermal conductivity as the ground thermal characteristic value, a first time series is used to calculate a time-series change in temperature on the heat source side using a calculation condition measured every moment for a predetermined period using the effective conductivity. Simulation means of
The amount of change from the initial underground temperature in the predetermined period of the calculated value of the temperature on the heat source side by the first simulation means , and the initial underground temperature in the predetermined period of the measured value of the temperature on the heat source side And a first determination means for determining whether or not the amount of change from the first condition satisfies a predetermined condition,
The variation of the calculated value and the change amount of the measured value by changing the effective thermal conductivity to the predetermined condition is satisfied repeatedly determined by calculation and the first determining means according to the first simulation, An apparatus for analyzing ground thermal characteristics, wherein an effective thermal conductivity satisfying the predetermined condition is obtained.
熱源側の温度とは、地中熱交換器出口温度であり、The temperature on the heat source side is the underground heat exchanger outlet temperature,
前記第1のシミュレーション手段では、前記所定の期間、時々刻々に測定した地中熱交換器入口温度及び熱媒の循環流量を計算条件として与え、地中熱交換器内部の熱収支、無限の周囲地盤との熱伝導を解析し、熱源側の温度として地中熱交換器出口温度の時系列変化を計算することを特徴とする請求項11に記載の地盤熱特性解析装置。In the first simulation means, the ground heat exchanger inlet temperature and the circulating flow rate of the heat medium measured every moment during the predetermined period are given as calculation conditions, the heat balance inside the ground heat exchanger, infinite surroundings The ground thermal characteristic analysis apparatus according to claim 11, wherein heat conduction with the ground is analyzed, and a time-series change in the outlet temperature of the underground heat exchanger is calculated as the temperature on the heat source side.
請求項1又は2に記載の地盤熱特性解析方法により有効熱伝導率を求める地盤熱特性解析手段と、
運転期間の採放熱量積算値に基づいて、予定されている土壌熱源ヒートポンプシステム運転熱負荷を再設定する再設定手段と、
前記地盤熱特性解析手段による有効熱伝導率及び前記再設定手段による土壌熱源ヒートポンプシステム運転熱負荷を用いて、現時点後の単位期間について、前記土壌熱源ヒートポンプシステムの運転のシミュレーションを実行して熱収支を解析し、熱源側の温度の時系列変化を計算する第2のシミュレーション手段と、
前記第2のシミュレーション手段による熱源側の温度の計算値が所定の温度条件を満たすか否かを判定する第2の判定手段とを備え、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで土壌熱源ヒートポンプシステム運転基準に関係する値を変更して前記第2のシミュレーション手段による計算及び前記第2の判定手段による判定を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステム運転基準を求めることを特徴とする土壌熱源ヒートポンプシステムの運転調整装置。
A ground thermal property analysis means for obtaining an effective thermal conductivity by the ground thermal property analysis method according to claim 1 or 2,
Resetting means for resetting the planned soil heat source heat pump system operating heat load, based on the integrated heat dissipation amount during the operation period;
Using the effective thermal conductivity by the geothermal heat characteristic analysis means and the soil heat source heat pump system operating heat load by the resetting means, a simulation of the operation of the soil heat source heat pump system is performed for the unit period after the present time, and the heat balance And a second simulation means for calculating a time-series change in temperature on the heat source side,
Second determination means for determining whether or not the calculated value of the temperature on the heat source side by the second simulation means satisfies a predetermined temperature condition;
Until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition, the value related to the soil heat source heat pump system operation standard is changed, and the calculation by the second simulation means and the determination by the second determination means are repeated. An operation adjustment device for a soil heat source heat pump system, wherein an operation standard for a soil heat source heat pump system that satisfies the predetermined temperature condition is obtained.
熱媒を循環させる地中熱交換器を利用して地盤熱特性を解析するためのプログラムであって、
地盤熱特性値としての有効熱伝導率を仮定し、その有効伝導率を用いて、所定の期間、時々刻々に測定した計算条件を用いて、熱源側の温度の時系列変化を計算する第1のシミュレーション処理と、
前記第1のシミュレーション処理による熱源側の温度の計算値の前記所定の期間での初期地中温度からの変化量と、熱源側の温度の実測値の前記所定の期間での前記初期地中温度からの変化量とが所定の条件を満たすか否かを判定する第1の判定処理とをコンピュータに実行させ、
前記計算値の変化量と前記実測値の変化量とが前記所定の条件を満たすまで前記有効熱伝導率を変更して前記第1のシミュレーション処理及び第1の判定処理を繰り返し、前記所定の条件を満たす有効熱伝導率を求めることを特徴とするプログラム。
A program for analyzing ground thermal characteristics using a ground heat exchanger that circulates a heat medium ,
Assuming an effective thermal conductivity as the ground thermal characteristic value, a first time series is used to calculate a time-series change in temperature on the heat source side using a calculation condition measured every moment for a predetermined period using the effective conductivity. Simulation process of
The amount of change from the initial underground temperature in the predetermined period of the calculated value of the temperature on the heat source side by the first simulation process , and the initial underground temperature in the predetermined period of the measured value of the temperature on the heat source side And a first determination process for determining whether or not a change amount from the first condition satisfies a predetermined condition,
The variation of the calculated value and the change amount of the measured value by changing the effective thermal conductivity to the predetermined condition is satisfied repeat the first simulation process and the first determination process, the predetermined condition A program characterized by obtaining an effective thermal conductivity satisfying
熱源側の温度とは、地中熱交換器出口温度であり、The temperature on the heat source side is the underground heat exchanger outlet temperature,
前記第1のシミュレーション処理では、前記所定の期間、時々刻々に測定した地中熱交換器入口温度及び熱媒の循環流量を計算条件として与え、地中熱交換器内部の熱収支、無限の周囲地盤との熱伝導を解析し、熱源側の温度として地中熱交換器出口温度の時系列変化を計算することを特徴とする請求項14に記載のプログラム。In the first simulation process, the underground heat exchanger inlet temperature and the circulating flow rate of the heat medium measured every moment during the predetermined period are given as calculation conditions, and the heat balance inside the underground heat exchanger is infinite. 15. The program according to claim 14, wherein the heat conduction with the ground is analyzed, and the time series change of the outlet temperature of the underground heat exchanger is calculated as the temperature on the heat source side.
請求項1又は2に記載の地盤熱特性解析方法により有効熱伝導率を求める地盤熱特性解析処理と、
運転期間の採放熱量積算値に基づいて、予定されている土壌熱源ヒートポンプシステム運転熱負荷を再設定する再設定処理と、
前記地盤熱特性解析処理による有効熱伝導率及び前記再設定処理による土壌熱源ヒートポンプシステム運転熱負荷を用いて、現時点後の単位期間について、前記土壌熱源ヒートポンプシステムの運転のシミュレーションを実行して熱収支を解析し、熱源側の温度の時系列変化を計算する第2のシミュレーション処理と、
前記第2のシミュレーション処理による熱源側の温度の計算値が所定の温度条件を満たすか否かを判定する第2の判定処理とをコンピュータに実行させ、
前記熱源側の温度の計算値が前記所定の温度条件を満たすまで土壌熱源ヒートポンプシステム運転基準に関係する値を変更して前記第2のシミュレーション処理及び前記第2の判定処理を繰り返し、前記所定の温度条件を満たす土壌熱源ヒートポンプシステム運転基準を求めることを特徴とするプログラム。
A ground thermal property analysis process for obtaining an effective thermal conductivity by the ground thermal property analysis method according to claim 1 or 2,
A resetting process for resetting the planned soil heat source heat pump system operating heat load based on the integrated heat removal amount during the operation period;
Using the effective thermal conductivity by the geothermal heat characteristic analysis process and the soil heat source heat pump system operation heat load by the resetting process, a simulation of the operation of the soil heat source heat pump system is performed for the unit period after the current time, and the heat balance A second simulation process for calculating a time-series change in temperature on the heat source side,
Causing the computer to execute a second determination process for determining whether or not the calculated value of the temperature on the heat source side by the second simulation process satisfies a predetermined temperature condition;
Until the calculated value of the temperature on the heat source side satisfies the predetermined temperature condition, the value related to the soil heat source heat pump system operation standard is changed, and the second simulation process and the second determination process are repeated, A program characterized by obtaining an operating standard of a soil heat source heat pump system that satisfies a temperature condition.
JP2011104602A 2011-05-09 2011-05-09 Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program Active JP5690650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104602A JP5690650B2 (en) 2011-05-09 2011-05-09 Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104602A JP5690650B2 (en) 2011-05-09 2011-05-09 Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program

Publications (2)

Publication Number Publication Date
JP2012233669A JP2012233669A (en) 2012-11-29
JP5690650B2 true JP5690650B2 (en) 2015-03-25

Family

ID=47434143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104602A Active JP5690650B2 (en) 2011-05-09 2011-05-09 Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program

Country Status (1)

Country Link
JP (1) JP5690650B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122569A (en) * 2017-05-25 2017-09-01 山东建筑大学 Differential parallel HCMAC neutral net bilateral variable-flow earth-source hot-pump system power consumption Forecasting Methodologies
WO2019088314A1 (en) * 2017-11-01 2019-05-09 주식회사 티이 Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207476B2 (en) * 2013-07-03 2017-10-04 東日本旅客鉄道株式会社 Geothermal heat pump system
CN105091156B (en) * 2014-05-12 2018-02-16 刘秋克 Four air intake earth source heat pump concurrent heating towers
CN104374122A (en) * 2014-12-03 2015-02-25 北京中科华誉能源技术发展有限责任公司 Integrated collector device in ground-source heat pump system
CN104976839B (en) * 2015-06-26 2017-03-01 西安建筑科技大学 A kind of groundwater heat pumps of water source side energy conservation model switching and method
CN105066516A (en) * 2015-09-17 2015-11-18 国网天津市电力公司 Thermal balance ground-source heat pump and use method thereof
CN105302984B (en) * 2015-11-12 2019-03-19 山东建筑大学 A kind of earth source heat pump unit modeling and simulating method
KR101881851B1 (en) * 2016-09-23 2018-07-26 코텍엔지니어링주식회사 Geothermy-hydrothermal multiple heat pump system and method of operation thereof
EP3594588B1 (en) * 2017-03-09 2022-07-13 Mitsubishi Electric Corporation Geothermal heat pump device
CN107270567A (en) * 2017-08-07 2017-10-20 宝莲华新能源技术(上海)股份有限公司 A kind of cold and hot balance system of underground for cold district earth-source hot-pump system
JP7351473B2 (en) * 2018-03-23 2023-09-27 日鉄エンジニアリング株式会社 Geothermal heat pump system and how to operate a geothermal heat pump system
CN111400893B (en) * 2020-03-12 2023-02-28 安徽工业大学 Method for analyzing fluid temperature field of sleeve type buried pipe heat exchanger
CN111397934B (en) * 2020-03-31 2022-04-15 河南省建筑科学研究院有限公司 Ground source heat pump system performance detection and optimal control method and device
AU2021455544A1 (en) * 2021-07-13 2023-10-26 Chiyoda Corporation Management system, management method, and management program
CN113865152B (en) * 2021-09-16 2023-04-07 国网浙江省电力有限公司湖州供电公司 Flow temperature difference adjusting method for ground source heat pump
CN114623489A (en) * 2022-03-18 2022-06-14 河北省建筑科学研究院有限公司 Application method of solar energy-soil composite heat pump cross-season energy storage system
CN115307350B (en) * 2022-08-15 2024-05-24 中机意园工程科技股份有限公司 Ground source heat pump control system
CN115451619A (en) * 2022-09-23 2022-12-09 北京金茂人居环境科技有限公司 Ground source field heat pump control method, storage medium and electronic device
CN116500240B (en) * 2023-06-21 2023-12-29 江西索立德环保服务有限公司 Soil environment quality monitoring method, system and readable storage medium
CN117128653A (en) * 2023-10-07 2023-11-28 武汉卓成节能科技股份有限公司 Soil heat balance device and method of ground source heat pump system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281203A (en) * 1998-01-27 1999-10-15 Nkk Corp Soil heat source heat pump system and its operation method
JP2003130494A (en) * 2001-10-19 2003-05-08 Ohbayashi Corp Air conditioning system utilizing underground heat exchanger, and operating method for the same
JP4034220B2 (en) * 2003-03-31 2008-01-16 和夫 柴田 Underground heat sampling test equipment
JP2005127612A (en) * 2003-10-23 2005-05-19 Nippon Steel Corp Underground heat utilizing system with underground water tank water heat source heat pump
JP4368246B2 (en) * 2004-05-24 2009-11-18 三洋電機株式会社 Air conditioner
JP4782462B2 (en) * 2005-04-13 2011-09-28 新日鉄エンジニアリング株式会社 Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
JP4694932B2 (en) * 2005-09-22 2011-06-08 新日鉄エンジニアリング株式会社 Soil heat source heat pump system design method, design support system, and computer program
JP5280065B2 (en) * 2008-02-22 2013-09-04 鹿島建設株式会社 Geothermal heat utilization device and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122569A (en) * 2017-05-25 2017-09-01 山东建筑大学 Differential parallel HCMAC neutral net bilateral variable-flow earth-source hot-pump system power consumption Forecasting Methodologies
CN107122569B (en) * 2017-05-25 2020-10-30 山东建筑大学 Power consumption prediction method for difference parallel HCMAC neural network bilateral variable flow ground source heat pump system
WO2019088314A1 (en) * 2017-11-01 2019-05-09 주식회사 티이 Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat

Also Published As

Publication number Publication date
JP2012233669A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5690650B2 (en) Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program
Bianchini et al. An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings
Lu et al. Cooling system energy flexibility of a nearly zero-energy office building using building thermal mass: Potential evaluation and parametric analysis
US8457933B2 (en) Method for predicting cooling load
Vakiloroaya et al. Energy-efficient HVAC systems: Simulation–empirical modelling and gradient optimization
Aswani et al. Reducing transient and steady state electricity consumption in HVAC using learning-based model-predictive control
US20070061104A1 (en) Performance prediction program and performance prediction system for ground source heat pump system
JP5082052B2 (en) Soil heat source heat pump system performance prediction method and system, underground temperature calculation method
Durand-Estebe et al. Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center
Vakiloroaya et al. A comparative study on the effect of different strategies for energy saving of air-cooled vapor compression air conditioning systems
Soler et al. Optimizing performance of a bank of chillers with thermal energy storage
Ruiz-Calvo et al. Reference data sets for validating and analyzing GSHP systems based on an eleven-year operation period
Cardemil et al. Thermal analysis of a water source heat pump for space heating using an outdoor pool as a heat source
JP6252673B2 (en) Parameter learning apparatus and parameter learning method
CN103486693A (en) Energy-saving control method for central air-conditioning chilled water system
Ihm et al. Development of a thermal energy storage model for EnergyPlus
Seo et al. Comparative analysis of cooling energy performance between water-cooled VRF and conventional AHU systems in a commercial building
Ren et al. Developing a collaborative control strategy of a combined radiant floor cooling and ventilation system: A PMV-based model
Cullin et al. Comparison of simulation-based design procedures for hybrid ground source heat pump systems
JP5831379B2 (en) HEAT PUMP SYSTEM, ITS CONTROL METHOD AND PROGRAM
Yik et al. Chiller models for plant design studies
Muehleisen Simple design tools for earth-air heat exchangers
Khalid et al. Energy usage prediction model comparing outdoor vs. indoor ice rinks
JP2013204834A (en) Heating operation control system
Wang et al. An introduction of new features for conventional and hybrid GSHP simulations in eQUEST 3.7

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5690650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250