WO2019088314A1 - Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat - Google Patents

Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat Download PDF

Info

Publication number
WO2019088314A1
WO2019088314A1 PCT/KR2017/012260 KR2017012260W WO2019088314A1 WO 2019088314 A1 WO2019088314 A1 WO 2019088314A1 KR 2017012260 W KR2017012260 W KR 2017012260W WO 2019088314 A1 WO2019088314 A1 WO 2019088314A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pump
fluid
temperature
pump
Prior art date
Application number
PCT/KR2017/012260
Other languages
French (fr)
Korean (ko)
Inventor
김종률
이원근
문기선
조수진
김승욱
Original Assignee
주식회사 티이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티이 filed Critical 주식회사 티이
Priority to PCT/KR2017/012260 priority Critical patent/WO2019088314A1/en
Publication of WO2019088314A1 publication Critical patent/WO2019088314A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Definitions

  • the present invention relates to a method of calculating a calorific value and efficiency of a heat pump system using geothermal heat that can more accurately calculate a calorific value and efficiency of a heat pump system using geothermal heat. .
  • a heat pump is an air heat source system that obtains or discharges heat in the atmosphere, a hydrothermal source system that discharges heat through a cooling tower, and a geothermal system that obtains heat from the ground or discharges heat to the ground.
  • the geothermal circulation system Since the ground temperature can be maintained almost constant when the depth of the ground is above a certain depth, the geothermal circulation system has an advantage of energy efficiency higher than the air heat source system.
  • summer cooling a large amount of electric power is consumed in order to discharge the cooling heat because the air temperature is very high at 30 ° C or more in the air.
  • the temperature of the ground is 10 to 20 ° C It is much lower than the temperature, so it is easy to discharge the cooling heat, so the efficiency is high.
  • winter heating it is difficult to supply the heat required for heating because the air temperature is very low in the air.
  • the temperature of the ground is 10 to 20 °C higher than the atmospheric temperature, Can be supplied to the heat pump.
  • a method of calculating a heat quantity and efficiency of a heat pump system using geothermal heat includes a heat pump provided with a heat source from an underground heat exchanger and providing a heat source as a heat demand source, 1.
  • a heat pump system using geothermal heat comprising a pump for pumping a first fluid, the method comprising: turning on the heat pump after a first set time after turning on the pump; When the discharge temperature of the first fluid discharged from the heat pump becomes equal to or greater than a first preset temperature which is higher than an initial discharge temperature of the first fluid after the pump is turned on, Measuring an inlet temperature, a discharge temperature of the first fluid, and a flow rate of the first fluid to calculate a production heat quantity of the heat pump in real time and start integration; And stopping the accumulation of the heat produced by the heat pump when the difference between the inflow temperature of the first fluid and the discharge temperature of the first fluid after the heat pump is turned off is less than a preset second set temperature.
  • the heat generated by the heat pump is accumulated and accumulated until a predetermined time after the heat pump is turned off from a predetermined time before the heat pump is turned on after the pump is turned on.
  • the calorie production of the system can be calculated.
  • the present invention calculates and accumulates the heat produced by the heat pump from the time when the discharge temperature of the first fluid discharged from the heat pump is lowered to a predetermined temperature or lower after the pump is turned on during the cooling operation, It is possible to calculate the calorific value of a system using geothermal energy accurately.
  • the heat produced by the heat pump is calculated and integrated from the time when the discharge temperature of the first fluid discharged from the heat pump rises above the predetermined temperature after the pump is turned on, But it is possible to calculate the calorific value of the system using geothermal energy accurately.
  • the present invention by stopping the accumulation of the calorific value in consideration of the difference between the inflow temperature of the first fluid flowing into the heat pump and the discharge temperature of the first fluid discharged from the heat pump after turning off the heat pump, It is possible to calculate a more accurate calorific value by taking into account the calorific value after turning off the heat pump.
  • the calorific value of the produced fluid can be measured while the inflow temperature of the first fluid is kept constant,
  • FIG. 1 is a schematic configuration diagram of a heat pump system using geothermal heat according to a first embodiment of the present invention.
  • FIG. 2 is a graph illustrating a temperature change of a first fluid according to time during a cooling operation of a heat pump system using geothermal heat according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing a change in the calorific value with time during the cooling operation of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the temperature change of the first fluid according to the heating operation time of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing a change in the calorific value of the heat pump system using the geothermal heat according to the first embodiment of the present invention with time during the heating operation.
  • FIG. 6 is a schematic configuration diagram of a heat pump system using geothermal heat according to a second embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a heat pump system using geothermal heat according to a first embodiment of the present invention.
  • the heat pump system using geothermal heat includes a heat pump 20 provided with a heat source from an underground heat exchanger 10 and providing a heat source to a heat demander 40, And a pump 30 for pumping the first fluid circulating the heat pump 20 and the heat consumer 40.
  • the underground heat exchanger (10) is a heat exchange buried in the ground.
  • the underground heat exchanger (10) and the heat pump (20) are connected to a second flow path (11) through which the second fluid circulates.
  • the second fluid is brine for example.
  • a second flow meter (12) for measuring the flow rate of the brine may be installed in the second flow path (11).
  • the heat pump 20 receives a heat source from the underground heat exchanger 10 and provides a heat source to the heat demander 40.
  • the heat pump 20 is composed of a compressor (not shown), an indoor heat exchanger (not shown), an outdoor heat exchanger (not shown) and an expansion device (not shown) , The outdoor heat exchanger, and the expansion device.
  • the third fluid is a refrigerant different from the first fluid.
  • One side of the heat pump (20) and the underground heat exchanger (10) are connected to the second flow path (11).
  • One side of the heat pump 20 corresponds to the outdoor heat exchanger (not shown).
  • the other side of the heat pump 20 and the heat consumer 40 are connected to the first flow paths 21 and 22.
  • the other side of the heat pump 20 corresponds to the indoor heat exchanger (not shown).
  • the first flow paths 21 and 22 include an inlet flow path 21 formed to flow the first fluid from the heat consumer 40 to the heat pump 20, And a discharge passage 22 formed to discharge the first fluid.
  • the inflow channel 21 is provided with a first flow meter 23 for measuring the flow rate of the first fluid flowing into the heat pump 20.
  • the inflow channel 21 is provided with an inflow temperature sensor 51 for measuring the temperature of the first fluid flowing into the heat pump 20.
  • the pump (30) for pumping the first fluid discharged from the heat pump (20) is installed in the discharge passage (22).
  • the discharge passage 22 is provided with a discharge temperature sensor 52 for measuring the temperature of the first fluid discharged from the heat pump 20.
  • the control unit (not shown) turns on the pump 30.
  • the heat pump 20 is turned on after a predetermined first set time Tl. That is, the control unit does not turn on the pump 30 and the heat pump 20 at the same time.
  • the indoor heat exchanger (not shown) functions as an evaporator
  • the outdoor heat exchanger (not shown) functions as a condenser
  • the first fluid introduced into the heat pump 20 through the inflow channel 21 is cooled through heat exchange in the heat pump 20 and then flows through the discharge channel 22 to the heat consumer 40. [ . Accordingly, it is possible to provide cool air to the heat consumer 40.
  • the brine flowing into the heat pump 20 through the second flow path 11 is heated by heat exchange in the heat pump 20 and then discharged to the underground heat exchanger 10.
  • the control unit turns off the heat pump 20.
  • the pump 20 is turned off after a predetermined second set time? T2 after the heat pump 20 is turned off. That is, the control unit does not turn off the heat pump 20 and the pump 30 at the same time. Since the first fluid remains on the inflow passage 21 and the discharge passage 22 even after the heat pump 20 is turned off, the second set time? T2 is set so as to extract the remaining first fluid, The pump 30 must be operated further. If the first fluid remains on the inlet flow path 21 and the discharge flow path 22, the first fluid may be frozen in the future, and the flow path or the heat pump 20 may be damaged.
  • FIG. 2 is a graph illustrating a temperature change of a first fluid according to time during a cooling operation of a heat pump system using geothermal heat according to the first embodiment of the present invention.
  • the first set time? T1 is 2 to 3 minutes, for example.
  • the inflow temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first set time Tl after the pump 30 is turned on,
  • the discharge temperature t out of the first fluid decreases gradually.
  • t 0 represents the initial discharge temperature of the first fluid discharged from the heat pump 20.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 is decreased to a predetermined temperature from a time T2 when the heat pump 20 is turned on to a time T3 when the heat pump 20 is turned off, Keep the temperature.
  • the time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second set time? T2.
  • the second set time? T2 is, for example, 2 to 3 minutes.
  • the first and second set times may be preset by experiment or the like.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 increases gradually during the second set time T 2 after the heat pump 20 is turned off, (t in ), and the inflow temperature (t in ) of the first fluid is kept substantially constant.
  • FIG. 3 is a graph showing a change in the calorific value with time during the cooling operation of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
  • the heat produced Q of the heat pump 20 gradually increases but is lower than zero during the first set time Tl after the pump 30 is turned on. That is, since the heat pump 20 is not driven during the first set time Tl, the calorific value Q is a negative value.
  • Q 0 represents the amount of heat at the time when the pump 30 is turned on
  • Q 1 represents the amount of heat at the time when the heat pump 20 is turned on.
  • the heat pump 20 When the heat pump 20 is driven by the lapse of the first set time Tl, the first fluid is heat-exchanged in the heat pump 20 to be cooled, so that the discharge temperature t out of the first fluid is lowered . Therefore, it can be seen that the calorific value Q rises above a certain value.
  • the heat produced Q of the heat pump 20 gradually decreases and then maintains a constant value. Since the heat pump 20 is not driven but the pump 30 is driven during the second set time T2, the calorific value Q decreases gradually.
  • a method of calculating the calorific value of the heat pump 20 during the cooling operation of the heat pump 20 is as follows.
  • the measurement time? Treal of the calorific value Qreal is set from the fifth time point T5 to the sixth time point T6.
  • the fifth point of time T5 is a point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 after the pump 30 is turned on is lower than the initial discharge temperature t 0 of the first fluid. Is equal to or greater than a predetermined first set temperature? T 1 .
  • the discharge temperature t out of the first fluid is a temperature measured in real time by the discharge temperature sensor 52.
  • the initial discharge temperature t 0 of the first fluid is an initial discharge temperature initially measured by the discharge temperature sensor 52 after the pump 30 is turned on.
  • the fifth time point (T5) represents a time point at which the discharge temperature ( tout ) of the first fluid discharged from the heat pump (20) drops below a predetermined temperature.
  • the fifth time point T5 is also a time point at which the amount of heat produced starts to gradually increase.
  • the discharge temperature of the first fluid Even before turning on the heat pump unit 20 gradually decreases the first (t out), the discharge temperature of the first fluid, and the production amount of heat is also specified that since the increase in amount, but the first (t out), the discharge temperature of the first fluid (T5), which is a time point at which the temperature of the exhaust gas is lowered to a temperature lower than the temperature of the exhaust gas.
  • the sixth point of time T6 is a point at which the difference between the inflow temperature t in of the first fluid discharged from the heat pump 20 and the discharge temperature t out after the heat pump 20 is turned off Is less than the set second set temperature? T 2 .
  • the second set temperature? T 2 is about 5 degrees, for example, will be described.
  • the sixth time point T6 indicates a time point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 becomes higher than a predetermined temperature. Also, the sixth time point T6 is a time point at which the amount of heat produced is rapidly reduced and then gradually decreases.
  • the production heat quantity Q is recognized until the difference between the temperature t in and the discharge temperature t out is the second set temperature t 2 .
  • the calorific value is measured and integrated from the fifth time point T5, and the accumulation of the calorific value is stopped at the sixth time point T6.
  • Equation (1) The formula for obtaining the calorific value Qreal during the measurement time? Treal is shown in Equation (1).
  • m is the flow rate measured by the first flow meter 23, and? T represents the difference between the inflow temperature t in of the first fluid and the discharge temperature t out .
  • the amount of heat produced by the underground heat exchanger 10 can also be known by calculating the calorific value Qreal.
  • the calorific value Qreal is calculated for the measurement time DELTA Treal from the fifth time point T5 to the sixth time point T6 Since the measurement is integrated, it is possible to measure the calorific value more accurately.
  • the method of obtaining the efficiency (?) Of the heat pump system is as follows.
  • the consumed power P is calculated from the time T1 when the pump 30 is turned on to the time T4 when the pump 30 is turned off.
  • the power (P) includes power consumed in driving the pump (30) and the heat pump (20).
  • the efficiency (?) Of the heat pump system can be determined by dividing the heat quantity Qreal calculated above by the power (P).
  • Equation (2) represents the efficiency (?) Of the heat pump system.
  • the control unit (not shown) turns on the pump 30.
  • the heat pump 20 is turned on after a predetermined first set time Tl. That is, the control unit does not turn on the pump 30 and the heat pump 20 at the same time.
  • the indoor heat exchanger (not shown) serves as a condenser
  • the outdoor heat exchanger (not shown) serves as an evaporator
  • the first fluid introduced into the heat pump 20 through the inflow channel 21 is heated through heat exchange in the heat pump 20 and then flows through the discharge channel 22 to the heat consumer 40. [ . Therefore, heat can be provided to the heat consumer 40.
  • the brine flowing into the heat pump 20 through the second flow path 11 is cooled by heat exchange in the heat pump 20 and then discharged to the underground heat exchanger 10.
  • the brine absorbs heat from the ground.
  • the control unit turns off the heat pump 20.
  • the pump 20 is turned off after a predetermined second set time? T2 after the heat pump 20 is turned off. That is, the control unit does not turn off the heat pump 20 and the pump 30 at the same time. Since the first fluid remains on the inflow passage 21 and the discharge passage 22 even after the heat pump 20 is turned off, the second set time? T2 is set so as to extract the remaining first fluid, The pump 30 must be operated further.
  • FIG. 4 is a graph showing the temperature change of the first fluid according to the heating operation time of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
  • the first set time? T1 is 2 to 3 minutes, for example.
  • the inflow temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first set time Tl after the pump 30 is turned on, The discharge temperature t out of the first fluid gradually increases.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 from the time point T2 when the heat pump 20 is turned on to the time point T3 when the heat pump 20 is turned off is increased to a predetermined temperature, Keep the temperature.
  • the time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second set time? T2.
  • the second set time? T2 is, for example, 2 to 3 minutes.
  • the first and second set times may be preset by experiment or the like.
  • the discharge temperature t out of the first fluid discharged from the heat pump 20 decreases gradually during the second set time T 2 after the heat pump 20 is turned off, (t in ), and the inflow temperature (t in ) of the first fluid is kept substantially constant.
  • FIG. 5 is a graph showing a change in the calorific value of the heat pump system using the geothermal heat according to the first embodiment of the present invention with time during the heating operation.
  • the heat produced Q of the heat pump 20 gradually increases but is lower than 0 during the first set time Tl after the pump 30 is turned on. That is, since the heat pump 20 is not driven during the first set time Tl, the calorific value Q is a negative value.
  • the heat pump 20 When the heat pump 20 is driven with the lapse of the first set time Tl, the first fluid is heat-exchanged in the heat pump 20 so that the discharge temperature t out of the first fluid gradually increases . Therefore, it can be seen that the calorific value Q is increased above a predetermined value.
  • the heat produced Q of the heat pump 20 gradually decreases and then maintains a constant value. Since the heat pump 20 is not driven but the pump 30 is driven during the second set time T2, the calorific value Q decreases gradually.
  • a method of calculating the heat produced by the heat pump 20 during the heating operation of the heat pump 20 is as follows.
  • the measurement time DELTA Treal of the calorific value Qreal is set from the fifth time point T5 to the sixth time point T6 as in the cooling operation mode.
  • the fifth point of time T5 is a point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 after the pump 30 is turned on is lower than the initial discharge temperature t 0 of the first fluid. and than the first predetermined temperature ( ⁇ t 1) it differs by more than a preset time point I, and the third time (T3) is a time for turning off the heat pump (20).
  • the fifth time point T5 represents a time point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 becomes higher than a predetermined temperature.
  • the fifth time point T5 is also a time point at which the amount of heat produced starts to gradually increase.
  • the discharge temperature of the first fluid Even before turning on the heat pump 20 it becomes higher gradually is the first (t out), the discharge temperature of the first fluid, the production of heat due to increase in amount, but, in the said first (t out), the discharge temperature of the first fluid desired From the fifth time point (T5), which is a time point at which the temperature of the fuel cell becomes higher than the predetermined temperature.
  • the sixth point of time T6 is a point at which the difference between the inflow temperature t in of the first fluid discharged from the heat pump 20 and the discharge temperature t out after the heat pump 20 is turned off Is less than the set second set temperature? T 2 .
  • the sixth time point T6 during the heating operation indicates a time point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 becomes lower than a predetermined temperature. Also, the sixth time point T6 is a time point at which the amount of heat produced is rapidly reduced and then gradually decreases.
  • the discharge temperature t out of the first fluid decreases gradually after the heat pump 20 is turned off and the produced heat amount Q also decreases but has a predetermined value or more.
  • the production heat quantity Q is recognized until the difference between the temperature t in and the discharge temperature t out is the second set temperature t 2 .
  • the second set temperature? T 2 is about 5 degrees, for example, will be described.
  • the calorific value of the produced product Q is measured more accurately by starting the accumulation of the calorific value from the fifth time point T5 and stopping the accumulation of the calorific value at the sixth time point T6 can do.
  • Equation (1) The formula for obtaining the calorific value Qreal during the measurement time? Treal is shown in Equation (1).
  • T is a value obtained by subtracting the inflowing temperature (t in ) from the discharge temperature (t out ) of the first fluid.
  • the method for obtaining the efficiency? Of the heat pump system during the heating operation is the same as that during the cooling operation.
  • the consumed power P is calculated from the time T1 when the pump 30 is turned on to the time T4 when the pump 30 is turned off.
  • the power (P) includes power consumed in driving the pump (30) and the heat pump (20).
  • the efficiency (?) Of the heat pump system can be known by dividing the heat quantity Qreal calculated above by the power (P).
  • FIG. 6 is a schematic configuration diagram of a heat pump system using geothermal heat according to a second embodiment of the present invention.
  • a heat pump system using geothermal heat includes a heat pump 20 for supplying a part of the first fluid before being introduced into the heat pump 20 to the discharge side of the heat pump 20
  • the bypass passage 60 for passing the air, and the three-way valve 61 are different from those of the first embodiment, and the rest of the configuration and operation are similar to each other, so that different configurations will be described in detail.
  • the bypass passage 60 is branched from the inflow passage 21 and connected to the discharge passage 22.
  • the three-way valve (61) is installed at a point where the bypass flow path (60) branches from the inflow path (21).
  • control unit compares the inflow temperature of the first fluid before entering the heat pump 20 with a predetermined minimum set temperature.
  • Way valve (61) opens the bypass flow path (60) when the inflow temperature of the first fluid is less than the minimum set temperature. And a part of the first fluid flows into the bypass flow path (60).
  • the first fluid flowing into the bypass passage 60 is not cooled by the heat pump 20 so that the temperature of the first fluid on the discharge passage 22 is increased.
  • the control unit blocks the bypass flow channel 60 again.
  • the temperature of the first fluid before entering the heat pump 20 can be maintained at the lowest set temperature or higher, so that the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 can be improved. That is, if the temperature of the first fluid before entering the heat pump 20 is lower than the lowest set temperature, the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 is lowered.
  • control unit compares the inflow temperature of the first fluid before entering the heat pump 20 with a preset maximum set temperature.
  • the first fluid flowing into the bypass passage 60 is not heated by the heat pump 20 and the temperature of the first fluid on the discharge passage 22 is lowered.
  • the control unit again shields the bypass flow channel 60.
  • the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 can be improved. That is, when the temperature of the first fluid before entering the heat pump 20 is higher than the highest set temperature, the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention can calculate the quantity of heat production of a system using geothermal heat more rapidly and accurately by, during heating operation, calculating and adding up the quantities of heat production of a heat pump from the time when the discharge temperature of a first fluid discharged from the heat pump increases to be a predetermined temperature or higher after turning on the pump. Also, the present invention can calculate a more accurate quantity of heat production by considering even the quantity of heat production after turning off the heat pump, by stopping the addition of the quantities of heat production by considering a difference between the introduction temperature of the first fluid introduced into the heat pump and the discharge temperature of the first fluid discharged from the heat pump after turning off the heat pump.

Description

지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법Calculation of heat production and efficiency of heat pump system using geothermal heat
본 발명은 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법에 관한 것으로서, 보다 상세하게는 생산 열량과 효율을 보다 정확하게 계산할 수 있는 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법에 관한 것이다.More particularly, the present invention relates to a method of calculating a calorific value and efficiency of a heat pump system using geothermal heat that can more accurately calculate a calorific value and efficiency of a heat pump system using geothermal heat. .
일반적으로 히트 펌프는 대기중에서 열을 얻거나 배출하는 공기열원방식, 냉각탑을 통해 열을 배출하는 수열원방식, 지중에서 열을 얻거나 지중으로 열을 배출하는 지열원 방식 등이 있다.Generally, a heat pump is an air heat source system that obtains or discharges heat in the atmosphere, a hydrothermal source system that discharges heat through a cooling tower, and a geothermal system that obtains heat from the ground or discharges heat to the ground.
지중의 온도는 일정 깊이 이상의 경우 거의 일정하게 유지될 수 있으므로, 지열원 방식의 경우, 공기열원방식에 비해 에너지 효율이 높은 이점이 있다. 여름철 냉방의 경우, 공기열원 방식은 대기중의 온도가 30℃이상으로 매우 높은 상태이기 때문에 냉방열을 배출하기 위해 많은 전력이 소모되나, 지열원 방식은 지중의 온도가 10 내지 20℃로서 대기 중의 온도보다 매우 낮기 때문에 냉방열을 배출하는 것이 용이하여 효율이 높다. 겨울철 난방의 경우, 공기열원 방식은 대기중의 온도가 매우 낮기 때문에 난방에 필요한 열을 공급하기 어려운 반면, 지열원 방식은 지중의 온도가 10 내지 20℃로서 대기 중의 온도보다 높기 때문에 안정적으로 난방열을 히트펌프에 공급할 수 있다.Since the ground temperature can be maintained almost constant when the depth of the ground is above a certain depth, the geothermal circulation system has an advantage of energy efficiency higher than the air heat source system. In the case of summer cooling, a large amount of electric power is consumed in order to discharge the cooling heat because the air temperature is very high at 30 ° C or more in the air. However, in the geothermal circulation system, the temperature of the ground is 10 to 20 ° C It is much lower than the temperature, so it is easy to discharge the cooling heat, so the efficiency is high. In case of winter heating, it is difficult to supply the heat required for heating because the air temperature is very low in the air. However, since the temperature of the ground is 10 to 20 ℃ higher than the atmospheric temperature, Can be supplied to the heat pump.
한편, 지열을 이용하는 히트펌프의 경우, 지열을 보다 효율적으로 이용하기 위해서는 냉,난방시 사용되는 지열 에너지를 보다 정확하게 측정하는 것이 필요하다. On the other hand, in the case of a heat pump using geothermal heat, it is necessary to more accurately measure the geothermal energy used for cooling and heating in order to use geothermal heat more efficiently.
본 발명의 목적은, 생산 열량과 효율을 보다 정확하게 계산할 수 있는 지열을 이용하는 히트펌프 시스템의 생산 열량과 효율의 계산 방법을 제공하는 데 있다.It is an object of the present invention to provide a method of calculating the heat quantity and efficiency of a heat pump system using geothermal heat that can more accurately calculate the calorific value and the efficiency of production.
본 발명에 따른 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법은, 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 제1유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서, 상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와; 상기 펌프를 온시킨 이후 상기 히트펌프로부터 토출되는 제1유체의 토출온도가 상기 제1유체의 초기 토출온도보다 미리 설정된 제1설정온도 이상 차이가 나면, 상기 히트펌프로 유입되는 상기 제1유체의 유입온도, 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산을 시작하는 단계와; 상기 히트펌프를 오프시킨 후 상기 제1유체의 유입온도와 상기 제1유체의 토출온도의 차가 미리 설정된 제2설정온도 미만이면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계를 포함한다.A method of calculating a heat quantity and efficiency of a heat pump system using geothermal heat according to the present invention includes a heat pump provided with a heat source from an underground heat exchanger and providing a heat source as a heat demand source, 1. A heat pump system using geothermal heat comprising a pump for pumping a first fluid, the method comprising: turning on the heat pump after a first set time after turning on the pump; When the discharge temperature of the first fluid discharged from the heat pump becomes equal to or greater than a first preset temperature which is higher than an initial discharge temperature of the first fluid after the pump is turned on, Measuring an inlet temperature, a discharge temperature of the first fluid, and a flow rate of the first fluid to calculate a production heat quantity of the heat pump in real time and start integration; And stopping the accumulation of the heat produced by the heat pump when the difference between the inflow temperature of the first fluid and the discharge temperature of the first fluid after the heat pump is turned off is less than a preset second set temperature.
본 발명은, 펌프를 온시킨 이후 히트펌프를 온시키기 이전의 소정의 시점부터 상기 히트펌프를 오프시킨 후 소정의 시점까지, 히트펌프의 생산 열량을 계산하여 적산함으로써, 보다 신속하면서도 정확하게 지열을 이용하는 시스템의 생산 열량을 계산할 수 있다. According to the present invention, the heat generated by the heat pump is accumulated and accumulated until a predetermined time after the heat pump is turned off from a predetermined time before the heat pump is turned on after the pump is turned on. The calorie production of the system can be calculated.
또한, 본 발명은, 냉방 운전시 펌프를 온시킨 이후 상기 히트펌프로부터 토출되는 제1유체의 토출온도가 소정의 온도 이하로 낮아지는 시점부터 히트 펌프의 생산 열량을 계산하여 적산함으로써, 보다 신속하면서도 정확하게 지열을 이용하는 시스템의 생산 열량을 계산할 수 있다. Further, the present invention calculates and accumulates the heat produced by the heat pump from the time when the discharge temperature of the first fluid discharged from the heat pump is lowered to a predetermined temperature or lower after the pump is turned on during the cooling operation, It is possible to calculate the calorific value of a system using geothermal energy accurately.
또한, 본 발명은, 난방 운전시는 펌프를 온시킨 이후 상기 히트펌프로부터 토출되는 제1유체의 토출온도가 소정의 온도 이상으로 상승하는 시점부터 히트 펌프의 생산 열량을 계산하여 적산함으로써, 보다 신속하면서도 정확하게 지열을 이용하는 시스템의 생산 열량을 계산할 수 있다. Further, in the heating operation, in the heating operation, the heat produced by the heat pump is calculated and integrated from the time when the discharge temperature of the first fluid discharged from the heat pump rises above the predetermined temperature after the pump is turned on, But it is possible to calculate the calorific value of the system using geothermal energy accurately.
또한, 본 발명은, 히트펌프를 오프시킨 후 상기 히트펌프로 유입되는 제1유체의 유입온도와 상기 히트펌프로부터 토출되는 제1유체의 토출온도의 차이를 고려하여 생산 열량의 적산을 중지함으로써, 상기 히트펌프를 오프시킨 후 생산 열량까지 고려하여 보다 정확한 생산 열량을 계산할 수 있다. Further, according to the present invention, by stopping the accumulation of the calorific value in consideration of the difference between the inflow temperature of the first fluid flowing into the heat pump and the discharge temperature of the first fluid discharged from the heat pump after turning off the heat pump, It is possible to calculate a more accurate calorific value by taking into account the calorific value after turning off the heat pump.
또한, 본 발명은, 히트펌프로 유입되는 제1유체의 온도에 따라 제1유체 중 일부를 히트펌프를 바이패스시킴으로써, 제1유체의 유입온도를 일정하게 유지하면서 생산 열량을 측정할 수 있으므로, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다. In the present invention, by bypassing a part of the first fluid by the heat pump according to the temperature of the first fluid flowing into the heat pump, the calorific value of the produced fluid can be measured while the inflow temperature of the first fluid is kept constant, There is an advantage that the calorific value can be calculated more accurately and more quickly.
도 1은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.FIG. 1 is a schematic configuration diagram of a heat pump system using geothermal heat according to a first embodiment of the present invention.
도 2는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다. FIG. 2 is a graph illustrating a temperature change of a first fluid according to time during a cooling operation of a heat pump system using geothermal heat according to the first embodiment of the present invention. FIG.
도 3은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다. FIG. 3 is a graph showing a change in the calorific value with time during the cooling operation of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
도 4는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다. FIG. 4 is a graph showing the temperature change of the first fluid according to the heating operation time of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
도 5는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다. FIG. 5 is a graph showing a change in the calorific value of the heat pump system using the geothermal heat according to the first embodiment of the present invention with time during the heating operation.
도 6은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.6 is a schematic configuration diagram of a heat pump system using geothermal heat according to a second embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.FIG. 1 is a schematic configuration diagram of a heat pump system using geothermal heat according to a first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템은, 지중 열교환기(10)로부터 열원을 제공받고 열수요처(40)로 열원을 제공하는 히트펌프(20)와, 상기 히트펌프(20)와 상기 열수요처(40)를 순환하는 제1유체를 펌핑하는 펌프(30)를 포함한다.Referring to FIG. 1, the heat pump system using geothermal heat according to the first embodiment of the present invention includes a heat pump 20 provided with a heat source from an underground heat exchanger 10 and providing a heat source to a heat demander 40, And a pump 30 for pumping the first fluid circulating the heat pump 20 and the heat consumer 40.
상기 지중 열교환기(10)는, 지중에 매설된 열교환기다. 상기 지중 열교환기(10)와 상기 히트펌프(20)는 제2유체가 순환하는 제2유로(11)로 연결된다. 이하, 본 실시예에서는, 상기 제2유체는 브라인인 것으로 예를 들어 설명한다. The underground heat exchanger (10) is a heat exchange buried in the ground. The underground heat exchanger (10) and the heat pump (20) are connected to a second flow path (11) through which the second fluid circulates. Hereinafter, in the present embodiment, the second fluid is brine for example.
상기 제2유로(11)에는 상기 브라인의 유량을 측정하는 제2유량계(12)가 설치될 수 있다. A second flow meter (12) for measuring the flow rate of the brine may be installed in the second flow path (11).
상기 히트펌프(20)는, 상기 지중 열교환기(10)로부터 열원을 제공받고 상기 열수요처(40)로 열원을 제공한다. The heat pump 20 receives a heat source from the underground heat exchanger 10 and provides a heat source to the heat demander 40.
상기 히트펌프(20)는, 압축기(미도시), 실내 열교환기(미도시), 실외 열교환기(미도시) 및 팽창장치(미도시)로 구성되어, 제3유체가 상기 압축기, 실내 열교환기, 실외 열교환기 및 팽창장치를 차례로 순환한다. 상기 제3유체는 상기 제1유체와 다른 냉매인 것으로 예를 들어 설명한다. The heat pump 20 is composed of a compressor (not shown), an indoor heat exchanger (not shown), an outdoor heat exchanger (not shown) and an expansion device (not shown) , The outdoor heat exchanger, and the expansion device. And the third fluid is a refrigerant different from the first fluid.
상기 히트펌프(20)의 일측과 상기 지중 열교환기(10)는 상기 제2유로(11)로 연결된다. 여기서, 상기 히트펌프(20)의 일측은 상기 실외 열교환기(미도시)에 해당한다. One side of the heat pump (20) and the underground heat exchanger (10) are connected to the second flow path (11). One side of the heat pump 20 corresponds to the outdoor heat exchanger (not shown).
상기 히트펌프(20)의 타측과 상기 열수요처(40)는 상기 제1유로(21)(22)로 연결된다. 여기서, 상기 히트펌프(20)의 타측은 상기 실내 열교환기(미도시)에 해당한다. The other side of the heat pump 20 and the heat consumer 40 are connected to the first flow paths 21 and 22. Here, the other side of the heat pump 20 corresponds to the indoor heat exchanger (not shown).
상기 제1유로(21)(22)는, 상기 열수요처(40)로부터 나온 상기 제1유체를 상기 히트펌프(20)로 유입되도록 형성된 유입유로(21)와, 상기 히트펌프(20)에서 열교환된 제1유체를 토출하도록 형성된 토출유로(22)를 포함한다.The first flow paths 21 and 22 include an inlet flow path 21 formed to flow the first fluid from the heat consumer 40 to the heat pump 20, And a discharge passage 22 formed to discharge the first fluid.
상기 유입유로(21)에는 상기 히트펌프(20)로 유입되는 제1유체의 유량을 측정하는 제1유량계(23)가 설치된다. 상기 유입유로(21)에는 상기 히트펌프(20)로 유입되는 제1유체의 온도를 측정하는 유입 온도센서(51)가 설치된다. The inflow channel 21 is provided with a first flow meter 23 for measuring the flow rate of the first fluid flowing into the heat pump 20. The inflow channel 21 is provided with an inflow temperature sensor 51 for measuring the temperature of the first fluid flowing into the heat pump 20.
상기 토출유로(22)에는 상기 히트펌프(20)에서 토출되는 제1유체를 펌핑하는 상기 펌프(30)가 설치된다. 상기 토출유로(22)에는 상기 히트펌프(20)에서 토출되는 제1유체의 온도를 측정하는 토출 온도센서(52)가 설치된다. The pump (30) for pumping the first fluid discharged from the heat pump (20) is installed in the discharge passage (22). The discharge passage 22 is provided with a discharge temperature sensor 52 for measuring the temperature of the first fluid discharged from the heat pump 20.
상기와 같이 구성된 본 발명에 따른 지열을 이용한 히트펌프시스템의 작동을 설명하면 다음과 같다.The operation of the heat pump system using the geothermal heat pump according to the present invention will now be described.
먼저, 상기 히트펌프(20)의 냉방 운전시에 대해 설명한다.First, the cooling operation of the heat pump 20 will be described.
사용자의 조작에 의해 냉방 운전모드가 선택되면, 제어부(미도시)는 상기 펌프(30)를 온시킨다. When the cooling operation mode is selected by the user's operation, the control unit (not shown) turns on the pump 30.
상기 펌프(30)를 온시킨 후 미리 설정된 제1설정시간(ΔT1)이 지나면, 상기 히트펌프(20)를 온시킨다. 즉, 상기 제어부는, 상기 펌프(30)와 상기 히트펌프(20)를 동시에 온시키지 않는다.After the pump 30 is turned on, the heat pump 20 is turned on after a predetermined first set time Tl. That is, the control unit does not turn on the pump 30 and the heat pump 20 at the same time.
상기 히트펌프(20)의 냉방 운전시, 상기 실내 열교환기(미도시)는 증발기 역할을 수행하고, 상기 실외 열교환기(미도시)는 응축기 역할을 하게 된다.During the cooling operation of the heat pump 20, the indoor heat exchanger (not shown) functions as an evaporator, and the outdoor heat exchanger (not shown) functions as a condenser.
상기 유입유로(21)를 통해 상기 히트펌프(20)로 유입된 제1유체는, 상기 히트펌프(20)에서 열교환을 통해 냉각된 후, 상기 토출유로(22)를 통해 상기 열수요처(40)로 토출된다. 따라서, 상기 열수요처(40)에 냉기를 제공할 수 있다. The first fluid introduced into the heat pump 20 through the inflow channel 21 is cooled through heat exchange in the heat pump 20 and then flows through the discharge channel 22 to the heat consumer 40. [ . Accordingly, it is possible to provide cool air to the heat consumer 40. [
상기 제2유로(11)를 통해 상기 히트펌프(20)로 유입된 브라인은, 상기 히트펌프(20)에서 열교환을 통해 가열된 후, 상기 지중 열교환기(10)로 토출된다. The brine flowing into the heat pump 20 through the second flow path 11 is heated by heat exchange in the heat pump 20 and then discharged to the underground heat exchanger 10.
상기 지중 열교환기(10)에서는 상기 브라인이 지중으로 열을 방출하게 된다. In the underground heat exchanger (10), the brine releases heat to the ground.
이후, 사용자의 조작에 의해 냉방 운전모드의 중지가 선택되면, 상기 제어부는 상기 히트펌프(20)를 오프시킨다.Thereafter, when the stop of the cooling operation mode is selected by the user's operation, the control unit turns off the heat pump 20.
상기 히트펌프(20)를 오프시킨 후 미리 설정된 제2설정시간(ΔT2)이 지나면, 상기 펌프(20)를 오프시킨다. 즉, 상기 제어부는, 상기 히트펌프(20)와 상기 펌프(30)를 동시에 오프시키지 않는다. 상기 히트펌프(20)를 오프시킨 후에도 상기 유입유로(21)나 상기 토출유로(22)상에 제1유체가 남아있기 때문에, 잔류된 제1유체를 모두 빼내기 위해서 상기 제2설정시간(ΔT2) 동안 상기 펌프(30)를 더 작동시켜야 한다. 상기 유입유로(21)나 상기 토출유로(22)상에 상기 제1유체가 남게 되면, 추후 상기 제1유체가 얼게 되어 유로나 상기 히트펌프(20)의 손상이 발생할 수 있다.The pump 20 is turned off after a predetermined second set time? T2 after the heat pump 20 is turned off. That is, the control unit does not turn off the heat pump 20 and the pump 30 at the same time. Since the first fluid remains on the inflow passage 21 and the discharge passage 22 even after the heat pump 20 is turned off, the second set time? T2 is set so as to extract the remaining first fluid, The pump 30 must be operated further. If the first fluid remains on the inlet flow path 21 and the discharge flow path 22, the first fluid may be frozen in the future, and the flow path or the heat pump 20 may be damaged.
도 2는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다. FIG. 2 is a graph illustrating a temperature change of a first fluid according to time during a cooling operation of a heat pump system using geothermal heat according to the first embodiment of the present invention. FIG.
도 2를 참조하면, 상기 펌프(30)가 온되는 시점(T1)과 상기 히트펌프(20)가 온되는 시점(T2)은 상기 제1설정시간(ΔT1)만큼 시간차가 있다. 상기 제1설정시간(ΔT1)은 2분 내지 3분인 것으로 예를 들어 설명한다.Referring to FIG. 2, there is a time difference between the time T1 when the pump 30 is turned on and the time T2 when the heat pump 20 is turned on by the first set time? T1. The first set time? T1 is 2 to 3 minutes, for example.
상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)로 유입되는 제1유체의 유입온도(tin)는 거의 일정하나, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 서서히 감소하는 것을 알 수 있다. The inflow temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first set time Tl after the pump 30 is turned on, The discharge temperature t out of the first fluid decreases gradually.
도 2에서 t0는 상기 히트펌프(20)에서 토출되는 제1유체의 초기 토출온도를 나타낸다.In FIG. 2, t 0 represents the initial discharge temperature of the first fluid discharged from the heat pump 20.
이후, 상기 히트펌프(20)가 온되는 시점(T2)부터 오프되는 시점(T3)까지 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 소정의 온도까지 감소한 후 일정한 온도를 유지한다.Thereafter, the discharge temperature t out of the first fluid discharged from the heat pump 20 is decreased to a predetermined temperature from a time T2 when the heat pump 20 is turned on to a time T3 when the heat pump 20 is turned off, Keep the temperature.
또한, 상기 히트펌프(20)가 오프되는 시점(T3)과 상기 펌프(30)가 오프되는 시점(T4)은 상기 제2설정시간(ΔT2)만큼 시간차가 있다. 상기 제2설정시간(ΔT2)은 2분 내지 3분인 것으로 예를 들어 설명한다. 상기 제1,2설정시간은 실험 등에 의해 미리 설정될 수 있다. The time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second set time? T2. The second set time? T2 is, for example, 2 to 3 minutes. The first and second set times may be preset by experiment or the like.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 점차 증가하다가 상기 제1유체의 유입온도(tin)와 비슷한 상태를 유지하고, 상기 제1유체의 유입온도(tin)는 거의 일정한 상태를 유지한다. The discharge temperature t out of the first fluid discharged from the heat pump 20 increases gradually during the second set time T 2 after the heat pump 20 is turned off, (t in ), and the inflow temperature (t in ) of the first fluid is kept substantially constant.
도 3은 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 냉방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다. FIG. 3 is a graph showing a change in the calorific value with time during the cooling operation of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
도 3을 참조하면, 상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 서서히 증가하나 0보다 낮은 값인 것을 알 수 있다. 즉, 상기 제1설정시간(ΔT1) 동안은 상기 히트펌프(20)가 구동되지 않기 때문에, 상기 생산 열량(Q)은 마이너스 값이다. 도 3에서 Q0은 상기 펌프(30)를 온시킨 시점의 열량을 나타내고, Q1은 상기 히트펌프(20)를 온시킨 시점의 열량을 나타낸다. Referring to FIG. 3, it can be seen that the heat produced Q of the heat pump 20 gradually increases but is lower than zero during the first set time Tl after the pump 30 is turned on. That is, since the heat pump 20 is not driven during the first set time Tl, the calorific value Q is a negative value. 3, Q 0 represents the amount of heat at the time when the pump 30 is turned on, and Q 1 represents the amount of heat at the time when the heat pump 20 is turned on.
상기 제1설정시간(ΔT1)이 경과하여 상기 히트펌프(20)가 구동되면, 상기 히트펌프(20)에서 상기 제1유체가 열교환되어 냉각되므로 상기 제1유체의 토출온도(tout)가 낮아진다. 따라서, 상기 생산 열량(Q)은 일정값 이상으로 상승하는 것을 알 수 있다.When the heat pump 20 is driven by the lapse of the first set time Tl, the first fluid is heat-exchanged in the heat pump 20 to be cooled, so that the discharge temperature t out of the first fluid is lowered . Therefore, it can be seen that the calorific value Q rises above a certain value.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 점차 감소하다가 일정값을 유지한다. 상기 제2설정시간(ΔT2) 동안은 상기 히트펌프(20)가 구동되지 않으나 상기 펌프(30)는 구동되는 상태이기 때문에, 상기 생산 열량(Q)은 점차 감소한다. During the second set time T2 after the heat pump 20 is turned off, the heat produced Q of the heat pump 20 gradually decreases and then maintains a constant value. Since the heat pump 20 is not driven but the pump 30 is driven during the second set time T2, the calorific value Q decreases gradually.
상기 제2설정시간(ΔT2)이 경과하여 상기 펌프(30)까지 오프되면, 상기 생산 열량(Q)은 0이 된다. When the second set time? T2 elapses and the pump 30 is turned off, the calorific value Q becomes zero.
한편, 상기 히트펌프(20)의 냉방 운전시, 상기 히트펌프(20)의 생산 열량을 계산하는 방법은 다음과 같다.Meanwhile, a method of calculating the calorific value of the heat pump 20 during the cooling operation of the heat pump 20 is as follows.
냉방 운전시, 상기 생산 열량(Qreal)의 측정시간(ΔTreal)은, 제5시점(T5)부터 제6시점(T6)까지로 설정된다. During the cooling operation, the measurement time? Treal of the calorific value Qreal is set from the fifth time point T5 to the sixth time point T6.
상기 제5시점(T5)은, 상기 펌프(30)를 온시킨 이후 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)가 상기 제1유체의 초기 토출온도(t0)보다 미리 설정된 제1설정온도(Δt1) 이상 차이가 나는 시점이다.The fifth point of time T5 is a point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 after the pump 30 is turned on is lower than the initial discharge temperature t 0 of the first fluid. Is equal to or greater than a predetermined first set temperature? T 1 .
여기서, 상기 제1유체의 토출온도(tout)는 상기 토출온도센서(52)에서 실시간으로 측정되는 온도이다. 상기 제1유체의 초기 토출온도(t0)는, 상기 펌프(30)를 온시킨 이후 상기 토출온도센서(52)에서 최초로 측정된 초기 토출온도이다. Here, the discharge temperature t out of the first fluid is a temperature measured in real time by the discharge temperature sensor 52. The initial discharge temperature t 0 of the first fluid is an initial discharge temperature initially measured by the discharge temperature sensor 52 after the pump 30 is turned on.
냉방운전시 상기 제5시점(T5)은, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)가 소정의 온도 이하로 낮아지는 시점을 나타낸다. 상기 제5시점(T5)은, 상기 생산 열량이 서서히 증가하기 시작하는 시점이기도 하다. During the cooling operation, the fifth time point (T5) represents a time point at which the discharge temperature ( tout ) of the first fluid discharged from the heat pump (20) drops below a predetermined temperature. The fifth time point T5 is also a time point at which the amount of heat produced starts to gradually increase.
상기 히트펌프(20)를 온시키기 이전에도 상기 제1유체의 토출온도(tout)는 서서히 감소하며, 상기 생산열량도 소량이지만 증가하기 때문에, 상기 제1유체의 토출온도(tout)가 소정의 온도 이하로 낮아지는 시점인 상기 제5시점(T5)부터 상기 생산 열량의 계산과 적산을 시작한다. Even before turning on the heat pump unit 20 gradually decreases the first (t out), the discharge temperature of the first fluid, and the production amount of heat is also specified that since the increase in amount, but the first (t out), the discharge temperature of the first fluid (T5), which is a time point at which the temperature of the exhaust gas is lowered to a temperature lower than the temperature of the exhaust gas.
상기 제6시점(T6)은, 상기 히트펌프(20)를 오프시킨 이후 상기 히트펌프(20)에서 토출되는 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 제2설정온도(Δt2) 미만이 되는 시점이다. 여기서, 상기 제2설정온도(Δt2)는 약 5도인 것으로 예를 들어 설명한다. The sixth point of time T6 is a point at which the difference between the inflow temperature t in of the first fluid discharged from the heat pump 20 and the discharge temperature t out after the heat pump 20 is turned off Is less than the set second set temperature? T 2 . Here, the second set temperature? T 2 is about 5 degrees, for example, will be described.
냉방운전시 상기 제6시점(T6)은, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)가 소정의 온도 이상으로 높아지는 시점을 나타낸다. 또한, 상기 제6시점(T6)은, 상기 생산 열량이 급격히 감소하다가 서서히 감소하기 시작하는 시점이기도 하다. During the cooling operation, the sixth time point T6 indicates a time point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 becomes higher than a predetermined temperature. Also, the sixth time point T6 is a time point at which the amount of heat produced is rapidly reduced and then gradually decreases.
상기 히트펌프(20)를 오프시킨 이후에 상기 제1유체의 토출온도(tout)는 점차 감소하며, 상기 생산 열량(Q)도 감소하나 소정의 값 이상을 갖기 때문에, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 제2설정온도(Δt2)일 때까지는 상기 생산 열량(Q)을 인정한다.Since the discharge temperature t out of the first fluid decreases gradually after the heat pump 20 is turned off and the produced heat amount Q also decreases but has a predetermined value or more, The production heat quantity Q is recognized until the difference between the temperature t in and the discharge temperature t out is the second set temperature t 2 .
즉, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 제2설정온도(Δt2)미만이면, 생산열량의 적산을 중지한다. That is, if the difference between the inflow temperature t in of the first fluid and the discharge temperature t out is less than the preset second set temperature? T 2 , the accumulation of the calorific heat is stopped.
한편, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 제2설정온도(Δt2)미만이면, 상기 생산 열량(Q)이 매우 작다고 판단하여 무시할 수 있다.On the other hand, if the difference between the inflow temperature t in of the first fluid and the discharge temperature t out is less than the second set temperature? T 2 , it is determined that the calorific value Q is very small and can be ignored.
따라서, 본 발명에서는 상기 제5시점(T5)부터 상기 생산 열량을 측정하여 적산하고, 상기 제6시점(T6)에 상기 생산 열량의 적산을 중지한다. Accordingly, in the present invention, the calorific value is measured and integrated from the fifth time point T5, and the accumulation of the calorific value is stopped at the sixth time point T6.
상기 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 구하는 식은 수학식 1과 같다. 수학식 1에서 m은 상기 제1유량계(23)에서 측정한 유량이고, Δt는 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이를 나타낸다. The formula for obtaining the calorific value Qreal during the measurement time? Treal is shown in Equation (1). In the equation (1), m is the flow rate measured by the first flow meter 23, and? T represents the difference between the inflow temperature t in of the first fluid and the discharge temperature t out .
<수학식 1>&Quot; (1) &quot;
Qreal = m*Cp*ΔtQreal = m * Cp *? T
상기 생산열량(Qreal)을 계산하면, 상기 지중 열교환기(10)의 생산 열량도 알 수 있다. The amount of heat produced by the underground heat exchanger 10 can also be known by calculating the calorific value Qreal.
상기와 같이, 본 실시예에서는, 상기 펌프(30)의 작동시간과 상관없이 상기 제5시점(T5)부터 상기 제6시점(T6)까지의 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 측정하여 적산하기 때문에, 보다 정확한 생산 열량을 측정할 수 있다. As described above, in the present embodiment, regardless of the operation time of the pump 30, the calorific value Qreal is calculated for the measurement time DELTA Treal from the fifth time point T5 to the sixth time point T6 Since the measurement is integrated, it is possible to measure the calorific value more accurately.
상기 제1설정시간(ΔT1)이나 상기 제2설정시간(ΔT2)을 모두 고려하기에는 실제 열교환에 따른 생산 열량에 영향이 매우 작기 때문에, 상기 제1유체의 토출온도(tout)를 고려하여 일부 구간의 생산 열량만을 인정할 수 있다. 따라서, 보다 신속하고 정확하게 생산 열량을 측정할 수 있다. Some consider the first set period of time (ΔT1) and the second set because all of the time (ΔT2) considered hagieneun a very small impact on the production of heat in accordance with the actual heat exchanger, the discharge temperature of the first fluid (t out) section Can only be recognized. Therefore, it is possible to measure the calorific value of production more quickly and accurately.
또한, 상기 히트펌프 시스템의 효율(η)을 구하는 방법은 다음과 같다.The method of obtaining the efficiency (?) Of the heat pump system is as follows.
상기 펌프(30)를 온시킨 시점(T1)부터 상기 펌프(30)를 오프시키는 시점(T4)까지 소모된 동력(P)을 계산한다. 상기 동력(P)은, 상기 펌프(30)와 상기 히트펌프(20)를 구동하는데 소모된 동력을 포함한다. The consumed power P is calculated from the time T1 when the pump 30 is turned on to the time T4 when the pump 30 is turned off. The power (P) includes power consumed in driving the pump (30) and the heat pump (20).
상기에서 계산된 생산 열량(Qreal)을 상기 동력(P)으로 나누면, 상기 히트펌프 시스템의 효율(η)을 알 수 있다.The efficiency (?) Of the heat pump system can be determined by dividing the heat quantity Qreal calculated above by the power (P).
수학식 2는 상기 히트펌프 시스템의 효율(η)을 나타낸 식이다. Equation (2) represents the efficiency (?) Of the heat pump system.
<수학식 2>&Quot; (2) &quot;
η= (Qreal)/P? = (Qreal) / P
한편, 상기 히트펌프(30)의 난방 운전시에 대해 설명한다.On the other hand, the heating operation of the heat pump 30 will be described.
사용자의 조작에 의해 난방 운전모드가 선택되면, 제어부(미도시)는 상기 펌프(30)를 온시킨다. When the heating operation mode is selected by the user's operation, the control unit (not shown) turns on the pump 30.
상기 펌프(30)를 온시킨 후 미리 설정된 제1설정시간(ΔT1)이 지나면, 상기 히트펌프(20)를 온시킨다. 즉, 상기 제어부는, 상기 펌프(30)와 상기 히트펌프(20)를 동시에 온시키지 않는다.After the pump 30 is turned on, the heat pump 20 is turned on after a predetermined first set time Tl. That is, the control unit does not turn on the pump 30 and the heat pump 20 at the same time.
상기 히트펌프(20)의 난방 운전시, 상기 실내 열교환기(미도시)는 응축기 역할을 수행하고, 상기 실외 열교환기(미도시)는 증발기 역할을 하게 된다.In the heating operation of the heat pump 20, the indoor heat exchanger (not shown) serves as a condenser, and the outdoor heat exchanger (not shown) serves as an evaporator.
상기 유입유로(21)를 통해 상기 히트펌프(20)로 유입된 제1유체는, 상기 히트펌프(20)에서 열교환을 통해 가열된 후, 상기 토출유로(22)를 통해 상기 열수요처(40)로 토출된다. 따라서, 상기 열수요처(40)에 열기를 제공할 수 있다. The first fluid introduced into the heat pump 20 through the inflow channel 21 is heated through heat exchange in the heat pump 20 and then flows through the discharge channel 22 to the heat consumer 40. [ . Therefore, heat can be provided to the heat consumer 40.
상기 제2유로(11)를 통해 상기 히트펌프(20)로 유입된 브라인은, 상기 히트펌프(20)에서 열교환을 통해 냉각된 후, 상기 지중 열교환기(10)로 토출된다. The brine flowing into the heat pump 20 through the second flow path 11 is cooled by heat exchange in the heat pump 20 and then discharged to the underground heat exchanger 10.
상기 지중 열교환기(10)에서는 상기 브라인이 지중으로부터 열을 흡수한다.In the underground heat exchanger (10), the brine absorbs heat from the ground.
이후, 사용자의 조작에 의해 난방 운전모드의 중지가 선택되면, 상기 제어부는 상기 히트펌프(20)를 오프시킨다.Thereafter, when the stop of the heating operation mode is selected by the user's operation, the control unit turns off the heat pump 20.
상기 히트펌프(20)를 오프시킨 후 미리 설정된 제2설정시간(ΔT2)이 지나면, 상기 펌프(20)를 오프시킨다. 즉, 상기 제어부는, 상기 히트펌프(20)와 상기 펌프(30)를 동시에 오프시키지 않는다. 상기 히트펌프(20)를 오프시킨 후에도 상기 유입유로(21)나 상기 토출유로(22)상에 제1유체가 남아있기 때문에, 잔류된 제1유체를 모두 빼내기 위해서 상기 제2설정시간(ΔT2) 동안 상기 펌프(30)를 더 작동시켜야 한다. The pump 20 is turned off after a predetermined second set time? T2 after the heat pump 20 is turned off. That is, the control unit does not turn off the heat pump 20 and the pump 30 at the same time. Since the first fluid remains on the inflow passage 21 and the discharge passage 22 even after the heat pump 20 is turned off, the second set time? T2 is set so as to extract the remaining first fluid, The pump 30 must be operated further.
도 4는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 제1유체의 온도변화를 나타낸 그래프이다. FIG. 4 is a graph showing the temperature change of the first fluid according to the heating operation time of the heat pump system using the geothermal heat according to the first embodiment of the present invention.
도 4를 참조하면, 상기 펌프(30)가 온되는 시점(T1)과 상기 히트펌프(20)가 온되는 시점(T2)은 상기 제1설정시간(ΔT1)만큼 시간차가 있다. 상기 제1설정시간(ΔT1)은 2분 내지 3분인 것으로 예를 들어 설명한다.Referring to FIG. 4, there is a time difference between the time T1 when the pump 30 is turned on and the time T2 when the heat pump 20 is turned on by the first set time? T1. The first set time? T1 is 2 to 3 minutes, for example.
상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)로 유입되는 제1유체의 유입온도(tin)는 거의 일정하나, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 서서히 증가하는 것을 알 수 있다. The inflow temperature t in of the first fluid flowing into the heat pump 20 is substantially constant during the first set time Tl after the pump 30 is turned on, The discharge temperature t out of the first fluid gradually increases.
이후, 상기 히트펌프(20)가 온되는 시점(T2)부터 오프되는 시점(T3)까지 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 소정의 온도까지 증가한 후 일정한 온도를 유지한다.Thereafter, the discharge temperature t out of the first fluid discharged from the heat pump 20 from the time point T2 when the heat pump 20 is turned on to the time point T3 when the heat pump 20 is turned off is increased to a predetermined temperature, Keep the temperature.
또한, 상기 히트펌프(20)가 오프되는 시점(T3)과 상기 펌프(30)가 오프되는 시점(T4)은 상기 제2설정시간(ΔT2)만큼 시간차가 있다. 상기 제2설정시간(ΔT2)은 2분 내지 3분인 것으로 예를 들어 설명한다. 상기 제1,2설정시간은 실험 등에 의해 미리 설정될 수 있다. The time T3 at which the heat pump 20 is turned off and the time T4 at which the pump 30 is turned off have a time difference by the second set time? T2. The second set time? T2 is, for example, 2 to 3 minutes. The first and second set times may be preset by experiment or the like.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)는 점차 감소하다가 상기 제1유체의 유입온도(tin)와 비슷해지고, 상기 제1유체의 유입온도(tin)는 거의 일정한 상태를 유지한다. The discharge temperature t out of the first fluid discharged from the heat pump 20 decreases gradually during the second set time T 2 after the heat pump 20 is turned off, (t in ), and the inflow temperature (t in ) of the first fluid is kept substantially constant.
도 5는 본 발명의 제1실시예에 따른 지열을 이용한 히트펌프 시스템의 난방 운전시 시간에 따른 생산 열량의 변화를 나타낸 그래프이다. FIG. 5 is a graph showing a change in the calorific value of the heat pump system using the geothermal heat according to the first embodiment of the present invention with time during the heating operation.
도 5를 참조하면, 상기 펌프(30)만이 온된 이후 상기 제1설정시간(ΔT1) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 서서히 증가하나 0보다 낮은 값인 것을 알 수 있다. 즉, 상기 제1설정시간(ΔT1) 동안은 상기 히트펌프(20)가 구동되지 않기 때문에, 상기 생산 열량(Q)은 마이너스 값이다. Referring to FIG. 5, it can be seen that the heat produced Q of the heat pump 20 gradually increases but is lower than 0 during the first set time Tl after the pump 30 is turned on. That is, since the heat pump 20 is not driven during the first set time Tl, the calorific value Q is a negative value.
상기 제1설정시간(ΔT1)이 경과하여 상기 히트펌프(20)가 구동되면, 상기 히트펌프(20)에서 상기 제1유체가 열교환되어 가열되므로 상기 제1유체의 토출온도(tout)가 점차 증가한다. 따라서 상기 생산 열량(Q)은 일정값 이상으로 상승하는 것을 알 수 있다.When the heat pump 20 is driven with the lapse of the first set time Tl, the first fluid is heat-exchanged in the heat pump 20 so that the discharge temperature t out of the first fluid gradually increases . Therefore, it can be seen that the calorific value Q is increased above a predetermined value.
상기 히트펌프(20)가 오프된 이후 상기 제2설정시간(ΔT2) 동안, 상기 히트펌프(20)의 생산 열량(Q)은 점차 감소하다가 일정값을 유지한다. 상기 제2설정시간(ΔT2) 동안은 상기 히트펌프(20)가 구동되지 않으나 상기 펌프(30)는 구동되는 상태이기 때문에, 상기 생산 열량(Q)은 점차 감소한다. During the second set time T2 after the heat pump 20 is turned off, the heat produced Q of the heat pump 20 gradually decreases and then maintains a constant value. Since the heat pump 20 is not driven but the pump 30 is driven during the second set time T2, the calorific value Q decreases gradually.
상기 제2설정시간(ΔT2)이 경과하여 상기 펌프(30)까지 오프되면, 상기 생산 열량(Q)은 0이 된다. When the second set time? T2 elapses and the pump 30 is turned off, the calorific value Q becomes zero.
따라서, 상기 히트펌프(20)의 난방 운전시, 상기 히트펌프(20)의 생산 열량을 계산하는 방법은 다음과 같다.Therefore, a method of calculating the heat produced by the heat pump 20 during the heating operation of the heat pump 20 is as follows.
난방 운전시에도 냉방 운전시와 마찬가지로 상기 생산 열량(Qreal)의 측정시간(ΔTreal)은, 상기 제5시점(T5)부터 상기 제6시점(T6)까지로 설정된다. The measurement time DELTA Treal of the calorific value Qreal is set from the fifth time point T5 to the sixth time point T6 as in the cooling operation mode.
상기 제5시점(T5)은, 상기 펌프(30)를 온시킨 이후 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)가 상기 제1유체의 초기 토출온도(t0)보다 미리 설정된 제1설정온도(Δt1) 이상 차이가 나는 시점이고, 상기 제3시점(T3)은 상기 히트펌프(20)를 오프시키는 시점이다. The fifth point of time T5 is a point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 after the pump 30 is turned on is lower than the initial discharge temperature t 0 of the first fluid. and than the first predetermined temperature (Δt 1) it differs by more than a preset time point I, and the third time (T3) is a time for turning off the heat pump (20).
상기 제5시점(T5)은, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)가 소정의 온도 이상으로 높아지는 시점을 나타낸다. 상기 제5시점(T5)은, 상기 생산 열량이 서서히 증가하기 시작하는 시점이기도 하다. The fifth time point T5 represents a time point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 becomes higher than a predetermined temperature. The fifth time point T5 is also a time point at which the amount of heat produced starts to gradually increase.
상기 히트펌프(20)를 온시키기 이전에도 상기 제1유체의 토출온도(tout)는 점차 높아지며, 상기 생산열량도 소량이지만 증가하기 때문에, 상기 제1유체의 토출온도(tout)가 소정의 온도 이상으로 높아지는 시점인 상기 제5시점(T5)부터 상기 생산 열량의 계산과 적산을 시작한다. Even before turning on the heat pump 20 it becomes higher gradually is the first (t out), the discharge temperature of the first fluid, the production of heat due to increase in amount, but, in the said first (t out), the discharge temperature of the first fluid desired From the fifth time point (T5), which is a time point at which the temperature of the fuel cell becomes higher than the predetermined temperature.
상기 제6시점(T6)은, 상기 히트펌프(20)를 오프시킨 이후 상기 히트펌프(20)에서 토출되는 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 미리 설정된 제2설정온도(Δt2) 미만이 되는 시점이다. The sixth point of time T6 is a point at which the difference between the inflow temperature t in of the first fluid discharged from the heat pump 20 and the discharge temperature t out after the heat pump 20 is turned off Is less than the set second set temperature? T 2 .
난방운전시 상기 제6시점(T6)은, 상기 히트펌프(20)에서 토출되는 제1유체의 토출온도(tout)가 소정의 온도 이하로 낮아지는 시점을 나타낸다. 또한, 상기 제6시점(T6)은, 상기 생산 열량이 급격히 감소하다가 서서히 감소하기 시작하는 시점이기도 하다. The sixth time point T6 during the heating operation indicates a time point at which the discharge temperature t out of the first fluid discharged from the heat pump 20 becomes lower than a predetermined temperature. Also, the sixth time point T6 is a time point at which the amount of heat produced is rapidly reduced and then gradually decreases.
상기 히트펌프(20)를 오프시킨 이후에 상기 제1유체의 토출온도(tout)는 점차 감소하며, 상기 생산 열량(Q)도 감소하나 소정의 값 이상을 갖기 때문에, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 제2설정온도(Δt2)일 때까지는 상기 생산 열량(Q)을 인정한다. 여기서, 상기 제2설정온도(Δt2)는 약 5도인 것으로 예를 들어 설명한다. Since the discharge temperature t out of the first fluid decreases gradually after the heat pump 20 is turned off and the produced heat amount Q also decreases but has a predetermined value or more, The production heat quantity Q is recognized until the difference between the temperature t in and the discharge temperature t out is the second set temperature t 2 . Here, the second set temperature? T 2 is about 5 degrees, for example, will be described.
한편, 상기 제1유체의 유입온도(tin)와 토출온도(tout)의 차이가 상기 제2설정온도(Δt2)미만이면, 상기 생산 열량(Q)이 매우 작다고 판단하여 무시할 수 있다.On the other hand, if the difference between the inflow temperature t in of the first fluid and the discharge temperature t out is less than the second preset temperature t 2 , it is determined that the calorific value Q is very small and can be ignored.
따라서, 본 발명에서는 상기 제5시점(T5)부터 상기 생산 열량을 측정하여 적산하기 시작하고, 상기 제6시점(T6)에 상기 생산 열량의 적산을 중지함으로써, 생산 열량(Q)을 보다 정확하게 측정할 수 있다. Accordingly, in the present invention, the calorific value of the produced product Q is measured more accurately by starting the accumulation of the calorific value from the fifth time point T5 and stopping the accumulation of the calorific value at the sixth time point T6 can do.
상기 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 구하는 식은 수학식 1과 같다. 수학식 1에서 난방운전시 Δt는 상기 제1유체의 토출온도(tout)에서 유입온도(tin)를 뺀 값이다. The formula for obtaining the calorific value Qreal during the measurement time? Treal is shown in Equation (1). In the heating operation in Equation (1),? T is a value obtained by subtracting the inflowing temperature (t in ) from the discharge temperature (t out ) of the first fluid.
상기와 같이, 본 실시예에서는, 상기 제5시점(T5)부터 상기 제6시점(T6)까지의 측정시간(ΔTreal)동안 상기 생산 열량(Qreal)을 측정하여 적산하기 때문에, 상기 펌프(30)의 작동시간을 모두 고려하지 않으므로 보다 정확한 생산 열량을 측정할 수 있다. As described above, in the present embodiment, since the production heat quantity Qreal is measured and integrated during the measurement time? Treal from the fifth time point T5 to the sixth time point T6, It is possible to measure the calorific value more accurately.
상기 측정시간(ΔTreal)이외에 상기 제1설정시간(ΔT1)이나 상기 제2설정시간(ΔT2)을 모두 고려하기에는 열교환에 따른 생산 열량에 영향이 매우 작기 때문에 일부 구간을 무시하고, 상기 제1유체의 토출온도(tout)를 고려하여 일부 구간만의 생산 열량을 인정할 수 있다. 따라서, 보다 신속하고 정확하게 생산 열량을 측정할 수 있다. In order to consider both the first set time Tl and the second set time T2 in addition to the measurement time? Treal, the influence of the heat generated by the heat exchange on the heat generated is very small, It is possible to recognize the heat of production for only a certain section in consideration of the discharge temperature (t out ). Therefore, it is possible to measure the calorific value of production more quickly and accurately.
또한, 난방 운전시 상기 히트펌프 시스템의 효율(η)을 구하는 방법은 냉방 운전시와 동일하다.The method for obtaining the efficiency? Of the heat pump system during the heating operation is the same as that during the cooling operation.
즉, 상기 펌프(30)를 온시킨 시점(T1)부터 상기 펌프(30)를 오프시키는 시점(T4)까지 소모된 동력(P)을 계산한다. 상기 동력(P)은, 상기 펌프(30)와 상기 히트펌프(20)를 구동하는데 소모된 동력을 포함한다. That is, the consumed power P is calculated from the time T1 when the pump 30 is turned on to the time T4 when the pump 30 is turned off. The power (P) includes power consumed in driving the pump (30) and the heat pump (20).
수학식 2를 참조하면, 상기에서 계산된 생산 열량(Qreal)을 상기 동력(P)으로 나누면, 상기 히트펌프 시스템의 효율(η)을 알 수 있다.Referring to Equation (2), the efficiency (?) Of the heat pump system can be known by dividing the heat quantity Qreal calculated above by the power (P).
도 6은 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템의 개략적인 구성도이다.6 is a schematic configuration diagram of a heat pump system using geothermal heat according to a second embodiment of the present invention.
도 6을 참조하면, 본 발명의 제2실시예에 따른 지열을 이용한 히트펌프 시스템은, 상기 히트펌프(20)로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프(20)의 토출측으로 바이패스시키는 바이패스유로(60)와, 삼방밸브(61)를 더 포함하는 것이 상기 제1실시예와 상이하고 그 외 나머지 구성 및 작용은 유사하므로, 상이한 구성에 대해서 상세히 설명한다.Referring to FIG. 6, a heat pump system using geothermal heat according to a second embodiment of the present invention includes a heat pump 20 for supplying a part of the first fluid before being introduced into the heat pump 20 to the discharge side of the heat pump 20 The bypass passage 60 for passing the air, and the three-way valve 61 are different from those of the first embodiment, and the rest of the configuration and operation are similar to each other, so that different configurations will be described in detail.
상기 바이패스유로(60)는, 상기 유입유로(21)에서 분기되어 상기 토출유로(22)로 연결된다.The bypass passage 60 is branched from the inflow passage 21 and connected to the discharge passage 22.
상기 삼방밸브(61)는, 상기 유입유로(21)에서 상기 바이패스유로(60)가 분기되는 지점에 설치된다. The three-way valve (61) is installed at a point where the bypass flow path (60) branches from the inflow path (21).
냉방 운전시, 상기 제어부(미도시)는, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 유입온도를 미리 설정된 최저설정온도와 비교한다. During the cooling operation, the control unit (not shown) compares the inflow temperature of the first fluid before entering the heat pump 20 with a predetermined minimum set temperature.
상기 제1유체의 유입온도가 상기 최저설정온도 미만이면, 상기 삼방밸브(61)가 상기 바이패스유로(60)를 개방하도록 제어한다. 상기 제1유체 중 일부를 상기 바이패스유로(60)로 유입시킨다. Way valve (61) opens the bypass flow path (60) when the inflow temperature of the first fluid is less than the minimum set temperature. And a part of the first fluid flows into the bypass flow path (60).
상기 바이패스유로(60)로 유입된 제1유체는 상기 히트펌프(20)에서 냉각되지 않으므로, 상기 토출유로(22)상의 제1유체의 온도가 높아지게 된다.The first fluid flowing into the bypass passage 60 is not cooled by the heat pump 20 so that the temperature of the first fluid on the discharge passage 22 is increased.
상기 토출유로(22)의 제1유체의 온도가 높아지면, 상기 토출유로(22)를 통해 상기 열수요처(40)로 공급되었다가 다시 상기 유입유로(21)로 유입되는 제1유체의 온도가 상승하게 된다. When the temperature of the first fluid in the discharge passage 22 is increased, the temperature of the first fluid supplied to the heat consumer 40 through the discharge passage 22 and then flowing into the inflow passage 21 becomes .
따라서, 상기 유입유로(21)로 유입되는 제1유체의 온도가 상기 최저설정온도 이상으로 상승하면, 상기 제어부는 상기 바이패스유로(60)를 다시 차폐시킨다.Therefore, when the temperature of the first fluid flowing into the inflow channel 21 rises above the minimum set temperature, the control unit blocks the bypass flow channel 60 again.
상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최저설정온도 이상으로 확보될 수 있으므로, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 향상될 수 있다. 즉, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최저설정온도 미만이면, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 떨어지므로, 이를 방지할 수 있다.The temperature of the first fluid before entering the heat pump 20 can be maintained at the lowest set temperature or higher, so that the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 can be improved. That is, if the temperature of the first fluid before entering the heat pump 20 is lower than the lowest set temperature, the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 is lowered.
따라서, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최저설정온도 이상으로 일정하게 유지시킨 후, 상기 제1실시예 또는 상기 제2실시예에 따른 방법을 이용하여 생산 열량과 효율을 구할 수 있다. Therefore, after the temperature of the first fluid before being introduced into the heat pump 20 is maintained at the minimum set temperature or more, the method of the first embodiment or the second embodiment, And efficiency can be obtained.
한편, 난방 운전시, 상기 제어부(미도시)는, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 유입온도를 미리 설정된 최고설정온도와 비교한다. On the other hand, in the heating operation, the control unit (not shown) compares the inflow temperature of the first fluid before entering the heat pump 20 with a preset maximum set temperature.
상기 제1유체의 유입온도가 상기 최고설정온도를 초과하면, 상기 삼방밸브(61)가 상기 바이패스유로(60)를 개방하도록 제어한다. 따라서, 상기 제1유체 중 일부를 상기 바이패스유로(60)로 유입된다.And controls the three-way valve (61) to open the bypass flow path (60) when the inflow temperature of the first fluid exceeds the maximum set temperature. Accordingly, a part of the first fluid flows into the bypass flow path (60).
상기 바이패스유로(60)로 유입된 제1유체는 상기 히트펌프(20)에서 가열되지 않으므로, 상기 토출유로(22)상의 제1유체의 온도가 낮아지게 된다.The first fluid flowing into the bypass passage 60 is not heated by the heat pump 20 and the temperature of the first fluid on the discharge passage 22 is lowered.
상기 토출유로(22)의 제1유체의 온도가 낮아지면, 상기 토출유로(22)를 통해 상기 열수요처(40)로 공급되었다가 다시 상기 유입유로(21)로 유입되는 제1유체의 온도가 감소하게 된다. When the temperature of the first fluid in the discharge passage 22 is lowered, the temperature of the first fluid supplied to the heat consumer 40 through the discharge passage 22 and then flowing into the inflow passage 21 .
따라서, 상기 유입유로(21)로 유입되는 제1유체의 온도가 상기 최고설정온도 이하로 낮아지면, 상기 제어부는 상기 바이패스유로(60)를 다시 차폐시킨다.Therefore, when the temperature of the first fluid flowing into the inflow channel 21 is lowered to the maximum set temperature or less, the control unit again shields the bypass flow channel 60.
상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최고설정온도 이하로 확보될 수 있으므로, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 향상될 수 있다. 즉, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최고설정온도 이상이면, 상기 히트펌프(20)의 실내 열교환기의 열교환 효율이 떨어지므로, 이를 방지할 수 있다.Since the temperature of the first fluid before entering the heat pump 20 can be kept below the maximum set temperature, the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 can be improved. That is, when the temperature of the first fluid before entering the heat pump 20 is higher than the highest set temperature, the heat exchange efficiency of the indoor heat exchanger of the heat pump 20 is lowered.
따라서, 상기 히트펌프(20)로 유입되기 이전의 제1유체의 온도가 상기 최고설정온도 미만으로 일정하게 유지시킨 후, 상기 제1실시예 또는 상기 제2실시예에 따른 방법을 이용하여 생산 열량과 효율을 구할 수 있다. Therefore, after the temperature of the first fluid before being introduced into the heat pump 20 is kept constant below the maximum set temperature, the amount of heat produced by the method according to the first embodiment or the second embodiment And efficiency can be obtained.
상기 제1유체의 유입온도를 일정하게 유지하면서 생산 열량을 측정할 수 있으므로, 보다 신속하게 정확하게 생산 열량을 계산할 수 있는 이점이 있다. It is possible to measure the calorific value of production while keeping the inflow temperature of the first fluid at a constant value, so that it is possible to calculate the calorific value more quickly and accurately.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.
본 발명에 따르면 생산 열량을 보다 정확하게 계산할 수 있는 지열을 이용하는 히트펌프 시스템을 제조할 수 있다. According to the present invention, it is possible to manufacture a heat pump system that utilizes geothermal heat that can more accurately calculate the calories produced.

Claims (8)

  1. 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 제1유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서,1. A heat pump system using geothermal heat, comprising a heat pump provided with a heat source from an underground heat exchanger and providing a heat source to a heat consumer, and a pump for pumping the heat pump and a first fluid circulating through the heat consumer,
    상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와;Turning on the heat pump after a first predetermined time after turning on the pump;
    상기 펌프를 온시킨 이후 상기 히트펌프로부터 토출되는 제1유체의 토출온도가 상기 제1유체의 초기 토출온도보다 미리 설정된 제1설정온도 이상 차이가 나면, 상기 히트펌프로 유입되는 상기 제1유체의 유입온도, 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산을 시작하는 단계와;When the discharge temperature of the first fluid discharged from the heat pump becomes equal to or greater than a first preset temperature which is higher than an initial discharge temperature of the first fluid after the pump is turned on, Measuring an inlet temperature, a discharge temperature of the first fluid, and a flow rate of the first fluid to calculate a production heat quantity of the heat pump in real time and start integration;
    상기 히트펌프를 오프시킨 후 상기 제1유체의 유입온도와 상기 제1유체의 토출온도의 차가 미리 설정된 제2설정온도 미만이면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계를 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.And stopping the accumulation of the heat produced by the heat pump when the difference between the inflow temperature of the first fluid and the discharge temperature of the first fluid after the heat pump is turned off is less than a preset second set temperature, A method of calculating a heat capacity and efficiency of a heat pump system used.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 히트펌프를 오프시킨 후 제2설정시간이 지나면, 상기 펌프를 오프시키는 단계를 더 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.Further comprising turning off the pump after a second set time period after turning off the heat pump. &Lt; RTI ID = 0.0 &gt; &lt; / RTI &gt;
  3. 청구항 2에 있어서,The method of claim 2,
    상기 펌프를 온시킨 시점부터 상기 펌프를 오프시키기 이전까지 상기 펌프와 상기 히트펌프를 작동시키는 데 소모된 동력을 계산하는 단계와;Calculating power consumed to operate the pump and the heat pump until the pump is turned off from the time when the pump is turned on;
    상기 계산된 히트펌프의 생산 열량과 상기 계산된 동력을 이용하여, 상기 히트펌프 시스템의 효율을 계산하는 단계를 포함하는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.Calculating the efficiency of the heat pump system using the calculated heat capacity of the heat pump and the calculated power. &Lt; RTI ID = 0.0 &gt; 31. &lt; / RTI &gt;
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1설정시간은, 상기 제1유체의 유입온도에 따라 설정되는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.Wherein the first set time is set according to the inflow temperature of the first fluid.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 제1설정시간은, The first set time period
    냉방 운전시 상기 펌프를 온시킨 시점부터 상기 제1유체의 유입온도가 미리 설정된 최저설정온도 이상이 되는 시점까지 시간으로 설정되는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.Wherein a time period from when the pump is turned on to when the inflow temperature of the first fluid is equal to or higher than a predetermined set minimum temperature during cooling operation is calculated.
  6. 청구항 1에 있어서,The method according to claim 1,
    냉방 운전시 상기 제1유체의 유입온도가 미리 설정된 최저설정온도 미만이면, When the inflow temperature of the first fluid during the cooling operation is less than a predetermined minimum set temperature,
    상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.And a portion of the first fluid before being introduced into the heat pump is bypassed to the discharge side of the heat pump.
  7. 청구항 1에 있어서,The method according to claim 1,
    난방 운전시 상기 제1유체의 유입온도가 미리 설정된 최고설정온도를 초과하면, When the inflow temperature of the first fluid exceeds a predetermined maximum set temperature at the time of heating operation,
    상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.And a portion of the first fluid before being introduced into the heat pump is bypassed to the discharge side of the heat pump.
  8. 지중 열교환기로부터 열원을 제공받고 열수요처로 열원을 제공하는 히트펌프와, 상기 히트펌프와 상기 열수요처를 순환하는 제1유체를 펌핑하는 펌프를 포함하는 지열을 이용하는 히트펌프 시스템에 있어서,1. A heat pump system using geothermal heat, comprising a heat pump provided with a heat source from an underground heat exchanger and providing a heat source to a heat consumer, and a pump for pumping the heat pump and a first fluid circulating through the heat consumer,
    상기 펌프를 온시킨 후, 제1설정 시간이 지나면 상기 히트펌프를 온시키는 단계와;Turning on the heat pump after a first predetermined time after turning on the pump;
    상기 펌프를 온시킨 이후 상기 히트펌프로부터 토출되는 제1유체의 토출온도가 상기 제1유체의 초기 토출온도보다 미리 설정된 제1설정온도 이상 차이가 나면, 상기 히트펌프로 유입되는 상기 제1유체의 유입온도, 상기 제1유체의 토출온도 및 상기 제1유체의 유량을 측정하여, 상기 히트펌프의 생산 열량을 실시간으로 계산하고 적산을 시작하는 단계와;When the discharge temperature of the first fluid discharged from the heat pump becomes equal to or greater than a first preset temperature which is higher than an initial discharge temperature of the first fluid after the pump is turned on, Measuring an inlet temperature, a discharge temperature of the first fluid, and a flow rate of the first fluid to calculate a production heat quantity of the heat pump in real time and start integration;
    상기 히트펌프를 오프시킨 후 상기 제1유체의 유입온도와 상기 제1유체의 토출온도의 차가 미리 설정된 제2설정온도 미만이면, 상기 히트펌프의 생산 열량의 적산을 중지하는 단계와;Stopping the accumulation of the heat produced by the heat pump when the difference between the inflow temperature of the first fluid and the discharge temperature of the first fluid after the heat pump is turned off is less than a preset second set temperature;
    상기 히트펌프를 오프시킨 후 제2설정시간이 지나면, 상기 펌프를 오프시키는 단계를 포함하고,And turning off the pump after a second set time after turning off the heat pump,
    냉방 운전시 상기 제1유체의 유입온도가 미리 설정된 최저설정온도 미만이면, 상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키고,Bypassing a part of the first fluid before being introduced into the heat pump to the discharge side of the heat pump when the inflow temperature of the first fluid during the cooling operation is less than a predetermined set minimum temperature,
    난방 운전시 상기 제1유체의 유입온도가 미리 설정된 최고설정온도를 초과하면, 상기 히트펌프로 유입되기 이전의 제1유체 중 일부를 상기 히트펌프의 토출측으로 바이패스시키는 지열을 이용하는 히트펌프 시스템의 생산 열량 및 효율을 계산하는 방법.A heat pump system using geothermal heat to bypass a part of the first fluid before being introduced into the heat pump to the discharge side of the heat pump when the inflow temperature of the first fluid exceeds a preset maximum set temperature at the time of heating operation How to calculate the production calorie and efficiency.
PCT/KR2017/012260 2017-11-01 2017-11-01 Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat WO2019088314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/012260 WO2019088314A1 (en) 2017-11-01 2017-11-01 Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/012260 WO2019088314A1 (en) 2017-11-01 2017-11-01 Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat

Publications (1)

Publication Number Publication Date
WO2019088314A1 true WO2019088314A1 (en) 2019-05-09

Family

ID=66332040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012260 WO2019088314A1 (en) 2017-11-01 2017-11-01 Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat

Country Status (1)

Country Link
WO (1) WO2019088314A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199461B1 (en) * 2012-08-21 2012-11-09 황길주 Hybrid heat pump
KR101392714B1 (en) * 2014-03-06 2014-05-13 가진기업(주) Geothermal heat pump system
JP5690650B2 (en) * 2011-05-09 2015-03-25 新日鉄住金エンジニアリング株式会社 Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program
KR20150042184A (en) * 2012-08-09 2015-04-20 린나이가부시기가이샤 Heat pump heat source system
KR20170036487A (en) * 2015-09-24 2017-04-03 한국전력공사 Method for controlling heat pump system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690650B2 (en) * 2011-05-09 2015-03-25 新日鉄住金エンジニアリング株式会社 Geothermal characteristics analysis method and apparatus, soil heat source heat pump system operation adjustment method and apparatus, and program
KR20150042184A (en) * 2012-08-09 2015-04-20 린나이가부시기가이샤 Heat pump heat source system
KR101199461B1 (en) * 2012-08-21 2012-11-09 황길주 Hybrid heat pump
KR101392714B1 (en) * 2014-03-06 2014-05-13 가진기업(주) Geothermal heat pump system
KR20170036487A (en) * 2015-09-24 2017-04-03 한국전력공사 Method for controlling heat pump system

Similar Documents

Publication Publication Date Title
WO2021215695A1 (en) Heat pump system for vehicle
WO2018012818A1 (en) Heat pump system for vehicle
WO2020071801A1 (en) Heat management system
CN112768804B (en) Method for cooling container energy storage system by using underground water and temperature adjusting system thereof
WO2012169764A2 (en) Air conditioner in electric vehicle
WO2018117399A1 (en) Heat pump system for producing steam by using recuperator
WO2020040418A1 (en) Heat management system
WO2014010767A1 (en) Dualistic solar heat and heat accumulation system air-conditioning device
WO2016006872A1 (en) Chiller
WO2022055202A1 (en) Electric adaptor-type controller for air conditioner outdoor unit auxiliary cooling device
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2016003028A1 (en) Heat pump heating/cooling system using hybrid heat source and control method thereof
EP3071894A1 (en) Air conditioner and method of controlling the same
WO2011149191A2 (en) Small-scale combined heat and power system and method for controlling same
WO2019160294A1 (en) Vehicle heat management system
WO2011062349A1 (en) Heat pump
WO2022265140A1 (en) Localized data center cooling system provided with free cooling chiller
WO2019088314A1 (en) Method for calculation of quantity of heat production and efficiency of heat pump system using geothermal heat
CN110410878B (en) Air conditioning system and cooling method
WO2021133134A1 (en) Thermal management system of vehicle
WO2018117307A1 (en) Method for calculating produced heat quantity and efficiency of heat pump system using geothermal heat
US20240072564A1 (en) Battery charging/discharging system
WO2018117365A1 (en) Waste heat recovery apparatus and control method therefor
WO2021157801A1 (en) Air conditioning apparatus and method for controlling an air conditioning apparatus
WO2019045176A1 (en) Refrigeration system using condensed waste heat recovery by refrigerator discharge gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930935

Country of ref document: EP

Kind code of ref document: A1