JP5684063B2 - Volatilization apparatus and method in an extruder - Google Patents

Volatilization apparatus and method in an extruder Download PDF

Info

Publication number
JP5684063B2
JP5684063B2 JP2011165201A JP2011165201A JP5684063B2 JP 5684063 B2 JP5684063 B2 JP 5684063B2 JP 2011165201 A JP2011165201 A JP 2011165201A JP 2011165201 A JP2011165201 A JP 2011165201A JP 5684063 B2 JP5684063 B2 JP 5684063B2
Authority
JP
Japan
Prior art keywords
screw
extruder
devolatilization
flight
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011165201A
Other languages
Japanese (ja)
Other versions
JP2013028055A (en
Inventor
忠幸 大久保
忠幸 大久保
圭彦 岩本
圭彦 岩本
淳 柿崎
淳 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2011165201A priority Critical patent/JP5684063B2/en
Publication of JP2013028055A publication Critical patent/JP2013028055A/en
Application granted granted Critical
Publication of JP5684063B2 publication Critical patent/JP5684063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Description

本発明は、押出機における脱揮装置及び方法に関し、特に、各スクリュセグメントのチップフライト部をねじることにより、輸送能力の付加及びシリンダ内部の原料の過剰充満の防止を得るための新規な改良に関する。   The present invention relates to a devolatilizing apparatus and method in an extruder, and more particularly, to a novel improvement for obtaining additional transportation capacity and preventing overfilling of raw materials inside a cylinder by twisting the chip flight part of each screw segment. .

従来、用いられていたこの種の押出機における脱揮装置としては、例えば、特許文献1〜4の従来構成を挙げることができる。
すなわち、前述の特許文献1の押出機のスクリュの搬送混練方法においては、図示していないが、混練部と脱揮部が交互に複数ヶ所に設けられ、脱揮部では真空状態になっており、この脱揮部においてスクリュの搬送混練作用により脱揮を行う方法である。
Examples of the devolatilization apparatus in this type of extruder that has been conventionally used include the conventional configurations of Patent Documents 1 to 4.
That is, in the method of conveying and kneading the screw of the extruder of Patent Document 1 described above, the kneading unit and the devolatilization unit are alternately provided at a plurality of locations, and the devolatilization unit is in a vacuum state, although not illustrated. In this devolatilization section, devolatilization is performed by screw kneading action.

また、前述の特許文献2の脱揮用二軸スクリュ押出機においては、前述の特許文献1の構成の場合と同様に、原料に充満部で気密性が保持された脱揮領域で、原料を下流に移送可能なように捩れた混練フライトを有し、材料を下流に送りつつ練り混ぜて揮発分を分離する装置が提示され、図6で示されるように構成されていた。
すなわち、図6において、符号1で示されるものは、全体形状が長手中空状をなすシリンダであり、このシリンダ1の後段側にはシリンダ1内を負圧状態に保つための脱揮用の真空ベント口2が形成されている。
Moreover, in the biaxial screw extruder for devolatilization of the above-mentioned patent document 2, like the case of the structure of the above-mentioned patent document 1, in the devolatilization area | region where the airtightness was hold | maintained by the filling part, the raw material was supplied. An apparatus having kneading flights twisted so as to be transported downstream and separating volatile components by feeding and kneading materials downstream was proposed and configured as shown in FIG.
That is, in FIG. 6, what is indicated by reference numeral 1 is a cylinder whose overall shape is a longitudinal hollow shape, and for the devolatilization for keeping the inside of the cylinder 1 in a negative pressure state on the rear stage side of the cylinder 1. A vacuum vent 2 is formed.

前記シリンダ1内には、一対のスクリュ3が互いに噛み合った状態で内設されており、このスクリュ3は、その上流から下流にかけて混練部4及び脱揮領域5が形成されている。
前記脱揮領域5は、その上流側、すなわち、前記混練部4の直後は表面更新性スクリュ6が形成されていると共に、この脱揮領域5の最下流位置には、原料充満部7が形成されている。
A pair of screws 3 are installed in the cylinder 1 in a state where the screws 3 mesh with each other, and the screw 3 is formed with a kneading portion 4 and a devolatilization region 5 from the upstream side to the downstream side.
In the devolatilization region 5, a surface renewable screw 6 is formed at the upstream side thereof, that is, immediately after the kneading unit 4, and a raw material filling portion 7 is formed at the most downstream position of the devolatilization region 5. Has been.

前記表面更新性スクリュ6は、図7及び図8に示されるように、各ディスク8が順次所定回転角度θずつずらせた状態でスクリュ軸10に取付けられたスクリュセグメント9で構成されている。
次に、前述の構成において、前記シリンダ1の原料供給口(図示せず)からプラスチック原料を供給すると、スクリュ3により下流の混練部4へ輸送され、この混練部4で充満することにより、脱揮領域5の気密性が保たれた状態でこの脱揮領域5へ輸送される。
As shown in FIGS. 7 and 8, the surface renewable screw 6 includes a screw segment 9 attached to the screw shaft 10 in a state where the disks 8 are sequentially shifted by a predetermined rotation angle θ.
Next, in the above-described configuration, when a plastic raw material is supplied from a raw material supply port (not shown) of the cylinder 1, the plastic raw material is transported to the downstream kneading unit 4 by the screw 3 and filled with the kneading unit 4, thereby removing the plastic raw material. The volatile region 5 is transported to the devolatilized region 5 in a state where the airtightness is maintained.

前記脱揮領域5へ輸送されたプラスチック原料は、前記表面更新性スクリュ6によって表面から内部へと入れ替えられ、プラスチック原料に含有されている揮発成分を分離・除去しながら下流へ輸送され、前記原料充満部7を経て、図示しないダイスから水中カッタ装置へ送られる。
尚、前記表面更新性スクリュ6のスクリュセグメント9は、下流方向へ輸送能力を有する混練ピースで、各ディスク8はスクリュ軸10周りに、位相角θ(45度)で配列されている。
The plastic raw material transported to the devolatilization region 5 is replaced from the surface to the inside by the surface renewable screw 6 and transported downstream while separating and removing volatile components contained in the plastic raw material. After passing through the filling unit 7, the die is sent from a die not shown to the underwater cutter device.
The screw segment 9 of the surface renewable screw 6 is a kneading piece having a transport capability in the downstream direction, and each disk 8 is arranged around the screw shaft 10 at a phase angle θ (45 degrees).

また、前述の特許文献3に開示されたスクリュ混練押出機においては、図9に示されるように、シリンダ1内に設けられたスクリュ3は、その上流から下流にかけて、攪拌部11、混練輸送部12、表面更新性スクリュピース6及び混練輸送部12aで構成されており、各混錬輸送部12,12a間に表面更新性スクリュピース6が配設されている。   Further, in the screw kneading extruder disclosed in the above-mentioned Patent Document 3, as shown in FIG. 9, the screw 3 provided in the cylinder 1 has a stirring unit 11, a kneading and transporting unit from upstream to downstream. 12, the surface renewable screw piece 6 and the kneading and transporting portion 12a are provided, and the surface renewable screw piece 6 is disposed between the kneading and transporting portions 12 and 12a.

また、前述の特許文献4に開示された混合装置及び混合要素においては、図10に示されるように、互いに噛み合う一対のスクリュセグメント9には、その外周位置に互いに180度対向して一対のウィング状のチップフライト部20が形成され、この各チップフライト部20によって表面更新性を促進するようにしていた。   Further, in the mixing device and the mixing element disclosed in the above-mentioned Patent Document 4, as shown in FIG. 10, the pair of screw segments 9 meshing with each other has a pair of wings facing each other at 180 degrees at the outer peripheral position. The chip flight part 20 is formed, and the surface flight property is promoted by each chip flight part 20.

特開平11−277604号公報JP 11-277604 A 特開2010−179575号公報JP 2010-179575 A 特開2004−306547号公報JP 2004-306547 A 特開昭63−151340号公報JP 63-151340 A

従来の押出機における脱揮装置は、以上のように構成されているため、次のような課題が存在していた。
すなわち、前述の特許文献1で示される従来構成の場合、脱揮領域で存在する各スクリュの噛み合い部で溶融樹脂の一部を逆流させ、滞留時間を稼ぐことによって脱揮をするが、脱揮の促進には、滞留時間だけでなく、脱揮される樹脂の暴露面積の拡大が必要である。しかし、フライトの繋がった輸送スクリュでは輸送能力が高く、表面更新能力が不足することがあった。
また、脱揮領域でのプラスチック原料の暴露面積が減少しないように、シリンダ内部でプラスチック原料を充満させない輸送能力の高いスクリュピースを配置し、表面更新させることを考慮しなくてはならない。しかし、輸送能力が高いため、滞留時間が低下し、表面更新効率が悪くなるため、多くの混練スクリュを配備し、脱揮領域を長くしないと効果が得られないという欠点があった。
また、特許文献2で示される従来構成の場合、表面の更新を促進させるため、セグメントスクリュの多数のディスクに位相角を持たせた状態で軸方向に積層させなければならず、セグメントスクリュ自体が軸方向に長くなることになっていた。
また、特許文献3で示される従来構成の場合、各混練輸送部の間に表面更新性スクリュピースを設けていたため、スクリュ自体の全長を短縮することが困難であった。
また、特許文献4に示される従来構成の場合、各スクリュセグメントにチップフライト部が形成されているが、このチップフライト部にねじりが加えられていないため、輸送能力を期待することが難しく、過剰な滞留を避けることが困難であった。
Since the devolatilization apparatus in the conventional extruder is configured as described above, the following problems exist.
That is, in the case of the conventional configuration shown in Patent Document 1 described above, devolatilization is performed by causing a part of the molten resin to flow backward at the meshing portion of each screw existing in the devolatilization region and increasing the residence time. In order to promote this, not only the residence time but also the expansion of the exposed area of the resin to be devolatilized is necessary. However, a transport screw connected to a flight has a high transport capacity and sometimes lacks a surface renewal capacity.
Also, in order to prevent the exposed area of the plastic raw material in the devolatilization region from being reduced, it is necessary to consider repositioning the surface by arranging a screw piece having a high transport capability that does not fill the plastic raw material inside the cylinder. However, since the transport capacity is high, the residence time is reduced and the surface renewal efficiency is deteriorated. Therefore, there is a disadvantage that the effect cannot be obtained unless a large number of kneading screws are provided and the devolatilization region is lengthened.
Further, in the case of the conventional configuration shown in Patent Document 2, in order to promote the renewal of the surface, many disks of the segment screw must be laminated in the axial direction with a phase angle, and the segment screw itself is It was supposed to be longer in the axial direction.
In the case of the conventional configuration shown in Patent Document 3, since the surface renewable screw piece is provided between the kneading and transporting portions, it is difficult to shorten the entire length of the screw itself.
Further, in the case of the conventional configuration shown in Patent Document 4, a chip flight part is formed in each screw segment, but since the twist is not applied to the chip flight part, it is difficult to expect the transport capability, and excessive It was difficult to avoid stagnation.

本発明による押出機における脱揮装置は、真空ベント口を有するシリンダ内で一対のスクリュが互いに噛み合い同方向に回転する二軸押出機の脱揮領域において、前記脱揮領域の上流の混練部の直後に表面更新性スクリュを配置してなる押出機における脱揮装置において、前記表面更新性スクリュの各スクリュセグメントの外周に設けたチップフライト部が、隙間を介して互いに非接触で噛み合うと共に、前記各チップフライト部は、ねじりが形成され、かつ、前記表面更新性スクリュのスクリュ軸直角断面における長軸側の両端部に空隙間部を介して形成され、前記空隙間部内を他の前記スクリュセグメントの前記チップフライト部が通過できるように配置している構成であり、また、前記チップフライト部は、断面形状で台形をなす構成であり、また、本発明による押出機における脱揮方法は、真空ベント口を有するシリンダ内で一対のスクリュが互いに噛み合い同方向に回転する二軸押出機の脱揮領域において、前記脱揮領域の上流の混練部の直後に表面更新性スクリュを配置してなる押出機における脱揮装置を用い、前記表面更新性スクリュの各スクリュセグメントの外周に設けたチップフライト部が、隙間を介して互いに非接触で噛み合うと共に、前記各チップフライト部は、ねじりが形成され、かつ、前記表面更新性スクリュのスクリュ軸直角断面における長軸側の両端部に空隙間部を介して形成され、前記空隙間部内を他の前記スクリュセグメントの前記チップフライト部が通過できるように配置している状態で用いる方法であり、また、前記チップフライト部は、断面形状で台形をなす方法である。 The devolatilization apparatus in the extruder according to the present invention includes a kneading section upstream of the devolatilization area in a devolatilization area of a twin-screw extruder in which a pair of screws mesh with each other in a cylinder having a vacuum vent and rotate in the same direction. Immediately after, in the devolatilization apparatus in the extruder formed by disposing the surface renewable screw, each chip flight part provided on the outer periphery of each screw segment of the surface renewable screw meshes with each other in a non-contact manner through a gap, Each of the chip flight portions is formed with a twist , and is formed at both end portions on the long axis side in the cross section perpendicular to the screw axis of the surface renewable screw via an air gap portion, and the other screw in the air gap portion is formed. a configuration wherein the tip flight portion of the segments are arranged so as to be passed through, also, the tip flight portion is configured to form a trapezoidal sectional shape The devolatilization method in the extruder according to the present invention is a devolatilization region of a twin-screw extruder in which a pair of screws mesh with each other in a cylinder having a vacuum vent port and rotate in the same direction. Using a devolatilizer in an extruder in which a surface renewable screw is arranged immediately after the upstream kneading part, chip flight parts provided on the outer periphery of each screw segment of the surface renewable screw are not mutually connected via a gap. The tip flight portions are engaged with each other and are twisted , and are formed at both ends on the long axis side in the cross section perpendicular to the screw axis of the surface renewable screw via air gap portions. the a method used in a state where the tip flight portion of the other of the screw segments are arranged so as to be passed through, also, the tip flight portion A method of forming a trapezoidal sectional shape.

本発明による押出機における脱揮装置及び方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、真空ベント口を有するシリンダ内で一対のスクリュが互いに噛み合い同方向に回転する二軸押出機の脱揮領域において、前記脱揮領域の上流の混練部の直後に表面更新性スクリュを配置してなる押出機における脱揮装置において、前記表面更新性スクリュの各スクリュセグメントの外周に設けたチップフライト部が、隙間を介して互いに非接触で噛み合うと共に、前記各チップフライト部は、ねじりが形成され、かつ、前記表面更新性スクリュのスクリュ軸直角断面における長軸側の両端部に空隙間部を介して形成され、前記空隙間部内を他の前記スクリュセグメントの前記チップフライト部が通過できるように配置していることにより、混練部直後の脱揮領域に表面更新性スクリュセグメントを配置してスクリュに原料を滞留させ、隣り合うスクリュの羽根が隙間を保ったまま噛み合うことによりプラスチック原料が薄膜化し、表面更新を促進させることができる。また、表面更新性スクリュセグメントに設けられたチップフライト部にねじりを設けることで過剰な滞留を抑制し、減圧雰囲気下に曝されるプラスチック原料の表面積を増加させ原料に含有される揮発成分を効果的に除去することが可能となる。
また、前記チップフライト部は、断面形状で台形をなすことにより、チップフライト部にねじり加工を容易に施すことができる。
Since the devolatilization apparatus and method in the extruder according to the present invention are configured as described above, the following effects can be obtained.
That is, in a devolatilization area of a twin screw extruder in which a pair of screws mesh with each other in a cylinder having a vacuum vent port and rotate in the same direction, a surface renewable screw is disposed immediately after the kneading section upstream of the devolatilization area. in devolatilizer in the extruder comprising Te, each chip flight portion provided on the outer periphery of each screw segment of the surface renewability screw, meshes with a non-contact with each other through a gap, said each chip flight portion, twisting Formed and formed at both ends on the long axis side in the cross-section perpendicular to the screw axis of the surface renewable screw via an air gap portion, and the chip flight portion of another screw segment can pass through the air gap portion. by being arranged as the residence of the raw material on the screw by placing the surface renewable screw segment devolatilization region immediately after the kneading portion So, blades of adjacent screw plastic material is thinned by meshing while maintaining a gap, it is possible to accelerate the surface renewal. In addition, twisting is provided in the tip flight part provided in the surface renewable screw segment to suppress excessive stagnation and increase the surface area of the plastic raw material exposed to the reduced pressure atmosphere. Can be removed.
Further, the tip flight part can be easily twisted to the tip flight part by forming a trapezoidal cross section.

本発明による押出機における脱揮装置を示す概略構成図である。It is a schematic block diagram which shows the devolatilization apparatus in the extruder by this invention. 図1の比較例を示す概略構成図である。It is a schematic block diagram which shows the comparative example of FIG. 図1の表面更新性スクリュセグメントの噛み合い状態を示す断面図である。It is sectional drawing which shows the meshing state of the surface renewable screw segment of FIG. 図3のスクリュセグメントの右側面図である。FIG. 4 is a right side view of the screw segment of FIG. 3. 図1の押出機における脱揮装置の他の形態を示す概略構成図である。It is a schematic block diagram which shows the other form of the devolatilization apparatus in the extruder of FIG. 従来構成を示す概略構成図である。It is a schematic block diagram which shows a conventional structure. 図6の表面更新性スクリュを示す拡大側面図である。It is an enlarged side view which shows the surface renewable screw of FIG. 図7の右側からみた正面図である。It is the front view seen from the right side of FIG. 他の従来構成を示す概略構成図である。It is a schematic block diagram which shows another conventional structure. 他の従来構成を示す要部の断面図である。It is sectional drawing of the principal part which shows another conventional structure. 各スクリュ形状における脱揮性能を示す特性図である。It is a characteristic view which shows the devolatilization performance in each screw shape. 各スクリュ形状における比エネルギーを示す特性図である。It is a characteristic view which shows the specific energy in each screw shape. 各スクリュ形状における押出機先端出口樹脂温度を示す特性図である。It is a characteristic view which shows the extruder front-end | tip exit resin temperature in each screw shape.

本発明は、各スクリュセグメントのチップフライト部をねじることにより、輸送能力の付加及びシリンダ内部の原料の過剰充満の防止をしながら、表面更新・薄膜化させることにより総暴露面積が拡大し、高い脱揮効果が得られるようにした押出機における脱揮装置及び方法を提供することを目的とする。   By twisting the chip flight part of each screw segment, the total exposed area is increased by renewing and thinning the surface while adding transportation capability and preventing overfilling of the raw material inside the cylinder. An object of the present invention is to provide a devolatilization apparatus and method in an extruder that can achieve a devolatilization effect.

以下、図面と共に本発明による押出機における脱揮装置及び方法の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には、同一符号を用いて説明する。
図1において符号1で示されるものは全体形状が長手中空形状の円筒形のシリンダであり、このシリンダ1の後段側にシリンダ1内を負圧状態に保つための脱揮用の真空ベント口2が形成されている。
Hereinafter, preferred embodiments of a devolatilization apparatus and method in an extruder according to the present invention will be described with reference to the drawings.
In addition, the same code | symbol is demonstrated to the part which is the same as that of a prior art example, or an equivalent part.
A reference numeral 1 in FIG. 1 denotes a cylindrical cylinder having an overall hollow shape, and a vacuum vent port for devolatilization for keeping the inside of the cylinder 1 in a negative pressure state on the rear stage side of the cylinder 1. 2 is formed.

前記シリンダ1内には、一対のスクリュ3が互いに噛み合った状態で内設されており、このスクリュ3は、その上流から下流にかけて混練部4及び脱揮領域5が設けられ、この脱揮領域5内には、その上流に表面更新性スクリュ6が形成され、その下流に原料充満部7が形成されている。   A pair of screws 3 are installed in the cylinder 1 in a state where they are engaged with each other. The screw 3 is provided with a kneading portion 4 and a devolatilization region 5 from the upstream side to the downstream side. Inside, a surface renewable screw 6 is formed upstream thereof, and a raw material filling portion 7 is formed downstream thereof.

前記表面更新性スクリュ6は、前記混練部4の直後の脱揮領域5の前段として配設されており、この表面更新性スクリュ6は、表面更新・薄膜化能力の高いスクリュセグメントよりなり、総暴露面積が拡大し、原料中に含まれる揮発成分が効果的に除去されるように構成されている。   The surface renewable screw 6 is disposed as a front stage of the devolatilization region 5 immediately after the kneading section 4, and the surface renewable screw 6 is composed of a screw segment having a high surface renewal / thinning ability. The exposure area is enlarged, and the volatile components contained in the raw material are effectively removed.

前記表面更新性スクリュ6は、図3及び図4で示されるように構成されている。
すなわち、前記脱揮領域5に位置する前記表面更新性スクリュ6は、一対のスクリュセグメント6A,6Bと6C,6Dを組み込み、そのうちのスクリュセグメント6Bと6Cのスクリュ軸直角断面における長軸側の両端部に空隙間部22を介して一対のチップフライト部20が形成され、各チップフライト部20同士が狭い隙間21を介して互いに非接触状態で噛み合いかつ二軸同方向回転できるように構成されている。すなわち、前記空隙間部22内を、図3で示されるように、他のスクリュセグメント6B又は6Cのチップフライト部20が通過できるように配置している。
尚、前記各チップフライト部20による隙間21を保持した状態で各表面更新性スクリュ6が回転することにより、原料の薄膜化が可能となり、表面更新性が促進され、さらに、総暴露面積の拡大により高い脱揮効果が得られる。
また、前記各チップフライト部20は、断面台形状をなすと共に、原料である溶融樹脂の輸送動作を可能とするために、軸方向に沿って螺旋状にねじりが加えられ、このねじりはLEAD数で表わすと、1〜8程度である。
The surface renewable screw 6 is configured as shown in FIGS.
That is, the surface renewable screw 6 located in the devolatilization region 5 incorporates a pair of screw segments 6A, 6B and 6C, 6D, and both ends on the long axis side in the cross section perpendicular to the screw axis of the screw segments 6B and 6C. A pair of tip flight portions 20 are formed in the portion via the air gap portion 22, and the tip flight portions 20 are configured to engage with each other in a non-contact state via the narrow gap 21 and rotate in the same direction in two axes. Yes. That is, it arrange | positions so that the chip flight part 20 of the other screw segment 6B or 6C can pass the inside of the said air gap part 22 as FIG. 3 shows.
In addition, by rotating each surface renewable screw 6 in a state where the gap 21 by each chip flight part 20 is held, it becomes possible to reduce the thickness of the raw material, promote the surface renewability, and further increase the total exposed area. A higher devolatilizing effect can be obtained.
Each of the chip flight sections 20 has a trapezoidal cross section and is twisted in a spiral shape along the axial direction so as to be able to transport a molten resin as a raw material. Is about 1 to 8.

次に、動作について説明する。
押出機内に供給された原料は、シリンダ1内部に挿通されたスクリュ3により混練部4まで輸送され、混練部4で剪断作用を付加された後、輸送用のスクリュセグメントにより負圧状態となった脱揮領域5へ輸送される。この脱揮領域5には表面更新性を有するスクリュセグメント6A〜6Dを設置し、原料を練り混ぜながら下流へ輸送することで、効率よく含有する揮発成分を除去する。図3に示すように、表面更新性スクリュセグメント6A〜6Dの形状は、長軸側の両端部に計2ヶ所のフライトチップ部20とそのチップの軸中心方向に有する空隙間部22により構成される。6Aと6Bと6Cと6Dのセグメントのフライトチップ部20は、回転する際に非接触であり、お互いのフライトチップ部20同士が狭い隙間21を保ちながら表面更新を促進することにより、総暴露面積が拡大し高い脱揮効果が得られる。また、シリンダ1内部に原料が過剰に充満すると、減圧雰囲気に曝される原料の面積が低下し、脱揮効率が低下するため、チップフライト部20は軸方向にねじられ、輸送能力を付加することにより、シリンダ1内部に原料を過剰に充満させることなく暴露面積を増加させ、脱揮効率の低下を抑制する。
尚、図2の比較例の構成及び図5の他の形態の構成は、図1の構成の変形であるため、図1と同一又は同等部分には同一符号を付し、その構成の説明は省略している。
Next, the operation will be described.
The raw material supplied into the extruder is transported to the kneading unit 4 by the screw 3 inserted into the cylinder 1 and, after being subjected to a shearing action by the kneading unit 4, is brought into a negative pressure state by the transport screw segment. It is transported to the devolatilization area 5. In this devolatilization region 5, screw segments 6A to 6D having surface renewability are installed, and the raw material is transported downstream while being kneaded, thereby efficiently removing contained volatile components. As shown in FIG. 3, the shape of the surface renewable screw segments 6A to 6D is configured by a total of two flight tip portions 20 and air gap portions 22 in the axial center direction of the tips at both ends on the long axis side. The The flight tip portions 20 of the 6A, 6B, 6C, and 6D segments are non-contact when rotating, and the surface exposure is promoted while maintaining a narrow gap 21 between the flight tip portions 20 to each other, thereby increasing the total exposed area. Increases the devolatilization effect. Further, when the raw material is excessively filled in the cylinder 1, the area of the raw material exposed to the reduced pressure atmosphere is reduced and the devolatilization efficiency is lowered. Therefore, the tip flight part 20 is twisted in the axial direction to add transportation capability. As a result, the exposed area is increased without excessively filling the cylinder 1 with the raw material, and a decrease in devolatilization efficiency is suppressed.
The configuration of the comparative example of FIG. 2 and the configuration of the other form of FIG. 5 are modifications of the configuration of FIG. 1. Therefore, the same or equivalent parts as in FIG. Omitted.

次に、本出願人が実際に実施を行った実施例について説明する。
図1において、シリンダ1、スクリュ3、真空ベント口2を示す。加熱冷却可能なシリンダ1内に、スクリュ3が2本挿入され、図示しない駆動機にて同方向回転し、2本のスクリュ3はお互いに噛み合っている。
符号5は脱揮領域、4はシール部をなす混練部、6は表面更新スクリュを示す。脱揮領域5は、真空ベント口2から真空装置により吸気され、シール部である原料充満部7において原料が充満することにより気密性が保持され、負圧状態となっている。表面更新性スクリュ6は真空ベント口2の直下は避けるように配置されている。
Next, an embodiment actually performed by the applicant will be described.
In FIG. 1, a cylinder 1, a screw 3, and a vacuum vent port 2 are shown. Two screws 3 are inserted into the heat-coolable cylinder 1 and rotated in the same direction by a driving machine (not shown) so that the two screws 3 are engaged with each other.
Reference numeral 5 denotes a devolatilization region, 4 denotes a kneading portion that forms a seal portion, and 6 denotes a surface renewal screw. The devolatilization region 5 is sucked by the vacuum device from the vacuum vent port 2 and is filled with the raw material in the raw material filling portion 7 which is a seal portion, so that the airtightness is maintained and is in a negative pressure state. The surface renewable screw 6 is arranged so as to avoid a position directly below the vacuum vent 2.

下記に実験条件を示す。
原料:LDPE(Ml=50)
原料含有揮発成分:n−He×(4000ppm)
シリンダ内径:φ69mm
処理能力:150kg/h
スクリュ回転速度:100,150,200rpm
スクリュ形状:図2に比較例のスクリュ構成、及び図5に他のスクリュ構成を示す。
図2に比較例−を示す。比較例−は脱揮領域5に表面更新用スクリュを用いない従来スクリュ構成であり、下流側への輸送能力が高いスクリュセグメント(FF:Forwrd Full-flight)のみで構成されている。
図5に、実施例としての他形態を示す。実施例−は脱揮領域5に、LEAD数が約6とした本発明の表面更新性スクリュ6を8個4セット配置した構成(図5)となる。
Experimental conditions are shown below.
Raw material: LDPE (Ml = 50)
Raw material-containing volatile components: n-He x (4000 ppm)
Cylinder inner diameter: φ69mm
Processing capacity: 150kg / h
Screw rotation speed: 100, 150, 200 rpm
Screw shape: FIG. 2 shows a screw configuration of a comparative example, and FIG. 5 shows another screw configuration.
FIG. 2 shows a comparative example. The comparative example- is a conventional screw configuration that does not use a surface renewal screw in the devolatilization region 5, and is configured only by a screw segment (FF: Forwrd Full-flight) having high downstream transport capability.
FIG. 5 shows another embodiment as an embodiment. The embodiment- has a configuration in which four sets of eight surface renewable screws 6 of the present invention having a LEAD number of about 6 are arranged in the devolatilization region 5 (FIG. 5).

[結果]
図11,12,13に、スクリュ回転速度を変更した3条件のデータを平均した値を示す。
図11は、各スクリュ形状における脱揮性能を示す。脱揮性能とは、各スクリュ形状での脱揮率とした。脱揮率は、(1−Cout/Cin)*100とする。
Cout=押出機から吐出された原料に含有される揮発成分濃度
Cin =押出機へ供給される前の原料に含有される揮発成分濃度
図12は、各スクリュ形状における比エネルギーを示す。
図13は、各スクリュ形状における押出機先端出口樹脂温度を示す。
羽根にねじりを有する新型表面更新スクリュ6を用いた図5のスクリュは、比較例である図2のスクリュに比べ、樹脂温度、比エネルギーともにほとんど変化がなかったが、脱揮率は11%向上した。
[result]
11, 12, and 13 show values obtained by averaging the data of the three conditions with the screw rotation speed changed.
FIG. 11 shows the devolatilization performance in each screw shape. The devolatilization performance was defined as the devolatilization rate in each screw shape. The devolatilization rate is (1−Cout / Cin) * 100.
Cout = Volatile component concentration contained in the raw material discharged from the extruder
Cin = Concentration of volatile components contained in raw material before being supplied to the extruder FIG. 12 shows specific energy in each screw shape.
FIG. 13 shows the extruder tip outlet resin temperature in each screw shape.
The screw of FIG. 5 using the new surface renewal screw 6 having a twisted blade has almost no change in the resin temperature and specific energy compared with the screw of FIG. 2 which is a comparative example, but the devolatilization rate is improved by 11%. did.

本発明の前述の構成をまとめると、次の通りである。
すなわち、真空ベント口2を有するシリンダ1内で一対のスクリュ3が互いに噛み合い同方向に回転する二軸押出機の脱揮領域5において、前記脱揮領域5の上流の混練部4の直後に表面更新性スクリュ6を配置してなる押出機における脱揮装置において、前記表面更新性スクリュ6の各スクリュセグメント6B,6Cの外周に設けたチップフライト部20が、隙間21を介して互いに非接触で噛み合うと共に、前記各チップフライト部20は、ねじりが形成され、かつ、前記表面更新性スクリュ6のスクリュ軸直角断面における長軸側の両端部に空隙間部22を介して形成され、前記空隙間部22内を他の前記スクリュセグメント6Bまたは6Cの前記チップフライト部20が通過できるように配置している構成であり、また、前記チップフライト部20は、断面形状で台形をなす構成である。
従って、本発明は、混練部4に隣接し、樹脂により気密された脱揮領域5において、混練部4の混練スクリュの直後に、フライトが繋がっていない表面更新性スクリュ6を配備し、また樹脂が充満しないように輸送能力を持たせ、隣り合うチップフライト部20同士が噛み合う形状であるため薄膜形成能力を持っており、滞留時間の増加、混練表面更新効率の向上、薄膜形成能力の向上が可能な脱揮装置及び方法を得ることができる。
The above-described configuration of the present invention is summarized as follows.
That is, in a devolatilization region 5 of a twin-screw extruder in which a pair of screws 3 mesh with each other in a cylinder 1 having a vacuum vent port 2 and rotate in the same direction, the surface immediately after the kneading section 4 upstream of the devolatilization region 5. In the devolatilization apparatus in the extruder in which the renewable screw 6 is arranged, the chip flight portions 20 provided on the outer circumferences of the screw segments 6B and 6C of the surface renewable screw 6 are not in contact with each other through the gap 21. The tip flight portions 20 are twisted and formed at both ends on the long axis side in the cross section perpendicular to the screw axis of the surface renewable screw 6 via the air gap portions 22. said section 22 of the other of said screw segment 6B or 6C is a configuration chip flight portion 20 is disposed so as to pass through, also, the tip Write unit 20 has a configuration which forms a trapezoidal sectional shape.
Therefore, in the present invention, in the devolatilization region 5 adjacent to the kneading part 4 and hermetically sealed by the resin, a surface renewable screw 6 not connected to the flight is provided immediately after the kneading screw of the kneading part 4, and the resin Has the ability to transport so that it does not fill, and since the adjacent chip flight portions 20 mesh with each other, it has a thin film forming ability, increasing the residence time, improving the kneading surface renewal efficiency, and improving the thin film forming ability. Possible devolatilization devices and methods can be obtained.

本発明による押出機における脱揮装置及び方法は、表面更新スクリュのスクリュセグメントに設けたチップフライト部にねじりを設け、滞留時間の増加・混練表面更新効率の向上及び薄膜形成能力の向上を得ることを目的とする。   The apparatus and method for devolatilization in an extruder according to the present invention is to provide a twist in a chip flight part provided in a screw segment of a surface renewal screw to obtain an increase in residence time, improvement in kneading surface renewal efficiency, and improvement in thin film formation ability. With the goal.

1 シリンダ
2 真空ベント口
3 スクリュ
4 混練部(シール部)
5 脱揮領域
6 表面更新性スクリュ
6A〜6D スクリュセグメント
7 原料充満部(シール部)
20 チップフライト部
21 隙間
22 空隙間部
1 Cylinder 2 Vacuum vent 3 Screw 4 Kneading part (seal part)
5 Volatilization area 6 Surface renewable screw 6A-6D screw segment 7 Raw material filling part (seal part)
20 Tip flight part 21 Crevice 22 Air gap part

Claims (4)

真空ベント口(2)を有するシリンダ(1)内で一対のスクリュ(3)が互いに噛み合い同方向に回転する二軸押出機の脱揮領域(5)において、前記脱揮領域(5)の上流の混練部(4)の直後に表面更新性スクリュ(6)を配置してなる押出機における脱揮装置において、
前記表面更新性スクリュ(6)の各スクリュセグメント(6B,6C)の外周に設けたチップフライト部(20)が、隙間(21)を介して互いに非接触で噛み合うと共に、前記各チップフライト部(20)は、ねじりが形成され、かつ、前記表面更新性スクリュ(6)のスクリュ軸直角断面における長軸側の両端部に空隙間部(22)を介して形成され、
前記空隙間部(22)内を他の前記スクリュセグメント(6B又は6C)の前記チップフライト部(20)が通過できるように配置していることを特徴とする押出機における脱揮装置。
In the devolatilization region (5) of the twin-screw extruder in which a pair of screws (3) mesh with each other in a cylinder (1) having a vacuum vent (2) and rotate in the same direction, upstream of the devolatilization region (5) In the devolatilizing apparatus in the extruder formed by arranging the surface renewable screw (6) immediately after the kneading part (4),
Each chip flight part (20) provided on the outer periphery of each screw segment (6B, 6C) of the surface renewable screw (6) meshes with each other in a non-contact manner through a gap (21), and each chip flight part (20) is a torsion formed , and is formed through air gaps (22) at both ends on the long axis side in the cross section perpendicular to the screw axis of the surface renewable screw (6),
A devolatilizer in an extruder, which is arranged so that the tip flight part (20) of another screw segment (6B or 6C) can pass through the air gap part (22) .
前記チップフライト部(20)は、断面形状で台形をなすことを特徴とする請求項1記載の押出機における脱揮装置。   The devolatilizer in an extruder according to claim 1, wherein the tip flight part (20) has a trapezoidal shape in cross section. 真空ベント口(2)を有するシリンダ(1)内で一対のスクリュ(3)が互いに噛み合い同方向に回転する二軸押出機の脱揮領域(5)において、前記脱揮領域(5)の上流の混練部(4)の直後に表面更新性スクリュ(6)を配置してなる押出機における脱揮装置を用い、
前記表面更新性スクリュ(6)の各スクリュセグメント(6B,6C)の外周に設けたチップフライト部(20)が、隙間(21)を介して互いに非接触で噛み合うと共に、前記各チップフライト部(20)は、ねじりが形成され、かつ、前記表面更新性スクリュ(6)のスクリュ軸直角断面における長軸側の両端部に空隙間部(22)を介して形成され、
前記空隙間部(22)内を他の前記スクリュセグメント(6B又は6C)の前記チップフライト部(20)が通過できるように配置している状態で用いることを特徴とする押出機における脱揮方法。
In the devolatilization region (5) of the twin-screw extruder in which a pair of screws (3) mesh with each other in a cylinder (1) having a vacuum vent (2) and rotate in the same direction, upstream of the devolatilization region (5) Using a devolatilizer in an extruder in which a surface renewable screw (6) is arranged immediately after the kneading part (4),
Tip flight portions (20) provided on the outer periphery of each screw segment (6B, 6C) of the surface renewable screw (6) are engaged with each other in a non-contact manner through a gap (21), and each tip flight portion ( 20) is formed with a twist , and is formed via air gaps (22) at both ends on the long axis side in the cross section perpendicular to the screw axis of the surface renewable screw (6),
A devolatilizing method in an extruder, characterized in that it is used in a state where the tip flight part (20) of the other screw segment (6B or 6C) can pass through the air gap part (22). .
前記チップフライト部(20)は、断面形状で台形をなすことを特徴とする請求項3記載の押出機における脱揮方法。   The devolatilization method in an extruder according to claim 3, wherein the tip flight part (20) has a trapezoidal shape in cross section.
JP2011165201A 2011-07-28 2011-07-28 Volatilization apparatus and method in an extruder Expired - Fee Related JP5684063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165201A JP5684063B2 (en) 2011-07-28 2011-07-28 Volatilization apparatus and method in an extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165201A JP5684063B2 (en) 2011-07-28 2011-07-28 Volatilization apparatus and method in an extruder

Publications (2)

Publication Number Publication Date
JP2013028055A JP2013028055A (en) 2013-02-07
JP5684063B2 true JP5684063B2 (en) 2015-03-11

Family

ID=47785604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165201A Expired - Fee Related JP5684063B2 (en) 2011-07-28 2011-07-28 Volatilization apparatus and method in an extruder

Country Status (1)

Country Link
JP (1) JP5684063B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111716680B (en) * 2019-03-22 2022-04-05 中国石油化工股份有限公司 Method for controlling polymer modification apparatus
CN111716681A (en) * 2019-03-22 2020-09-29 中国石油化工股份有限公司 Polymer modification device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA836936A (en) * 1962-03-21 1970-03-17 A. Loomans Bernard Continuous mixer
JPH04235727A (en) * 1991-01-16 1992-08-24 Mitsubishi Heavy Ind Ltd Stirring apparatus
JPH07136480A (en) * 1993-11-18 1995-05-30 Mitsubishi Heavy Ind Ltd Stirreing device
DE4426441A1 (en) * 1994-07-26 1996-02-01 Werner & Pfleiderer Two-shaft screw machine, in particular two-shaft extruder
JP4252016B2 (en) * 2004-06-21 2009-04-08 株式会社神戸製鋼所 Extruder

Also Published As

Publication number Publication date
JP2013028055A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4746014B2 (en) Melt-kneading devolatilizing extruder
JP3656957B2 (en) Biaxial continuous kneader and kneading method using the same
CN1051494C (en) Multi-screw, extrusion-compounding machine with modular mixing elements
JP4791478B2 (en) Extruder
JP2007237679A (en) Plasticization kneading extruder for plastic raw material
JP5631296B2 (en) Kneading segment
KR101361433B1 (en) Kneading segment and kneading equipment
JP2011116025A (en) Degassing device of extruder and degassing method
JP5684063B2 (en) Volatilization apparatus and method in an extruder
JP2009196303A (en) Kneading disk segment and twin-screw extruder
WO2012165469A1 (en) Material kneading device and material kneading method
JP6754018B1 (en) Screws, extruders and extrusion methods
JP5984186B2 (en) Twin screw extruder
JP5130285B2 (en) Screw element
JP6312203B2 (en) Twin screw extruder
WO2016002333A1 (en) Biaxial extruder
JP6396953B2 (en) Kneading disc, screw element and extruder
JP2011201311A (en) Continuous kneader
JP7058542B2 (en) Extruder and kneading extrusion method
JP2009148936A (en) Kneading screw and extruder
JP5085582B2 (en) Twin screw extruder for devolatilization
JP2021050081A (en) Conveyor and kneader
JP3746996B2 (en) Kneading disc
WO2022239292A1 (en) Granulator, kneading regulation mechanism, and method for producing resin pellets
JP2004195675A (en) Screw extruder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150114

R150 Certificate of patent or registration of utility model

Ref document number: 5684063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees