JP5689660B2 - Geological survey method and transparent tube used for it - Google Patents

Geological survey method and transparent tube used for it Download PDF

Info

Publication number
JP5689660B2
JP5689660B2 JP2010262299A JP2010262299A JP5689660B2 JP 5689660 B2 JP5689660 B2 JP 5689660B2 JP 2010262299 A JP2010262299 A JP 2010262299A JP 2010262299 A JP2010262299 A JP 2010262299A JP 5689660 B2 JP5689660 B2 JP 5689660B2
Authority
JP
Japan
Prior art keywords
hole wall
borehole
transparent tube
wall surface
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010262299A
Other languages
Japanese (ja)
Other versions
JP2012112175A (en
Inventor
孝幸 佐々木
孝幸 佐々木
Original Assignee
株式会社ボア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ボア filed Critical 株式会社ボア
Priority to JP2010262299A priority Critical patent/JP5689660B2/en
Publication of JP2012112175A publication Critical patent/JP2012112175A/en
Application granted granted Critical
Publication of JP5689660B2 publication Critical patent/JP5689660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は,ボアホールカメラ装置によりボーリング孔の孔壁面を撮影する地質調査方法,及びそれに用いる補助具に関する。   The present invention relates to a geological survey method for photographing a hole wall surface of a borehole with a borehole camera device, and an auxiliary tool used therefor.

ボーリング孔による地質調査では,ボーリング孔を掘削し,ボーリング孔内にボアホールカメラ装置を挿入して,その孔壁面をボアホールカメラ装置により撮影し,孔壁面の亀裂,破砕,空隙,クラックの有無,及びその走行・傾斜などの地盤状態の観測が行われる。   In the geological survey using a borehole, a borehole camera is inserted into the borehole, a borehole camera device is inserted into the borehole camera, and the hole wall surface is photographed with a borehole camera device. The ground conditions such as running and tilting are observed.

ボアホールカメラ装置は,広角レンズや凸面鏡によって映し出された孔壁360度の画像を撮影することができる。ボアホールカメラ装置を,鉛直方向に掘削されたボーリング孔の開口部から挿入し,ケーブルによりつり下げられた状態で上下方向に走査することで,深さ方向の全長にわたって複数の孔壁360度の画像を撮影する。撮影された画像データは,ボアホールカメラ装置に接続するコンピュータ装置に送られ,コンピュータ装置は,例えば下記特許文献1などに開示されるような既知の画像処理により,各画像データを展開,合成して孔壁展開画像を生成する。   The borehole camera device can take a 360 degree image projected by a wide-angle lens or a convex mirror. A borehole camera device is inserted through the opening of a borehole drilled in the vertical direction and scanned vertically in a state where it is suspended by a cable. Shoot. The captured image data is sent to a computer device connected to the borehole camera device, and the computer device develops and synthesizes each image data by known image processing as disclosed in, for example, Patent Document 1 below. A hole wall development image is generated.

ボアホールカメラ装置は,ケーブルにつり下げられた状態で,ボーリング孔内を昇降するため,ケーブルがよじれると,画像の撮影方位を正しく決めることができなくなる。そのため,ボアホールカメラ装置は,方位を測定する方位センサを内蔵し,撮影された画像データに方位データを付加し,画像処理において,各画像データの方位が一致するようにように,画像データを合成する(特許文献2)。   Since the borehole camera device is lifted and lowered in the borehole while being suspended from the cable, if the cable is kinked, the image taking direction cannot be determined correctly. Therefore, the borehole camera device has a built-in azimuth sensor that measures the azimuth, adds the azimuth data to the captured image data, and synthesizes the image data so that the azimuths of the image data coincide in the image processing. (Patent Document 2).

また,ボアホールカメラ装置を一定速度で自動的に昇降させる自動カメラ駆動機構が設けられる。自動カメラ駆動機構は,例えばロータリエンコーダなどで速度を計測しながらケーブルを一定速度で送り出す装置であり,コンピュータ装置は,自動カメラ駆動機構からボアホールカメラ装置の速度情報を取得し,それに基づいて,撮影された各画像データの位置(深さ)を特定することができる。   In addition, an automatic camera drive mechanism is provided for automatically raising and lowering the borehole camera device at a constant speed. The automatic camera drive mechanism is a device that sends out the cable at a constant speed while measuring the speed with, for example, a rotary encoder. The computer device acquires the speed information of the borehole camera device from the automatic camera drive mechanism, and based on this, the shooting is performed. It is possible to specify the position (depth) of each image data.

特開昭58−223113号公報JP 58-223113 A 特開平1−210594号公報Japanese Patent Laid-Open No. 1-210594 特開2004−336287号公報JP 2004-336287 A

しかしながら,ボアホールカメラ装置に方位センサを内蔵させ,また,ボアホールカメラ装置を一定速度で移動させる自動カメラ駆動機構(深度センサとして機能)を設けることで,ボアホールカメラ装置の構造が大型化,複雑化し,コストも高くなる。深さ数十メートル程度の地質調査については,このような大型且つ複雑なボアホールカメラ装置を導入することはコスト的に見合わず,簡易なボアホールカメラ装置により地質調査を行う方法が求められている。簡易なボアホールカメラ装置として,方位センサ及び自動カメラ駆動機構を有さない安価なボアホールカメラ装置も提供されているが,上述のように,撮影された画像データの方位及び位置を特定できないため,方位や位置を必要としない簡易な地質調査のみにしか使えず,ボーリング孔内の精密且つ詳細な解析には利用できない。   However, by incorporating an orientation sensor in the borehole camera device and providing an automatic camera drive mechanism (functioning as a depth sensor) that moves the borehole camera device at a constant speed, the structure of the borehole camera device is increased in size and complexity. Costs also increase. For geological surveys at a depth of several tens of meters, the introduction of such a large and complex borehole camera device is not cost effective, and a method for conducting a geological survey using a simple borehole camera device is required. . As a simple borehole camera device, an inexpensive borehole camera device that does not have an orientation sensor and an automatic camera drive mechanism is also provided. However, as described above, the orientation and position of the captured image data cannot be specified. It can only be used for simple geological surveys that do not require any location, and cannot be used for precise and detailed analysis of boreholes.

また,特許文献3は,鉛直方向を白線で表示した方向指示マーカーを,ボアホールカメラ装置が孔壁とともに撮影することで,方位センサを不要とするものであるが,本開示は,水平方向のボーリング孔には有効であるが,鉛直方向のボーリング孔には適用できない。鉛直方向については,方向指示マーカーとして方位磁針計を用いることも記載されているが,方位磁針計の指針の動きの遅れや揺れよって,正確に方位を測定することは実質的に困難である。さらに,ボアホールカメラ装置内に方位指示マーカーを搭載することで,ボアホールカメラ装置の構造が複雑化する。   In addition, Patent Document 3 discloses that a direction indicating marker whose vertical direction is indicated by a white line is photographed by a borehole camera device together with a hole wall so that an azimuth sensor is not required. Effective for holes, but not applicable to vertical boreholes. Regarding the vertical direction, the use of a compass as a direction indicating marker is also described, but it is substantially difficult to accurately measure the direction due to the delay or swing of the pointer of the compass. Furthermore, mounting the orientation indicating marker in the borehole camera device complicates the structure of the borehole camera device.

そこで,本発明の目的は,方位センサ及び自動カメラ駆動機構(深度センサ)を有さない簡易なボアホールカメラ装置を用いて,方位情報及び位置情報を得られる画像を撮影する地質調査方法及びそれに用いる補助具を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a geological survey method for capturing an image from which azimuth information and position information can be obtained using a simple borehole camera device that does not have an azimuth sensor and an automatic camera drive mechanism (depth sensor). It is to provide an auxiliary tool.

上記目的を達成するための本発明の地質調査方法は,所定長さの円筒形状の透明管を複数連結して,ボーリング孔内に挿入し,その透明管内にボアホールカメラ装置のカメラを挿入して,透明管を通して孔壁面を撮影するものである。   In order to achieve the above object, the geological survey method of the present invention is to connect a plurality of cylindrical transparent tubes of a predetermined length, insert them into a borehole, and insert the camera of the borehole camera device into the transparent tube. , The hole wall is photographed through a transparent tube.

より具体的には,本発明の地質調査方法は,ボアホールカメラ装置を構成するカメラを内蔵するプローブをボーリング孔に挿入して,ボーリング孔内の孔壁面を撮影する地質調査方法において,長さ方向に延びる色付き直線が付された所定長さの透明管を,各透明管の色付き直線が一直線状になるように複数連結し,前記連結された複数の透明管をボーリング孔に挿入し,前記連結された複数の透明管内に,前記プローブを挿入し,該プローブを深さ方向に移動させながら,前記プローブに内蔵されるカメラにより,前記透明管の前記色付き直線が重畳されたボーリング孔内の複数の孔壁面全周画像を撮影することを特徴とする。   More specifically, the geological survey method of the present invention is a geological survey method in which a probe containing a camera constituting a borehole camera device is inserted into a borehole and a hole wall surface in the borehole is photographed. A plurality of transparent tubes each having a predetermined length with a colored straight line extending in a straight line are connected so that the colored straight lines of each transparent tube are in a straight line, and the plurality of connected transparent tubes are inserted into a boring hole, and the connection is made. The plurality of transparent tubes are inserted into the plurality of transparent tubes, and the probes are moved in the depth direction. An image of the entire circumference of the hole wall surface is taken.

本発明の地質調査方法に用いる補助具は,地質調査のための穿たれたボーリング孔に挿入される透明管であって,長さ方向に延びる色付き直線が付され,ボアホールカメラ装置を構成するカメラを内蔵するプローブが挿入される透明管である。   The auxiliary tool used in the geological survey method of the present invention is a transparent tube inserted into a bored hole drilled for geological survey, which is provided with a colored straight line extending in the length direction, and constitutes a borehole camera device This is a transparent tube into which a probe with a built-in is inserted.

本発明によれば,ボアホールカメラ装置により,連結された複数の透明管に付された直線標識が,孔壁面に重畳されて撮影されるので,直線標識が一直線状(同一方向)になるように,各孔壁面の画像データを補正することで,各画像データの方向を揃えることができる。   According to the present invention, since the straight signs attached to the plurality of connected transparent tubes are photographed by being superimposed on the hole wall surface by the borehole camera device, the straight signs are aligned (in the same direction). By correcting the image data of each hole wall surface, the direction of each image data can be aligned.

また,透明管の連結部分が,水平方向の直線として,孔壁面に重畳されて撮影されるので,その水平方向直線をカウントすることで,深さ位置を把握することができる。   Further, since the connecting portion of the transparent tube is photographed as a horizontal straight line superimposed on the hole wall surface, the depth position can be grasped by counting the horizontal straight line.

本発明の実施の形態における地質調査方法に用いる透明管10,及び孔壁面を撮影するボアホールカメラ装置20を示す図である。It is a figure which shows the bore tube camera apparatus 20 which image | photographs the transparent tube 10 used for the geological survey method in embodiment of this invention, and a hole wall surface. 透明管10の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a transparent tube 10. ボアホールカメラ装置20のプローブ21の構成例を示す図である。2 is a diagram illustrating a configuration example of a probe 21 of a borehole camera device 20. FIG. ボアホールカメラ装置20による撮影画像模式図である。4 is a schematic diagram of a photographed image by a borehole camera device 20. FIG. 1フレームの孔壁面展開画像の模式図である。It is a schematic diagram of the hole wall surface expansion image of 1 frame. 孔壁面展開画像の画素の並べ替えを説明する図である。It is a figure explaining rearrangement of the pixel of a hole wall surface development picture. 画素シフト処理により複数の孔壁面展開画像の方向を揃えて合成した状態を示す模式図である。It is a schematic diagram which shows the state synthesized by aligning the directions of a plurality of hole wall surface developed images by pixel shift processing.

以下,図面を参照して本発明の実施の形態について説明する。しかしながら,かかる実施の形態例が,本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, this embodiment does not limit the technical scope of the present invention.

図1は,本発明の実施の形態における地質調査方法に用いる透明管10,及び孔壁面を撮影するボアホールカメラ装置20を示す図である。本実施の形態の地質調査方法では,所定長さの円筒形状の透明管10を複数連結して,ボーリング孔内に挿入し,その透明管10内にボアホールカメラ装置20のカメラを挿入して,透明管10を通して孔壁面を撮影する。   FIG. 1 is a diagram showing a transparent tube 10 used in a geological survey method according to an embodiment of the present invention, and a borehole camera device 20 for photographing a hole wall surface. In the geological survey method of this embodiment, a plurality of cylindrical transparent tubes 10 having a predetermined length are connected and inserted into a borehole, and the camera of the borehole camera device 20 is inserted into the transparent tube 10. The hole wall surface is photographed through the transparent tube 10.

透明管10は,所定長さ(例えば一本2m)の透明管10を,ボーリング孔の深さ分複数連結し,ボーリング孔の深さ分の長さを形成し,ボーリング孔内に挿入される。   The transparent tube 10 is formed by connecting a plurality of transparent tubes 10 having a predetermined length (for example, 2 m) for the depth of the borehole, forming a length corresponding to the depth of the borehole, and being inserted into the borehole. .

図2は,透明管10の構成を示す図であり,図2(a)は,1本の透明管10を示し,図2(b)は,複数の透明管10が連結された状態を示す。透明管10は,アクリル樹脂又はポリカーボネート樹脂などの透明材料で形成される。透明管10を通して,孔壁面を撮像するので,透明管10は,無色であり,可視光透過率が高いことが好ましい。寸法の一例は,国内の地質調査での標準孔径66mmに対して,例えば,外径約50mm程度,厚さ2〜3mm程度,長さは2m程度である。外径寸法は,ボーリング孔の孔径よりも小さく,ボアホールカメラ装置20のプローブが挿入可能な径に適宜設計される。長さ寸法も,現場までの運搬や,現場での連結作業の容易性を鑑み,適宜設計されるが,2m程度が好ましい。   FIG. 2 is a diagram showing the configuration of the transparent tube 10, FIG. 2 (a) shows one transparent tube 10, and FIG. 2 (b) shows a state in which a plurality of transparent tubes 10 are connected. . The transparent tube 10 is formed of a transparent material such as acrylic resin or polycarbonate resin. Since the hole wall surface is imaged through the transparent tube 10, the transparent tube 10 is preferably colorless and has high visible light transmittance. An example of the dimensions is, for example, an outer diameter of about 50 mm, a thickness of about 2 to 3 mm, and a length of about 2 m with respect to a standard hole diameter of 66 mm in domestic geological surveys. The outer diameter is smaller than the bore diameter of the borehole, and is appropriately designed so that the probe of the borehole camera device 20 can be inserted. The length dimension is appropriately designed in consideration of the ease of transportation to the site and the connection work on site, but about 2 m is preferable.

透明管10は,連結可能とするために,その両端にねじ切りされた連結手段11を備え,一端は雄ねじ11a,他端は雌ねじ11bにねじ切りされている。連結手段11は,ねじ連結に限られず,他の連結手段,例えば,凹凸嵌合などによるものであってもよい。連結手段11の長さは,適宜設定され,例えば5cmである場合,例えば2m間隔で透明管10を連結させる場合は,連結手段を含む透明管5の長さは2m5cmとなる。   The transparent tube 10 is provided with connecting means 11 threaded at both ends in order to be connectable, one end being threaded by a male screw 11a and the other end being threaded by a female screw 11b. The connection means 11 is not limited to the screw connection, and may be another connection means, for example, a concave-convex fitting. The length of the connection means 11 is appropriately set. For example, when the length is 5 cm, for example, when the transparent tube 10 is connected at intervals of 2 m, the length of the transparent tube 5 including the connection means is 2 m5 cm.

透明管10の外周側面部には,その両端間の長さ方向に延びる色付き直線標識12が付される。色は,後述するように,ボアホールカメラ装置20で孔壁面を撮影した差異に,孔壁面に重畳されて当該直線標識12が孔壁面と識別可能な色であり,例えば赤色や青色など,孔壁面の色と重ならない色が好ましい。   A colored linear marker 12 extending in the length direction between both ends of the transparent tube 10 is attached to the outer peripheral side surface portion. As will be described later, the color is a color that is superimposed on the hole wall surface and is distinguishable from the hole wall surface due to the difference obtained by photographing the hole wall surface with the borehole camera device 20. The color which does not overlap with the color of is preferable.

直線標識12は,複数の透明管10が連結された場合に,各直線標識12が一直線状になるように付される。透明管10がねじ連結される場合,直線標識12の周方向位置を自在に変えることができないので,直線標識12が付されていない状態の透明管10をねじで固定してから,各直線標識12が一直線状になるように,各透明管10に直線標識12を付す。直線標識12は,インクで描かれてもよいし,色付きテープが貼付されてもよい。連結手段が凹凸嵌合などで,各直線標識12の位置を周方向に自在に変更可能な場合は,周方向の任意の位置に直線標識12を付し,連結後に一直線状になるように調整すればよい。なお,連結手段がねじによる固定である場合,各透明管によって,ねじ切り位置が異なるため,最初に,上述のように,直線標識12が一直線状となって,複数の透明管が連結された状態で,各透明管の連結順序を示す符号(番号)を透明管に付すことが好ましい。その後,ボーリング孔に挿入するたびに,透明管を番号順に連結することで,連結された複数の透明管の直線標識12が一直線状となるように再現することができる。   The straight line mark 12 is attached so that each straight line mark 12 becomes a straight line when a plurality of transparent tubes 10 are connected. When the transparent tube 10 is screwed, the circumferential position of the linear marker 12 cannot be freely changed. Therefore, the transparent tube 10 without the linear marker 12 is fixed with a screw, and then each linear marker is fixed. A linear mark 12 is attached to each transparent tube 10 so that 12 is in a straight line. The straight line marker 12 may be drawn with ink, or a colored tape may be attached thereto. If the position of each linear marker 12 can be freely changed in the circumferential direction by connecting the concave and convex portions, etc., the linear marker 12 is attached at an arbitrary position in the circumferential direction and adjusted so that it becomes a straight line after coupling. do it. When the connecting means is fixed with a screw, the threading position differs depending on each transparent tube. First, as described above, the straight marker 12 is in a straight line and a plurality of transparent tubes are connected. Thus, it is preferable to attach a code (number) indicating the connection order of the transparent tubes to the transparent tubes. Thereafter, each time when the transparent tube is inserted into the boring hole, the transparent tubes are connected in numerical order, so that the straight markers 12 of the connected transparent tubes can be reproduced so as to be in a straight line.

ボアホールカメラ装置20は,孔壁面を撮影するカメラを内蔵するプローブ21,プローブ21をつり下げるケーブル22,ケーブル22を牽引するウインチ23を備え,さらに,画像データが入力されてその画像データを処理,表示,記録するコンピュータ装置25が設けられる。   The borehole camera device 20 includes a probe 21 incorporating a camera for photographing a hole wall surface, a cable 22 for hanging the probe 21, and a winch 23 for pulling the cable 22, and further processing the image data by inputting image data, A computer device 25 for displaying and recording is provided.

本地質調査方法で用いるボアホールカメラ装置20は,プローブ21の方位を検出する方位センサやプローブ21の深度を測定する深度計(プローブ21を一定速度で昇降させる駆動機構)を有する必要はない。   The borehole camera device 20 used in the geological survey method does not need to have an orientation sensor that detects the orientation of the probe 21 or a depth meter that measures the depth of the probe 21 (a drive mechanism that moves the probe 21 up and down at a constant speed).

図3は,ボアホールカメラ装置20のプローブ21の構成例を示す図である。プローブ21は,孔壁面の全周画像を撮影するカメラ211と,カメラ211で撮影された画像データを伝送するなどのデータ制御を行う制御部212と,カメラ211のレンズ外周部に取り付けられて,孔壁面の前方所定範囲を照らす照明部213とを備える。照明部213によってカメラ211の前方(鉛直下方向)の孔壁面が照らされ,カメラ211は照明が到達する孔壁面(撮影範囲L)を撮影する。カメラ211の前方斜め方向の孔壁面を撮影するために,好ましくは,カメラ211には,広角レンズが取り付けられる。カメラ211による孔壁面の撮影範囲は,例えば,図3に示す孔壁面Sにおける長さLの帯状の部分である。照明部213は,好ましくは,LEDであり,全周にわたって均等な光量を照射する。   FIG. 3 is a diagram illustrating a configuration example of the probe 21 of the borehole camera apparatus 20. The probe 21 is attached to a camera 211 that captures an entire circumference image of the hole wall surface, a control unit 212 that performs data control such as transmission of image data captured by the camera 211, and a lens outer periphery of the camera 211. And an illumination unit 213 that illuminates a predetermined range in front of the hole wall surface. The hole wall surface in front of the camera 211 (vertically downward) is illuminated by the illumination unit 213, and the camera 211 captures the hole wall surface (imaging range L) where the illumination reaches. In order to photograph the hole wall surface in the diagonally forward direction of the camera 211, a wide-angle lens is preferably attached to the camera 211. The photographing range of the hole wall surface by the camera 211 is, for example, a belt-like portion having a length L on the hole wall surface S shown in FIG. The illumination unit 213 is preferably an LED, and irradiates a uniform amount of light over the entire circumference.

図4は,ボアホールカメラ装置20による撮影画像模式図であり,図4におけるリング状の斜線が孔壁面の画像領域であり,中央の円部分は照明が到達しない暗闇により何も撮影されない黒色領域である。リング状の画像画像の周方向が孔壁面の水平方向であり,半径方向が縦方向となり,リングの内径と外径の差分が長さL(図3参照)となる。   FIG. 4 is a schematic diagram of an image taken by the borehole camera device 20. The ring-shaped diagonal line in FIG. 4 is the image area of the hole wall surface, and the central circle is a black area where nothing is taken due to the darkness where the illumination does not reach. is there. The circumferential direction of the ring-shaped image image is the horizontal direction of the hole wall surface, the radial direction is the vertical direction, and the difference between the inner diameter and the outer diameter of the ring is the length L (see FIG. 3).

そして,本実施の形態では,ボアホールカメラ装置20のプローブ21は,ボーリング孔に挿入された透明管10内に挿入されて,撮影を行うため,撮影画像には,上述した直線標識12が,撮影画像の半径方向に孔壁面と重畳して撮影される。さらに,撮影画像には,図4(a)に示されるように,透明管10の連結部分のつなぎ目13が,周方向に直線帯状に現れる。つなぎ目13は,連結部分の光の屈折により,画像が不連続となる部分が直線帯状となって現れるものである。   In the present embodiment, the probe 21 of the borehole camera device 20 is inserted into the transparent tube 10 inserted into the borehole and images are taken. Images are taken with the hole wall surface superimposed in the radial direction of the image. Further, in the photographed image, as shown in FIG. 4A, the joints 13 of the connecting portions of the transparent tube 10 appear in the form of straight bands in the circumferential direction. The joint 13 is a portion where the image becomes discontinuous due to refraction of the light at the connection portion, and appears as a straight band.

プローブ21は,透明管10内を降下しながら撮影行っている間,ケーブル22のよじれによるプローブ21の水平面上の回転によって,撮影方向が変化し,これにより,直線標識12の撮影位置も変化する。図4(a),(b)は,ケーブル22のよじれにより,撮影画像における直線標識12の位置が異なる場合を示す。   While the probe 21 is photographing while descending the transparent tube 10, the photographing direction changes due to the rotation of the probe 21 on the horizontal plane due to the kinking of the cable 22, and thereby the photographing position of the linear marker 12 also changes. . FIGS. 4A and 4B show a case where the position of the line marker 12 in the captured image differs due to the kinking of the cable 22.

撮影された画像データは,プローブ21の制御部212によってケーブル24で伝送され,コンピュータ装置25に送られる。プローブ21は,例えば,1秒間に60フレームの画像を撮影し,コンピュータ装置25は,既知の画像展開処理(例えば,特開平1−210594号公報,特開平3−132590号公報)により,リング状の孔壁面画像を展開した帯状の孔壁面展開画像を生成する。   The photographed image data is transmitted through the cable 24 by the control unit 212 of the probe 21 and sent to the computer device 25. The probe 21, for example, takes an image of 60 frames per second, and the computer device 25 uses a known image expansion process (for example, JP-A-1-210594 and JP-A-3-132590) to form a ring shape. A belt-like hole wall surface developed image is generated by developing the hole wall surface image.

図5は,1フレームの孔壁面展開画像の模式図である。1フレームの孔壁面展開画像は,縦m×横n(m,nは自然数)の画素で形成される。コンピュータ装置25は,孔壁面展開画像に含まれる直線標識12を含む画素を検出し,複数の孔壁面展開画像の各直線標識12の位置が同じ位置にくるように,孔壁面展開画像の画素を並べ替え,各孔壁面展開画像を合成する。また,撮影画像が,透明管10の連結部分のつなぎ目13を含む場合は,つなぎ目13は,展開画像における水平方向の直線として現れる。なお,図5及び後述の図7では,孔壁面の実際の地層模様の図示は省略され,直線標識12及びつなぎ目13のみが図示される。   FIG. 5 is a schematic diagram of a hole wall surface development image of one frame. One frame of the hole wall surface development image is formed of pixels of vertical m × horizontal n (m and n are natural numbers). The computer device 25 detects pixels including the straight line markers 12 included in the hole wall surface developed image, and sets the pixels of the hole wall surface expanded image so that the positions of the straight line markers 12 of the plurality of hole wall surface expanded images are at the same position. Rearrange and synthesize each hole wall image. Further, when the captured image includes the joint 13 of the connecting portion of the transparent tube 10, the joint 13 appears as a horizontal straight line in the developed image. In FIG. 5 and FIG. 7 described later, the actual formation pattern of the hole wall surface is not shown, and only the straight marker 12 and the joint 13 are shown.

図6は,孔壁面展開画像の画素の並べ替えを説明する図である。画素並べ替え処理は,コンピュータ装置の記憶手段に格納されたコンピュータプログラムを,コンピュータ装置の演算処理手段であるCPUが実行することにより実現される。図6(a)に示すように,1フレームの孔壁面展開画像が,縦m×横n(m,nは自然数)の画素で形成されている場合,上から順に1本の水平ライン分に画素(n個)を読み出し,各画素の色情報から,直線標識12の色を含む画素を検出し,選択する。直線標識12の幅により,複数の画素が直線標識12の色を含む場合,その中心の画素を選択する。図6(a)は,1本の水平ラインの画素のi番目が直線標識12の色情報を有する例を示す。   FIG. 6 is a diagram for explaining pixel rearrangement of the hole wall surface developed image. Pixel rearrangement processing is realized by a computer program stored in storage means of a computer device being executed by a CPU that is arithmetic processing means of the computer device. As shown in FIG. 6A, when the hole wall surface development image of one frame is formed of pixels of vertical m × horizontal n (m and n are natural numbers), one horizontal line in order from the top. Pixels (n) are read out, and pixels including the color of the line marker 12 are detected and selected from the color information of each pixel. When a plurality of pixels includes the color of the line marker 12 due to the width of the line marker 12, the center pixel is selected. FIG. 6A shows an example in which the i-th pixel of one horizontal line has the color information of the line marker 12.

そして,例えば,並べ替えの基準位置を孔壁面展開画像の左端位置とする場合,図6(b)に示すように,選択された画素を左端位置にシフトし,左端位置から,i,i+1,i+2,・・・,n,1,2,・・・i−1となるように,画素を並べ替える。   For example, when the rearrangement reference position is set to the left end position of the hole wall developed image, the selected pixel is shifted to the left end position as shown in FIG. 6B, and i, i + 1, The pixels are rearranged so that i + 2,..., n, 1, 2,.

上述の並べ替え処理を各水平ライン毎に合計m回行うことで,1フレームの孔壁面展開画像の方向を基準方向に補正することができる。   By performing the above-described rearrangement process a total of m times for each horizontal line, the direction of the hole wall surface developed image of one frame can be corrected to the reference direction.

なお,1フレームの孔壁面展開画像中では,直線標識12の位置は実質的に同じ位置であるので,1フレームの孔壁面展開画像のうちの任意の一方の水平ラインを選択して,直線標識12の色情報を含む画素を検出し,その順番を特定することで,全ラインについて,その検出された画素の順番が左端位置となるように,画素をシフトするようにしてもよい。   In addition, since the position of the straight line marker 12 is substantially the same position in the hole wall surface development image of one frame, any one horizontal line in the hole wall surface development image of one frame is selected, and the straight line mark is selected. The pixels may be shifted so that the order of the detected pixels becomes the left end position for all lines by detecting the pixels including 12 color information and specifying the order.

同様に,別フレームの孔壁面展開画像についても,同様に,直線標識12の色情報を含む画素を検出して,画素シフト処理を行うことで,複数の孔壁面展開画像それぞれの方向を,直線標識12の方向を基準として揃えることができ,当該処理が施された複数の孔壁面展開画像をつなぎ合わせることで,ボーリング孔内全体の孔壁展開画像を得ることができる。処理順序としては,複数の孔壁面展開画像をつなぎ合わせて合成した後に,各水平ラインについて,上述したような画素シフト処理を行うことによっても,同様の結果を得ることができる。孔壁面展開画像の一部分を所定幅で水平方向の切り出したストリップをつなぎ合わせるようにしてもよい。   Similarly, with respect to the hole wall surface development image of another frame, similarly, by detecting the pixel including the color information of the straight line marker 12 and performing pixel shift processing, the direction of each of the plurality of hole wall surface expansion images is linearly changed. The direction of the sign 12 can be aligned on the basis, and a plurality of hole wall surface developed images subjected to the processing can be connected to obtain a hole wall developed image of the entire borehole. As for the processing order, the same result can be obtained by performing the pixel shift processing as described above for each horizontal line after combining and synthesizing a plurality of hole wall surface development images. You may make it connect the strip which cut out a part of hole wall surface expansion | deployment image by the predetermined width in the horizontal direction.

また,上述では,直線標識12の色情報を含む画素として選択された画素は,展開画像の左端位置にシフトされたが,右端位置でもかまわない。また,展開画像の端部ではなく,水平方向の両端間の途中位置を基準とすることも可能であるが,左右の端位置と比較して,本来,孔壁面の画像ではない直線が目立ってしまうため,左右の端位置を基準位置とすることが好ましい。   In the above description, the pixel selected as the pixel including the color information of the line marker 12 has been shifted to the left end position of the developed image, but may be the right end position. It is also possible to use the halfway position between both ends in the horizontal direction instead of the end of the developed image as a reference, but the straight line that is not originally an image of the hole wall is conspicuous compared to the left and right end positions. Therefore, it is preferable to set the left and right end positions as reference positions.

孔壁面展開画像では,左右の端位置は,南方向であり,水平方向の中央位置が北方向となるように展開されるため,透明管10は,直線標識12が南方向となるように,ボーリング孔に挿入される。   In the hole wall expansion image, the left and right end positions are in the south direction, and the horizontal center position is expanded in the north direction. Therefore, the transparent tube 10 has the straight sign 12 in the south direction. Inserted into the borehole.

コンピュータ装置25は,画素シフト処理された孔壁面展開画像データをディスプレイに表示可能であり,また,磁気記録媒体(内蔵されるハードディスクドライブ)や光学記録媒体(DVDなど)などの記録媒体に記録し,さらに,それを再生表示することができる。コンピュータ装置25は,さらに孔壁面展開画像を加工するためのアプリケーションプログラムを実行することも可能である。   The computer device 25 can display the pixel wall developed image data on the hole wall surface on a display, and can record the data on a recording medium such as a magnetic recording medium (built-in hard disk drive) or an optical recording medium (DVD). In addition, it can be reproduced and displayed. The computer device 25 can also execute an application program for processing the hole wall surface developed image.

図7は,画素シフト処理により複数の孔壁面展開画像の方向を揃えて合成した状態を示す模式図であり,図7(a)は,画素シフト処理前の各孔壁面展開画像を示し,図7(b)は,画素シフト処理により,各孔壁面展開画像の方向が揃えられ,直線標識12が一直線状に垂直方向に延びるように各孔壁面展開画像が合成された状態を示す。図7(b)は,直線標識12を明示するために,直線標識12の色情報を含む画素のシフト位置(基準位置)を,水平ラインの中央位置に設定した例を示す。   FIG. 7 is a schematic diagram illustrating a state in which the directions of a plurality of hole wall surface development images are aligned by pixel shift processing, and FIG. 7A illustrates each hole wall surface expansion image before pixel shift processing. 7 (b) shows a state in which each hole wall surface developed image is synthesized so that the direction of each hole wall surface expanded image is aligned by the pixel shift processing, and the straight marker 12 extends in a straight line in the vertical direction. FIG. 7B shows an example in which the shift position (reference position) of the pixel including the color information of the line marker 12 is set to the center position of the horizontal line in order to clearly show the line marker 12.

さらに,図7(b)に示すように,透明管10のつなぎ目13に対応する水平方向の直線も示されることで,このつなぎ目13は深さ方向の位置情報として機能し,このつなぎ目13(水平方向直線)の数を上からカウントすることで,孔壁面展開画像の深さ位置を把握することができる。例えば,手動でウインチ23を操作してプローブ21を引き下ろすと,プローブ21の移動速度が一定でなくなることが考えられ,この場合,つなぎ目13が一定間隔とならないが,合成された孔壁面展開画像上に現れるつなぎ目13の位置を目安として,つなぎ目13を目視で確認することで,おおよその深さ位置を確認することができる。すなわち,ボアホールカメラ装置20が,自動カメラ駆動機構(深度センサとして機能するもの)を有さなくとも,孔壁面展開画像の深さ位置を確認することができる。   Further, as shown in FIG. 7B, a horizontal straight line corresponding to the joint 13 of the transparent tube 10 is also shown, so that the joint 13 functions as position information in the depth direction. By counting the number of (direction straight lines) from above, the depth position of the hole wall developed image can be grasped. For example, if the probe 21 is pulled down manually by operating the winch 23, it is considered that the moving speed of the probe 21 is not constant. In this case, the joints 13 do not have a constant interval. The approximate depth position can be confirmed by visually confirming the joint 13 with the position of the joint 13 appearing above as a guide. That is, even if the borehole camera device 20 does not have an automatic camera drive mechanism (functioning as a depth sensor), the depth position of the hole wall surface developed image can be confirmed.

10:透明管,11:連結手段,12:直線標識,20:ボアホールカメラ装置,21:プローブ,22:ケーブル,23:ウインチ,25:コンピュータ装置,211:カメラ,212:制御部,213:照明部   10: transparent tube, 11: connecting means, 12: straight line marker, 20: borehole camera device, 21: probe, 22: cable, 23: winch, 25: computer device, 211: camera, 212: control unit, 213: illumination Part

Claims (5)

ボアホールカメラ装置を構成するカメラを内蔵するプローブをボーリング孔に挿入して,ボーリング孔内の孔壁面を撮影し,前記ボアホールカメラ装置は,前記プローブの方向を検出する方位センサ及び前記プローブの深さ位置を測定する深度センサを有さない地質調査方法において,
長さ方向に延びる色付き直線が付された所定長さの透明管を,各透明管の色付き直線が一直線状になるように複数連結し,
前記連結された複数の透明管をボーリング孔に挿入し,
前記連結された複数の透明管内に,前記プローブを挿入し,該プローブを深さ方向に移動させながら,前記プローブに内蔵されるカメラにより,前記透明管の前記色付き直線が重畳されたボーリング孔内の複数の孔壁面全周画像を撮影することを特徴とする地質調査方法。
A probe including a camera constituting the borehole camera device is inserted into the borehole, and a hole wall surface in the borehole is photographed. The borehole camera device includes an orientation sensor for detecting the direction of the probe and a depth of the probe. In a geological survey method that does not have a depth sensor to measure the position ,
A plurality of transparent tubes of a predetermined length with colored straight lines extending in the length direction are connected so that the colored straight lines of each transparent tube are in a straight line,
Inserting the connected transparent tubes into the borehole;
Inserting the probe into the plurality of connected transparent tubes and moving the probes in the depth direction, the inside of the borehole where the colored straight line of the transparent tube is superimposed by a camera built in the probe. A geological survey method characterized in that a plurality of hole wall perimeter images are taken .
請求項1において,
前記プローブに内蔵されるカメラにより撮影された前記複数の孔壁面全周画像は,前記ボアホールカメラ装置に接続するコンピュータ装置に送信され,
前記コンピュータ装置に,各孔壁面全周画像の前記色付き直線部分が同じ位置となるように,前記複数の孔壁面全周画像を展開して,合成し,孔壁面展開画像を生成する処理を実行させることを特徴とする地質調査方法。
Oite to claim 1,
The plurality of hole wall circumferential images taken by a camera built in the probe are transmitted to a computer device connected to the borehole camera device,
The computer apparatus executes a process of developing and synthesizing the plurality of hole wall circumferential images so that the colored linear portions of the hole wall circumferential images are in the same position, and generating a hole wall developed image. Geological survey method characterized by letting.
請求項において,
前記コンピュータ装置に,各孔壁面全周画像の前記色付き直線部分が端部にくるように,前記複数の孔壁面全周画像を展開させる処理を実行させることを特徴とする地質調査方法。
In claim 2 ,
A geological survey method characterized by causing the computer device to execute a process of developing the plurality of hole wall surface circumferential images so that the colored linear portion of each hole wall surface image is located at an end.
地質調査のための穿たれたボーリング孔に挿入される透明管であって,長さ方向に延びる色付き直線が付され,ボアホールカメラ装置を構成するカメラを内蔵するプローブが挿入されることを特徴とする透明管。   A transparent tube inserted into a drilled borehole for geological survey, characterized by a colored straight line extending in the length direction and a probe containing a camera constituting the borehole camera device being inserted Transparent tube. 請求項において,
端部に別の透明管と連結可能な連結手段を有することを特徴とする透明管。
In claim 4 ,
A transparent tube characterized in that it has connecting means that can be connected to another transparent tube at the end.
JP2010262299A 2010-11-25 2010-11-25 Geological survey method and transparent tube used for it Expired - Fee Related JP5689660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010262299A JP5689660B2 (en) 2010-11-25 2010-11-25 Geological survey method and transparent tube used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262299A JP5689660B2 (en) 2010-11-25 2010-11-25 Geological survey method and transparent tube used for it

Publications (2)

Publication Number Publication Date
JP2012112175A JP2012112175A (en) 2012-06-14
JP5689660B2 true JP5689660B2 (en) 2015-03-25

Family

ID=46496679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262299A Expired - Fee Related JP5689660B2 (en) 2010-11-25 2010-11-25 Geological survey method and transparent tube used for it

Country Status (1)

Country Link
JP (1) JP5689660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321001A (en) * 2016-08-31 2017-01-11 西安科技大学 Drill hole anchoring structure for monitoring floor surrounding rock fractures and construction method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601776B1 (en) * 2014-09-19 2016-03-09 김윤성 Withdrawable transparent pipe for borehole scan and transparent pipe withdrawal method using the same
KR102057699B1 (en) * 2014-12-09 2020-01-22 이지선 Camera module unit for monitoring the inside of a pipeline and perforated pipe with the unit
CN104912541A (en) * 2015-07-03 2015-09-16 中国矿业大学 Drilling peering instrument casing device and using method thereof
JP2017069763A (en) * 2015-09-30 2017-04-06 鹿島建設株式会社 Underwater visual recognition device and inspection method for underwater tubular structure executed using the same
CN105401938B (en) * 2015-11-24 2019-04-05 西安科技大学 A kind of wall-rock crack steady state imaging technique and orientation recognition system
JP6688606B2 (en) * 2015-12-24 2020-04-28 前田建設工業株式会社 Front face exploration method
JP6858414B2 (en) * 2019-01-08 2021-04-14 株式会社ボア Joint member that closes the open end of the transparent pipe used for geological survey
CN112964854A (en) * 2021-02-03 2021-06-15 成都大学 Intelligent geological disaster monitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921887A (en) * 1982-07-02 1984-02-03 日本工営株式会社 Inserting method into boring hole of flexible thin-film tube
US5123492A (en) * 1991-03-04 1992-06-23 Lizanec Jr Theodore J Method and apparatus for inspecting subsurface environments
JP3959079B2 (en) * 2004-07-28 2007-08-15 関西電力株式会社 Casing boring method and casing boring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321001A (en) * 2016-08-31 2017-01-11 西安科技大学 Drill hole anchoring structure for monitoring floor surrounding rock fractures and construction method thereof
CN106321001B (en) * 2016-08-31 2019-04-09 西安科技大学 It is a kind of for monitoring the borehole anchorage structure and its construction method in floor rocks crack

Also Published As

Publication number Publication date
JP2012112175A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5689660B2 (en) Geological survey method and transparent tube used for it
EP0314475B1 (en) Bore hole scanner
US8591401B2 (en) Endoscope apparatus displaying information indicating gravity direction on screen
JP2007114079A (en) Subsidence measuring technique and device thereof
US20140375693A1 (en) Transprojection of geometry data
CN1591176B (en) Radiation image taking apparatus, radiation image taking system, and radiation image taking method
JP3119012U (en) Dedicated borehole TV camera for creating a hole wall unfolded image by image processing forward video video in the hole using computer software
ATE434168T1 (en) CALIBRATION OF A SURVEYING INSTRUMENT
JP5137448B2 (en) Survey system for tunnel face
CN1965578A (en) Digital 3D/360 degree camera system
JP2010219825A (en) Photographing device for three-dimensional measurement
JP4901797B2 (en) Construction digital camera
JP2001272228A (en) System and method for measuring amount of relative displacement
KR101163206B1 (en) Scanning Apparatus for Drilling Holes Using Image Sensors and Razer Sensors
JP2009140402A (en) Information display device, information display method, information display program, and recording medium with recorded information display program
CN105865423A (en) A binocular range finding method, a binocular range finding device, a panoramic image mosaicking method and a system thereof
JP2006275984A (en) Method of measuring displacement of high-voltage tower
JP3415000B2 (en) Pipe development system
JP5139740B2 (en) Tail clearance automatic measurement system and tail clearance automatic measurement method
JP2011138096A (en) Measuring microscope
Yu et al. Development of a Dundee Ground Truth imaging protocol for recording indoor crime scenes to facilitate virtual reality reconstruction
JP4240369B2 (en) Hole wall development image generation method and apparatus
JP2013057190A (en) Reinforcing bar arrangement inspection device
JP2010218132A (en) System for development of surface image of tube inner wall
JP3137928B2 (en) Perforated parallax image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5689660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees