JP5680191B2 - Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof - Google Patents

Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof Download PDF

Info

Publication number
JP5680191B2
JP5680191B2 JP2013514526A JP2013514526A JP5680191B2 JP 5680191 B2 JP5680191 B2 JP 5680191B2 JP 2013514526 A JP2013514526 A JP 2013514526A JP 2013514526 A JP2013514526 A JP 2013514526A JP 5680191 B2 JP5680191 B2 JP 5680191B2
Authority
JP
Japan
Prior art keywords
hard carbon
mass
precursor
tin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013514526A
Other languages
Japanese (ja)
Other versions
JP2013534024A (en
Inventor
岳敏
汪福明
▲えん▼恵青
▲とう▼明華
薛嘉漁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTR New Material Group Co Ltd
Original Assignee
BTR New Material Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010102037680A external-priority patent/CN101887966B/en
Priority claimed from CN2010102463052A external-priority patent/CN101916845B/en
Application filed by BTR New Material Group Co Ltd filed Critical BTR New Material Group Co Ltd
Publication of JP2013534024A publication Critical patent/JP2013534024A/en
Application granted granted Critical
Publication of JP5680191B2 publication Critical patent/JP5680191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は電池負極材料及びその製造方法に関し、特にリチウムイオン電池の負極材料及びその製造方法に関する。   The present invention relates to a battery negative electrode material and a manufacturing method thereof, and more particularly to a negative electrode material of a lithium ion battery and a manufacturing method thereof.

情報化時代での多機能携帯用電子機器への要求の増大及び電気自動車の急速発展に伴い、高比エネルギー、高レート、高安全性、長寿命及び低コストの新規リチウム電池の電極材料の研究・開発が現在の国際上、重要な先端研究分野となっている。従来の技術における比較的成功した炭素負極材料として、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)、石油コークスがあるが、その372mAh/gの比容量が低すぎるため、要求を満足できなくなる上に、脆弱な構造により極めて限られた安定性を有しており、電解液にも非常に敏感である。そのため、他の炭素材料、例えば軟質炭素、硬質炭素が注目されている。その中で、硬質炭素は、その不規則配列による高容量、低コスト及び優れたサイクル性能で注目されている。硬質炭素は、黒鉛化しにくい炭素を指し、高分子ポリマーの熱分解炭素であり、このような炭素は比較的高い比容量を有する。1991年、ソニー株式会社により、負極材料としてポリフルフリルアルコールPFAの熱分解により製造される硬質炭素を用いたリチウムイオン電池が開発された。しかし、その初回充放電効率が低く、45%程度しかない。   With the increasing demand for multifunctional portable electronic devices in the information age and the rapid development of electric vehicles, research on electrode materials for new lithium batteries with high specific energy, high rate, high safety, long life and low cost・ Development has become an important cutting-edge research field internationally. Relatively successful carbon anode materials in the prior art include artificial graphite, mesophase carbon microbeads (MCMB), and petroleum coke, but the specific capacity of 372 mAh / g is too low to satisfy the requirements. It has a very limited stability due to its fragile structure and is very sensitive to electrolytes. For this reason, other carbon materials such as soft carbon and hard carbon have attracted attention. Among them, hard carbon has attracted attention due to its high capacity, low cost and excellent cycle performance due to its irregular arrangement. Hard carbon refers to carbon that is difficult to graphitize, and is pyrolytic carbon of a high molecular polymer, and such carbon has a relatively high specific capacity. In 1991, Sony Corporation developed a lithium-ion battery using hard carbon produced by thermal decomposition of polyfurfuryl alcohol PFA as a negative electrode material. However, its initial charge / discharge efficiency is low, only about 45%.

本発明は、リチウムイオン電池の複合硬質炭素負極材料及びその製造方法を提供することを目的とし、解決しようとする技術的問題は、リチウムイオン電池の高レート充放電性能を向上させるとともに、優れた高低温充放電性能と安定的なサイクル性能を両立させることである。   An object of the present invention is to provide a composite hard carbon negative electrode material for a lithium ion battery and a method for producing the same. The technical problem to be solved improves the high rate charge / discharge performance of the lithium ion battery and is excellent. It is to achieve both high and low temperature charge / discharge performance and stable cycle performance.

本発明は以下の技術案を採用する。
リチウムイオン電池の複合硬質炭素負極材料であって、前記リチウムイオン電池の複合硬質炭素負極材料の硬質炭素基体の外部に被覆物質が被覆され、前記被覆物質の前駆体が、有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリフッ化ビニリデン、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリチオフェン、ポリ(p-フェニレンビニレン)及びポリイミドの1種以上であり、それらが熱分解して被覆物質を形成する。
The present invention employs the following technical solution.
A composite hard carbon negative electrode material of a lithium ion battery, wherein a coating substance is coated on the outside of the hard carbon substrate of the composite hard carbon negative electrode material of the lithium ion battery, and a precursor of the coating substance is an organic resin epoxy resin, phenolic resins, carboxymethyl cellulose, pitch, ethyl methyl carbonate, polyvinyl alcohol, polystyrene, Po Rifu' fluoride, polypropylene oxide, polyethylene succinate, polyethylene sebacate, Po Li acetylene, polyparaphenylene, Po Ripiroru, Po Li thiophene, poly is a (p- phenylenevinylene) and polyimide 1 or more, they form a pyrolyzed coating materials.

本発明における硬質炭素基体の前駆体は、樹脂であるアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、それらが熱分解して硬質炭素基体を形成し、被覆物質前駆体の質量が硬質炭素基体の前駆体の質量の1〜15%であり、前記リチウムイオン電池の複合硬質炭素負極材料は形状が塊状の微粒子で多孔質構造を有し、孔径が0.2〜1OOnm、空孔率が9〜19%、002結晶面の層間距離が0.338〜0.475nm、粒度範囲が0.5〜90μm、比表面積が1.9〜75.3m/g、真密度が1.54〜2.35g/cm、タップ密度が0.88〜1.43g/cm、その炭素元素の含有量が90.5%以上である。 Precursor of the hard carbon substrate in the present invention, acrylic resin, polyvinyl chloride resin, and a polycarbonate, epoxy resins, one or more phenolic resins and poly formaldehyde, they thermally decompose to form a hard carbon substrate The mass of the coating material precursor is 1 to 15% of the mass of the precursor of the hard carbon substrate, and the composite hard carbon negative electrode material of the lithium ion battery has a porous structure with fine particles having a massive shape and a pore size. 0.2~1OOnm, porosity 9~19%, 0.338~0.475nm interlayer distance 002 crystal plane, the particle size range 0.5~90Myuemu, specific surface area of 1.9~75.3m 2 / g, a true density of 1.54~2.35g / Cm 3 , the tap density is 0.88 to 1.43 g / cm 3 , and the carbon element content is 90.5% or more.

本発明における硬質炭素基体の前駆体は、25質量%〜100質量%未満の前記樹脂、0質量%を超え75質量%以下の硬化剤からなり、それらが熱分解して硬質炭素基体を形成し、前記硬化剤はヘキサメチレンジアミン、m−フェニレンジアミン、アニリンホルムアルデヒド樹脂、ポリアミド樹脂、ポリホルムアルデヒド、無水フタル酸及びベンゼンスルホン酸の1種以上である。 The precursor of the hard carbon substrate in the present invention is composed of 25% by mass to less than 100% by mass of the resin, and more than 0% by mass and 75% by mass or less of the curing agent, which are thermally decomposed to form a hard carbon substrate. The curing agent is at least one of hexamethylenediamine, m-phenylenediamine, aniline formaldehyde resin, polyamide resin, polyformaldehyde, phthalic anhydride and benzenesulfonic acid.

本発明における硬質炭素基体の前駆体は25質量%〜100質量%未満の前記樹脂と0質量%を超え75質量%以下の硬化剤と、0質量%を超え15質量%以下のドーパントとからなり、それらが熱分解して硬質炭素基体を形成し、前記ドーパントは金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体はスズであり、前記金属化合物はリン酸ナトリウム、塩化スズ及び水酸化スズの1種以上であり、前記非金属化合物は五酸化りん、ホウ酸、リン酸アンモニウム及びシリコーン樹脂の1種以上である。 The precursor of the hard carbon substrate in the present invention comprises 25% by mass to less than 100% by mass of the resin, more than 0% by mass to 75% by mass curing agent, and more than 0% by mass to 15% by mass dopant. , they thermally decompose to form a hard carbon substrate, wherein the dopant is at least one of elemental metals, metallic compounds and non-metal compounds, wherein the simple metal is tin, the metal compound is sodium-phosphate not less than one salt of tin hydroxide and scan's, before Symbol nonmetal compound is phosphorus pentoxide, boric acid, Li phosphate ammonium and silicone resins 1 or more.

本発明における硬質炭素基体の前駆体は85質量%〜100質量%未満の前記樹脂と0質量%を超え15質量%以下のドーパントとからなり、それらが熱分解して硬質炭素基体を形成し、前記ドーパントは金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体はスズであり、前記金属化合物はリン酸ナトリウム、塩化スズ及び水酸化スズの1種以上であり、前記非金属化合物は五酸化りん、ホウ酸、リン酸アンモニウム及びシリコーン樹脂の1種以上である。 The precursor of the hard carbon substrate in the present invention is composed of the resin of 85% by mass to less than 100% by mass and the dopant of more than 0% by mass and 15% by mass or less, and they are thermally decomposed to form a hard carbon substrate. the dopant metal alone, is one or more metallic compounds and non-metal compounds, wherein the simple metal is tin, the metal compound is sodium-phosphate, one or more salts of tin hydroxide and scan's There, before Symbol nonmetal compound is phosphorus pentoxide, boric acid, Li phosphate ammonium and silicone resins 1 or more.

本発明における硬質炭素基体の前駆体は植物原料である花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上であり、それらが熱分解して硬質炭素基体を形成し、被覆物質の前駆体の質量が硬質炭素基体の前駆体の1〜25質量%であり、前記硬質炭素基体の表面と被覆物質が化学結合又はファンデルワールス力により結合され、硬質炭素基体は粒度が2〜60μmで表面にハニカム開孔構造を有し、孔径が1.0〜55nmであり、前記材料は形状が塊状及び/又はフレーク状の粒子で、その粒径が3.5〜70μm、その比表面積が7.5〜20m/gであり、材料表面にハニカム状の開孔構造を有し、孔径が0.2〜60nm、空孔率が9〜16%、002結晶面の層間距離d002値が0.337〜0.455nm、真密度が1.55〜2.25g/cm、タップ密度が0.91〜1.45g/cm、その炭素元素の含有量が94%以上である。 The precursor of the hard carbon substrate in the present invention is at least one of plant materials such as pollen, rice husk, sweet potato stalk, walnut husk, bamboo, sake lees, and wood chips, which are pyrolyzed to form a hard carbon substrate, which is coated The mass of the precursor of the material is 1 to 25% by mass of the precursor of the hard carbon substrate, the surface of the hard carbon substrate and the coating material are bonded by chemical bonding or van der Waals force, and the hard carbon substrate has a particle size of 2 -60 μm with a honeycomb pore structure on the surface, a pore size of 1.0-55 nm, the material is a massive and / or flaky particle, the particle size is 3.5-70 μm, the specific surface area is 7.5- 20 m 2 / g, having a honeycomb-like pore structure on the material surface, pore diameter of 0.2 to 60 nm, porosity of 9 to 16%, interlayer distance of 002 crystal plane d 002 value of 0.337 to 0.455 nm , true density of 1.55~2.25g / cm 3, a tap density of 0.91~1.45g / cm 3, the carbon element Yes amount is equal to or greater than 94%.

本発明における硬質炭素基体の前駆体は、植物原料と植物類原料の0質量%を超え40質量%以下を占めるドーパントとが混合してなり、それらが熱分解して硬質炭素基体を形成し、前記ドーパントは金属塩である塩化スズ及び炭酸コバルトの1種以上か、非金属酸化物であるホ酸か、非金属塩であるリン酸アンモニウムか、非金属単体であるケイ素か、非金属化合物であるシリコーン樹脂である。 The precursor of the hard carbon substrate in the present invention is a mixture of a plant raw material and a dopant occupying 40% by mass or less of the plant raw material, and they are thermally decomposed to form a hard carbon substrate, the dopant gold Shokushio der Ru salts of tin and carbon cobalt in one or more, non-metal oxides der sulfo window or acid, non-metallic salts der ruri phosphate ammonium or arm, non-metallic elemental Or silicon resin which is a non-metallic compound .

リチウムイオン電池の複合硬質炭素負極材料の製造方法であって、樹脂を空気中、常温で3〜50h硬化させて固体前駆体を得る工程1と、窒素ガスの流量を0.1〜0.4m/hとして、前駆体を0.1〜3℃/minの速度で150℃〜450℃まで昇温させ、低温で2〜24h予備焼結し、室温まで自然降温させ、粉砕して粒度1〜60μmの粉末を得る工程2と、窒素ガスの流量を0.1〜0.4m/hとして、0.3〜10℃/minの速度で560〜1500℃まで昇温させ、0.5〜7.5h熱分解し、室温まで自然降温させ、硬質炭素を得る工程3と、硬質炭素をボールミリング又は粉砕し、粒度1〜60μmの硬質炭素基体を得る工程4と、硬質炭素基体に被覆物質の前駆体を硬質炭素基体の前駆体の1〜15質量%の量で加え、1400〜3500r/minの回転速度で20〜50min混合した後、窒素ガスの流量を0.1〜0.4m/hとして、1〜7.5℃/minの速度で500〜1500℃に昇温させ、2〜8h被覆物質の熱分解処理を行い、室温まで自然降温させ、リチウムイオン電池の複合硬質炭素負極材料を得る工程5と、を含み、前記樹脂はアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、前記被覆物質の前駆体は有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴム、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン、ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上である。 A method for producing a composite hard carbon negative electrode material for a lithium ion battery, wherein the resin is cured in air at room temperature for 3 to 50 hours to obtain a solid precursor, and the flow rate of nitrogen gas is 0.1 to 0.4 m 3 / h. The precursor is heated to 150 ° C. to 450 ° C. at a rate of 0.1 to 3 ° C./min, pre-sintered at a low temperature for 2 to 24 hours, naturally cooled to room temperature, and pulverized to obtain a powder having a particle size of 1 to 60 μm. Step 2 and the flow rate of nitrogen gas is 0.1 to 0.4 m 3 / h, the temperature is raised to 560 to 1500 ° C. at a rate of 0.3 to 10 ° C./min, pyrolyzed for 0.5 to 7.5 h, and the temperature is naturally lowered to room temperature. Step 3 for obtaining hard carbon, Step 4 for ball milling or pulverizing the hard carbon to obtain a hard carbon substrate having a particle size of 1 to 60 μm, and a precursor of the coating material to the hard carbon substrate 1 added in an amount of 15 mass%, was 20~50min mixed at a rotational speed of 1400~3500r / min, the flow rate of nitrogen gas 0.1 to 0.4 m 3 / h Then, the temperature is raised to 500-1500 ° C. at a rate of 1-7.5 ° C./min, the coating material is pyrolyzed for 2-8 hours, and the temperature is naturally lowered to room temperature to obtain a composite hard carbon negative electrode material for a lithium ion battery. Wherein the resin is at least one of acrylic resin, polyvinyl chloride, polycarbonate, epoxy resin, phenol resin and polyformaldehyde, and the precursor of the coating material is an organic epoxy resin, phenol resin, Carboxymethyl cellulose, pitch, ethyl methyl carbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber, polyvinyl chloride, polyethylene, polyethylene oxide, polypropylene oxide, polyethylene resin Sinate, polyethylene sebacate, polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline, polypyrrole, polyacene, poly-m-phenylenediamine, polythiophene, poly (p-phenylene vinylene), polythiophene, polyacrylonitrile, polyimide and polyphenylene sulfide One or more.

本発明の方法において、硬化として、25質量%〜100質量%未満の樹脂に、0質量%を超え75質量%以下の硬化剤を添加し、均一に撹拌し、空気中、常温で3〜50h硬化させて固体前駆体を得、前記硬化剤はヘキサメチレンジアミン、m−フェニレンジアミン、アニリンホルムアルデヒド樹脂、ポリアミド樹脂、無水フタル酸及びベンゼンスルホン酸の1種以上である。 In the method of the present invention, as curing, a curing agent of more than 0% by mass and 75% by mass or less is added to a resin of 25% by mass to less than 100% by mass, stirred uniformly, and in air at room temperature for 3 to 50 hours. A solid precursor is obtained by curing, and the curing agent is at least one of hexamethylenediamine, m-phenylenediamine, aniline formaldehyde resin, polyamide resin, phthalic anhydride and benzenesulfonic acid.

本発明の方法において、低温予備焼結と粉砕に続き、粉末に、0質量%を超え15質量%以下の割合でドーパントを加え、1000〜3000r/minの回転速度で26〜120min混合撹拌し、前記ドーパントは金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体は銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物は酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、酸化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体はケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物は二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上である。   In the method of the present invention, following the low temperature pre-sintering and pulverization, the dopant is added to the powder at a ratio of more than 0% by mass and 15% by mass or less, and mixed and stirred for 26 to 120 minutes at a rotational speed of 1000 to 3000 r / min. The dopant is one or more of a metal simple substance, a non-metal simple substance, a metal compound and a non-metal compound, the metal simple substance is one or more of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is oxidized. One or more of tin, cobalt oxide, nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin oxide, cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, Nonmetallic simple substance is one or more of silicon, sulfur and boron, and the nonmetallic compound is silicon dioxide, phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, phosphorus Ammonium sulfate, is one or more silicone resins and ethylene glycol borate ester.

本発明の方法において、硬化として、25質量%〜100質量%未満の樹脂に、0質量%を超え75質量%以下の硬化剤、0質量%を超え15質量%以下のドーパントを添加し、2000〜4500r/minの回転速度で10〜120min混合撹拌し、空気中、常温で3〜50h硬化させて前駆体を得、前記ドーパントは金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体は銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物は酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体はケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物は二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上である。 In the method of the present invention, as curing, 25% by mass to less than 100% by mass of a resin is added with a curing agent of more than 0% by mass to 75% by mass and a dopant of more than 0% by mass to 15% by mass, 2000 The mixture is stirred for 10 to 120 minutes at a rotational speed of ~ 4500 r / min and cured in air at room temperature for 3 to 50 hours to obtain a precursor. The dopant is one of a simple metal, a non-metal simple substance, a metal compound and a non-metal compound. The metal simple substance is one or more of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is tin oxide, cobalt oxide, nickel oxide, sodium phosphate, sodium dihydrogen phosphate, acetic acid. One or more of tin, tin chloride, cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, and the non-metal simple substance is one or more of silicon, sulfur and boron, and the non-metal Compound is Silicon oxide, phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, ammonium sulfate, at least one silicone resin and ethylene glycol borate ester.

本発明の方法において、低温予備焼結に続き、0質量%を超え15質量%以下の割合でドーパントを加え、1000〜3000r/minの回転速度で26〜120min混合撹拌し、前記ドーパントは金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体は銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物は酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体はケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物は二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上である。   In the method of the present invention, following low-temperature pre-sintering, a dopant is added at a rate of more than 0% by mass and 15% by mass or less, and mixed and stirred at a rotational speed of 1000 to 3000 r / min for 26 to 120 minutes. , One or more of a non-metal simple substance, a metal compound and a non-metal compound, and the metal simple substance is one or more of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is tin oxide, cobalt oxide, One or more of nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin chloride, cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, and the non-metal element is silicon One or more of sulfur and boron, and the non-metallic compound is silicon dioxide, phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate Ammonium sulfate, is one or more silicone resins and ethylene glycol borate ester.

リチウムイオン電池の複合硬質炭素負極材料の製造方法であって、85質量%〜100質量%未満の樹脂と、0質量%超え〜15質量%以下のドーパントとを、2000〜4500r/minの回転速度で10〜120min混合撹拌し、空気中、常温で1〜6h硬化させて固体前駆体を得る工程1と、窒素ガスの流量を0.1〜0.4m/hとして、前駆体を0.1〜7℃/minの速度で150℃〜450℃まで昇温させ、低温で3〜24h予備焼結し、室温まで自然降温させる工程2と、窒素ガスの流量を0.1〜0.4m/hとして、0.3〜10℃/minの速度で560〜1500℃まで昇温させ、0.5〜7.5h熱分解し、室温まで自然降温させ、硬質炭素を得る工程3と、硬質炭素をボールミリング又は粉砕し、粒度1〜60μmの硬質炭素基体を得る工程4と、硬質炭素基体に、被覆物質の前駆体を硬質炭素基体の前駆体の1〜15質量%の量で加え、1400〜3500r/minの回転速度で20〜50min混合した後、窒素ガスの流量を0.1〜0.4m/hとして、1〜7.5℃/minの速度で500〜1500℃まで昇温させ、2〜8h被覆物質の熱分解処理を行い、室温まで自然降温させ、リチウムイオン電池の複合硬質炭素負極材料を得る工程5とを含み、前記樹脂はアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、前記ドーパントは金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体は銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物は酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体はケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物は二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上であり、前記被覆物質の前駆体は有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴム、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン、ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上である。 A method for producing a composite hard carbon negative electrode material for a lithium ion battery, comprising a resin of 85 mass% to less than 100 mass% and a dopant of greater than 0 mass% to 15 mass% or less at a rotational speed of 2000 to 4500 r / min. And stirring for 10 to 120 minutes and curing in air at room temperature for 1 to 6 hours to obtain a solid precursor, and the flow rate of nitrogen gas is 0.1 to 0.4 m 3 / h, and the precursor is 0.1 to 7 ° C./hour The temperature is raised from 150 ° C. to 450 ° C. at a rate of min, pre-sintered at a low temperature for 3 to 24 hours, and naturally cooled to room temperature, and the flow rate of nitrogen gas is 0.1 to 0.4 m 3 / h, and 0.3 to 10 The temperature is raised to 560-1500 ° C. at a rate of ℃ / min, pyrolyzed for 0.5-7.5 h, naturally cooled to room temperature to obtain hard carbon, and the hard carbon is ball milled or crushed, and the particle size is 1-60 μm. Step 4 for obtaining a hard carbon substrate, and an amount of 1-15% by mass of the precursor of the hard carbon substrate with the precursor of the coating material applied to the hard carbon substrate. In addition, after 20~50min mixed at a rotational speed of 1400~3500r / min, the flow rate of nitrogen gas as 0.1 to 0.4 m 3 / h, warmed to 500 to 1500 ° C. at a rate of 1 to 7.5 ° C. / min, 2 to 8 h, pyrolyzing the coating material, allowing it to cool naturally to room temperature, and obtaining a composite hard carbon negative electrode material for a lithium ion battery, wherein the resin is an acrylic resin, polyvinyl chloride, polycarbonate, epoxy resin, It is at least one of phenol resin and polyformaldehyde, and the dopant is at least one of metal simple substance, non-metal simple substance, metal compound and non-metallic compound, and the metal simple substance is copper, lead, antimony, tin, cobalt and nickel. And the metal compound is tin oxide, cobalt oxide, nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin chloride, cobalt carbonate, water One or more of copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, the non-metallic simple substance is one or more of silicon, sulfur and boron, and the non-metallic compound is silicon dioxide, phosphorus pentoxide, Boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, ammonium sulfate, silicone resin and ethylene glycol borate ester, precursor of the coating material is an organic epoxy resin, phenol Resin, carboxymethyl cellulose, pitch, ethyl methyl carbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber, polyvinyl chloride, polyethylene, polyethylene oxide, poly Lopylene oxide, polyethylene succinate, polyethylene sebacate, polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline, polypyrrole, polyacene, poly-m-phenylenediamine, polythiophene, poly (p-phenylene vinylene), polythiophene, polyacrylonitrile, polyimide And at least one of polyphenylene sulfide.

リチウムイオン電池の複合硬質炭素負極材料の製造方法であって、100gあたりの乾燥植物原料に、酸又はアルカリを80〜300ml加え、3〜50h浸漬し、前記植物原料は花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上であり、前記酸はフッ化水素酸、ホウ酸、硫酸、塩酸又は硝酸であり、アルカリは水酸化カリウム、水酸化カルシウム又は水酸化ナトリウムである工程1と、純水を利用して800〜1400r/minの回転速度で8〜30min洗浄する、洗浄の工程2と、水分を除去して80〜140℃の条件で10〜40h乾燥させ、室温まで自然降温させる工程3と、0.03MPa以下の真空度で、又はヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスの保護ガス下で、流量を0.1〜0.4m/hとして、0.1〜10℃/minの速度で200〜500℃まで昇温させ、3〜20h低温予備焼結を行い、炉内を室温まで自然降温させる、低温予備焼結の工程4と、粉砕して粒度1〜60μmの粉末を得る工程5と、0.03MPa以下の真空度で、又はヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスの保護ガス下で、流量を0.1〜0.4m/hとして、O.1〜1O℃/minの速度で500〜1300℃まで昇温させ、1〜1Oh熱分解し、炉内を室温まで自然降温させる工程6と、粉砕又はボールミルにより粒度2〜65μmの硬質炭素基体を得る工程7と、硬質炭素基体に被覆物質の前駆体を硬質炭素基体の前駆体の1〜25質量%の量で加え、1000〜4500r/minの回転速度で2〜40min混合した後、0.03MPa以下の真空度で、又はヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスの保護ガス下で、流量を0.1〜0.4m/hとして、0.1〜10℃/minの速度で400〜1300℃まで昇温させ、1〜24h熱分解処理を行い、炉内を室温まで自然降温させ、前記被覆物質の前駆体は有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴム、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン.ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上である、工程8と、200メッシュの篩にかけて粒度3.5〜70μmのリチウムイオン電池の複合硬質炭素負極材料を得る工程9とを含む。 A method for producing a composite hard carbon negative electrode material for a lithium ion battery, wherein 80 to 300 ml of acid or alkali is added to dry plant raw material per 100 g and immersed for 3 to 50 hours, and the plant raw material is pollen, rice husk, sweet potato stem, A step of one or more of walnut shell, bamboo, sake lees and wood chips, wherein the acid is hydrofluoric acid, boric acid, sulfuric acid, hydrochloric acid or nitric acid, and the alkali is potassium hydroxide, calcium hydroxide or sodium hydroxide 1. Washing process using pure water for 8-30 min at a rotation speed of 800-1400 r / min, washing process 2 and removing moisture and drying at 80-140 ° C. for 10-40 h until room temperature Step 3 where the temperature is naturally lowered, and a vacuum of 0.03 MPa or less, or under a protective gas of helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, with a flow rate of 0.1 to 0.4 m 3 / h, 0.1 to 10 The temperature is raised to 200-500 ° C at a rate of ℃ / min and the temperature is lowered for 3-20h. Step 4 of low temperature pre-sintering to perform preliminary sintering and let the inside of the furnace cool down to room temperature, Step 5 to obtain a powder having a particle size of 1 to 60 μm by pulverization, and a degree of vacuum of 0.03 MPa or less, or helium gas Under a protective gas of nitrogen gas, argon gas, xenon gas or nitrogen gas, the flow rate is 0.1 to 0.4 m 3 / h, and the temperature is raised to 500 to 1300 ° C. at a rate of O.1 to 1 O ° C./min. ~ 1Oh pyrolysis, step 6 to cool the furnace naturally to room temperature, step 7 to obtain a hard carbon substrate having a particle size of 2 to 65 µm by pulverization or ball mill, and a precursor of the coating material to the hard carbon substrate. After adding 1 to 25% by mass of the precursor and mixing for 2 to 40 min at a rotational speed of 1000 to 4500 r / min, with a vacuum of 0.03 MPa or less, or helium gas, nitrogen gas, argon gas, xenon gas or under protective gas such as nitrogen gas, the flow rate of 0.1 to 0.4 m 3 / h, speed of 0.1 to 10 ° C. / min The temperature is raised to 400 to 1300 ° C., pyrolyzed for 1 to 24 hours, the inside of the furnace is naturally cooled to room temperature, and the precursor of the coating material is an organic epoxy resin, phenol resin, carboxymethyl cellulose, pitch, ethyl Methyl carbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber, polyvinyl chloride, polyethylene, polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate, Polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline, polypyrrole, polyacene, poly-m-phenylenediamine, polythiophene, poly (p-phenylene vinylene), poly Including thiophene, polyacrylonitrile, it is polyimide and polyphenylenesulfide 1 or more, and step 8, and steps 9 to obtain a composite hard carbon negative electrode material of the lithium ion battery of granularity 3.5~70μm toward 200 mesh sieve.

本発明の方法において、100gあたりの乾燥植物原料に酸又はアルカリを80〜300ml加え、3〜50h浸漬する前に、前駆体である乾燥植物原料を機械粉砕又はジェットミリングし、粒度40〜1OOμmの粉末を得、前記低温予備焼結粉砕に続き、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、1000〜4500r/minの回転速度で20〜95min混合撹拌し、前記ドーパントは金属酸化物である酸化スズ、酸化コバルトおよび酸化ニッケルの1種以上か、金属塩であるリン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上か、金属アルカリである水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上か、非金属酸化物である二酸化ケイ素及び/又は五酸化りん、又はホウ酸、ケイ酸及びリン酸の1種以上か、非金属塩であるリン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上か、或いはシリコーン樹脂及び/又はエチレングリコールホウ酸エステルか、或いは金属単体である銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上か、或いは非金属単体であるケイ素、硫黄及びホウ素の1種以上である。   In the method of the present invention, 80 to 300 ml of acid or alkali is added to 100 g of dried plant material per 100 g, and before immersing for 3 to 50 hours, the dried plant material that is a precursor is mechanically pulverized or jet milled to obtain a particle size of 40 to 1OO μm. After obtaining the powder, following the low-temperature pre-sintering pulverization, the dopant occupying more than 0% by mass and adding 40% by mass or less of the dopant, mixing and stirring for 20 to 95 minutes at a rotational speed of 1000 to 4500 r / min, Is one or more metal oxides such as tin oxide, cobalt oxide and nickel oxide, or one or more metal salts such as sodium phosphate, tin chloride, cobalt carbonate and sodium dihydrogen phosphate, or water which is metal alkali. One or more of copper oxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, or non-metal oxide silicon dioxide and / or phosphorus pentoxide, or one or more of boric acid, silicic acid and phosphoric acid, One or more of metal salts ammonium dihydrogen phosphate, ammonium phosphate and ammonium sulfate, or silicone resin and / or ethylene glycol borate ester, or metals such as copper, lead, antimony, tin, cobalt and nickel Or one or more of silicon, sulfur and boron which are non-metallic simple substances.

本発明の方法において、100gあたりの乾燥植物原料に酸又はアルカリを80〜300ml加え、1000〜3000r/minの回転速度で3〜30min混合撹拌した後、3〜50h浸漬し、前記低温予備焼結と粉砕に続き、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、1000〜4500r/minの回転速度で20〜95min混合し、前記ドーパントは金属酸化物である酸化スズ、酸化コバルトおよび酸化ニッケルの1種以上か、金属塩であるリン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上か、金属アルカリである水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上か、非金属酸化物である二酸化ケイ素及び/又は五酸化りん、又はホウ酸、ケイ酸及びリン酸の1種以上か、非金属塩であるリン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上か、或いはシリコーン樹脂及び/又はエチレングリコールホウ酸エステルか、或いは金属単体である銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上か、或いは非金属単体であるケイ素、硫黄及びホウ素の1種以上である。   In the method of the present invention, 80 to 300 ml of acid or alkali is added to 100 g of dry plant raw material per 100 g, mixed and stirred for 3 to 30 minutes at a rotational speed of 1000 to 3000 r / min, then immersed for 3 to 50 hours, and the low-temperature presintering And pulverizing, adding a dopant having a proportion of more than 0% by weight and not more than 40% by weight in the powder, mixing for 20 to 95 minutes at a rotational speed of 1000 to 4500 r / min, the dopant being tin oxide which is a metal oxide, One or more of cobalt oxide and nickel oxide, or one or more of metal salts such as sodium phosphate, tin chloride, cobalt carbonate and sodium dihydrogen phosphate, or metal alkali such as copper hydroxide, cobalt hydroxide, hydroxide One or more of tin and nickel hydroxide, non-metal oxide silicon dioxide and / or phosphorus pentoxide, or one or more of boric acid, silicic acid and phosphoric acid, or non-metal salt dihydrogen phosphate Ammonium, phosphorus One or more of ammonium acid and ammonium sulfate, or a silicone resin and / or ethylene glycol borate, or one or more of copper, lead, antimony, tin, cobalt, and nickel, or a non-metal simple substance One or more of certain silicon, sulfur and boron.

本発明の方法において、100gあたりの乾燥植物原料に酸又はアルカリを80〜300ml加え、3〜50h浸漬する前に、前駆体である乾燥植物原料を機械粉砕又はジェットミリングし、粒度40〜1OOμmの粉末を得、前記低温予備焼結の前に、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、1000〜4500r/minの回転速度で20〜95min混合し、前記ドーパントは金属酸化物である酸化スズ、酸化コバルトおよび酸化ニッケルの1種以上か、金属塩であるリン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上か、金属アルカリである水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上か、非金属酸化物である二酸化ケイ素及び/又は五酸化りん、又はホウ酸、ケイ酸及びリン酸の1種以上か、非金属塩であるリン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上か、金属単体である銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上か、或いは非金属単体であるケイ素、硫黄及びホウ素の1種以上である。   In the method of the present invention, 80 to 300 ml of acid or alkali is added to 100 g of dried plant material per 100 g, and before immersing for 3 to 50 hours, the dried plant material that is a precursor is mechanically pulverized or jet milled to obtain a particle size of 40 to 1OO μm. A powder is obtained, and before the low-temperature pre-sintering, a dopant with a ratio of more than 0% by mass to 40% by mass or less is added and mixed at a rotational speed of 1000-4500 r / min for 20-95 min. One or more metal oxides such as tin oxide, cobalt oxide and nickel oxide, or one or more metal salts such as sodium phosphate, tin chloride, cobalt carbonate and sodium dihydrogen phosphate, or metal hydroxide which is a metal alkali One or more of copper, cobalt hydroxide, tin hydroxide and nickel hydroxide, non-metal oxide silicon dioxide and / or phosphorus pentoxide, or one or more of boric acid, silicic acid and phosphoric acid, Metal salt One or more of certain ammonium dihydrogen phosphates, ammonium phosphates and ammonium sulfates, or one or more of copper, lead, antimony, tin, cobalt and nickel as simple metals, or silicon, sulfur and boron as simple metals It is 1 or more types.

本発明は、従来の技術に比べて、硬質炭素基体の前駆体を高温熱分解、及び被覆することで複合硬質炭素負極材料を得るものであり、0.2Cにおいて、初回可逆容量が455.2mAh/g以上、初回クーロン効率が79.4%以上であり、優れたリチウム挿入・脱離能力とサイクル安定性を有し、硬質炭素負極材料は高容量、高い初回クーロン効率及び高レートのメリットを有し、製造プロセスが簡単で操作しやすく、コストが低く、リチウムイオン動力電池、各種のポータブルデバイス、電動工具、電気自動車用リチウムイオン電池負極材料に適している。   The present invention obtains a composite hard carbon negative electrode material by subjecting a precursor of a hard carbon substrate to high temperature pyrolysis and coating as compared with the prior art, and the initial reversible capacity is 455.2 mAh / g at 0.2C. As described above, the initial coulomb efficiency is 79.4% or more, has excellent lithium insertion / extraction ability and cycle stability, and the hard carbon negative electrode material has the advantages of high capacity, high initial coulomb efficiency and high rate. The process is simple and easy to operate, and the cost is low. It is suitable for lithium ion power batteries, various portable devices, power tools, and lithium ion battery anode materials for electric vehicles.

実施例1の走査型電子顕微鏡像である。2 is a scanning electron microscope image of Example 1. FIG. 実施例1のX線回折像である。2 is an X-ray diffraction image of Example 1. FIG. 実施例1の異なったレートにおける初回充放電性能のグラフである。2 is a graph of initial charge / discharge performance at different rates in Example 1; 実施例1の60℃、0.2Cレートにおけるサイクル性能のグラフである。2 is a graph of cycle performance of Example 1 at 60 ° C. and a 0.2 C rate. 実施例1の-30℃、0.2Cレートにおけるサイクル性能のグラフである。2 is a graph of cycle performance in Example 1 at −30 ° C. and a 0.2 C rate. 実施例14で製造された材料の走査型電子顕微鏡像である。18 is a scanning electron microscope image of the material produced in Example 14. FIG. 実施例14で製造された材料のX線回折像である。18 is an X-ray diffraction image of the material manufactured in Example 14. FIG. 実施例14で製造された材料の異なったレートにおける初回充電(リチウムの脱離)放電(リチウムの挿入)性能のグラフである。FIG. 16 is a graph of initial charge (lithium desorption) discharge (lithium insertion) performance at different rates for the material produced in Example 14. FIG. 実施例14で製造された材料の60℃、0.2Cレートにおけるサイクル性能のグラフである。14 is a graph of cycle performance of the material produced in Example 14 at 60 ° C. and 0.2 C rate. 実施例14で製造された材料の-30℃、0.2Cレートにおけるサイクル性能のグラフである。14 is a graph of cycle performance of the material manufactured in Example 14 at −30 ° C. and 0.2 C rate.

以下、図面と実施例を参照して本発明をさらに詳しく説明する。本発明のリチウムイオン電池の複合硬質炭素負極材料は、硬質炭素基体の外部に被覆物質が被覆され、被覆物質の前駆体が有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロースCMC、ピッチ、エチルメチルカーボネートEMC、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴムSBR、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン、ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上であり、それらが熱分解して被覆物質を形成する。   Hereinafter, the present invention will be described in more detail with reference to the drawings and embodiments. The composite hard carbon negative electrode material of the lithium ion battery of the present invention is an epoxy resin, phenol resin, carboxymethyl cellulose CMC, pitch, ethyl methyl carbonate, in which the coating material is coated on the outside of the hard carbon substrate, and the precursor of the coating material is an organic substance EMC, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber SBR, polyvinyl chloride, polyethylene, polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate, Polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline, polypyrrole, polyacene, poly-m-phenylenediamine, polythiophene, poly (p-phenol Vinylene), polythiophene, and a polyacrylonitrile, one or more polyimides and polyphenylene sulfide, they form a pyrolyzed coating materials.

硬質炭素基体の前駆体として樹脂を用いる場合、被覆物質の前駆体の質量が硬質炭素基体の前駆体の1〜15%である。該リチウムイオン電池の複合硬質炭素負極材料は、相分布が均一で形状が塊状の不規則な微粒子であって多孔質構造を有し、孔径が0.2〜1OOnm、空孔率が9〜19%(粒状材料のかさ体積において、粒子間の空孔体積の全体積に占める割合)、002結晶面の層間距離d002値が0.338〜0.475nm、粒度範囲が0.5〜90μm、比表面積が1.9〜75.3m/g、真密度が1.53〜2.35g/cm、タップ密度が0.88〜1.43g/cm、その炭素元素の含有量が90.5%以上である。0.2Cにおいて、初回可逆容量が455.2mAh/g以上、初回クーロン効率が79.4%以上である。 When a resin is used as the precursor of the hard carbon substrate, the mass of the precursor of the coating material is 1 to 15% of the precursor of the hard carbon substrate. The composite hard carbon negative electrode material of the lithium ion battery is an irregular fine particle having a uniform phase distribution and a lump shape, has a porous structure, a pore diameter of 0.2 to 1 OOnm, and a porosity of 9 to 19% ( The ratio of the volume of pores between particles to the total volume in the bulk volume of the granular material), the interlayer distance d 002 of the 002 crystal plane d 002 value is 0.338 to 0.475 nm, the particle size range is 0.5 to 90 μm, and the specific surface area is 1.9 to 75.3 m 2 / g, the true density is 1.53 to 2.35 g / cm 3 , the tap density is 0.88 to 1.43 g / cm 3 , and the carbon element content is 90.5% or more. At 0.2C, the initial reversible capacity is 455.2mAh / g or more, and the initial coulomb efficiency is 79.4% or more.

前記硬質炭素基体の前駆体は、25質量%〜100質量%未満の樹脂(25質量%≦樹脂<100質量%)と、0質量%を超え75質量%以下の硬化剤(0質量%<硬化剤≦75質量%)と、0質量%を超え15質量%以下のドーパント(0質量%<ドーパント≦15質量%)とからなり、ドーパントは金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、樹脂と硬化剤は重合反応後、ドーパントと混合してさらに熱分解して硬質炭素基体を形成する。 The precursor of the hard carbon substrate includes 25% by mass to less than 100% by mass of resin (25% by mass ≦ resin <100% by mass) and more than 0% by mass and 75% by mass or less of a curing agent (0% by mass <curing). Agent ≦ 75 mass%) and more than 0 mass% and 15 mass% or less dopant (0 mass% <dopant ≦ 15 mass%). The dopant is composed of a simple metal, a non-metal simple substance, a metal compound, and a non-metal compound. One or more, and the resin and the curing agent are mixed with a dopant after the polymerization reaction and further thermally decomposed to form a hard carbon substrate.

前記硬質炭素基体の前駆体は、25質量%〜100質量%未満の樹脂(25質量%≦樹脂<100質量%)と、0質量%を超え75質量%以下の硬化剤(0質量%<硬化剤≦75質量%)とからなり、樹脂に硬化剤を添加し、重合化学反応後、熱分解して硬質炭素基体を形成する。 The precursor of the hard carbon substrate includes 25% by mass to less than 100% by mass of resin (25% by mass ≦ resin <100% by mass) and more than 0% by mass and 75% by mass or less of a curing agent (0% by mass <curing). (Hardening agent ≦ 75% by mass), a hardener is added to the resin, and after the polymerization chemical reaction, it is thermally decomposed to form a hard carbon substrate.

前記硬質炭素基体の前駆体は、85質量%〜100質量%未満の樹脂(85質量%≦樹脂<100質量%)と、0質量%を超え15質量%以下のドーパント(0質量%<ドーパント≦15質量%)とからなり、樹脂と金属単体、非金属単体、金属化合物及び非金属化合物中の1種以上であるドーパントとが混合して熱分解し、硬質炭素基体が形成される。 The precursor of the hard carbon substrate includes 85% by mass to less than 100% by mass of resin (85% by mass ≦ resin <100% by mass) and more than 0% by mass and 15% by mass or less of dopant (0% by mass <dopant ≦ 15 mass%), and a resin and a metal simple substance, a non-metal simple substance, a metal compound, and one or more dopants in the non-metallic compound are mixed and thermally decomposed to form a hard carbon substrate.

前記硬質炭素基体の前駆体は、樹脂であるアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、それらが熱分解して硬質炭素基体を形成する。 Precursor of the hard carbon substrate is an acrylic resin which is a resin, polyvinyl chloride, and a polycarbonate, epoxy resins, one or more phenolic resins and poly formaldehyde, they thermally decompose to form a hard carbon substrate.

硬化剤は、ヘキサメチレンジアミン、m−フェニレンジアミン、アニリンホルムアルデヒド樹脂、ポリアミド樹脂、無水フタル酸及びベンゼンスルホン酸の1種以上である。   The curing agent is at least one of hexamethylenediamine, m-phenylenediamine, aniline formaldehyde resin, polyamide resin, phthalic anhydride, and benzenesulfonic acid.

金属単体は、銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上である。   The simple metal is at least one of copper, lead, antimony, tin, cobalt, and nickel.

金属化合物は、酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上である。   The metal compound is one of tin oxide, cobalt oxide, nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin chloride, cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide. That's it.

非金属単体は、ケイ素、硫黄及びホウ素の1種以上である。   The non-metal simple substance is at least one of silicon, sulfur and boron.

非金属化合物は、二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上である。   The nonmetallic compound is at least one of silicon dioxide, phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, ammonium sulfate, silicone resin, and ethylene glycol borate.

前記ドーパントは、固体粒子又は液体であり、本発明のリチウムイオン電池の複合硬質炭素負極材料の容量及び初回クーロン効率を向上させる作用を有する。前記硬化剤は、硬質炭素の容量及び初回クーロン効率を向上させるためのものである。汎用の樹脂、硬化剤、金属単体、非金属単体、金属化合物又は非金属化合物、被覆物質を使用するため、本発明の材料はコストが低い。 The dopant is solid particles or liquid, and has an effect of improving the capacity and initial Coulomb efficiency of the composite hard carbon negative electrode material of the lithium ion battery of the present invention. The said hardening | curing agent is for improving the capacity | capacitance and hard-coulomb efficiency of hard carbon. Since a general-purpose resin , a curing agent, a metal simple substance, a non-metal simple substance, a metal compound or a non-metal compound, and a coating substance are used, the cost of the material of the present invention is low.

硬質炭素基体の前駆体として樹脂を用いる場合、本発明のリチウムイオン電池の複合硬質炭素負極材料の製造方法は、以下の工程を含む。 When using resin as a precursor of a hard carbon base, the manufacturing method of the composite hard carbon negative electrode material of the lithium ion battery of the present invention includes the following steps.

(1)工程1:硬化工程
25質量%〜100質量%未満の粒状又は液体の樹脂に、0質量%を超え75質量%以下の固体又は液体の硬化剤を添加し、均一に撹拌し、空気中、常温で3〜50h硬化させて固体前駆体を得る。
(1) Step 1: Curing step
Add a solid or liquid curing agent of more than 0% by mass and 75% by mass or less to 25% by mass to less than 100% by mass of granular or liquid resin , stir uniformly, and cure in air at room temperature for 3-50h To obtain a solid precursor.

(2)工程2:低温予備焼結工程
硬質炭素の収率、容量及び初回クーロン効率を向上させ、多孔質構造を発生させるために、前駆体を宜興市飛達電気炉有限公司製SXQ12-14-20型ボックスタイプの抵抗炉に入れて、0.1〜1O℃/minの速度で150℃〜400℃まで昇温させ、窒素ガスの保護下で窒素ガスの流量を0.18〜0.4m/hとして、2〜24h低温予備焼結を行い、炉内を室温まで自然降温させ、固体のハニカム状の灰黒色物質を得る。
(2) Step 2: Low-temperature pre-sintering step To improve the yield, capacity and initial coulomb efficiency of hard carbon, and to generate a porous structure, the precursor is SXQ12-14 made by Yixing City Flyer Electric Furnace Co., Ltd. In a -20 type box type resistance furnace, the temperature is raised to 150 ° C. to 400 ° C. at a rate of 0.1 to 1 ° C./min, and the nitrogen gas flow rate is set to 0.18 to 0.4 m 3 / h under the protection of nitrogen gas. Then, low temperature pre-sintering is performed for 2 to 24 hours, and the furnace is naturally cooled to room temperature to obtain a solid honeycomb-like grayish black material.

(3)工程3:粉砕工程
固体のハニカム状の灰黒色物質を粉砕又はボールミリングし、粒度1〜60μmの粉末を得、南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して材料粒度をドープに好適な大きさに制御する。
(3) Process 3: Grinding process Solid honeycomb gray-black substance is pulverized or ball milled to obtain a powder with a particle size of 1-60μm, and the particle size of the material is adjusted using a QM-1SP4 type planetary ball mill manufactured by Nanjing University The size is controlled to be suitable for the dope.

(4)工程4:金属単体、非金属単体、金属化合物又は非金属化合物をドープする工程
粉末に、0質量%を超え15質量%以下の割合で、金属単体、非金属単体、金属化合物及び非金属化合物の1種以上を加え、常州市武進八方機械廠製F-0.4型高速分散機を使用して1000〜3000r/minの回転速度で26〜120min混合し、改良された前駆体を得て、硬質炭素の容量及び初回クーロン効率を向上させる。ドープする金属単体、非金属単体、金属化合物又は非金属化合物の混合撹拌は、硬化の工程中で回転速度を2000〜4500r/min、時間を10〜120minとして行っても良く、低温予備焼結の後に行っても良い。
(4) Step 4: A step of doping a metal simple substance, a non-metal simple substance, a metal compound or a non-metallic compound. Add one or more of the metal compounds and mix for 26 to 120 minutes at a rotational speed of 1000 to 3000 r / min using an F-0.4 type high-speed disperser manufactured by Changzhou Wujin Happo Machinery Co., Ltd. to obtain an improved precursor Improve hard carbon capacity and initial coulomb efficiency. Mixing and stirring of simple metal, non-metal simple substance, metal compound or non-metal compound to be doped may be performed at a rotational speed of 2000 to 4500 r / min and time of 10 to 120 min during the curing process. You may go later.

(5)工程5:熱分解工程
改良された前駆体を宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて0.3〜10℃/minの速度で560〜1500℃まで昇温させ、窒素ガスの保護下で窒素ガスの流量を0.1〜0.4m/hとして0.5〜7.5h熱分解し、炉内を室温まで自然降温させ、硬質炭素を製造する。
(5) Process 5: Pyrolysis process The improved precursor is placed in a SXQ12-14-20 box type resistance furnace manufactured by Yixing City Feida Electric Furnace Co., Ltd. and 560-1500 ° C at a rate of 0.3-10 ° C / min. Under the protection of nitrogen gas, pyrolysis is performed at a flow rate of nitrogen gas of 0.1 to 0.4 m 3 / h for 0.5 to 7.5 h, and the furnace is naturally cooled to room temperature to produce hard carbon.

(6)工程6:粉砕工程
硬質炭素をボールミリング又は粉砕して、粒度1〜60μmの硬質炭素基体を得る。
(6) Step 6: Grinding Step Hard carbon is ball milled or pulverized to obtain a hard carbon substrate having a particle size of 1 to 60 μm.

(7)工程7:被覆工程
硬質炭素基体に、被覆物質の前駆体を硬質炭素基体の前駆体の1〜15質量%の量で加え、無錫新光粉末加工プロセス有限公司製VC-150型混合機において、1400〜3500r/minの回転速度で20〜50min混合した後、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて1〜1O℃/minの速度で500〜1500℃まで昇温させ、窒素ガスの保護下で、窒素ガスの流量を0.1〜0.4m/hとして、2〜8hかけて処理し、硬質炭素材料の表面をよりスムーズにして最終製品の比表面積を減少させ、炉内を室温まで自然降温させ、200メッシュの篩にかけてリチウムイオン電池の複合硬質炭素負極材料を得る。
(7) Process 7: Coating process VC-150 type mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. by adding the precursor of the coating material to the hard carbon base in an amount of 1 to 15% by mass of the precursor of the hard carbon base. , After mixing for 20-50 min at a rotational speed of 1400-3500r / min, put it in Yxing City Feida Electric Furnace Co., Ltd. SXQ12-14-20 box type resistance furnace and speed at 1-10 ° C / min. The temperature is increased to ˜1500 ° C., and the nitrogen gas flow rate is 0.1 to 0.4 m 3 / h under the protection of the nitrogen gas, and the treatment is performed for 2 to 8 hours to make the surface of the hard carbon material smoother. The specific surface area is reduced, the inside of the furnace is naturally cooled to room temperature, and a sieve of 200 mesh is applied to obtain a composite hard carbon negative electrode material for a lithium ion battery.

前記硬質炭素基体の前駆体が樹脂と硬化剤からなる場合、前記工程4のドープを行わない。 When the precursor of the hard carbon substrate is made of a resin and a curing agent, the doping in the step 4 is not performed.

前記硬質炭素基体の前駆体が樹脂とドーパントからなる場合、工程1において、まず常州市武進八方機械廠製F-0.4型高速分散機を使用して2000〜4500r/minの回転速度で両方を10〜120min混合撹拌し、空気中、常温で3〜50h硬化させる。前記工程4のドープを行わない。 In the case where the precursor of the hard carbon substrate is composed of a resin and a dopant, in Step 1, first, the F-0.4 type high-speed disperser manufactured by Takeshin Happo Machinery Co., Ltd. is used, and both of them are rotated at a rotational speed of 2000-4500 r / min. Mix and stir for ~ 120min and cure in air at room temperature for 3-50h. The dope in step 4 is not performed.

前記硬質炭素基体の前駆体が樹脂である場合、工程1において、空気中、常温で3〜5Oh硬化させ、かつ前記工程4のドープを行わない。 When the precursor of the hard carbon substrate is a resin , in Step 1, it is cured in air at room temperature at 3 to 5 Oh, and the doping in Step 4 is not performed.

前記低温予備焼結、熱分解、高温処理は、保護ガスであるヘリウムガス、アルゴンガス又はキセノンガスの保護下で行っても良い。   The low-temperature pre-sintering, thermal decomposition, and high-temperature treatment may be performed under the protection of helium gas, argon gas, or xenon gas that is a protective gas.

硬質炭素基体の前駆体として樹脂を用いて製造されるリチウムイオン電池の複合硬質炭素負極材料を、北京中科科儀技術発展有限公司製KYKY2800B走査電子顕微鏡により形態を観察したところ、形状が塊状の不規則微粒子である。均一に分布している測定箇所を用いて、米国クアンタクロム(QUANTA CHROME)社製比表面積測定装置NOVA1000により測定したところ、多孔質構造で孔径の分布が0.2〜1OOnm、空孔率が9〜19%である。PANalytical B.V.(オランダ)製X線回折装置PW3040/60 X'Pertで測定したd002値が0.338〜0.475nmである。イギリスのマルバーン・インスツルメンツ社製レーザー粒度分布測定器Mastersizer 2000で測定した粒度範囲が0.5〜90μmである。米国マイクロメリチックス社製全自動比表面積/細孔分布測定装置Tristar3000で測定した比表面積が1.9〜75.3m/gである。米国クアンタクロム社製Ultrapycnometer1000型全自動真密度測定装置で測定した真密度が1.54〜2.35g/cmである。北京中西遠大科技有限公司製FZS4-4型タップ密度計で測定したタップ密度が0.88〜1.43g/cmである。 A composite hard carbon negative electrode material for a lithium-ion battery manufactured using a resin as a precursor of a hard carbon substrate was observed with a KYKY2800B scanning electron microscope manufactured by Beijing China Science and Technology Development Co., Ltd. It is irregular fine particles. Using a measurement area uniformly distributed and measured with a specific surface area measuring device NOVA1000 manufactured by QUANTA CHROME, the pore size distribution is 0.2 to 1 OOnm, and the porosity is 9 to 19 %. The d 002 value measured by an X-ray diffractometer PW3040 / 60 X'Pert manufactured by PANalytical BV (Netherlands) is 0.338 to 0.475 nm. The particle size range measured by Mastersizer 2000, a laser particle size distribution meter manufactured by Malvern Instruments, UK, is 0.5 to 90 μm. The specific surface area measured by a fully automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Micromeritics, Inc. of the United States is 1.9-75.3 m 2 / g. The true density measured by an Ultrapycnometer 1000 type fully automatic true density measuring device manufactured by Quantachrome of the United States is 1.54 to 2.35 g / cm 3 . The tap density measured by Beijing Zhongxi Far University Technology Co., Ltd. FZS4-4 type tap density meter is 0.88 to 1.43 g / cm 3 .

炭素残量の測定方法は、洗浄されたるつぼ内に被測定サンプルを入れ、110℃±5℃のオーブンで1h乾燥させる工程1と、洗浄された磁製ボートを950℃±50℃のマッフル炉に入れて1h焼成し、空気中で2min冷却した後、磁製ボートを乾燥器に入れて30min冷却し、室温まで冷却してから、O.OOO1gの精度まで秤量する工程2と、連続的な秤量の差が0.0004g以下になるまで工程2を繰り返し、るつぼの質量をmとする工程3と、乾燥したサンプルを約1g秤量して磁製ボートに置き、O.OOO1gの精度まで秤量してmとする工程4と、試料が入っている磁製ボートを950℃±50℃のマッフル炉に入れて、1.5h焼成した後、磁製ボートを取り出して空気で2min冷却した後、乾燥器に入れて30min冷却し、室温まで冷却した後、O.OOO1gの精度まで秤量する工程5と、連続的な秤量間の差が0.0004g以下になるまで工程5を繰り返し、mとする工程6とを含む。 The remaining amount of carbon is measured by placing the sample to be measured in a cleaned crucible and drying it in an oven at 110 ° C ± 5 ° C for 1 h, and a muffle furnace at 950 ° C ± 50 ° C. Baked for 1 hour, cooled in air for 2 minutes, put the porcelain boat in a dryer, cooled for 30 minutes, cooled to room temperature, then weighed to the accuracy of O.OOO1g, and continuous 2 Step 2 is repeated until the difference in weight is 0.0004 g or less. Step 3 with the crucible mass set to m 1 and about 1 g of the dried sample are weighed and placed in a porcelain boat, and weighed to the accuracy of O.OOO1 g. Step 2 to set m 2 and put the porcelain boat containing the sample in a muffle furnace at 950 ° C. ± 50 ° C., fire for 1.5 hours, take out the porcelain boat, cool with air for 2 min, and dry After cooling to room temperature for 30 minutes, cooling to room temperature, weighing to the accuracy of O.OOO1g, 5 and continuous weighing Repeat step 5 until the difference is below 0.0004 g, and a step 6, m 3.

下記式によって炭素元素の含有量を計算する。
C%=[(m−m)/(m−m)]×100%
(式中、mは磁製ボートの質量、mは磁製ボートと試料の質量、mは磁製ボートと灰分の質量)。
本発明の方法により製造されるリチウムイオン電池の硬質炭素負極材料において、炭素元素の含有量が90%以上である。
The content of carbon element is calculated by the following formula.
C% = [(m 2 −m 3 ) / (m 2 −m 1 )] × 100%
(Where m 1 is the mass of the porcelain boat, m 2 is the mass of the porcelain boat and the sample, and m 3 is the mass of the porcelain boat and the ash).
In the hard carbon negative electrode material for a lithium ion battery produced by the method of the present invention, the carbon element content is 90% or more.

実施例1〜13で製造された負極材料と、粘着剤であるポリフッ化ビニリデンPVDFと、導電剤であるSuper-Pとを、92:5:3の質量比で混合し、N-メチルピロリドンNMPを分散剤として加えてスラリーを調製し、均一に1Oμm厚の銅箔に塗布し、シートにプレスした後、直径1cmの円状炭素膜を作製し、乾燥箱中において120℃で12h乾燥して次の使用のために準備する。金属リチウムシートを対極とし、1mol/LLiPF6の3成分混合溶媒がEC:DMC:EMCが1:1:1の体積割合で混合された電解液を使用し、ポリプロピレン微孔膜をセパレータとする。アルゴンガスが満たされたグローブボックス内で、模擬バッテリー(ドイツのMBRAUN Glovebox Systems社製MB200B型)が組み立てられる。模擬バッテリーの充放電テストは、深セン新威電池テスト設備有限公司製BTS―5V 1OOmA電池テストシステムにおいて、充放電電圧を0.001〜2.0Vに制限して40C、30C、1C、0.2Cで、初回可逆容量と初回クーロン効率を測定する。初回クーロン効率の計算式は、
初回クーロン効率=初回充電容量/初回放電容量。
N-methylpyrrolidone NMP was prepared by mixing the negative electrode material produced in Examples 1 to 13, polyvinylidene fluoride PVDF as an adhesive, and Super-P as a conductive agent in a mass ratio of 92: 5: 3. Was added as a dispersant to prepare a slurry, uniformly applied to a copper foil with a thickness of 1 Oμm, pressed into a sheet, a circular carbon film having a diameter of 1 cm was produced, and dried in a drying box at 120 ° C. for 12 hours. Prepare for the next use. Using a lithium metal sheet as a counter electrode, an electrolyte solution in which a 1 mol / LLiPF6 ternary mixed solvent is mixed in a volume ratio of EC: DMC: EMC 1: 1: 1 is used, and a polypropylene microporous membrane is used as a separator. A simulated battery (MB200B model manufactured by MBRAUN Glovebox Systems, Germany) is assembled in a glove box filled with argon gas. The simulation battery charge / discharge test is the first reversible at 40C, 30C, 1C, 0.2C with the charge / discharge voltage limited to 0.001-2.0V in the BTS-5V 1OOmA battery test system made by Shenzhen Shinwei Battery Test Equipment Co., Ltd. Measure capacity and initial coulomb efficiency. The formula for calculating the initial coulomb efficiency is
Initial coulomb efficiency = initial charge capacity / initial discharge capacity.

人造黒鉛を負極材料として、前記方法により比較例1〜2の電池を製造する。人造黒鉛は比表面積が1Om/g、結晶層間の距離d002が0.3358nm、真密度が2.22g/cm、タップ密度が1.01g/cm、粒度が1〜60μmである。前記と同様な方法により、初回可逆容量と初回クーロン効率を測定する。 Batteries of Comparative Examples 1 and 2 are manufactured by the above method using artificial graphite as a negative electrode material. Artificial graphite specific surface area of 1Om 2 / g, a distance d 002 of the crystal layers 0.3358Nm, true density of 2.22 g / cm 3, a tap density of 1.01 g / cm 3, the particle size is 1~60Myuemu. The initial reversible capacity and initial Coulomb efficiency are measured by the same method as described above.

実施例1〜13の処方は表1に、実施例1〜13の製造プロセスは表2に、実施例1〜13の物理的及び化学的性能の測定結果は表3に、実施例1〜13及び比較例1〜4の電気的性能の測定結果は表4に示される。   The formulations of Examples 1 to 13 are shown in Table 1, the production processes of Examples 1 to 13 are shown in Table 2, the physical and chemical performance measurement results of Examples 1 to 13 are shown in Table 3, and Examples 1 to 13 are shown. And the measurement result of the electrical performance of Comparative Examples 1-4 is shown in Table 4.

図1に示すように、実施例1で製造された材料は、塊状の不規則な形状で大きさが相対的に均一で、微孔構造を有する。   As shown in FIG. 1, the material manufactured in Example 1 has a lump-like irregular shape, a relatively uniform size, and a microporous structure.

図2に示すように、d002は0.388であり、複合硬質炭素は、多孔質かつ不規則な構造であるため、通常の黒鉛類材料よりもその層間距離d002が大きい。 As shown in FIG. 2, d 002 is 0.388, and composite hard carbon has a porous and irregular structure, and therefore has an interlayer distance d 002 larger than that of a normal graphite material.

図3に示すように、常温で、40C、30Cの高レートの条件下で、40C/1C充電容量保持率は95.2%、30C/1C充電容量保持率は96.2%であり、複合硬質炭素材料は微孔かつ無秩序で不規則な構造であるため、優れた高レート充放電性能を有する。   As shown in Fig. 3, 40C / 1C charge capacity retention rate is 95.2% and 30C / 1C charge capacity retention rate is 96.2% under normal conditions at high rates of 40C and 30C. It has excellent high-rate charge / discharge performance because of its microporous, disordered and irregular structure.

図4に示すように、60℃、0.2Cのレートにおける300サイクル容量保持率は96%であり、実施例1で製造された材料は優れた高温サイクル性能を有する。   As shown in FIG. 4, the 300 cycle capacity retention at a rate of 60 ° C. and 0.2 C is 96%, and the material produced in Example 1 has excellent high temperature cycle performance.

図5に示すように、-30℃、0.2Cのレートにおける100サイクル容量保持率は88%であり、実施例1で製造される材料は優れた低温サイクル性能を有する。   As shown in FIG. 5, the 100 cycle capacity retention at a rate of −30 ° C. and 0.2 C is 88%, and the material produced in Example 1 has excellent low temperature cycle performance.

硬質炭素基体の前駆体として植物原料が用いられる場合、被覆物質前駆体の質量は硬質炭素基体の前駆体の質量の1〜25%である。被覆物質は硬質炭素基体の表面に化学吸着、化学反応又は物理吸着され、硬質炭素基体表面と被覆物質とを化学結合又はファンデルワールス力により結合し、硬質炭素基体の表面にハニカム開孔構造を有し、孔径が1.0〜55nm、粒度が2〜60μmである。被覆された後、孔径は0.5〜50nmと小さくなり、粒度は3.5〜70μmと大きくなる。該リチウムイオン電池の複合硬質炭素負極材料は、形状が塊状及び/又はフレーク状粒子でその粒径が3.5〜70μm、比表面積が7.5〜20m/gであり、材料表面にハニカム状の開孔構造を有し、孔径が0.5〜50nm、空孔率が9〜16%、002結晶面の層間距離d002値が0.337〜0.455nm、真密度が1.55〜2.25g/cm、タップ密度が0.91〜1.45g/cm、その炭素元素含有量が94%以上である。0.2Cの場合には、初回可逆容量は450mAh/g以上、初回クーロン効率は81.3%である。 When a plant raw material is used as the precursor of the hard carbon substrate, the mass of the coating material precursor is 1 to 25% of the mass of the precursor of the hard carbon substrate. The coating material is chemisorbed, chemically reacted or physically adsorbed on the surface of the hard carbon substrate, and the surface of the hard carbon substrate is bonded to the coating material by a chemical bond or van der Waals force. Having a pore size of 1.0 to 55 nm and a particle size of 2 to 60 μm. After coating, the pore size decreases as 0.5-50 nm and the particle size increases as 3.5-70 μm. The composite hard carbon negative electrode material of the lithium ion battery has a lump shape and / or flake shape, a particle size of 3.5 to 70 μm, a specific surface area of 7.5 to 20 m 2 / g, and a honeycomb-like opening on the material surface. It has a structure with a pore diameter of 0.5 to 50 nm, a porosity of 9 to 16%, an interlayer distance d 002 value of 002 crystal plane of 0.337 to 0.455 nm, a true density of 1.55 to 2.25 g / cm 3 , and a tap density of 0.91. ˜1.45 g / cm 3 , and its carbon element content is 94% or more. In the case of 0.2C, the initial reversible capacity is 450 mAh / g or more, and the initial coulomb efficiency is 81.3%.

前記硬質炭素基体の前駆体は、植物原料である花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上であり、それらが熱分解して硬質炭素基体を形成する。   The precursor of the hard carbon substrate is at least one of pollen, rice husk, sweet potato stalk, walnut husk, bamboo, sake lees, and wood chips, which are plant materials, and these are thermally decomposed to form a hard carbon substrate.

前記硬質炭素基体の前駆体は、植物原料と、植物原料の0質量%を超え40質量%以下を占めるドーパントを混合してなり、それらが熱分解して硬質炭素基体を形成する。植物原料は花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上である。   The precursor of the hard carbon substrate is a mixture of a plant raw material and a dopant occupying more than 0% by mass and 40% by mass or less of the plant raw material, and these are thermally decomposed to form a hard carbon substrate. The plant material is at least one of pollen, rice husk, sweet potato stalk, walnut husk, bamboo, sake lees and wood chips.

前記硬質炭素基体の前駆体として植物原料が用いられる場合、ドーパントは金属化合物、非金属化合物、金属単体又は非金属単体である。前記金属化合物は金属酸化物、金属塩又は金属アルカリである。前記非金属化合物は非金属酸化物、酸、非金属元素の有機物又は非金属塩である。   When a plant raw material is used as the precursor of the hard carbon substrate, the dopant is a metal compound, a nonmetal compound, a metal simple substance, or a nonmetal simple substance. The metal compound is a metal oxide, a metal salt, or a metal alkali. The nonmetallic compound is a nonmetallic oxide, an acid, an organic substance of a nonmetallic element, or a nonmetallic salt.

金属酸化物は、酸化スズ、酸化コバルトおよび酸化ニッケルの1種以上である。   The metal oxide is at least one of tin oxide, cobalt oxide, and nickel oxide.

金属塩は、リン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上である。   The metal salt is at least one of sodium phosphate, tin chloride, cobalt carbonate, and sodium dihydrogen phosphate.

金属アルカリは、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上である。   The metal alkali is at least one of copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide.

非金属酸化物は、二酸化ケイ素及び/又は五酸化りんである。   The non-metal oxide is silicon dioxide and / or phosphorus pentoxide.

酸は、ホウ酸、ケイ酸及びリン酸の1種以上である。   The acid is at least one of boric acid, silicic acid and phosphoric acid.

非金属塩は、リン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上である。   The nonmetallic salt is at least one of ammonium dihydrogen phosphate, ammonium phosphate, and ammonium sulfate.

非金属元素の有機物は、シリコーン樹脂及び/又はエチレングリコールホウ酸エステルである。   The organic substance of the nonmetallic element is a silicone resin and / or an ethylene glycol borate ester.

金属単体は、銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上である。   The simple metal is at least one of copper, lead, antimony, tin, cobalt, and nickel.

非金属単体は、ケイ素、硫黄及びホウ素の1種以上である。   The non-metal simple substance is at least one of silicon, sulfur and boron.

硬質炭素基体の前駆体として植物原料が用いられる場合、本発明のリチウムイオン電池の複合硬質炭素負極材料の製造方法の1は、以下の工程を含む。   When a plant raw material is used as a precursor of a hard carbon substrate, one of the methods for producing a composite hard carbon negative electrode material for a lithium ion battery of the present invention includes the following steps.

(1)工程1:前駆体の不純物除去及び浸漬処理工程
100gあたりの乾燥植物原料に対して、酸又はアルカリを80〜300ml加えることとなるように、前駆体の植物原料に酸又はアルカリを加え、常州市武進八方機械廠製F-0.4型高速分散機により、1000〜3000r/minの回転速度で3〜30min分散させた後、3〜50h浸漬する。
(1) Step 1: Removal of precursor impurities and immersion treatment step
Acid or alkali is added to the precursor plant material so that 80 to 300 ml of acid or alkali is added to 100 g of dry plant material per 100 g. Then, after dispersing for 3 to 30 minutes at a rotational speed of 1000 to 3000 r / min, the sample is immersed for 3 to 50 hours.

植物原料は、前記のとおり、酸は、フッ化水素酸、ホウ酸、硫酸、塩酸又は硝酸であり、アルカリは、水酸化カリウム、水酸化カルシウム又は水酸化ナトリウムである。   As described above, the plant raw material is hydrofluoric acid, boric acid, sulfuric acid, hydrochloric acid, or nitric acid, and the alkali is potassium hydroxide, calcium hydroxide, or sodium hydroxide.

(2)工程2:洗浄工程
前駆体のpH値を5〜9にするために、電導率13μs/cmの純水で、張家港市華祥遠心機製造有限公司製SS300型3コラム型ディスチャージ遠心分離機により、800〜1400r/minの回転速度で8〜30min洗浄する。
(2) Process 2: Cleaning process SS300 type 3-column type discharge centrifuge manufactured by Zhangjiagang Huaxiang Centrifuge Manufacturing Co., Ltd. with pure water with electrical conductivity of 13μs / cm to make the precursor pH value 5-9 Wash for 8 to 30 minutes at a rotational speed of 800 to 1400 r / min.

(3)工程3:水分除去・乾燥工程
広州東之旭試験設備有限公司製DHG-9140型高温テストチャンバーを使用して80〜140℃の条件で10〜40h乾燥させ、室温まで自然降温させる。
(3) Process 3: Moisture removal and drying process Using a DHG-9140 type high temperature test chamber manufactured by Guangzhou Tono Asahi Test Equipment Co., Ltd., it is dried for 10 to 40 hours under the condition of 80 to 140 ° C. and allowed to cool naturally to room temperature.

(4)工程4:低温予備焼結工程
硬質炭素の収率、容量及び初回クーロン効率を向上させ、基体表面でハニカム開孔構造を発生させるために、乾燥した前駆体を宜興市飛達電気炉有限公司製SXQ12-14-20型ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で200〜500℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、3〜20h低温予備焼結を行い、炉内を室温まで自然降温させ、固体のハニカム状の灰黒色物質を得る。
(4) Process 4: Low-temperature pre-sintering process Yixing City Flyer Electric Furnace is used to improve the yield, capacity and initial coulomb efficiency of hard carbon, and to generate a honeycomb pore structure on the substrate surface. Put into a SXQ12-14-20 type box type resistance furnace manufactured by Co., Ltd., raise the temperature to 200-500 ° C at a rate of O.1-1O ° C / min, and with a vacuum of 0.03 MPa or less, or with protective gas Under a certain helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, the flow rate is 0.1 to 0.4 m 3 / h, and low temperature pre-sintering is performed for 3 to 20 hours. A honeycomb-like grayish black substance is obtained.

(5)工程5:粉砕工程
固体のハニカム状の灰黒色物質を粉砕又はボールミリングし、粒度1〜60μmの粉末を得、南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して材料の粒度をドープに好適な大きさに制御する。
(5) Process 5: Crushing process Solid honeycomb gray-black substance is pulverized or ball milled to obtain a powder with a particle size of 1 to 60 μm, and the particle size of the material using a QM-1SP4 planetary ball mill manufactured by Nanjing University To a size suitable for the dope.

(6)工程6:ドープ工程
前記粉末に、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、常州市武進八方機械廠F-0.4型高速分散機を使用して1000〜4500r/minの回転速度で20〜95min分散させ、改良された前駆体を得、硬質炭素の容量及び初回クーロン効率を向上させる。
(6) Step 6: Doping step To the powder, a dopant having a proportion of more than 0% by mass to 40% by mass or less is added to the powder, and 1000 ~ Disperse at a rotational speed of 4500 r / min for 20-95 min to obtain an improved precursor, improving the capacity of hard carbon and the initial Coulomb efficiency.

ドーパントは、前記硬質炭素基体の前駆体として植物原料が用いられる場合のドーパントである。   The dopant is a dopant when a plant raw material is used as the precursor of the hard carbon substrate.

ドープの工程は、低温予備焼結の前に行っても良い。   The dope process may be performed before the low temperature pre-sintering.

(7)工程7:熱分解工程
改良された前駆体を宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉内に入れて、O.1〜1O℃/minの昇温速度で500〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスで、流量を0.1〜0.4m/hとして1〜1Oh熱分解し、炉内を室温まで自然降温させ、硬質炭素を得る。
(7) Process 7: Pyrolysis process The improved precursor is placed in a SXQ12-14-20 box type resistance furnace manufactured by Yixing City Fida Electric Furnace Co., Ltd., and the temperature is increased from O.1 to 1O ° C / min. The temperature is raised to 500 to 1300 ° C. at a speed of 0.03 MPa or less, or helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas as a protective gas, and the flow rate is set to 0.1 to 0.4 m 3 / h. Pyrolysis of 1 ~ 1Oh, the inside of the furnace is naturally cooled to room temperature, and hard carbon is obtained.

(8)工程8:粉砕又はボールミリング工程
南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して硬質炭素をボールミリング又は粉砕し、粒度2〜65μmの硬質炭素基体を得る。
(8) Process 8: Grinding or ball milling process Using a QM-1SP4 type planetary ball mill manufactured by Nanjing University Gigyo Co., Ltd., hard carbon is ball milled or ground to obtain a hard carbon substrate having a particle size of 2 to 65 μm.

(9)工程9:被覆工程
硬質炭素基体に、被覆物質の前駆体を硬質炭素基体の前駆体の1〜25質量%の量で加え、無錫新光粉末加工プロセス有限公司製VC-150型混合機を用いて、1000〜4500r/minの回転速度で2〜40min混合した後、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で400〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、1〜24h熱分解処理を行い、炉内を室温まで自然降温させ、硬質炭素材料の表面をスムーズにして最終製品の比表面積を減少させ、200メッシュの篩にかけて粒度3.5〜70μmのリチウムイオン電池の複合硬質炭素負極材料を得る。
(9) Process 9: Coating process VC-150 type mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. by adding a precursor of the coating material to the hard carbon base in an amount of 1 to 25% by mass of the precursor of the hard carbon base. After mixing for 2 to 40 min at a rotational speed of 1000 to 4500 r / min, put it in a SXQ12-14-20 box type resistance furnace made by Yixing Feida Electric Furnace Co., Ltd. The temperature is raised to 400-1300 ° C. at a rate of min, and the flow rate is 0.1-0.4 m 3 at a vacuum of 0.03 MPa or less, or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. / H, pyrolysis treatment for 1 to 24 hours, allowing the furnace to cool naturally to room temperature, smoothing the surface of the hard carbon material to reduce the specific surface area of the final product, passing through a 200 mesh sieve and having a particle size of 3.5 to 70 μm A composite hard carbon negative electrode material for a lithium ion battery is obtained.

被覆物質の前駆体は前記有機物である。   The precursor of the coating material is the organic material.

硬質炭素基体の前駆体として植物原料が用いられる場合、本発明のリチウムイオン電池の複合硬質炭素負極材料の製造方法の2は、以下の工程を含む。   When a plant raw material is used as the precursor of the hard carbon substrate, Method 2 for producing a composite hard carbon negative electrode material for a lithium ion battery of the present invention includes the following steps.

(1)工程1:粉砕工程
前記植物原料を、汎用の機械粉砕機又はジェットミルにより、機械粉砕又はジェットミリングし、粒度40〜1OOμmの粉末物質を得る。
(1) Step 1: pulverization step The plant material is mechanically pulverized or jet milled with a general-purpose mechanical pulverizer or jet mill to obtain a powder substance having a particle size of 40 to 1OOμm.

(2)工程2:不純物除去・浸漬処理工程
100gあたりの乾燥植物原料に酸又はアルカリを80〜300ml加えるように、前記粉末物質に、フッ化水素酸、ホウ酸、硫酸、塩酸、硝酸、水酸化カリウム、水酸化カルシウム又は水酸化ナトリウムを加え、常州市武進八方機械廠製F-0.4型高速分散機を使用して1000〜3OOOr/minの回転速度で3〜30min分散した後、3〜50h浸漬する。
(2) Process 2: Impurity removal / immersion process
Add hydrofluoric acid, boric acid, sulfuric acid, hydrochloric acid, nitric acid, potassium hydroxide, calcium hydroxide or sodium hydroxide to the powdered material so that 80-300 ml of acid or alkali is added to 100 g of dry plant raw material per 100 g. Using a F-0.4 type high-speed disperser manufactured by Changshu Takejin Happo Machinery Co., Ltd., disperse for 3 to 30 minutes at a rotational speed of 1000 to 3 OOOr / min, and then immersed for 3 to 50 hours.

(3)工程3:洗浄工程
前駆体のpHを5〜9に制御するために、電導率13μm/cmの純水で、張家港市華祥遠心機製造有限公司製SS300型3コラム型ディスチャージ遠心分離機を使用して、800〜1400r/minの回転速度で8〜30min洗浄する。
(3) Process 3: Cleaning process SS300 type 3-column discharge centrifuge made by Zhangjiagang Huaxiang Centrifuge Manufacturing Co., Ltd. with pure water with conductivity of 13μm / cm to control the pH of the precursor to 5-9 Use a machine to clean for 8 to 30 minutes at a rotational speed of 800 to 1400 r / min.

(4)工程4:水分除去・乾燥工程
広州東之旭試験設備有限公司製DHG-9140型高温試験チャンバーを使用して80〜140℃の条件下で10〜40h乾燥させ、室温まで自然降温させる。
(4) Process 4: Moisture removal / drying process Using a DHG-9140 type high temperature test chamber made by Guangzhou Tono Asahi Test Equipment Co., Ltd., drying at 80-140 ° C for 10-40h and letting it naturally cool to room temperature .

(5)工程5:ドープ工程
乾燥された材料に占める割合が0質量%を超え40質量%以下のドーパントを加え、無錫新光粉体加工プロセス有限公司製VC-150型混合機中において1000〜4500r/minの回転速度で20〜95min混合する。
(5) Process 5: Doping process Add a dopant that is greater than 0% by weight and less than 40% by weight in the dried material, and add 1000 to 4500r in a VC-150 mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. Mix for 20 to 95 minutes at a rotation speed of / min.

前記ドーパントは、前記硬質炭素基体の前駆体として植物原料が用いられる場合のドーパントである。   The said dopant is a dopant in case a plant raw material is used as a precursor of the said hard carbon base | substrate.

(6)工程6:低温予備焼結工程
ドープされた前駆体を、宜興市飛達電気炉有限公司製SXQ12-14-20型ボックスタイプの抵抗炉に入れてO.1〜1O℃/minの速度で200〜500℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、3〜2Oh低温予備焼結を行い、炉内を室温まで自然降温させる。
(6) Step 6: Low-temperature pre-sintering step The doped precursor is put into a SXQ12-14-20 type box type resistance furnace made by Yixing City Feida Electric Furnace Co., Ltd., and O.1-1O ° C / min. The temperature is raised to 200 to 500 ° C. at a rate of 0.1 to 0.4 m 3 / h at a vacuum level of 0.03 MPa or less or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. Then, 3 ~ 2Oh low temperature pre-sintering is performed, and the inside of the furnace is naturally cooled to room temperature.

(7)工程7:粉砕又はボールミリング工程
南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して粒度1〜65μmの硬質炭素前駆体を得る。
(7) Step 7: Grinding or ball milling step A hard carbon precursor having a particle size of 1 to 65 μm is obtained using a QM-1SP4 planetary ball mill manufactured by Nanjing University Gikijo.

(8)工程8:熱分解工程
硬質炭素の前駆体を、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れてO.1〜1O℃/minの速度で500〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして熱分解を1〜1Oh行い、硬質炭素基体を得、炉内を室温まで自然降温させ、硬質炭素を得る。
(8) Process 8: Pyrolysis process The precursor of hard carbon is put in a SXQ12-14-20 box type resistance furnace manufactured by Yixing City Fida Electric Furnace Co., Ltd. and a rate of O.1 to 1O ° C / min is 500. Pyrolysis with a flow rate of 0.1 to 0.4 m 3 / h at a vacuum of 0.03 MPa or less or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. 1 to 1Oh, a hard carbon substrate is obtained, and the furnace is naturally cooled to room temperature to obtain hard carbon.

(9)工程9:硬質炭素基体を得る工程
硬質炭素を10〜30minボールミリング又は粉砕し、粒度2〜60μmの硬質炭素基体を得る。
(9) Step 9: Step of obtaining a hard carbon substrate Hard carbon is ball milled or pulverized for 10 to 30 minutes to obtain a hard carbon substrate having a particle size of 2 to 60 μm.

(10)工程10:被覆工程
硬質炭素基体に、被覆物質の前駆体を硬質炭素基体の前駆体の1〜25質量%の量で加え、無錫新光粉末加工プロセス有限公司製VC-150型混合機を用い、1000〜4500r/minの回転速度で、2〜40min混合した後、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で400〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、1〜24h熱分解処理を行い、炉内を室温まで自然降温させ、硬質炭素材料の表面をスムーズにして最終製品の比表面積を減少させ、200メッシュの篩にかけて粒度3.5〜70μmのリチウムイオン電池の複合硬質炭素負極材料を得る。
(10) Process 10: Coating process VC-150 type mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. by adding a precursor of the coating material to the hard carbon base in an amount of 1 to 25% by mass of the precursor of the hard carbon base. After mixing for 2 to 40 min at a rotational speed of 1000 to 4500 r / min, put it in a SXQ12-14-20 box type resistance furnace made by Yixing Feida Electric Furnace Co., Ltd. The temperature is raised to 400-1300 ° C. at a rate of min, and the flow rate is 0.1-0.4 m 3 at a vacuum of 0.03 MPa or less, or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. / H, pyrolysis treatment for 1 to 24 hours, allowing the furnace to cool naturally to room temperature, smoothing the surface of the hard carbon material to reduce the specific surface area of the final product, passing through a 200 mesh sieve and having a particle size of 3.5 to 70 μm A composite hard carbon negative electrode material for a lithium ion battery is obtained.

被覆物質の前駆体は、前記有機物である。   The precursor of the coating material is the organic material.

硬質炭素基体の前駆体として植物原料が用いられる場合、本発明のリチウムイオン電池の複合硬質炭素負極材料の製造方法の3は、以下の工程を含む。   When a plant raw material is used as the precursor of the hard carbon substrate, method 3 for producing a composite hard carbon negative electrode material for a lithium ion battery of the present invention includes the following steps.

(1)工程1:粉砕工程
前駆体の乾燥植物類原料となる花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上を、汎用の機械粉砕機又はジェットミル機を用いて機械粉砕又はジェットミリングし、粒度40〜1OOμmの粉末物質を得る。
(1) Step 1: Grinding step Using at least one kind of pollen, rice husk, sweet potato stalk, walnut husk, bamboo, sake lees, and wood chips that are precursor plant raw materials, using a general-purpose mechanical pulverizer or jet mill Mechanically pulverized or jet milled to obtain a powder material having a particle size of 40 to 1OO μm.

(2)工程2:不純物除去・浸漬処理工程
100gあたりの乾燥植物原料に、酸又はアルカリを80〜300ml加えるように前記粉末物質にフッ化水素酸、ホウ酸、硫酸、塩酸、硝酸、水酸化カリウム、水酸化カルシウム又は水酸化ナトリウムを加え、常州市武進八方機械廠製F-0.4型高速分散機を使用して1000〜300Or/minで3〜30min分散させた後、3〜50h浸漬する。
(2) Process 2: Impurity removal / immersion process
Add hydrofluoric acid, boric acid, sulfuric acid, hydrochloric acid, nitric acid, potassium hydroxide, calcium hydroxide or sodium hydroxide to the powdered material so that 80 to 300 ml of acid or alkali is added to dry plant raw material per 100 g, Disperse for 3 to 30 min at 1000 to 300 Or / min using an F-0.4 type high-speed disperser manufactured by Changzhou Wujin Happo Machinery Co.

(3)工程3:洗浄工程
前駆体のpHを5〜9に制御するために、電導率13μs/cmの純水で、張家港市華祥遠心機製造有限公司製SS300型3コラム型ディスチャージ遠心分離機を使用して800〜1400r/minの回転速度で8〜30min洗浄する。
(3) Process 3: Cleaning process SS300 type 3-column discharge centrifuge made by Zhangjiagang Huaxiang Centrifuge Manufacturing Co., Ltd. with pure water with conductivity of 13μs / cm to control the pH of the precursor to 5-9 Use a machine to clean for 8 to 30 minutes at a rotational speed of 800 to 1400 r / min.

(4)工程4:水分除去・乾燥工程
広州東之旭試験設備有限公司製DHG-9140型高温試験チャンバーを使用して80〜140℃の条件下で10〜40h乾燥させて室温まで自然降温させる。
(4) Process 4: Moisture removal and drying process Using a DHG-9140 type high-temperature test chamber manufactured by Guangzhou Tono Asahi Test Equipment Co., Ltd., it is dried for 10 to 40 hours under conditions of 80 to 140 ° C and allowed to cool naturally to room temperature. .

(5)工程5:低温予備焼結工程
乾燥された前駆体を、宜興市飛達電気炉有限公司製SXQ12-14-20型ボックスタイプの抵抗炉に入れてO.1〜1O℃/minの速度で200〜500℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、3〜20h低温予備焼結を行い、炉内を室温まで自然降温させる。
(5) Process 5: Low-temperature pre-sintering process The dried precursor is placed in a resistance furnace of SXQ12-14-20 type box type made by Yixing City Feida Electric Co., Ltd. The temperature is raised to 200 to 500 ° C. at a rate of 0.1 to 0.4 m 3 / h at a vacuum level of 0.03 MPa or less or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. Then, low temperature pre-sintering is performed for 3 to 20 hours, and the inside of the furnace is naturally cooled to room temperature.

(6)工程6:粉砕工程
南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して、予備焼結された材料を粉砕又はボールミリングし、粒度が1〜60μmの粉末を得る。
(6) Step 6: Grinding Step Using a QM-1SP4 planetary ball mill manufactured by Nanjing University Gikijo, the pre-sintered material is crushed or ball milled to obtain a powder having a particle size of 1 to 60 μm.

(7)工程7:ドープ工程
予備焼結された材料に占める割合が0質量%を超え40質量%以下のドーパントを加え、無錫新光粉末加工プロセス有限公司製VC-150型混合機中において1000〜4500r/minの回転速度で20〜95min混合する。
(7) Step 7: Doping step Add a dopant of more than 0% by mass and less than 40% by mass in the pre-sintered material, and add 1000 to 100% in a VC-150 type mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. Mix for 20 to 95 min at a rotational speed of 4500 r / min.

ドーパントは、前記硬質炭素基体の前駆体として植物原料が用いられる場合のドーパントである。   The dopant is a dopant when a plant raw material is used as the precursor of the hard carbon substrate.

(8)工程8:熱分解工程
ドープされた硬質炭素の前駆体を、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で500〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜 0.4m/hとして熱分解を1〜1Oh行い、硬質炭素基体が得られ、炉内を室温まで自然降温させ、硬質炭素を得る。
(8) Process 8: Pyrolysis process The doped hard carbon precursor is placed in a resistance furnace of SXQ12-14-20 box type made by Yixing City Feida Electric Furnace Co., Ltd. The temperature is raised to 500-1300 ° C. at a rate of 0.03 MPa or less, or under a protective gas of helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, the flow rate is 0.1-0.4 m 3 / Thermal decomposition is carried out as 1 to 1Oh for h to obtain a hard carbon substrate, and the furnace is naturally cooled to room temperature to obtain hard carbon.

(9)工程9:粉砕又はボールミリング工程
南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して硬質炭素を20〜90minボールミリング又は粉砕し、粒度2〜60μmの硬質炭素基体を得る。
(9) Process 9: Grinding or ball milling process Using a QM-1SP4 planetary ball mill manufactured by Nanjing University Gikijo, the hard carbon is ball milled or ground for 20 to 90 minutes to obtain a hard carbon substrate having a particle size of 2 to 60 μm.

(10)工程10:被覆工程
硬質炭素基体に、被覆物質の前駆体を硬質炭素基体の前駆体の1〜25質量%の量で加え、無錫新光粉末加工プロセス有限公司製VC-150型混合機を用いて、1000〜4500r/minの回転速度で2〜40min混合した後、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で400〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、1〜24h熱分解処理を行い、炉内を室温まで自然降温させ、硬質炭素材料の表面をスムーズにして最終製品の比表面積を減少し、200メッシュの篩にかけて粒度3.5〜70μmのリチウムイオン電池の複合硬質炭素負極材料が得られる。
(10) Process 10: Coating process VC-150 type mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. by adding a precursor of the coating material to the hard carbon base in an amount of 1 to 25% by mass of the precursor of the hard carbon base. After mixing for 2 to 40 min at a rotational speed of 1000 to 4500 r / min, put it in a SXQ12-14-20 box type resistance furnace made by Yixing Feida Electric Furnace Co., Ltd. The temperature is raised to 400-1300 ° C. at a rate of min, and the flow rate is 0.1-0.4 m 3 at a vacuum of 0.03 MPa or less, or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. / H, pyrolysis treatment for 1-24h, naturally cool the inside of the furnace to room temperature, smooth the surface of the hard carbon material and reduce the specific surface area of the final product, passing through a 200 mesh sieve, the particle size of 3.5-70μm A composite hard carbon negative electrode material for a lithium ion battery is obtained.

被覆物質の前駆体は、前記有機物である。   The precursor of the coating material is the organic material.

硬質炭素基体の前駆体として植物原料が用いられる場合、本発明のリチウムイオン電池の複合硬質炭素負極材料の製造方法の4は、以下の工程を含む。   When a plant raw material is used as the precursor of the hard carbon substrate, 4 of the method for producing a composite hard carbon negative electrode material for a lithium ion battery of the present invention includes the following steps.

(1)工程1:粉砕工程
前駆体である乾燥植物類原料となる花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上を、汎用の機械粉砕機又はジェットミル機を使用して機械粉砕又はジェットミリングし、粒度40〜1OOμmの粉末を得る。
(1) Step 1: Grinding step Use at least one kind of pollen, rice husk, sweet potato stalk, walnut husk, bamboo, sake lees, and wood chips that are precursor plant raw materials, using a general-purpose mechanical crusher or jet mill. Then, it is mechanically pulverized or jet milled to obtain a powder having a particle size of 40 to 1OO μm.

(2)工程2:不純物除去・浸漬処理工程
100gあたりの乾燥植物原料に、酸又はアルカリを80〜300ml加えるように粉末にフッ化水素酸、ホウ酸、硫酸、塩酸、硝酸、水酸化カリウム、水酸化カルシウム又は水酸化ナトリウムを加え、常州市武進八方機械廠製F-0.4型高速分散機を使用して1000〜3000r/minの回転速度で3〜30min分散させた後、3〜50h浸漬する。
(2) Process 2: Impurity removal / immersion process
Add hydrofluoric acid, boric acid, sulfuric acid, hydrochloric acid, nitric acid, potassium hydroxide, calcium hydroxide or sodium hydroxide to the powder so that 80-300 ml of acid or alkali is added to 100 g of dry plant material per 100 g. Disperse for 3 to 30 minutes at a rotational speed of 1000 to 3000 r / min using a F-0.4 type high-speed disperser manufactured by Wujin Happo Machinery, and then immerse for 3 to 50 hours.

(3)工程3:洗浄工程
前駆体のpHを5〜9に制御するために、電導率13μS/cmの純水で、張家港市華祥遠心機製造有限公司製SS300型3コラム型ディスチャージ遠心分離機を使用して800〜1400r/minの回転速度で8〜30min洗浄する。
(3) Process 3: Cleaning process SS300 type 3-column discharge centrifuge made by Zhangjiagang Huaxiang Centrifuge Manufacturing Co., Ltd. with pure water with conductivity of 13μS / cm to control the pH of the precursor to 5-9 Use a machine to clean for 8 to 30 minutes at a rotational speed of 800 to 1400 r / min.

(4)工程4:水分除去・乾燥工程
広州東之旭試験設備有限公司製DHG-9140型乾燥箱を使用して80〜140℃の条件下で10〜40h乾燥させて、室温まで自然降温させる。
(4) Process 4: Moisture removal / drying process Using a DHG-9140 type drying box made by Guangzhou Tono Asahi Test Equipment Co., Ltd., it is dried at 80-140 ° C for 10-40h and allowed to cool to room temperature. .

(5)工程5:低温予備焼結工程
乾燥された前駆体を、宜興市飛達電気炉有限公司製SXQ12-14-20型ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で200〜500℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、3〜20h低温予備焼結を行い、炉内を室温まで自然降温させる。
(5) Process 5: Low-temperature pre-sintering process The dried precursor is put into a SXQ12-14-20 type box type resistance furnace manufactured by Yixing City Fida Electric Furnace Co., Ltd., and O.1 to 1O ° C / min. The temperature is raised to 200 to 500 ° C. at a rate of 0.03 MPa or less, or under a protective gas of helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, the flow rate is 0.1 to 0.4 m 3 / h, low temperature pre-sintering is performed for 3 to 20 hours, and the inside of the furnace is naturally cooled to room temperature.

(6)工程6:粉砕工程
南京大学儀器廠製QM-1SP4型遊星ボールミルを使用して、予備焼結された材料を粉砕又はボールミリングし、粒度1〜60μmの粉末を得る。
(6) Step 6: Grinding step Using a QM-1SP4 type planetary ball mill manufactured by Nanjing University Gikijo, the pre-sintered material is pulverized or ball milled to obtain a powder having a particle size of 1 to 60 μm.

(7)工程7:熱分解工程
硬質炭素の前駆体を、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で500〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして熱分解を1〜1Oh行い、硬質炭素基体が得られ、炉内を室温まで自然降温させ、硬質炭素を得る。
(7) Process 7: Pyrolysis process The hard carbon precursor is put into a SXQ12-14-20 box type resistance furnace manufactured by Yixing City Fida Electric Furnace Co., Ltd., at a rate of O.1 to 1O ° C / min. Heat to 500-1300 ° C and heat at a vacuum of 0.03 MPa or less or under protective gas helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas at a flow rate of 0.1-0.4 m 3 / h Decomposition is performed for 1 to 1Oh to obtain a hard carbon substrate, and the furnace is naturally cooled to room temperature to obtain hard carbon.

(8)工程8:粉砕又はボールミリング工程
南京大学儀器廠製QM-1SP4型行星ボールミルを使用して硬質炭素を20〜90minボールミリング又は粉砕し、粒度2〜60μmの硬質炭素基体を得る。
(8) Process 8: Grinding or ball milling process Using a QM-1SP4 type star ball mill manufactured by Nanjing University Gikijo, the hard carbon is ball milled or ground for 20 to 90 minutes to obtain a hard carbon substrate having a particle size of 2 to 60 μm.

(9)工程9:被覆工程
硬質炭素基体に、被覆物質の前駆体を硬質炭素基体の前駆体の1〜25質量%の量で加え、無錫新光粉末加工プロセス有限公司製VC-150型混合機を用いて、1000〜4500r/minの回転速度で2〜40min混合した後、宜興市飛達電気炉有限公司製SXQ12-14-20ボックスタイプの抵抗炉に入れて、O.1〜1O℃/minの速度で400〜1300℃に昇温させ、0.03MPa以下の真空度で、又は保護ガスであるヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガス下で、流量を0.1〜0.4m/hとして、1〜24h熱分解処理を行い、炉内を室温まで自然降温させ、200メッシュの篩にかけて、粒度3.5〜70μmのリチウムイオン電池の複合硬質炭素負極材料を得る。
(9) Process 9: Coating process VC-150 type mixer manufactured by Wuxi Shinko Powder Processing Process Co., Ltd. by adding a precursor of the coating material to the hard carbon base in an amount of 1 to 25% by mass of the precursor of the hard carbon base. After mixing for 2 to 40 min at a rotational speed of 1000 to 4500 r / min, put it in a SXQ12-14-20 box type resistance furnace made by Yixing Feida Electric Furnace Co., Ltd. The temperature is raised to 400-1300 ° C. at a rate of min, and the flow rate is 0.1-0.4 m 3 at a vacuum of 0.03 MPa or less, or under a protective gas such as helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas. / H is subjected to a pyrolysis treatment for 1 to 24 hours, and the furnace is naturally cooled to room temperature and passed through a 200 mesh sieve to obtain a composite hard carbon negative electrode material for a lithium ion battery having a particle size of 3.5 to 70 μm.

被覆物質の前駆体は、前記有機物である。   The precursor of the coating material is the organic material.

植物原料を硬質炭素基体の前駆体として製造されるリチウムイオン電池の複合硬質炭素負極材料は、前記計器で測定したことろ、形状が塊状及び/又はフレーク状粒子で、その表面にハニカム状の開孔構造を有し、孔径分布が0.5〜50nm、空孔率が9〜16%、d002値が0.337〜0.455nm、粒度範囲が3.5〜70μm、比表面積が0.5〜20m/g、真密度が1.55〜2.25g/cm、タップ密度が0.91〜1.45g/cmである。硬質炭素基体表面と被覆物質は化学結合又はファンデルワールス力により結合され、理論分析によると、ファンデルワールス力が配向力、誘起力及び分散力に由来する分子間力であり、分子の多くにとって分散力が主な力になる。硬質炭素基体表面と被覆物質の作用力が被覆過程で形成される。 The composite hard carbon negative electrode material of a lithium ion battery manufactured using a plant raw material as a precursor of a hard carbon substrate is measured by the above-mentioned instrument, and the shape thereof is a lump and / or flake-like particle, and the surface of the honeycomb is open on the surface. has a pore structure, pore size distribution 0.5 to 50 nm, a porosity of 9 to 16%, d 002 value 0.337~0.455Nm, size range is 3.5~70Myuemu, specific surface area of 0.5 to 20 m 2 / g, a true density Is 1.55 to 2.25 g / cm 3 , and the tap density is 0.91 to 1.45 g / cm 3 . The surface of the hard carbon substrate and the coating material are bonded by chemical bonds or van der Waals forces, and according to theoretical analysis, van der Waals forces are intermolecular forces derived from orientation, induced and dispersion forces, and for many molecules Dispersion is the main force. The acting force of the hard carbon substrate surface and the coating material is formed during the coating process.

炭素残量の測定方法は、前記のように、炭素元素の含有量を計算する。
C%=[(m−m)/(m−m)]×100%
炭素元素含有量が94%以上である。
As described above, the method for measuring the remaining amount of carbon calculates the carbon element content.
C% = [(m 2 −m 3 ) / (m 2 −m 1 )] × 100%
Carbon element content is 94% or more.

実施例14〜21の処方は表5に、製造プロセスは表6に、物理的及び化学的性能の測定結果は表7に示され、前記方法により模擬バッテリーを製造し、電気的性能の測定結果は表8に示される。   The formulations of Examples 14 to 21 are shown in Table 5, the manufacturing process is shown in Table 6, the physical and chemical performance measurement results are shown in Table 7, a simulated battery was manufactured by the above method, and the electrical performance measurement results. Is shown in Table 8.

図6に示すように、形状が塊状及び/又はフレーク状粒子で材料表面にハニカム状の開孔構造を有し、孔径が0.5〜40nm、空孔率が12%である。   As shown in FIG. 6, the shape is massive and / or flaky particles, and has a honeycomb-like pore structure on the material surface. The pore diameter is 0.5 to 40 nm and the porosity is 12%.

図7に示すように、d002が0.385nmであり、複合硬質炭素は多孔質構造であるため、普通の黒鉛類材料よりも層間距離d002が大きい。 As shown in FIG. 7, since d 002 is 0.385 nm and the composite hard carbon has a porous structure, the interlayer distance d 002 is larger than that of ordinary graphite materials.

図8に示すように、常温下、40C、30Cの高レートの条件で、40C/1C充電容量保持率は95.3%、30C/1C充電容量保持率は96.9%に達し、複合硬質炭素材料が微孔かつ無秩序な不規則構造であるため、優れた高レート充放電性能を有する。   As shown in Fig. 8, 40C / 1C charge capacity retention rate reached 95.3% and 30C / 1C charge capacity retention rate reached 96.9% under conditions of high rates of 40C and 30C at room temperature. Due to the pore and disordered irregular structure, it has excellent high rate charge / discharge performance.

図9に示すように、60℃、0.2Cレートにおける300サイクル容量保持率は97.4%であり、製造された材料は優れた高温サイクル性能を有する。   As shown in FIG. 9, the 300 cycle capacity retention at 60 ° C. and 0.2 C rate is 97.4%, and the manufactured material has excellent high temperature cycle performance.

図10に示すように、-30℃、 0.2Cレートにおける100サイクル容量保持率は88.2%であり、製造された材料は優れた低温サイクル性能を有する。   As shown in FIG. 10, the 100 cycle capacity retention at -30 ° C. and 0.2 C rate is 88.2%, and the manufactured material has excellent low temperature cycle performance.

(比較例3)
天然黒鉛を負極材料として、前記方法により比較例の電池を製造する。天然黒鉛は比表面積が8.3m/g、結晶層間距離d002が0.3365nm、真密度が2.22g/cm、タップ密度が1.05g/cm、粒度が1〜60μmである。前記と同様な方法により、初回可逆容量と初回クーロン効率を測定し、電気的性能の測定結果は表8に示される。
(Comparative Example 3)
A battery of a comparative example is manufactured by the above method using natural graphite as a negative electrode material. Natural graphite has a specific surface area of 8.3 m 2 / g, a crystal interlayer distance d 002 of 0.3365 nm, a true density of 2.22 g / cm 3 , a tap density of 1.05 g / cm 3 , and a particle size of 1 to 60 μm. The initial reversible capacity and initial Coulomb efficiency were measured by the same method as described above, and the measurement results of electrical performance are shown in Table 8.

(比較例4)
天然黒鉛を負極材料として、前記方法により比較例の電池を製造する。天然黒鉛は比表面積が6.3m/g、結晶層間距離d002が0.3358nm、真密度が2.23g/cm、タップ密度が1.14g/cm、粒度が1.1〜58μmである。前記と同様な方法により、初回可逆容量と初回クーロン効率を測定し、電気的性能の測定結果は表8に示される。
(Comparative Example 4)
A battery of a comparative example is manufactured by the above method using natural graphite as a negative electrode material. Natural graphite specific surface area of 6.3 m 2 / g, crystal interlayer distance d 002 is 0.3358Nm, true density of 2.23 g / cm 3, a tap density of 1.14 g / cm 3, the particle size is 1.1~58Myuemu. The initial reversible capacity and initial Coulomb efficiency were measured by the same method as described above, and the measurement results of electrical performance are shown in Table 8.

表1 実施例1〜13の処方   Table 1 Formulations of Examples 1-13

表2 実施例1〜13の製造プロセス   Table 2 Manufacturing process of Examples 1-13

表3 実施例1〜13 物理的及び化学的性能の測定結果   Table 3 Examples 1-13 Physical and chemical performance measurements

表4 実施例 1〜13及び比較例1〜2の電気的性能の測定結果   Table 4 Measurement results of electrical performance of Examples 1 to 13 and Comparative Examples 1 and 2

表5 実施例14〜21の処方   Table 5 Formulations of Examples 14-21

表6 実施例14〜21の製造プロセス   Table 6 Manufacturing process of Examples 14-21

表7 実施例14〜21の物理的及び化学的性能の測定結果   Table 7 Physical and chemical performance measurement results of Examples 14-21

表8 実施例14〜21及び比較例3〜4の電気的性能の測定結果   Table 8 Measurement results of electrical performance of Examples 14 to 21 and Comparative Examples 3 to 4

Claims (12)

リチウムイオン電池の複合硬質炭素負極材料であって、前記リチウムイオン電池の複合硬質炭素負極材料の硬質炭素基体の表面には、被覆物質が被覆され
記被覆物質の前駆体は、有機物であるエポキシ樹脂、ピッチ、エチルメチルカーボネート、ポリスチレン、ポリフッ化ビニリデン、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリチオフェン及びポリ(p-フェニレンビニレン)の1種以上であり、それらが熱分解して被覆物質を形成し、
前記硬質炭素基体の前駆体は、樹脂であるアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、または前記硬質炭素基体の前駆体は、25質量%〜100質量%未満の前記樹脂と、0質量%を超え75質量%以下の硬化剤からなり、または前記硬質炭素基体の前駆体は、25質量%〜100質量%未満の前記樹脂と、0質量%を超え75質量%以下の硬化剤と、0質量%を超え15質量%以下のドーパントからなり、または前記硬質炭素基体の前駆体は、85質量%〜100質量%未満の前記樹脂と、0質量%を超え15質量%以下のドーパントからなり、それらが熱分解して硬質炭素基体を形成し、
前記被覆物質の前駆体の質量が前記硬質炭素基体の前駆体の質量の1〜15%であり、
前記リチウムイオン電池の複合硬質炭素負極材料は、形状が塊状の微粒子であり、多孔質構造を有し、孔径が0.2〜1OOnm、空孔率が9〜19%、002結晶面の層間距離が0.338〜0.475nm、粒度範囲が0.5〜90μm、比表面積が1.9〜75.3m /gであり、真密度が1.54〜2.35g/cm 、タップ密度が0.88〜1.43g/cm 、その炭素元素の含有量が90.5%以上であり、
前記硬化剤がヘキサメチレンジアミン、m−フェニレンジアミン、アニリンホルムアルデヒド樹脂、ポリアミド樹脂、ポリホルムアルデヒド、無水フタル酸及びベンゼンスルホン酸の1種以上であり、
前記ドーパントが金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体がスズであり、前記金属化合物がリン酸ナトリウム、塩化スズ及び水酸化スズの1種以上であり、前記非金属化合物が五酸化りん、ホウ酸、リン酸アンモニウム及びシリコーン樹脂の1種以上であることを特徴とするリチウムイオン電池の複合硬質炭素負極材料。
A composite hard carbon negative electrode material for a lithium ion battery, the surface of the hard carbon substrate of the composite hard carbon negative electrode material for the lithium ion battery is coated with a coating substance ,
Precursor before Symbol coating material, an epoxy resin an organic substance, pitch, ethyl methyl carbonate, Po polystyrene, Po Rifu' fluoride, polypropylene oxide, polyethylene succinate, polyethylene sebacate, Po Li acetylene, poly para phenylene, and a port Ripiroru, Po Li thiophene and poly (p- phenylene vinylene) one or more, to form a coating material which is thermally decomposed,
The precursor of the hard carbon substrate is at least one of acrylic resin, polyvinyl chloride, polycarbonate, epoxy resin, phenol resin and polyformaldehyde, which is a resin, or the precursor of the hard carbon substrate is 25% by mass to The resin comprises less than 100% by mass of the resin and a curing agent of greater than 0% by mass and 75% by mass or less, or the precursor of the hard carbon substrate comprises 25% by mass to less than 100% by mass of the resin and 0% by mass More than 75% by mass of a curing agent and more than 0% by mass and 15% by mass or less of a dopant, or the precursor of the hard carbon substrate is 85% by mass to less than 100% by mass of the resin and 0% by mass % And 15% by mass or less of dopants, which are pyrolyzed to form a hard carbon substrate,
The mass of the precursor of the coating material is 1-15% of the mass of the precursor of the hard carbon substrate;
The composite hard carbon negative electrode material of the lithium ion battery is a fine particle having a lump shape, has a porous structure, has a pore diameter of 0.2 to 1 OOnm, a porosity of 9 to 19%, and an interlayer distance of 002 crystal plane of 0.338. 0.475 nm, particle size range 0.5 to 90 μm, specific surface area 1.9 to 75.3 m 2 / g, true density 1.54 to 2.35 g / cm 3 , tap density 0.88 to 1.43 g / cm 3 , The content is 90.5% or more,
The curing agent is one or more of hexamethylenediamine, m-phenylenediamine, aniline formaldehyde resin, polyamide resin, polyformaldehyde, phthalic anhydride, and benzenesulfonic acid;
The dopant is at least one of a simple metal, a metal compound, and a non-metallic compound, the simple metal is tin, and the metal compound is at least one of sodium phosphate, tin chloride, and tin hydroxide, A composite hard carbon negative electrode material for a lithium ion battery, wherein the metal compound is at least one of phosphorus pentoxide, boric acid, ammonium phosphate, and silicone resin .
リチウムイオン電池の複合硬質炭素負極材料であって、前記リチウムイオン電池の複合硬質炭素負極材料の硬質炭素基体の表面には、被覆物質が被覆され
記被覆物質の前駆体は、有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、ポリビニルアルコール、ポリアセチレン、ポリピロール及びポリイミドの1種以上であり、それらが熱分解して被覆物質を形成し、
前記硬質炭素基体の前駆体は、植物原料である花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上であり、または前記硬質炭素基体の前駆体は、前記植物原料と植物原料の0%を超え40%以下を占めるドーパントが混合してなり、それらが熱分解して硬質炭素基体を形成し、
前記被覆物質の前駆体の質量は前記硬質炭素基体の前駆体の質量の1〜25%であり、
前記硬質炭素基体の表面と被覆物質が化学結合又はファンデルワールス力により結合され、
前記硬質炭素基体は粒度が2〜60μmで、表面にハニカム開孔構造を有し、孔径が1.0〜55nmであり、
前記リチウムイオン電池の複合硬質炭素負極材料は、形状が塊状及び/又はフレーク状である粒子であり、その粒径が3.5〜70μm、その比表面積が7.5〜20m /gであり、材料表面にハニカム状の開孔構造を有し、孔径が0.2〜60nm、空孔率が9〜16%、002結晶面の層間距離であるd 002 値が0.337〜0.455nm、真密度が1.55〜2.25g/cm 、タップ密度が0.91〜1.45g/cm 、その炭素元素の含有量が94%以上であり、
前記ドーパントは金属塩である塩化スズ及び炭酸コバルトの1種以上か、非金属酸化物であるホウ酸か、非金属塩であるリン酸アンモニウムか、非金属単体であるケイ素か、非金属化合物であるシリコーン樹脂であることを特徴とするリチウムイオン電池の複合硬質炭素負極材料。
A composite hard carbon negative electrode material for a lithium ion battery, the surface of the hard carbon substrate of the composite hard carbon negative electrode material for the lithium ion battery is coated with a coating substance ,
Precursor before Symbol coating material, epoxy resin is an organic material, a phenolic resin, and carboxymethylcellulose, pitch, Po polyvinyl alcohol, Po Li acetylene, Po Ripiroru and polyimide 1 or more, and they are thermally decomposed Forming a coating material ,
The precursor of the hard carbon substrate is at least one of pollen, rice husk, sweet potato stalk, walnut husk, bamboo, sake lees, and wood chips, which are plant materials, or the precursor of the hard carbon substrate is the plant material and plant Dopants occupying more than 0% and less than 40% of the raw material are mixed, they are pyrolyzed to form a hard carbon substrate,
The mass of the precursor of the coating material is 1-25% of the mass of the precursor of the hard carbon substrate,
The surface of the hard carbon substrate and the coating material are bonded by chemical bonding or van der Waals force,
The hard carbon substrate has a particle size of 2 to 60 μm, a honeycomb pore structure on the surface, and a pore diameter of 1.0 to 55 nm.
The composite hard carbon negative electrode material of the lithium ion battery is a particle having a lump shape and / or flake shape, a particle size of 3.5 to 70 μm, a specific surface area of 7.5 to 20 m 2 / g, It has a honeycomb-like pore structure, pore diameter is 0.2-60 nm, porosity is 9-16%, d 002 value which is the distance between layers of 002 crystal plane is 0.337-0.455 nm, true density is 1.55-2.25 g / cm 3 , the tap density is 0.91 to 1.45 g / cm 3 , the carbon element content is 94% or more,
The dopant may be one or more of tin chloride and cobalt carbonate which are metal salts, boric acid which is a nonmetal oxide, ammonium phosphate which is a nonmetal salt, silicon which is a nonmetal simple substance, or a nonmetal compound. A composite hard carbon negative electrode material for a lithium ion battery, which is a silicone resin .
樹脂を空気中において常温で3〜50h硬化させて固体前駆体を得る工程1と、
窒素ガスの流量を0.1〜0.4m/hとして、前駆体を0.1〜3℃/minの速度で150℃〜450℃まで昇温させ、低温で2〜24h予備焼結し、室温まで自然降温させ、粉砕して粒度1〜60μmの粉末を得る工程2と、
窒素ガスの流量を0.1〜0.4m/minとして、0.3〜10℃/minの速度で560〜1500℃まで昇温させ、0.5〜7.5h熱分解させ、室温まで自然降温させ、硬質炭素を得る工程3と、
硬質炭素をボールミリング又は粉砕して粒度1〜60μmの硬質炭素基体を得る工程4と、
前記硬質炭素基体に被覆物質の前駆体を硬質炭素基体の前駆体の1〜15質量%の量で加え、1400〜3500r/minの回転速度で20〜50min混合した後、窒素ガスの流量を0.1〜0.4m/minとして、1〜7.5℃/minの速度で500〜1500℃まで昇温させ、2〜8h被覆物質の熱分解処理を行い、室温まで自然降温させ、リチウムイオン電池の複合硬質炭素負極材料を得る工程5とを含み、
前記樹脂がアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、前記被覆物質の前駆体が有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴム、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロパンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン、ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上であることを特徴とするリチウムイオン電池の複合硬質炭素負極材料の製造方法。
A step 1 of curing a resin in air at room temperature for 3 to 50 hours to obtain a solid precursor;
Nitrogen gas flow rate is 0.1-0.4m 3 / h, the precursor is heated to 150 ° C-450 ° C at a rate of 0.1-3 ° C / min, pre-sintered at low temperature for 2-24h, and naturally cooled to room temperature And pulverizing to obtain a powder having a particle size of 1 to 60 μm,
The flow rate of nitrogen gas is 0.1 to 0.4 m 3 / min, the temperature is raised to 560 to 1500 ° C. at a rate of 0.3 to 10 ° C./min, pyrolyzed for 0.5 to 7.5 hours, and the temperature is naturally lowered to room temperature to obtain hard carbon. Step 3 and
Step 4 of hard carbon ball milling or grinding to obtain a hard carbon substrate having a particle size of 1 to 60 μm;
A precursor of the coating material is added to the hard carbon substrate in an amount of 1 to 15% by mass of the precursor of the hard carbon substrate and mixed at a rotational speed of 1400 to 3500 r / min for 20 to 50 minutes. -0.4m 3 / min, the temperature is raised to 500-1500 ° C at a rate of 1-7.5 ° C / min, the coating material is thermally decomposed for 2-8h, and the temperature is naturally lowered to room temperature. And obtaining a carbon negative electrode material 5,
The resin is one or more of acrylic resin, polyvinyl chloride, polycarbonate, epoxy resin, phenol resin and polyformaldehyde, and the precursor of the coating material is an organic substance, epoxy resin, phenol resin, carboxymethyl cellulose, pitch, ethyl methyl Carbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber, polyvinyl chloride, polyethylene, polyethylene oxide, polypropane oxide, polyethylene succinate, polyethylene sebacate, Polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline, polypyrrole, polyacene, poly-m-phenylenedia Emissions, polythiophene, poly (p- phenylene vinylene), polythiophene, polyacrylonitrile method of producing a composite hard carbon negative electrode material of lithium ion batteries, characterized in that it is a polyimide and polyphenylenesulfide 1 or more.
前記硬化として、25質量%〜100質量%未満の樹脂に、0質量%を超え75質量%以下の硬化剤を添加して均一に撹拌し、空気中、常温で3〜50h硬化し、固体前駆体を得、前記硬化剤がヘキサメチレンジアミン、m−フェニレンジアミン、アニリンホルムアルデヒド樹脂、ポリアミド樹脂、無水フタル酸及びベンゼンスルホン酸の1種以上であることを特徴とする請求項3に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 As the curing, a curing agent of more than 0% by mass to 75% by mass or less is added to a resin of 25% by mass to less than 100% by mass and stirred uniformly, and cured in air at room temperature for 3 to 50 hours to obtain a solid precursor. The lithium ion according to claim 3 , wherein the curing agent is at least one of hexamethylenediamine, m-phenylenediamine, aniline formaldehyde resin, polyamide resin, phthalic anhydride and benzenesulfonic acid. A method for producing a composite hard carbon negative electrode material for a battery. 前記低温予備焼結と粉砕に続き、粉末に、0質量%を超え15質量%以下の割合でドーパントを加え、1000〜3000r/minの回転速度で、26〜120min混合撹拌し、前記ドーパントが金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体が銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物が酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体がケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物が二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上であることを特徴とする請求項3に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 Following the low-temperature pre-sintering and pulverization, a dopant is added to the powder at a rate of more than 0% by mass and 15% by mass or less, and mixed and stirred at a rotational speed of 1000 to 3000 r / min for 26 to 120 min. One or more of simple substance, non-metal simple substance, metal compound and non-metal compound, the metal simple substance is one or more of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is tin oxide and cobalt oxide. One or more of nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin chloride, cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, One or more of silicon, sulfur and boron, and the nonmetallic compound is silicon dioxide, phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, Ammonium method of producing a composite hard carbon negative electrode material of a lithium ion battery according to claim 3, characterized in that at least one silicone resin and ethylene glycol borate ester. 前記硬化として、25質量%〜100質量%未満の樹脂に、0質量%を超え75質量%以下の硬化剤と、0質量%を超え15質量%以下のドーパントを添加し、2000〜4500r/minの回転速度で10〜120min混合撹拌し、空気中、常温で3〜50h硬化し、前駆体を得、前記ドーパントが金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体が銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物が酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体がケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物が二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上であることを特徴とする請求項3に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 As the curing, a curing agent of more than 0% by mass to 75% by mass and a dopant of more than 0% by mass to 15% by mass are added to a resin of 25% by mass to less than 100% by mass, and 2000 to 4500 r / min. The mixture is stirred for 10 to 120 minutes at a rotational speed of, cured in air at room temperature for 3 to 50 hours to obtain a precursor, and the dopant is one or more of a simple metal, a non-metal simple substance, a metal compound, and a non-metal compound, The simple metal is at least one of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is tin oxide, cobalt oxide, nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin chloride , Cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, the non-metal simple substance is one or more of silicon, sulfur and boron, and the non-metal compound is silicon dioxide , Pentaacid Phosphoric, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, ammonium sulfate, lithium ions according to claim 3, characterized in that at least one silicone resin and ethylene glycol borate ester A method for producing a composite hard carbon negative electrode material for a battery. 前記低温予備焼結の後、0質量%を超え15質量%以下の割合でドーパントを加え、1000〜3000r/minの回転速度で26〜120min混合撹拌し、前記ドーパントが金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体が銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物が酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体がケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物が二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上であることを特徴とする請求項3に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 After the low-temperature pre-sintering, a dopant is added at a ratio of more than 0% by mass and 15% by mass or less, and mixed and stirred at a rotational speed of 1000 to 3000 r / min for 26 to 120 minutes. It is one or more of a metal compound and a non-metal compound, the metal simple substance is one or more of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is tin oxide, cobalt oxide, nickel oxide, phosphoric acid It is one or more of sodium, sodium dihydrogen phosphate, tin acetate, tin chloride, cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, and the non-metal element is composed of silicon, sulfur and boron. One or more, and the non-metallic compound is silicon dioxide, phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, ammonium sulfate, The method of producing a composite hard carbon negative electrode material of a lithium ion battery according to claim 3, characterized in that recone resin and one or more ethylene glycol borate ester. 85質量%〜100質量%未満の樹脂と、0質量%を超え15質量%以下のドーパントを、2000〜4500r/minの回転速度で10〜120min混合撹拌し、空気中、常温で1〜6h硬化し、固体前駆体を得る工程1と、
窒素ガスの流量を0.1〜0.4m/hとして、前駆体を0.1〜7℃/minの速度で150℃〜450℃まで昇温させ、低温で3〜24h予備焼結し、室温まで自然降温させる工程2と、
窒素ガスの流量を0.1〜0.4m/hとして、0.3〜10℃/minの速度で560〜1500℃まで昇温させ、0.5〜7.5h熱分解し、室温まで自然降温させ、硬質炭素を得る工程3と、
硬質炭素をボールミリング又は粉砕し、粒度1〜60μmの硬質炭素基体を得る工程4と、
前記硬質炭素基体に被覆物質の前駆体を硬質炭素基体の前駆体の1〜15%の量で加え、1400〜35OOr/minの回転速度で20〜50min混合した後、窒素ガスの流量を0.1〜0.4m/hとして、1〜7.5℃/minの速度で500〜1500℃まで昇温させ、2〜8h被覆物の熱分解処理を行い、室温まで自然降温させ、リチウムイオン電池の複合硬質炭素負極材料を得る工程5とを含み、
前記樹脂がアクリル樹脂、ポリ塩化ビニル、ポリカーボネート、エポキシ樹脂、フェノール樹脂及びポリホルムアルデヒドの1種以上であり、前記ドーパントが金属単体、非金属単体、金属化合物及び非金属化合物の1種以上であり、前記金属単体が銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上であり、前記金属化合物が酸化スズ、酸化コバルト、酸化ニッケル、リン酸ナトリウム、リン酸二水素ナトリウム、酢酸スズ、塩化スズ、炭酸コバルト、水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上であり、前記非金属単体がケイ素、硫黄及びホウ素の1種以上であり、前記非金属化合物が二酸化ケイ素、五酸化りん、ホウ酸、ケイ酸、リン酸、リン酸二水素アンモニウム、リン酸アンモニウム、硫酸アンモニウム、シリコーン樹脂及びエチレングリコールホウ酸エステルの1種以上であり、前記被覆物質の前駆体が有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴム、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン、ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上であることを特徴とするリチウムイオン電池の複合硬質炭素負極材料の製造方法。
85% by mass to less than 100% by mass of resin and more than 0% by mass and 15% by mass or less of dopant are mixed and stirred at a rotational speed of 2000 to 4500 r / min for 10 to 120 min, and cured in air at room temperature for 1 to 6 hours. Step 1 to obtain a solid precursor,
Nitrogen gas flow rate is 0.1-0.4m 3 / h, the precursor is heated to 150 ° C-450 ° C at a rate of 0.1-7 ° C / min, pre-sintered at low temperature for 3-24h, and naturally cooled to room temperature Step 2
The flow rate of nitrogen gas is 0.1-0.4m 3 / h, the temperature is raised to 560-1500 ° C at a rate of 0.3-10 ° C / min, pyrolyzed for 0.5-7.5h, and naturally cooled to room temperature to obtain hard carbon. Step 3 and
Step 4 of ball-milling or pulverizing the hard carbon to obtain a hard carbon substrate having a particle size of 1 to 60 μm;
After the precursor of the coating material is added to the hard carbon substrate in an amount of 1 to 15% of the precursor of the hard carbon substrate and mixed at a rotational speed of 1400 to 35 Or / min for 20 to 50 minutes, the nitrogen gas flow rate is set to 0.1 to 0.4 m 3 / h, the temperature is raised to 500-1500 ° C. at a rate of 1-7.5 ° C./min, the coating is pyrolyzed for 2-8 h, the temperature is naturally lowered to room temperature, and the composite hard carbon of the lithium ion battery And obtaining a negative electrode material 5
The resin is at least one of acrylic resin, polyvinyl chloride, polycarbonate, epoxy resin, phenolic resin and polyformaldehyde, and the dopant is at least one of a metal simple substance, a non-metal simple substance, a metal compound and a non-metal compound, The simple metal is at least one of copper, lead, antimony, tin, cobalt and nickel, and the metal compound is tin oxide, cobalt oxide, nickel oxide, sodium phosphate, sodium dihydrogen phosphate, tin acetate, tin chloride , Cobalt carbonate, copper hydroxide, cobalt hydroxide, tin hydroxide and nickel hydroxide, the non-metal simple substance is one or more of silicon, sulfur and boron, and the non-metal compound is silicon dioxide , Phosphorus pentoxide, boric acid, silicic acid, phosphoric acid, ammonium dihydrogen phosphate, ammonium phosphate, sulfuric acid Epoxy resin, phenol resin, carboxymethyl cellulose, pitch, ethyl methyl carbonate, polyvinyl alcohol, polystyrene, polymethacrylic acid, which is one or more of monium, silicone resin and ethylene glycol borate ester, and the precursor of the coating material is organic Methyl, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber, polyvinyl chloride, polyethylene, polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate, polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline , Polypyrrole, polyacene, poly-m-phenylenediamine, polythiophene, poly (p-phenylene vinylene) Polythiophene, polyacrylonitrile method of producing a composite hard carbon negative electrode material of lithium ion batteries, characterized in that it is a polyimide and polyphenylenesulfide 1 or more.
100gあたりの乾燥植物原料に、酸又はアルカリを80〜300ml加え、3〜50h浸漬し、前記植物原料が花粉、籾殻、甘蔗茎、胡桃殻、竹、酒糟及び木屑の1種以上であり、前記酸がフッ化水素酸、ホウ酸、硫酸、塩酸又は硝酸であり、アルカリが水酸化カリウム、水酸化カルシウム又は水酸化ナトリウムである工程1と、
純水を利用して800〜1400r/minの回転速度で8〜30min洗浄する、洗浄の工程2と、
水分を除去して80〜140℃の条件で10〜40h乾燥させ、室温まで自然降温させる工程3と、
0.03MPa以下の真空度で、又はヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスの保護ガス下で低温予備焼結を行い、流量を0.1〜0.4m/hとして、O.1〜1O℃/minの速度で200〜500℃に昇温させ、低温で3〜20h予備焼結し、炉内を室温まで自然降温させる工程4と、
粉砕して粒度1〜60μmの粉末を得る工程5と、
0.03MPa以下の真空度で、又はヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスの保護ガス下で行い、流量を0.1〜0.4m/hとして、O.1〜1O℃/minの速度で500〜1300℃に昇温させ、1〜1Oh熱分解し、炉内を室温まで自然降温させる工程6と、
粉砕又はボールミルにより粒度2〜65μmの硬質炭素基体を得る工程7と、
硬質炭素基体に被覆物質の前駆体を硬質炭素基体の前駆体の1〜25質量%の量で加え、1000〜4500r/minの回転速度で2〜40min混合した後、0.03MPa以下の真空度で、又はヘリウムガス、窒素ガス、アルゴンガス、キセノンガス又は窒素ガスの保護ガス下で行い、流量を0.1〜0.4m/hとして、O.1〜1O℃/minの速度で400〜1300℃に昇温させ、1〜24h熱分解処理を行い、炉内を室温まで自然降温させ、前記被覆物質の前駆体が有機物であるエポキシ樹脂、フェノール樹脂、カルボキシメチルセルロース、ピッチ、エチルメチルカーボネート、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ブタジエン‐スチレンゴム、ポリ塩化ビニル、ポリエチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリエチレンセバケート、ポリエチレングリコールイミン、ポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール、ポリアセン、ポリ−m−フェニレンジアミン、ポリチオフェン、ポリ(p-フェニレンビニレン)、ポリチオフェン、ポリアクリロニトリル、ポリイミド及びポリフェニレンスルファイドの1種以上である工程8と、
200メッシュの篩にかけて、粒度3.5〜70μmのリチウムイオン電池の複合硬質炭素負極材料を得る工程9と
を含むことを特徴とするリチウムイオン電池の複合硬質炭素負極材料の製造方法。
80 to 300 ml of acid or alkali is added to 100 g of dried plant material per 100 g, soaked for 3 to 50 hours, and the plant material is at least one of pollen, rice husk, sweet potato stalk, walnut shell, bamboo, sake lees, and wood chips, Step 1 wherein the acid is hydrofluoric acid, boric acid, sulfuric acid, hydrochloric acid or nitric acid and the alkali is potassium hydroxide, calcium hydroxide or sodium hydroxide;
Cleaning process 2 using pure water and cleaning for 8 to 30 minutes at a rotational speed of 800 to 1400 r / min;
Step 3 of removing moisture, drying for 10 to 40 hours under conditions of 80 to 140 ° C., and allowing the temperature to fall naturally to room temperature;
Perform low-temperature pre-sintering at a vacuum level of 0.03 MPa or less or under a protective gas of helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, with a flow rate of 0.1 to 0.4 m 3 / h, O.1 to Step 4 in which the temperature is raised to 200 to 500 ° C. at a rate of 1 ° C./min, pre-sintered at a low temperature for 3 to 20 hours, and the inside of the furnace is naturally cooled to room temperature,
Step 5 for pulverizing to obtain a powder having a particle size of 1 to 60 μm;
O.1-1O ° C / min at a vacuum of 0.03 MPa or less or under a protective gas of helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, with a flow rate of 0.1-0.4 m 3 / h Step 6 of raising the temperature to 500 to 1300 ° C. at a rate, pyrolyzing 1 to 1 Oh, and naturally lowering the temperature of the furnace to room temperature;
Step 7 for obtaining a hard carbon substrate having a particle size of 2 to 65 μm by grinding or ball mill;
The coating material precursor is added to the hard carbon substrate in an amount of 1 to 25% by mass of the precursor of the hard carbon substrate, mixed at a rotational speed of 1000 to 4500 r / min for 2 to 40 minutes, and then at a vacuum of 0.03 MPa or less. Or under a protective gas of helium gas, nitrogen gas, argon gas, xenon gas or nitrogen gas, the flow rate is 0.1 to 0.4 m 3 / h, and the flow rate is 400 to 1300 ° C. at a rate of O.1 to 1 O ° C./min. The temperature is raised, pyrolysis treatment is performed for 1 to 24 hours, the temperature in the furnace is naturally lowered to room temperature, an epoxy resin, a phenol resin, carboxymethyl cellulose, pitch, ethyl methyl carbonate, polyvinyl alcohol, where the precursor of the coating material is an organic substance, Polystyrene, polymethyl methacrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyacrylonitrile, butadiene-styrene rubber, polyvinyl chloride, polyethylene, polyethylene Lene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate, polyethylene glycol imine, polyacetylene, polyparaphenylene, polyaniline, polypyrrole, polyacene, poly-m-phenylenediamine, polythiophene, poly (p-phenylene vinylene), polythiophene, polyacrylonitrile Step 8 which is one or more of polyimide and polyphenylene sulfide;
And a step 9 of obtaining a composite hard carbon negative electrode material for a lithium ion battery having a particle size of 3.5 to 70 μm through a 200-mesh sieve, and a method for producing a composite hard carbon negative electrode material for a lithium ion battery.
100gあたりの乾燥植物原料に、酸又はアルカリを80〜300ml加え、3〜50h浸漬する前に、前駆体である乾燥植物原料を機械的粉砕又はジェットミリングし、粒度40〜1OOμmの粉末を得、前記低温予備焼結粉砕に続き、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、1000〜4500r/minの回転速度で20〜95min混合撹拌し、前記ドーパントが金属酸化物である酸化スズ、酸化コバルト及び酸化ニッケルの1種以上か、金属塩であるリン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上か、金属アルカリである水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上か、非金属酸化物である二酸化ケイ素及び/又は五酸化りん、又はホウ酸、ケイ酸及びリン酸の1種以上か、非金属塩であるリン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上か、或いはシリコーン樹脂及び/又はエチレングリコールホウ酸エステルか、或いは金属単体である銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上か、或いは非金属単体であるケイ素、硫黄及びホウ素の1種以上であることを特徴とする請求項9に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 80-300 ml of acid or alkali is added to 100 g of dry plant raw material, and before immersing for 3-50 h, the dry plant raw material as a precursor is mechanically pulverized or jet milled to obtain a powder with a particle size of 40-1 OO μm, Following the low-temperature pre-sintering pulverization, a dopant with a proportion of powder exceeding 0% by mass to 40% by mass or less is added and mixed and stirred at a rotational speed of 1000 to 4500 r / min for 20 to 95 min. One or more of tin oxide, cobalt oxide and nickel oxide, or one or more of metal salts such as sodium phosphate, tin chloride, cobalt carbonate and sodium dihydrogen phosphate, copper hydroxide which is a metal alkali, water One or more of cobalt oxide, tin hydroxide and nickel hydroxide, non-metal oxide silicon dioxide and / or phosphorus pentoxide, or one or more of boric acid, silicic acid and phosphoric acid, or non-metallic salt Some phosphoric acid One or more of ammonium hydrogen, ammonium phosphate, and ammonium sulfate, or one or more of silicone resin and / or ethylene glycol borate, or metals such as copper, lead, antimony, tin, cobalt, and nickel, or The method for producing a composite hard carbon negative electrode material for a lithium ion battery according to claim 9 , wherein the material is one or more of silicon, sulfur, and boron, which are non-metal simple substances. 前記のように100gあたりの乾燥植物原料に、酸又はアルカリを80〜300ml加え、1000〜3000r/minの回転速度で3〜30min混合撹拌した後、3〜50h浸漬し、前記低温予備焼結粉砕に続き、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、1000〜4500r/minの回転速度で20〜95min混合撹拌し、前記ドーパントが金属酸化物である酸化スズ、酸化コバルトおよび酸化ニッケルの1種以上か、金属塩であるリン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上か、金属アルカリである水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上か、非金属酸化物である二酸化ケイ素及び/又は五酸化りん、又はホウ酸、ケイ酸及びリン酸の1種以上か、非金属塩であるリン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上か、或いはシリコーン樹脂及び/又はエチレングリコールホウ酸エステルか、或いは金属単体である銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上か、或いは非金属単体であるケイ素、硫黄及びホウ素の1種以上であることを特徴とする請求項9に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 As described above, 80 to 300 ml of acid or alkali is added to 100 g of dried plant raw material, and after 3 to 30 minutes of mixing and stirring at a rotational speed of 1000 to 3000 r / min, the mixture is immersed for 3 to 50 hours, and the low temperature pre-sintered pulverization Followed by adding a dopant with a proportion in the powder exceeding 0% by mass and 40% by mass or less, mixing and stirring for 20 to 95 min at a rotational speed of 1000 to 4500 r / min, and the dopant is a metal oxide tin oxide, oxidation One or more of cobalt and nickel oxide, or one or more of metal salts such as sodium phosphate, tin chloride, cobalt carbonate and sodium dihydrogen phosphate, or metal alkali such as copper hydroxide, cobalt hydroxide, tin hydroxide And one or more of nickel hydroxide, non-metal oxide silicon dioxide and / or phosphorus pentoxide, or one or more of boric acid, silicic acid and phosphoric acid, or non-metal salt ammonium dihydrogen phosphate , Phosphoric acid One or more of ammonium and ammonium sulfate, or a silicone resin and / or ethylene glycol borate, or one or more of copper, lead, antimony, tin, cobalt, and nickel, or a non-metal simple substance The method for producing a composite hard carbon negative electrode material for a lithium ion battery according to claim 9 , wherein the material is one or more of silicon, sulfur, and boron. 前記のように100gあたりの乾燥植物原料に酸又はアルカリを80〜300ml加え、3〜50h浸漬する前に、前駆体である乾燥植物原料を機械粉砕又はジェットミリングし、粒度40〜1OOμmの粉末を得、前記低温予備焼結の前に、粉末に占める割合が0質量%を超え40質量%以下のドーパントを加え、1000〜4500r/minの回転速度で20〜95min混合撹拌し、前記ドーパントが金属酸化物である酸化スズ、酸化コバルトおよび酸化ニッケルの1種以上か、金属塩であるリン酸ナトリウム、塩化スズ、炭酸コバルト及びリン酸二水素ナトリウムの1種以上か、金属アルカリである水酸化銅、水酸化コバルト、水酸化スズ及び水酸化ニッケルの1種以上か、非金属酸化物である二酸化ケイ素及び/又は五酸化りんか、ホウ酸、ケイ酸及びリン酸の1種以上か、非金属塩であるリン酸二水素アンモニウム、リン酸アンモニウム及び硫酸アンモニウムの1種以上か、金属単体である銅、鉛、アンチモン、スズ、コバルト及びニッケルの1種以上か、或いは非金属単体であるケイ素、硫黄及びホウ素の1種以上であることを特徴とする請求項9に記載のリチウムイオン電池の複合硬質炭素負極材料の製造方法。 As described above, 80 to 300 ml of acid or alkali is added to 100 g of dry plant raw material, and before immersing for 3 to 50 hours, the dry plant raw material as a precursor is mechanically pulverized or jet milled to obtain a powder with a particle size of 40 to 1 OO μm. Before the low-temperature pre-sintering, a dopant having a proportion of more than 0% by mass and not more than 40% by mass is added and mixed and stirred at a rotational speed of 1000 to 4500 r / min for 20 to 95 min. One or more oxides of tin oxide, cobalt oxide and nickel oxide, or metal salts of sodium phosphate, tin chloride, cobalt carbonate and sodium dihydrogen phosphate, or copper hydroxide of metal alkali One or more of cobalt hydroxide, tin hydroxide and nickel hydroxide, or non-metallic oxides of silicon dioxide and / or phosphorus pentoxide, boric acid, silicic acid and phosphoric acid, or non-metallic salts That is One or more of ammonium dihydrogen, ammonium phosphate, and ammonium sulfate, one or more of copper, lead, antimony, tin, cobalt, and nickel as simple metals, or one of silicon, sulfur, and boron as simple metals It is a seed | species or more, The manufacturing method of the composite hard carbon negative electrode material of the lithium ion battery of Claim 9 characterized by the above-mentioned.
JP2013514526A 2010-06-18 2010-09-26 Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof Active JP5680191B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN2010102037680A CN101887966B (en) 2010-06-18 2010-06-18 Preparation method of composite hard carbon cathode material of lithium ion battery
CN201010203768.0 2010-06-18
CN2010102463052A CN101916845B (en) 2010-08-05 2010-08-05 Hard carbon material for power and energy-storage battery and preparation method thereof
CN201010246305.2 2010-08-05
PCT/CN2010/077329 WO2011157013A1 (en) 2010-06-18 2010-09-26 Composite hard carbon material of negative electrode for lithium ion battery and method for preparing the same

Publications (2)

Publication Number Publication Date
JP2013534024A JP2013534024A (en) 2013-08-29
JP5680191B2 true JP5680191B2 (en) 2015-03-04

Family

ID=45347655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013514526A Active JP5680191B2 (en) 2010-06-18 2010-09-26 Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5680191B2 (en)
KR (1) KR20130030769A (en)
WO (1) WO2011157013A1 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
JP5447618B2 (en) 2012-08-28 2014-03-19 株式会社豊田自動織機 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20150263347A1 (en) * 2012-08-30 2015-09-17 Kureha Corporation Carbon material for nonaqueous electrolyte secondary battery and method for manufacturing same, and negative electrode using carbon material and nonaqueous electrolyte secondary battery
WO2014038492A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrode of nonaqueous-electrolyte secondary battery, process for producing same, and negative electrode and nonaqueous-electrolyte secondary battery obtained using said carbonaceous material
US20150188137A1 (en) * 2012-09-06 2015-07-02 Kureha Corporation Carbonaceous material for anode of nonaqueous electrolyte secondary battery, and method for manufacturing the same
WO2014038494A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Material for negative electrode of non-aqueous electrolyte secondary battery
WO2014129487A1 (en) 2013-02-19 2014-08-28 株式会社クレハ Carbon material for non-aqueous electrolyte secondary battery negative electrode
DE112013006722B4 (en) * 2013-02-22 2020-10-15 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material, manufacturing method for the same and electric storage apparatus
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
CN103199254B (en) * 2013-04-03 2016-08-10 深圳市贝特瑞新能源材料股份有限公司 A kind of graphite negative material of lithium ion battery and preparation method thereof
KR20140140323A (en) * 2013-05-29 2014-12-09 (주)포스코켐텍 Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
CN105453305B (en) * 2013-06-12 2019-07-19 14族科技公司 High capacity hard carbon material comprising efficiency enhancers
EP3062374A4 (en) * 2013-10-21 2017-07-19 Kuraray Co., Ltd. Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
WO2015129200A1 (en) * 2014-02-28 2015-09-03 株式会社クレハ Method for manufacturing carbonaceous material for non-aqueous electrolyte secondary cell
JP5894688B2 (en) * 2014-02-28 2016-03-30 株式会社クレハ Non-aqueous electrolyte secondary battery carbonaceous material and manufacturing method thereof, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5957631B2 (en) * 2014-02-28 2016-07-27 株式会社クレハ Method for producing carbonaceous material for non-aqueous electrolyte secondary battery
WO2015137980A1 (en) 2014-03-14 2015-09-17 Energ2 Technologies, Inc. Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
WO2015152092A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Negative-electrode material for nonaqueous-electrolyte secondary battery, negative-electrode mixture for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, nonaqueous-electrolyte secondary battery, and vehicle
TWI599092B (en) 2014-08-08 2017-09-11 Kureha Corp Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material
TWI565654B (en) 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
TWI604655B (en) 2014-08-08 2017-11-01 Kureha Corp Non-aqueous electrolyte secondary battery negative carbonaceous material
CN104409689A (en) * 2014-11-17 2015-03-11 天津大学 Polypyrrole coated hard carbon cathode material and preparation method thereof
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
EP4286355A3 (en) 2015-08-28 2024-05-01 Group14 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof
KR101943806B1 (en) * 2015-09-30 2019-01-29 주식회사 쿠라레 Carbonaceous material for negative electrode non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6245412B2 (en) * 2015-10-30 2017-12-13 株式会社クラレ Non-aqueous electrolyte secondary battery carbonaceous material, non-aqueous electrolyte secondary battery anode and non-aqueous electrolyte secondary battery
CN109923707B (en) 2016-10-19 2022-05-03 太克万株式会社 Carbon-silicon composite material, negative electrode, secondary battery, and method for producing carbon-silicon composite material
WO2018165610A1 (en) 2017-03-09 2018-09-13 Group 14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
JP7068881B2 (en) * 2017-03-24 2022-05-17 日産自動車株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this
CN108598476B (en) * 2018-03-11 2023-04-11 贵州中科星城石墨有限公司 High-first-efficiency spherical hard carbon material for lithium ion battery cathode and preparation method thereof
JP2020004589A (en) * 2018-06-27 2020-01-09 株式会社クラレ Production method of carbonaceous material
CN112645300B (en) * 2019-11-07 2023-02-07 上海杉杉科技有限公司 Hard carbon negative electrode material, lithium ion battery, and preparation method and application of hard carbon negative electrode material
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
CN113003559A (en) * 2021-02-06 2021-06-22 常德速碳新能源科技有限公司 Preparation method of carbon negative electrode material for lithium ion battery
CN113258047B (en) * 2021-04-29 2023-03-10 湖南九华碳素高科有限公司 Lithium ion battery cathode material and preparation method and application method thereof
KR20240037176A (en) * 2021-07-30 2024-03-21 주식회사 쿠라레 Carbonaceous material, negative electrode for power storage device, power storage device, and method for producing carbonaceous material
CN113871574B (en) * 2021-09-24 2023-08-08 远景动力技术(江苏)有限公司 Lithium ion battery negative plate and preparation method and application thereof
CN113889625B (en) * 2021-09-28 2023-02-17 上海飞鸿创联新能源发展有限公司 Modified hard carbon composite material and preparation method and application thereof
CN113880068A (en) * 2021-09-29 2022-01-04 蜂巢能源科技有限公司 Hard carbon composite material and preparation method and application thereof
US20230147558A1 (en) * 2021-11-09 2023-05-11 Microvast Power Systems Co., Ltd. Negative electrode material and method of preparing the same
CN114180551B (en) * 2021-12-03 2023-05-16 广东凯金新能源科技股份有限公司 Continuous processing preparation method for lithium ion hard carbon negative electrode material
CN114335531A (en) * 2021-12-13 2022-04-12 湖南大学 Sulfur-doped hard carbon material and preparation method and application thereof
CN114212770B (en) * 2021-12-29 2023-05-05 上海杉杉科技有限公司 Modified hard carbon material, preparation method thereof, electrode and application
CN114512646A (en) * 2022-01-24 2022-05-17 西南大学 Amorphous carbon material with multilayer gradient microstructure and preparation method and application thereof
CN114804065B (en) * 2022-03-25 2023-11-03 中南大学 Hard carbon based on alpha-cellulose material and preparation method and application thereof
CN114843480A (en) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 Silicon-phosphorus co-doped hard carbon composite material and preparation method and application thereof
CN115159497B (en) * 2022-07-15 2024-01-23 山东大学 Hard carbon negative electrode material of sodium ion battery and preparation method and application thereof
CN115259132B (en) * 2022-07-29 2023-08-29 广东容钠新能源科技有限公司 Preparation method and application of ultra-high first-effect hard carbon anode material
CN115072703B (en) * 2022-08-02 2024-01-30 洛阳月星新能源科技有限公司 Composite anode material and preparation method and application thereof
CN115954442B (en) * 2022-10-12 2023-09-29 广东容钠新能源科技有限公司 Polymer film surface modified biomass hard carbon material, preparation method and application
CN115626630B (en) * 2022-11-08 2023-12-05 湘潭大学 Biomass carbon anode material for sodium ion battery and preparation method and application thereof
CN116477599B (en) * 2023-01-30 2024-05-31 广东东岛新能源股份有限公司 Hard carbon negative electrode material and preparation method and application thereof
CN116799219B (en) * 2023-08-25 2023-12-15 浙江华宇钠电新能源科技有限公司 Tin-based oxide nanocrystalline modified hard carbon, sodium ion battery and vehicle
CN116812913B (en) * 2023-08-30 2023-11-21 乌海宝杰新能源材料有限公司 High-reversible-capacity hard carbon negative electrode material and preparation method thereof
CN117466276B (en) * 2023-10-30 2024-06-11 青岛冠宝林活性炭有限公司 Preparation method of hard carbon negative electrode material of sodium ion battery
CN117819554A (en) * 2024-01-04 2024-04-05 四川海创尚纬新能源科技有限公司 Si@void@C structured silicon-carbon anode material and preparation method and application thereof
CN117878316A (en) * 2024-01-29 2024-04-12 长沙理工大学 Hard carbon negative electrode material of sodium ion battery and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844302B2 (en) * 1994-02-18 1999-01-06 日本酸素株式会社 Carbon negative electrode material for lithium secondary battery and method for producing the same
JP2844303B2 (en) * 1994-02-18 1999-01-06 日本酸素株式会社 Lithium secondary battery
JPH07249411A (en) * 1994-03-11 1995-09-26 Osaka Gas Co Ltd Manufacture of negative electrode material for lithium secondary battery and lithium secondary battery
JP3091944B2 (en) * 1994-05-09 2000-09-25 旭有機材工業株式会社 Method for producing carbon particles for negative electrode of lithium ion secondary battery
GB2296125B (en) * 1994-12-16 1998-04-29 Moli Energy Pre-graphitic carbonaceous insertion compounds and use as anodes in rechargeable batteries
CA2189258C (en) * 1995-03-06 2011-05-31 Shinichiro Yamada Negative electrode material for non-aqueous liquid electrolyte secondary cell, method for producing same and non-aqueous liquid electrolyte secondary cell employing same
CA2176452C (en) * 1996-05-13 2008-12-02 Qiming Zhong Method for reducing the surface area of carbonaceous powders
JPH09326254A (en) * 1996-06-05 1997-12-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery and manufacture therefor
WO1997046314A1 (en) * 1996-06-07 1997-12-11 Motorola Inc. Carbon electrode material for electrochemical cells and method of making same
JP3399315B2 (en) * 1997-09-30 2003-04-21 松下電器産業株式会社 Method for producing negative electrode for secondary battery, negative electrode for secondary battery, and secondary battery
US6316146B1 (en) * 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
KR100315232B1 (en) * 1999-02-24 2001-11-26 김순택 Negative active material for lithium secondary battery and method of preapring the same
CN1171333C (en) * 1999-12-15 2004-10-13 北京有色金属研究总院 Composite graphite negative electrode material for lithium cell and its preparation method
JP3466576B2 (en) * 2000-11-14 2003-11-10 三井鉱山株式会社 Composite material for negative electrode of lithium secondary battery and lithium secondary battery
JP4937737B2 (en) * 2004-03-30 2012-05-23 株式会社クレハ Negative electrode material for non-aqueous electrolyte secondary battery, its production method, negative electrode and battery
KR100728160B1 (en) * 2005-11-30 2007-06-13 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
CN1913200B (en) * 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 Silicon carbone compound negative polar material of lithium ion battery and its preparation method
JP2008251445A (en) * 2007-03-30 2008-10-16 Isao Mochida Carbonaceous material for lithium-ion secondary battery anode and its manufacturing method
JP5407196B2 (en) * 2008-06-27 2014-02-05 三菱化学株式会社 Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP2010092845A (en) * 2008-09-10 2010-04-22 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JP2013534024A (en) 2013-08-29
KR20130030769A (en) 2013-03-27
WO2011157013A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5680191B2 (en) Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof
CN109742383B (en) Sodium ion battery hard carbon negative electrode material based on phenolic resin and preparation method and application thereof
CN103165862B (en) A kind of high performance lithium ionic cell cathode material and preparation method thereof
CN101887966B (en) Preparation method of composite hard carbon cathode material of lithium ion battery
CN101916845B (en) Hard carbon material for power and energy-storage battery and preparation method thereof
CN103094528B (en) A kind of lithium ion power and energy-storage battery hard carbon cathode material and preparation method thereof
KR101085611B1 (en) A silicon-carbon composite negative material for lithium ion battery and the preparation method of the same
CN102255079B (en) Stannum-carbon composite material used for lithium ion battery cathode, preparation method thereof and lithium ion battery
Wang et al. 2D Film of Carbon Nanofibers Elastically Astricted MnO Microparticles: A Flexible Binder‐Free Anode for Highly Reversible Lithium Ion Storage
KR101442318B1 (en) Anode active material for lithium secondary battery using silicon-carbon core-shell and manufacturing method thereof
CN103165870B (en) A kind of silicon based composite material, lithium ion battery and its preparation method and application
CN103219168B (en) A kind of Li 4ti 5o 12/ graphene combination electrode material and preparation method thereof
TWI711208B (en) Negative electrode material of silicon oxide and amorphous carbon layer coated with nanosilicon with multilayer graphene as carrier and preparation method thereof
CN103326023A (en) High-performance lithium ion battery silicon-carbon cathode material and preparation method thereof
CN102299306A (en) Nano-silicon composite lithium ion battery cathode material with poly (3,4-ethylenedioxythiophene) as coating and carbon source and preparation method thereof
CN104362315A (en) Low-cost preparing method of silicon and carbon compound cathode material for lithium ion battery
CN113380998A (en) Silicon-carbon negative electrode material and preparation method and application thereof
CN109860526B (en) Preparation method of graphite material doped with metal oxalate lithium battery composite negative electrode material
CN103066265A (en) Sodium ion battery negative pole active substance and preparation method and application thereof
CN104103821A (en) Preparation method for silicon-carbon anode material
JPWO2016158823A1 (en) Carbonaceous molded body for battery electrode and method for producing the same
Kim et al. A facile control in free‐carbon domain with divinylbenzene for the high‐rate‐performing Sb/SiOC composite anode material in sodium‐ion batteries
Huang et al. Well-dispersed MnO-quantum-dots/N-doped carbon layer anchored on carbon nanotube as free-standing anode for high-performance Li-Ion batteries
CN103378355B (en) Alkali metal secondary battery and the preparation method of negative electrode active material, negative material, negative pole and negative electrode active material
CN104466182A (en) Nitrogen-doped nanocarbon coated/oxidized modified graphite composite material and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5680191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250