WO2015129200A1 - Method for manufacturing carbonaceous material for non-aqueous electrolyte secondary cell - Google Patents

Method for manufacturing carbonaceous material for non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
WO2015129200A1
WO2015129200A1 PCT/JP2015/000734 JP2015000734W WO2015129200A1 WO 2015129200 A1 WO2015129200 A1 WO 2015129200A1 JP 2015000734 W JP2015000734 W JP 2015000734W WO 2015129200 A1 WO2015129200 A1 WO 2015129200A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
electrolyte secondary
carbon precursor
nonaqueous electrolyte
secondary battery
Prior art date
Application number
PCT/JP2015/000734
Other languages
French (fr)
Japanese (ja)
Inventor
有紀 太田
秋水 小川
淳一 有馬
小役丸 健一
俊相 趙
桂一 佐野
奥野 壮敏
岩崎 秀治
靖浩 多田
誠 今治
Original Assignee
株式会社クレハ
株式会社クラレ
クラレケミカル株式会社
株式会社クレハ・バッテリー・マテリアルズ・ジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014039741A external-priority patent/JP5957631B2/en
Application filed by 株式会社クレハ, 株式会社クラレ, クラレケミカル株式会社, 株式会社クレハ・バッテリー・マテリアルズ・ジャパン filed Critical 株式会社クレハ
Publication of WO2015129200A1 publication Critical patent/WO2015129200A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a carbonaceous material suitable for a negative electrode of a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in small portable devices such as mobile phones and laptop computers.
  • As a negative electrode material for a lithium ion secondary battery non-graphitizable carbon capable of doping (charging) and dedoping (discharging) lithium in an amount exceeding the theoretical capacity of 372 mAh / g of graphite has been developed (for example, Patent Document 1). ), Have been used.
  • Non-graphitizable carbon can be obtained using, for example, petroleum pitch, coal pitch, phenol resin, and plants as a carbon source.
  • plants are attracting attention because they are raw materials that can be continuously and stably supplied by cultivation and can be obtained at low cost.
  • the carbonaceous material obtained by baking a plant-derived carbon raw material has many pores, it is expected to have a large charge / discharge capacity (for example, Patent Document 1 and Patent Document 2).
  • JP-A-9-161801 Japanese Patent Laid-Open No. 10-21919
  • a carbonaceous material used for a lithium ion battery for in-vehicle use is required to have good charge / discharge efficiency and hardly deteriorate.
  • the objective of this invention is providing the method suitable for manufacture of the carbonaceous material (carbonaceous material for nonaqueous electrolyte secondary batteries) used for the negative electrode of a nonaqueous electrolyte secondary battery (for example, lithium ion secondary battery). is there.
  • the present invention Calcination of a mixture of a carbon precursor having a specific surface area of 100 to 500 m 2 / g and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C. to obtain a carbonaceous material; Comprising A method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery is provided.
  • normal temperature refers to 25 degreeC.
  • the peak in the vicinity of 1360 cm -1 is not limited to the peak with a peak top present at 1360 cm -1, a peak is present halfway of the peak in 1360 cm -1 are also included.
  • a carbonaceous material for a nonaqueous electrolyte secondary battery is obtained by firing a mixture of a carbon precursor and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C.
  • the carbon precursor that is, the precursor of the carbonaceous material can be produced from a plant-derived carbon material (hereinafter sometimes referred to as “plant-derived char”).
  • plant-derived char generally means a powdery solid rich in carbon that is not melt-softened, which is obtained when coal is heated, but here, the carbon content that is obtained by heating other organic substances is not melt-softened. It is used to include a rich powdery solid.
  • plant raw materials examples include, for example, coconut shells, peas, tea leaves, sugar cane, fruits (eg, mandarin oranges, bananas), strawberries, rice husks, Examples include hardwood, conifers, and bamboo. Examples of this include waste (for example, used tea leaves) after being used for the original use, or part of plant materials (for example, bananas and tangerine peels). These plant materials can be used alone or in combination of two or more. Among these plant materials, coconut shells that are easily available in large quantities are preferred.
  • coconut shell for example, palm coconut shells (coconut palm), coconut palm, salak, and coconut palm can be used. These coconut shells can be used alone or in combination.
  • coconut shell coconut palm and palm palm, which are biomass wastes that are used as foods, detergent raw materials, biodiesel oil raw materials and the like and are generated in large quantities, are particularly preferable.
  • a method for producing a plant-derived char from a plant material can be carried out, for example, by heat-treating the plant material in an inert gas atmosphere at 300 ° C. or higher (hereinafter sometimes referred to as “temporary firing”).
  • char that is commercially available as coconut shell char or the like may be used as plant-derived char.
  • Carbonaceous materials produced from plant-derived char can be doped with a large amount of active material and are therefore basically suitable as negative electrode materials for non-aqueous electrolyte secondary batteries.
  • plant-derived char contains a large amount of metal elements contained in plants.
  • coconut shell char contains about 0.3% potassium and about 0.1% iron. If a carbonaceous material containing a large amount of such metal elements is used as the negative electrode, it may adversely affect the electrochemical characteristics of the nonaqueous electrolyte secondary battery.
  • plant-derived char may contain alkali metal (for example, sodium), alkaline earth metal (for example, magnesium, calcium), transition metal (for example, copper) and the like in addition to potassium and iron. Even when the carbonaceous material contains these metal elements, the battery performance of the nonaqueous electrolyte secondary battery may be adversely affected.
  • alkali metal for example, sodium
  • alkaline earth metal for example, magnesium, calcium
  • transition metal for example, copper
  • Deashing methods include, for example, a method of extracting and deashing metal components using acidic water containing mineral acids such as hydrochloric acid and sulfuric acid, organic acids such as acetic acid and formic acid (liquid phase deashing), halogens such as hydrogen chloride It can be carried out as a method of deashing by exposing to a high temperature gas phase containing the compound (gas phase demineralization).
  • gas phase deashing that is preferable in that no drying treatment is required after deashing will be described below.
  • halogen-containing compound examples include fluorine, chlorine, bromine, iodine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, iodine bromide, chlorine fluoride (ClF), iodine chloride (ICl), and iodine bromide (IBr). Bromine chloride (BrCl).
  • Gas phase decalcification may be carried out using a compound that generates these halogen-containing compounds by thermal decomposition, or a mixture thereof.
  • a preferred halogen-containing compound is hydrogen chloride.
  • the halogen-containing compound may be used by mixing with an inert gas.
  • the inert gas should just be a gas which does not react with the carbon component which comprises the plant-derived char.
  • the inert gas for example, nitrogen, helium, argon, krypton, or a mixed gas thereof can be used.
  • a preferred inert gas is nitrogen.
  • the mixing ratio of the halogen-containing compound and the inert gas is not limited as long as sufficient deashing can be achieved.
  • the ratio of the halogen-containing compound to the inert gas is 0.01 to 10.0 volume. %, Preferably 0.05 to 8.0% by volume, more preferably 0.1 to 5.0% by volume.
  • the temperature of the vapor phase decalcification is, for example, 500 to 950 ° C., preferably 600 to 940 ° C., more preferably 650 to 940 ° C., and further preferably 850 to 930 ° C.
  • the deashing temperature is too low, the deashing efficiency is lowered and the deashing may not be sufficiently performed. If the deashing temperature is too high, activation by a halogen-containing compound may occur.
  • the time for vapor phase decalcification is not particularly limited, but is, for example, 5 to 300 minutes, preferably 10 to 200 minutes, and more preferably 20 to 150 minutes.
  • the conditions for vapor phase demineralization may affect various physical properties of the carbon precursor, such as the half-value width and specific surface area of the Raman spectrum peak described below.
  • Vapor phase decalcification reduces the content of potassium, iron, etc. contained in plant-derived char.
  • the content of potassium contained in the carbon precursor obtained after the vapor phase deashing treatment is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.03% by weight or less.
  • the content of iron contained in the carbon precursor obtained after the vapor phase deashing treatment is preferably 0.02% by weight or less, more preferably 0.015% by weight or less, and further preferably 0.01% by weight or less.
  • the particle diameter of the plant-derived char that is the target of vapor phase demineralization is too small, it may be difficult to separate the gas phase containing removed potassium and the plant-derived char from the average value of the particle diameter.
  • Is preferably 100 ⁇ m or more, more preferably 300 ⁇ m or more, and even more preferably 500 ⁇ m or more.
  • the upper limit of the average value of the particle diameter is preferably 10,000 ⁇ m or less, more preferably 8000 ⁇ m or less, and further preferably 5000 ⁇ m or less.
  • the apparatus used for vapor phase demineralization is not particularly limited as long as it can be heated while mixing the plant-derived char and the vapor phase containing the halogen-containing compound.
  • vapor phase deashing can be carried out by using a fluidized furnace and using a fluidized bed or the like by a continuous or batch-type in-layer flow system.
  • the supply amount (flow amount) of the gas phase is, for example, 1 ml / min or more, preferably 5 ml / min or more, more preferably 10 ml / min or more per 1 g of plant-derived char.
  • the carbon precursor after the vapor phase deashing treatment may be deoxidized.
  • the supply of the halogen-containing compound is stopped, and further treatment is performed while supplying nitrogen gas.
  • vapor phase deoxidation treatment can be performed.
  • the half-value width of the peak around 1360 cm ⁇ 1 of the carbon precursor is preferably in the range of 230 to 260 cm ⁇ 1 and in the range of 235 to 250 cm ⁇ 1. It is more preferable.
  • the full width at half maximum of the peak near 1360 cm ⁇ 1 of the Raman spectrum is related to the amorphous amount of the carbon precursor.
  • the Raman spectrum can be measured using a method described later.
  • the half width indicates the full width at half maximum (FWHM).
  • a peak in the vicinity of 1360 cm ⁇ 1 of the Raman spectrum is called a D band, and is a peak that appears in the Raman spectrum due to a double resonance effect accompanied by inelastic scattering in a carbon precursor or a carbonaceous material.
  • the average particle diameter of the carbon precursor is adjusted as necessary through a pulverization step and a classification step.
  • the carbon precursor is pulverized and adjusted so that the average particle size of the carbonaceous material after the firing step is in the range of 3 to 30 ⁇ m, for example.
  • the pulverization step can be performed using a pulverizer such as a jet mill, a ball mill, a hammer mill, or a rod mill.
  • a jet mill having a classification function in the pulverization step.
  • fine powder can be removed by classification after the pulverization step.
  • the carbon precursor is selected based on the particle size.
  • the classification step for example, the amount of fine powder contained in the carbon precursor can be reduced, and more specifically, particles having a particle diameter of 1 ⁇ m or less can be removed. Further, by classifying the carbon precursor, the particle diameter of the carbonaceous material obtained by firing the carbon precursor can be accurately adjusted.
  • the classification method can be carried out by, for example, classification using a sieve, wet classification, or dry classification.
  • the wet classifier for example, a classifier using principles such as gravity classification, inertia classification, hydraulic classification, centrifugal classification, and the like can be given.
  • the dry classifier include a classifier using a principle such as sedimentation classification, mechanical classification, and centrifugal classification.
  • the specific surface area of the carbon precursor is in the range of 100 to 500 m 2 / g, preferably in the range of 200 to 500 m 2 / g, and in some cases in the range of 200 to 400 m 2 / g. .
  • the carbon precursor having a specific surface area in the above range By firing the carbon precursor having a specific surface area in the above range, the fine pores of the carbonaceous material can be reduced.
  • a reaction caused by moisture contained in the carbonaceous material for example, a hydrolysis reaction of the electrolytic solution or an electrolysis reaction of water is unlikely to occur. Generation of gas generated by electrolysis of acid and water generated by decomposition is suppressed.
  • this carbonaceous material has a small specific surface area, it is difficult to oxidize in an air atmosphere, and a decrease in battery performance of the nonaqueous electrolyte secondary battery due to oxidation of the carbonaceous material can be suppressed.
  • this carbonaceous material has a small specific surface area, the contactable area between the carbonaceous material and lithium ions is small, and the reaction between the carbonaceous material and lithium ions, which is one of the causes of a decrease in the utilization efficiency of lithium ions. Is unlikely to occur. Therefore, the use efficiency of lithium ions in the nonaqueous electrolyte secondary battery can be improved by using this carbonaceous material.
  • the specific surface area of the carbon precursor can be adjusted by controlling conditions such as the temperature of vapor phase decalcification.
  • the specific surface area means a specific surface area (BET specific surface area) determined by a BET method (nitrogen adsorption BET three-point method). Specifically, the specific surface area can be measured using a method described later.
  • the carbonaceous material of the present embodiment is obtained by firing a mixture of a carbon precursor and a volatile organic substance.
  • a carbon precursor becomes a carbonaceous material with a reduced specific surface area by being mixed with a volatile organic material and fired.
  • the amount of carbon dioxide adsorbed on the carbonaceous material can be reduced by mixing and baking the carbon precursor and the volatile organic substance.
  • the volatile organic substance an organic substance that is in a solid state at room temperature and has a residual carbon ratio of less than 5% by weight is preferable.
  • a volatile organic substance what generates the volatile substance (for example, hydrocarbon gas and tar) which can reduce the specific surface area of the carbon precursor manufactured from plant-derived char is preferable.
  • thermoplastic resin or a low molecular organic compound can be used as the volatile organic substance.
  • a thermoplastic resin or a low molecular organic compound can be used as the volatile organic substance.
  • polystyrene, polyethylene, polypropylene, poly (meth) acrylic acid, poly (meth) acrylic acid ester, or the like can be used as the thermoplastic resin.
  • (meth) acryl is a general term for methacryl and methacryl.
  • low molecular weight organic compound toluene, xylene, mesitylene, styrene, naphthalene, phenanthrene, anthracene, pyrene, or the like can be used.
  • Such a volatile organic substance is preferably one that does not oxidize and activate the surface of the carbon precursor when it volatilizes at the firing temperature and is thermally decomposed. Therefore, it is preferable to use polystyrene, polyethylene, or polypropylene as the thermoplastic resin.
  • the low molecular weight organic compound it is preferable that volatility is low at room temperature from the viewpoint of safety, and naphthalene, phenanthrene, anthracene, pyrene, or the like is preferably used.
  • the residual carbon ratio is measured by quantifying the carbon content of the ignition residue after the sample is ignited in an inert gas.
  • Intense heat means that about 1 g of volatile organic substances (this exact weight is W 1 (g)) is put in a crucible and 20 liters of nitrogen is allowed to flow for 1 minute in an electric furnace. The temperature is raised from room temperature to 800 ° C. at a heating rate of minutes, and then heated at 800 ° C. for 1 hour. The residue at this time is regarded as an ignition residue, and its weight is defined as W 2 (g).
  • the ignition residue is subjected to elemental analysis in accordance with the method defined in JIS (Japanese Industrial Standard) M8819: 1997, and the weight ratio P 1 (%) of carbon in the ignition residue is measured. Using these obtained values, the residual coal rate P 2 (%) is calculated by the following equation.
  • the mixture of the carbon precursor and the volatile organic substance preferably contains the carbon precursor and the volatile organic substance in a weight ratio of 97: 3 to 40:60.
  • the weight ratio of the carbon precursor to the volatile organic substance in this mixture is more preferably 95: 5 to 60:40, and still more preferably 93: 7 to 80:20.
  • the mixing of the carbon precursor and the volatile organic substance may be performed by supplying the carbon precursor and the volatile organic substance to the pulverizer at the same time. Further, after the pulverization step, the carbon precursor and the volatile organic material may be mixed using a known mixing method.
  • Such volatile organic substances are preferably in the form of particles. From the viewpoint of uniformly dispersing the volatile organic substance in the carbon precursor, the average particle size of the volatile organic substance is preferably 0.1 to 2000 ⁇ m, more preferably 1 to 1000 ⁇ m, and still more preferably 2 to 600 ⁇ m.
  • the mixture of the carbon precursor and the volatile organic substance may further contain components other than the carbon precursor and the volatile organic substance.
  • components other than the carbon precursor and the volatile organic substance for example, natural graphite, artificial graphite, metal-based material, alloy-based material, or oxide-based material can be used.
  • the content ratio of such components is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and further preferably 20 parts by weight with respect to 100 parts by weight of the mixture of the carbon precursor and the volatile organic substance. Part or less, and most preferably 10 parts by weight or less.
  • a mixture of the carbon precursor and the volatile organic material is fired at 800 to 1400 ° C.
  • the firing process (A) It may be only a firing step (main firing step) in which a mixture of a carbon precursor and a volatile organic material is fired at 800 to 1400 ° C., (B) comprising a step of pre-baking a mixture of a carbon precursor and a volatile organic substance at 350 ° C. or higher and lower than 800 ° C. (pre-baking step), and then a baking step (main baking step) of baking at 800 to 1400 ° C. You may do it.
  • the temperature at which the preliminary firing step is performed is more preferably 400 ° C. or higher.
  • the pre-baking step is preferably performed in an inert gas atmosphere as in the case of the main baking.
  • the pre-baking step can be performed under reduced pressure, for example, 10 kPa or less.
  • the time for performing the pre-baking step is, for example, in the range of 0.5 to 10 hours, preferably in the range of 1 to 5 hours.
  • the temperature for carrying out the main baking step is 800 to 1400 ° C., preferably 1000 to 1350 ° C., more preferably 1100 to 1300 ° C.
  • the main firing step is performed in an inert gas atmosphere.
  • an inert gas atmosphere refers to an atmosphere that contains an inert gas as a main component, that is, a component that occupies 50% by volume or more and does not contain an oxidizing gas typified by oxygen having high activity against carbon.
  • the inert gas the aforementioned gases such as nitrogen and argon can be used.
  • the inert gas atmosphere is preferably composed of an inert gas, but may contain a halogen-containing compound or the like together with the inert gas.
  • this baking process can be implemented under reduced pressure, for example, 10 kPa or less.
  • the time for performing the main baking step is, for example, 0.05 to 10 hours, preferably 0.05 to 8 hours, and more preferably 0.05 to 6 hours.
  • Specific surface area determined by nitrogen adsorption BET3 point method of the carbonaceous material is preferably 1m 2 / g ⁇ 10m 2 / g, more preferably 1.2m 2 /g ⁇ 9.5m 2 / g, further preferably from 1.4m 2 /g ⁇ 9.0m 2 / g. If the specific surface area of the carbonaceous material is too small, the amount of lithium ions adsorbed on the carbonaceous material is reduced, and the charge capacity of a non-aqueous electrolyte secondary battery using this carbonaceous material may be reduced. If the specific surface area is too large, lithium ions react on the surface of the carbonaceous material, and the utilization efficiency of lithium ions in a nonaqueous electrolyte secondary battery using the carbonaceous material may be reduced.
  • the carbonaceous material preferably has an average interplanar spacing d 002 of (002) plane calculated from the wide-angle X-ray diffraction method using the Bragg equation in the range of 0.38 nm to 0.40 nm, and 0.381 nm. More preferably, it is in the range of 0.389 nm or less.
  • the average spacing d 002 of (002) plane of the carbonaceous material is too small, there is the resistance when the lithium ion to the carbon material to doping and dedoping increases. As a result, the input / output characteristics of the nonaqueous electrolyte secondary battery using the carbonaceous material may be deteriorated.
  • the carbonaceous material since the carbonaceous material repeatedly expands and contracts when lithium ions are doped and dedoped, the carbonaceous material may be damaged, and the stability as a battery material may be reduced.
  • the average interplanar spacing d 002 of the (002) plane of the carbonaceous material is too large, the diffusion resistance of lithium ions is reduced, but the volume of the carbonaceous material is increased, so that the effective capacity per volume of the carbonaceous material is increased. May become smaller.
  • ratio of the weight of nitrogen atoms contained in the carbonaceous material to the weight of the carbonaceous material is 0.5 weight. % Or less is preferable.
  • the reaction between lithium ions and oxygen atoms contained in the carbonaceous material is unlikely to occur.
  • Such carbonaceous materials are difficult to adsorb moisture in the air.
  • the half-width value of the peak around 1360 cm ⁇ 1 of the carbonaceous material observed in the Raman spectrum is preferably in the range of 155 to 190 cm ⁇ 1 , more preferably in the range of 175 to 190 cm ⁇ 1 . More preferably, it is in the range of 175 to 180 cm ⁇ 1 . Since such a carbonaceous material can occlude more lithium ions and lithium clusters, a nonaqueous electrolyte secondary battery having good battery characteristics can be obtained by using this carbonaceous material. Moreover, since this carbonaceous material has favorable electroconductivity, the nonaqueous electrolyte secondary battery using this carbonaceous material can have sufficient discharge characteristics (discharge capacity).
  • the lithium cluster is a combination of lithium ions due to the interaction between lithium ions.
  • Lithium ions are occluded in the carbonaceous material in the form of lithium ions or lithium clusters, but by forming the lithium clusters and occluded, a nonaqueous electrolyte secondary battery with better battery characteristics can be obtained.
  • the half-value width of the carbonaceous material is preferably a small value within the above range.
  • the difference in half-value width is preferably in the range of 50 cm ⁇ 1 to 88 cm ⁇ 1 .
  • Difference between the value of the half width is more preferably in the range of 50 cm -1 or more 84cm -1 or less, more preferably in the range of 55cm -1 or 83cm -1 or less, 60cm -1 or 80 cm -1
  • the following range is particularly preferable.
  • the carbon precursor When the carbon precursor is fired so that the difference in the half-value width is 50 cm ⁇ 1 or more, a thermally stable structure is easily formed, and it is considered that a carbonaceous material having high crystallinity can be obtained.
  • a carbonaceous material can contribute to the improvement of the charge / discharge efficiency of the non-electrolyte secondary battery. From the viewpoint of particularly suppressing the hygroscopicity of the carbonaceous material, it is preferable that the difference in the half-value width is large. In a carbonaceous material with reduced hygroscopicity, a reaction due to moisture contained in the carbonaceous material is unlikely to occur, and the carbonaceous material is unlikely to deteriorate.
  • the difference in half-value width is too large, defects may be formed in the carbonaceous material in the firing step. If a carbonaceous material having defects is used, the charge / discharge efficiency of the nonaqueous electrolyte secondary battery may be reduced. Moreover, if the difference in the half-value width is too large, the hygroscopicity of the carbonaceous material may increase. When a highly hygroscopic carbonaceous material is used in a non-aqueous electrolyte secondary battery, a reaction caused by moisture contained in the carbonaceous material, for example, a hydrolysis reaction of an electrolytic solution or an electrolysis reaction of water may occur. The carbonaceous material may be deteriorated by an acid or gas generated by these reactions, specifically, an acid generated by a hydrolysis reaction of an electrolytic solution or a gas generated by an electrolysis reaction of water.
  • the average spacing d 002 of the (002) plane of the carbonaceous material, the specific surface area, the half-width value of the peak near 1360 cm ⁇ 1 of the carbon precursor observed in the Raman spectrum, and the carbonaceous material The difference from the half-width value of the peak near 1360 cm ⁇ 1 is good when the carbonaceous material is suppressed from deterioration and hygroscopicity, and when this carbonaceous material is used as the negative electrode of a nonaqueous electrolyte secondary battery. It is effective in obtaining charge / discharge capacity.
  • a method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery comprising: A step of firing a carbon precursor and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C.
  • a method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery is provided.
  • the average particle diameter (Dv 50 ) of the carbonaceous material obtained in the present embodiment is preferably 3 to 30 ⁇ m. If the average particle size is too small, the proportion of fine powder contained in the carbonaceous material increases, and the specific surface area of the carbonaceous material may become too large. When a carbonaceous material having a large specific surface area is used, the possibility that the carbonaceous material and the electrolytic solution react with each other increases. When such a carbonaceous material is used for a non-aqueous electrolyte secondary battery, the irreversible capacity of the non-aqueous electrolyte secondary battery may increase.
  • the irreversible capacity is the difference between the capacity (charge capacity) charged in the non-electrolyte secondary battery and the discharge capacity.
  • the lower limit value of the average particle diameter of the carbonaceous material is more preferably 4 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • a carbonaceous material having an appropriate average particle size is used, a non-aqueous electrolyte secondary battery capable of rapid charge and discharge can be obtained because resistance due to diffusion of lithium in the particles of the carbonaceous material is reduced. .
  • the upper limit of the average particle diameter of the carbonaceous material is preferably 30 ⁇ m or less, more preferably 19 ⁇ m or less, still more preferably 17 ⁇ m or less, still more preferably 16 ⁇ m or less, and most preferably 15 ⁇ m or less.
  • the negative electrode for a nonaqueous electrolyte secondary battery according to this embodiment includes the carbonaceous material for a nonaqueous electrolyte secondary battery according to the present invention.
  • a method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to this embodiment will be described in detail.
  • a binder binder
  • an appropriate amount of an appropriate solvent is added and kneaded to prepare an electrode mixture, and this electrode mixture is made of a metal plate or the like.
  • the current collector plate after drying can be produced by pressure molding.
  • an electrode mixture for producing an electrode having good conductivity can be prepared.
  • a conductive additive to the electrode mixture, an electrode having better conductivity can be formed.
  • PVDF polyvinylidene fluoride
  • SBR styrene / butadiene / rubber
  • CMC carboxymethylcellulose
  • the binder By adding an appropriate amount of the binder, the resistance value of the electrode and the internal resistance of the battery can be suppressed, and a nonaqueous electrolyte secondary battery having good battery characteristics can be obtained. Further, by adding an appropriate amount of the binder, the bonding between the particles of the carbonaceous material as the negative electrode material becomes good, and the bonding between the carbonaceous material and the current collector becomes good.
  • a binder can be used by dissolving or dispersing in a solvent or the like.
  • PVDF can be used by forming a slurry state using a polar solvent.
  • NMP N-methylpyrrolidone
  • the binder is preferably added in an amount of 3 to 13% by weight, more preferably 3 to 10% by weight based on the total weight of the electrode mixture.
  • an aqueous emulsion such as SBR or CMC can be used by dissolving in water. It is preferable to use a mixture of a plurality of types of binders that can be used by dissolving in water.
  • the ratio of the total weight of the binder to the total weight of the electrode mixture is preferably in the range of 0.5 to 5% by weight, and more preferably in the range of 1 to 4% by weight.
  • the electrode active material layer is generally formed on both surfaces of the current collector plate, but may be formed only on one surface of the current collector plate. By forming an electrode active material layer having an appropriate thickness, a nonaqueous electrolyte secondary battery having sufficient capacity and good input / output characteristics can be obtained.
  • the thickness of the active material layer (per one side) is preferably 10 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the nonaqueous electrolyte secondary battery of this embodiment includes the negative electrode for a nonaqueous electrolyte secondary battery of the present invention.
  • the nonaqueous electrolyte secondary battery using the negative electrode for a nonaqueous electrolyte secondary battery using the carbonaceous material of the present invention exhibits excellent output characteristics and excellent cycle characteristics.
  • the carbonaceous material (negative electrode material) of the present invention is used to form a negative electrode for a non-aqueous electrolyte secondary battery
  • other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are particularly limited. It is possible to use various materials conventionally used or proposed as a nonaqueous solvent secondary battery.
  • the cathode material one represented layered oxide (LiMO 2, M is a metal: for example LiCoO 2, LiNiO 2, LiMnO 2 , or LiNi x Co y Mo z O 2 (where x, y , Z represents a composition ratio)
  • olivine system represented by LiMPO 4 , M is a metal: for example, LiFePO 4, etc.
  • spinel system represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc.
  • chalcogen compounds may be used in combination of a plurality of types as required.
  • a positive electrode is formed by forming a layer on a conductive current collector using these positive electrode materials and a carbon material for imparting conductivity to an appropriate binder and electrode.
  • a non-aqueous solvent electrolyte used for a non-aqueous electrolyte secondary battery is formed by dissolving an electrolyte in a non-aqueous solvent.
  • Nonaqueous solvents include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, ⁇ -butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. Can be used. These organic solvents can be used alone or in combination of two or more.
  • LiClO 4 LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , LiN (SO 3 CF 3 ) 2, or the like can be used.
  • a nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode formed as described above, and a liquid-permeable separator made of a porous material (for example, non-woven fabric) disposed between the two electrodes, and is immersed in the electrolytic solution. Is formed.
  • a separator a non-woven fabric or other porous material usually used for a secondary battery can be used.
  • a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can also be used.
  • the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
  • the physical-property value described in this specification including an Example is the value calculated
  • vm was determined by a three-point method by nitrogen adsorption at liquid nitrogen temperature, and the specific surface area of the sample was calculated by the following equation.
  • v m adsorption amount necessary to form a monomolecular layer on the surface of the sample (cm 3 / g)
  • v adsorption amount is measured (cm 3 / g)
  • p 0 saturation vapor pressure
  • c is a constant (reflecting heat of adsorption)
  • N is Avogadro's number 6.022 ⁇ 10 23
  • a (nm 2 ) is an area occupied by the adsorbate molecule on the sample surface (molecular occupation cross section).
  • the amount of nitrogen adsorbed on the carbon precursor or carbonaceous material at the liquid nitrogen temperature was measured using “BELL Sorb Mini” manufactured by BELL Japan, as follows. A carbon precursor or a carbonaceous material pulverized to a particle size of about 5 to 50 ⁇ m is filled in a sample tube, and the sample tube is cooled to ⁇ 196 ° C., and the pressure is once reduced. Nitrogen (purity 99.999%) was adsorbed on the carbonaceous material. The amount of nitrogen adsorbed on the sample when the equilibrium pressure was reached at the desired relative pressure was defined as the amount of adsorbed gas v.
  • Elemental analysis was performed using an oxygen / nitrogen / hydrogen analyzer EMGA-930 manufactured by HORIBA, Ltd.
  • the detection method of the apparatus is oxygen: inert gas melting-non-dispersive infrared absorption method (NDIR), nitrogen: inert gas melting-thermal conductivity method (TCD), hydrogen: inert gas melting-non-dispersive infrared ray.
  • Absorption method (NDIR) was used.
  • Calibration is performed with (oxygen / nitrogen) Ni capsules, TiH2 (H standard sample), SS-3 (N, O standard sample), and 20 mg of the sample whose moisture content was measured at 250 ° C. for about 10 minutes as a pretreatment The measurement was performed after taking the capsule and degassing it in the elemental analyzer for 30 seconds. Three samples were analyzed, and the average value of the three samples obtained was used as the analysis value.
  • the residual carbon ratio was measured by quantifying the carbon content of the ignition residue after the sample was ignited in an inert gas. Ignition is about 1 g of volatile organics (this exact weight is W 1 (g)) in a crucible, and 20 liters of nitrogen is allowed to flow for 1 minute in an electric furnace at 10 ° C./min. The temperature was increased from room temperature to 800 ° C. at a temperature increase rate of 1, and then heated at 800 ° C. for 1 hour. The residue at this time was regarded as an ignition residue, and its weight was defined as W 2 (g).
  • Preparation Example 1 The coconut shell was crushed and dry-distilled at 500 ° C. to obtain coconut shell char having a particle size of 2.360 to 0.850 mm (containing 98% by weight of particles having a particle size of 2.360 to 0.850 mm).
  • a vapor phase deashing process was performed for 50 minutes at 870 ° C. while supplying nitrogen gas containing 1% by volume of hydrogen chloride gas at a flow rate of 10 L / min to 100 g of this coconut shell char. Thereafter, only the supply of hydrogen chloride gas was stopped, and while supplying nitrogen gas at a flow rate of 10 L / min, vapor phase deoxidation treatment was further performed at 900 ° C. for 30 minutes to obtain a carbon precursor.
  • the obtained carbon precursor was roughly pulverized to an average particle size of 10 ⁇ m using a ball mill, and then pulverized and classified using a compact jet mill (manufactured by Seishin Enterprise Co., Ltd., Kodget System ⁇ -mkIII) to obtain an average particle size.
  • a carbon precursor of 9.6 ⁇ m was obtained.
  • the full width at half maximum of the peak near 1360 cm ⁇ 1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 245 cm ⁇ 1 .
  • Preparation Example 2 A carbon precursor was obtained in the same manner as in Preparation Example 1 except that the vapor phase deashing treatment temperature and the vapor phase deoxidation treatment temperature were changed to 900 ° C.
  • the half-width value of the peak near 1360 cm ⁇ 1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 237 cm ⁇ 1 .
  • the specific surface area of the obtained carbon precursor was 210 m 2 / g.
  • Preparation Example 3 A carbon precursor was obtained in the same manner as in Preparation Example 2, except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 870 ° C.
  • the specific surface area of the obtained carbon precursor was 350 m 2 / g.
  • Preparation Example 4 A carbon precursor was obtained in the same manner as in Preparation Example 1 except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 980 ° C. The full width at half maximum of the peak around 1360 cm ⁇ 1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 220 cm ⁇ 1 .
  • Preparation Example 5 A carbon precursor was obtained in the same manner as in Preparation Example 1, except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 800 ° C.
  • the half width of the peak near 1360 cm ⁇ 1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 267 cm ⁇ 1 .
  • the specific surface area of the obtained carbon precursor was 520 m 2 / g.
  • Preparation Example 6 A carbon precursor was obtained in the same manner as in Preparation Example 2, except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 950 ° C.
  • the specific surface area of the obtained carbon precursor was 70 m 2 / g.
  • Example 1 9.1 g of the carbon precursor prepared in Preparation Example 2 and 0.9 g of polystyrene (manufactured by Sekisui Plastics Co., Ltd., average particle size of 400 ⁇ m, residual carbon ratio of 1.2% by weight) were mixed. 10 g of this mixture was placed in a graphite sheath (length 100 mm, width 100 mm, height 50 mm) and 1290 at a heating rate of 60 ° C. per minute under a nitrogen flow rate of 5 L per minute in a fast heating furnace manufactured by Motoyama Co., Ltd. After raising the temperature to 0 ° C., the mixture was kept at 1290 ° C. (calcination temperature) for 11 minutes and naturally cooled.
  • a graphite sheath length 100 mm, width 100 mm, height 50 mm
  • 1290 After raising the temperature to 0 ° C., the mixture was kept at 1290 ° C. (calcination temperature) for 11 minutes and naturally cooled.
  • Example 2 A carbonaceous material was obtained in the same manner as in Example 1 except that the carbon precursor prepared in Preparation Example 1 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 3 A carbonaceous material was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1270 ° C.
  • the recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%.
  • Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 4 A carbonaceous material was obtained in the same manner as in Example 2 except that the firing temperature was changed to 1270 ° C.
  • the recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%.
  • Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 5 A carbonaceous material was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1300 ° C.
  • the recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%.
  • Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 6 A carbonaceous material was obtained in the same manner as in Example 2 except that the firing temperature was changed to 1300 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 7 A carbonaceous material was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1350 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 8 A carbonaceous material was obtained in the same manner as in Example 2 except that the firing temperature was changed to 1350 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 9 A carbonaceous material was obtained in the same manner as in Example 1 except that the carbon precursor prepared in Preparation Example 3 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 10 A carbonaceous material was obtained in the same manner as in Example 9 except that the firing temperature was changed to 1270 ° C.
  • the recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%.
  • Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 11 A carbonaceous material was obtained in the same manner as in Example 1 except that the holding time at 1290 ° C. was changed to 23 minutes. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Example 12 A carbonaceous material was obtained in the same manner as in Example 9 except that the holding time at 1290 ° C. was changed to 23 minutes. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Comparative Example 1 9.1 g of the carbon precursor prepared in Preparation Example 4 and 0.9 g of polystyrene (manufactured by Sekisui Plastics Co., Ltd., average particle size of 400 ⁇ m, residual carbon ratio of 1.2% by weight) were mixed. 10 g of this mixture was placed in a graphite sheath (length 100 mm, width 100 mm, height 50 mm) and 1290 at a heating rate of 60 ° C. per minute under a nitrogen flow rate of 5 L per minute in a fast heating furnace manufactured by Motoyama Co., Ltd. The temperature was raised to 0 ° C., then held at 1290 ° C. (calcination temperature) for 11 minutes, and then naturally cooled.
  • Comparative Example 2 A carbonaceous material was obtained in the same manner as in Comparative Example 1 except that the carbon precursor prepared in Preparation Example 5 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • Comparative Example 3 A carbonaceous material was obtained in the same manner as in Comparative Example 1 except that the carbon precursor prepared in Preparation Example 6 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
  • negative electrodes were prepared according to the following procedure. 92 parts by mass of the carbonaceous material for negative electrode, 2 parts by mass of acetylene black, 6 parts by mass of PVDF (polyvinylidene fluoride) and 90 parts by mass of NMP (N-methylpyrrolidone) were mixed to obtain a slurry. The obtained slurry was applied to a copper foil having a thickness of 14 ⁇ m, dried and pressed to obtain an electrode having a thickness of 60 ⁇ m. The density of the obtained electrode was 0.9 to 1.1 g / cm 3 .
  • the electrode produced above was used as a working electrode, and metallic lithium was used as a counter electrode and a reference electrode.
  • the solvent ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7.
  • 1 mol / L LiPF 6 was dissolved as an electrolyte.
  • a glass fiber nonwoven fabric was used for the separator. Using these, a lithium secondary battery was produced in a glove box under an argon atmosphere.
  • a charge / discharge test was performed using a charge / discharge test apparatus (“TOSCAT” manufactured by Toyo System Co., Ltd.). Lithium was doped at a rate of 70 mA / g with respect to the mass of the active material, and was doped until 1 mV with respect to the lithium potential. Further, a constant voltage of 1 mV with respect to the lithium potential was applied for 8 hours to complete the doping. The capacity (mAh / g) at this time was defined as the charge capacity.
  • TOSCAT charge / discharge test apparatus
  • the difference between the half width values is the difference between the half width value before firing (half width value of the carbon precursor) and the half width value after firing (the half width value of the carbonaceous material). It is.
  • the nitrogen content of the carbonaceous material means an analytical value obtained by elemental analysis (ratio of the weight of nitrogen atoms contained in the carbonaceous material to the weight of the carbonaceous material).
  • the oxygen content of the carbonaceous material means an analytical value obtained by elemental analysis.
  • the non-aqueous electrolyte secondary battery using the carbonaceous material of the present invention has good charge / discharge efficiency and lower hygroscopicity, and the carbonaceous material is unlikely to deteriorate. Therefore, it can be used particularly for in-vehicle applications such as hybrid vehicles (HEV) and electric vehicles (EV) that require a long life.
  • HEV hybrid vehicles
  • EV electric vehicles

Abstract

 The disclosed manufacturing method is a method for manufacturing a carbonaceous material for a non-aqueous electrolyte secondary cell, including: a step of firing a mixture of a a volatile organic substance and a carbon precursor having a specific surface area of 100-500 m2/g in an inert gas atmosphere of 800-1400°C and obtaining a carbonaceous material.

Description

非水電解質二次電池用炭素質材料の製造方法Method for producing carbonaceous material for non-aqueous electrolyte secondary battery
 本発明は、リチウムイオン二次電池に代表される非水電解質二次電池の負極に適した炭素質材料の製造方法に関する。 The present invention relates to a method for producing a carbonaceous material suitable for a negative electrode of a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery.
 リチウムイオン二次電池は、携帯電話やノートパソコンのような小型携帯機器に広く用いられている。リチウムイオン二次電池の負極材としては、黒鉛の理論容量372mAh/gを超える量のリチウムのドープ(充電)及び脱ドープ(放電)が可能な難黒鉛化性炭素が開発され(例えば特許文献1)、使用されてきた。 Lithium ion secondary batteries are widely used in small portable devices such as mobile phones and laptop computers. As a negative electrode material for a lithium ion secondary battery, non-graphitizable carbon capable of doping (charging) and dedoping (discharging) lithium in an amount exceeding the theoretical capacity of 372 mAh / g of graphite has been developed (for example, Patent Document 1). ), Have been used.
 難黒鉛化性炭素は、例えば石油ピッチ、石炭ピッチ、フェノール樹脂、植物を炭素源として得ることができる。これらの炭素源の中でも、植物は栽培することによって持続して安定的に供給可能な原料であり、安価に入手できるため注目されている。また、植物由来の炭素原料を焼成して得られる炭素質材料には、細孔が多く存在するため、大きな充放電容量を有することが期待される(例えば特許文献1、特許文献2)。 Non-graphitizable carbon can be obtained using, for example, petroleum pitch, coal pitch, phenol resin, and plants as a carbon source. Among these carbon sources, plants are attracting attention because they are raw materials that can be continuously and stably supplied by cultivation and can be obtained at low cost. Moreover, since the carbonaceous material obtained by baking a plant-derived carbon raw material has many pores, it is expected to have a large charge / discharge capacity (for example, Patent Document 1 and Patent Document 2).
 一方、近年、環境問題への関心の高まりから、リチウムイオン二次電池の車載用途での開発が進められ、実用化されつつある。 On the other hand, in recent years, due to increasing interest in environmental problems, development of lithium ion secondary batteries for in-vehicle applications has been promoted and is being put to practical use.
特開平9-161801号公報JP-A-9-161801 特開平10-21919号公報Japanese Patent Laid-Open No. 10-21919
 特に車載用途でのリチウムイオン電池に用いられる炭素質材料には、充放電効率が良好であり、劣化が生じにくいことが求められる。 Especially, a carbonaceous material used for a lithium ion battery for in-vehicle use is required to have good charge / discharge efficiency and hardly deteriorate.
 本発明の目的は、非水電解質二次電池(例えばリチウムイオン二次電池)の負極に用いる炭素質材料(非水電解質二次電池用炭素質材料)の製造に適した方法を提供することにある。 The objective of this invention is providing the method suitable for manufacture of the carbonaceous material (carbonaceous material for nonaqueous electrolyte secondary batteries) used for the negative electrode of a nonaqueous electrolyte secondary battery (for example, lithium ion secondary battery). is there.
 本発明は、
 比表面積100~500m2/gの炭素前駆体と揮発性有機物との混合物を800~1400℃の不活性ガス雰囲気下で焼成し、炭素質材料を得る工程、
を具備する、
 非水電解質二次電池用炭素質材料の製造方法、を提供する。
The present invention
Calcination of a mixture of a carbon precursor having a specific surface area of 100 to 500 m 2 / g and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C. to obtain a carbonaceous material;
Comprising
A method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery is provided.
 本発明によれば、良好な充放電効率を有し、充放電効率が低下しにくい、非水電解質二次電池用炭素質材料の製造に適した方法を提供することができる。 According to the present invention, it is possible to provide a method suitable for the production of a carbonaceous material for a non-aqueous electrolyte secondary battery, which has good charge / discharge efficiency and is unlikely to decrease in charge / discharge efficiency.
 以下は本発明の実施形態を例示する説明であって、本発明を以下の実施形態に制限する趣旨ではない。なお、本明細書において、常温とは25℃を指す。また、本明細書において、1360cm-1付近のピークとは、1360cm-1にピークトップが存在するピークに限らず、1360cm-1にピークの中腹が存在するピークも包含される。 The following is an explanation of an embodiment of the present invention, and is not intended to limit the present invention to the following embodiment. In addition, in this specification, normal temperature refers to 25 degreeC. Further, in this specification, the peak in the vicinity of 1360 cm -1, is not limited to the peak with a peak top present at 1360 cm -1, a peak is present halfway of the peak in 1360 cm -1 are also included.
 (非水電解質二次電池用炭素質材料)
 本実施形態では、炭素前駆体と揮発性有機物との混合物を800~1400℃の不活性ガス雰囲気下で焼成して非水電解質二次電池用炭素質材料が得られる。
(Carbonaceous material for non-aqueous electrolyte secondary batteries)
In the present embodiment, a carbonaceous material for a nonaqueous electrolyte secondary battery is obtained by firing a mixture of a carbon precursor and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C.
 炭素前駆体、すなわち炭素質材料の前駆体は、植物由来の炭素材(以下、「植物由来のチャー」と称することがある)から製造することができる。なお、チャーは、一般には、石炭を加熱した際に得られる溶融軟化しない炭素分に富む粉末状の固体を意味するが、ここでは、その他の有機物を加熱して得られる溶融軟化しない炭素分に富む粉末状の固体も含む意味で用いている。 The carbon precursor, that is, the precursor of the carbonaceous material can be produced from a plant-derived carbon material (hereinafter sometimes referred to as “plant-derived char”). In addition, char generally means a powdery solid rich in carbon that is not melt-softened, which is obtained when coal is heated, but here, the carbon content that is obtained by heating other organic substances is not melt-softened. It is used to include a rich powdery solid.
 植物由来のチャーの原料となる植物(以下、「植物原料」と称することがある)としては、例えば、椰子殻、珈琲豆、茶葉、サトウキビ、果実(例えば、みかん、バナナ)、藁、籾殻、広葉樹、針葉樹、竹を例示できる。この例示は、本来の用途に供した後の廃棄物(例えば、使用済みの茶葉)、あるいは植物原料の一部(例えば、バナナやみかんの皮)を包含する。これらの植物原料は、単独で又は2種以上組み合わせて使用することができる。これらの植物原料の中では、大量入手が容易な椰子殻が好ましい。 Examples of plants that serve as raw materials for plant-derived char (hereinafter sometimes referred to as “plant raw materials”) include, for example, coconut shells, peas, tea leaves, sugar cane, fruits (eg, mandarin oranges, bananas), strawberries, rice husks, Examples include hardwood, conifers, and bamboo. Examples of this include waste (for example, used tea leaves) after being used for the original use, or part of plant materials (for example, bananas and tangerine peels). These plant materials can be used alone or in combination of two or more. Among these plant materials, coconut shells that are easily available in large quantities are preferred.
 椰子殻としては、例えば、パームヤシ(アブラヤシ)、ココヤシ、サラク、オオミヤシの椰子殻を用いることができる。これらの椰子殻は、単独又は組み合わせて使用することができる。椰子殻としては、食品、洗剤原料、バイオディーゼル油原料等として利用され、大量に発生するバイオマス廃棄物である、ココヤシ及びパームヤシが特に好ましい。 As the coconut shell, for example, palm coconut shells (coconut palm), coconut palm, salak, and coconut palm can be used. These coconut shells can be used alone or in combination. As the coconut shell, coconut palm and palm palm, which are biomass wastes that are used as foods, detergent raw materials, biodiesel oil raw materials and the like and are generated in large quantities, are particularly preferable.
 植物原料から植物由来のチャーを製造する方法は、例えば植物原料を300℃以上の不活性ガス雰囲気下で熱処理(以下、「仮焼成」と称することがある)することによって実施できる。 A method for producing a plant-derived char from a plant material can be carried out, for example, by heat-treating the plant material in an inert gas atmosphere at 300 ° C. or higher (hereinafter sometimes referred to as “temporary firing”).
 ただし、植物由来のチャーとして、椰子殻チャー等として市販されているチャーを用いてもよい。 However, char that is commercially available as coconut shell char or the like may be used as plant-derived char.
 植物由来のチャーから製造された炭素質材料は、多量の活物質をドープ可能であることから、非水電解質二次電池の負極材料として基本的には適している。しかし、植物由来のチャーには、植物に含まれていた金属元素が多く含有されている。例えば、椰子殻チャーは、カリウムを0.3%程度、鉄を0.1%程度含んでいる。このような金属元素を多く含んだ炭素質材料を負極として用いると、非水電解質二次電池の電気化学的な特性に好ましくない影響を与えることがある。 Carbonaceous materials produced from plant-derived char can be doped with a large amount of active material and are therefore basically suitable as negative electrode materials for non-aqueous electrolyte secondary batteries. However, plant-derived char contains a large amount of metal elements contained in plants. For example, coconut shell char contains about 0.3% potassium and about 0.1% iron. If a carbonaceous material containing a large amount of such metal elements is used as the negative electrode, it may adversely affect the electrochemical characteristics of the nonaqueous electrolyte secondary battery.
 また、植物由来のチャーは、カリウム、鉄とともに、アルカリ金属(例えば、ナトリウム)、アルカリ土類金属(例えば、マグネシウム、カルシウム)、遷移金属(例えば、銅)等を含む場合もある。炭素質材料がこれらの金属元素を含む場合にも、非水電解質二次電池の電池性能に好ましくない影響を与える可能性がある。 In addition, plant-derived char may contain alkali metal (for example, sodium), alkaline earth metal (for example, magnesium, calcium), transition metal (for example, copper) and the like in addition to potassium and iron. Even when the carbonaceous material contains these metal elements, the battery performance of the nonaqueous electrolyte secondary battery may be adversely affected.
 さらに、本発明者の検討により、灰分により炭素質材料の細孔が閉塞され、電池の充放電容量に悪影響を及ぼす場合があることが確認されている。 Furthermore, it has been confirmed by the inventors that the pores of the carbonaceous material are blocked by ash, which may adversely affect the charge / discharge capacity of the battery.
 従って、植物由来のチャーに含まれているこのような灰分(アルカリ金属、アルカリ土類金属、遷移金属等の金属元素)は、炭素質材料を得るための焼成の前に、脱灰処理によって減少させておくことが望ましい。脱灰方法は、例えば、塩酸、硫酸等の鉱酸、酢酸、蟻酸等の有機酸等を含む酸性水を用いて金属分を抽出脱灰する方法(液相脱灰)、塩化水素等のハロゲン含有化合物を含有した高温の気相に暴露させて脱灰する方法(気相脱灰)として実施することができる。適用する脱灰方法を限定する趣旨ではないが、以下では、脱灰後に乾燥処理の必要がない点で好ましい気相脱灰について説明する。 Therefore, such ash (metal elements such as alkali metals, alkaline earth metals, and transition metals) contained in plant-derived char is reduced by decalcification before firing to obtain a carbonaceous material. It is desirable to keep it. Deashing methods include, for example, a method of extracting and deashing metal components using acidic water containing mineral acids such as hydrochloric acid and sulfuric acid, organic acids such as acetic acid and formic acid (liquid phase deashing), halogens such as hydrogen chloride It can be carried out as a method of deashing by exposing to a high temperature gas phase containing the compound (gas phase demineralization). Although not intended to limit the deashing method to be applied, gas phase deashing that is preferable in that no drying treatment is required after deashing will be described below.
 気相脱灰では、植物由来のチャーを、ハロゲン含有化合物を含む気相中で熱処理することが好ましい。ハロゲン含有化合物とは、例えば、フッ素、塩素、臭素、ヨウ素、フッ化水素、塩化水素、臭化水素、臭化ヨウ素、フッ化塩素(ClF)、塩化ヨウ素(ICl)、臭化ヨウ素(IBr)、塩化臭素(BrCl)である。熱分解によりこれらのハロゲン含有化合物を発生する化合物、又はこれらの混合物を用いて気相脱灰を実施してもよい。好ましいハロゲン含有化合物は塩化水素である。 In vapor phase decalcification, it is preferable to heat-treat plant-derived char in a vapor phase containing a halogen-containing compound. Examples of the halogen-containing compound include fluorine, chlorine, bromine, iodine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, iodine bromide, chlorine fluoride (ClF), iodine chloride (ICl), and iodine bromide (IBr). Bromine chloride (BrCl). Gas phase decalcification may be carried out using a compound that generates these halogen-containing compounds by thermal decomposition, or a mixture thereof. A preferred halogen-containing compound is hydrogen chloride.
 気相脱灰において、ハロゲン含有化合物は、不活性ガスと混合して使用してもよい。不活性ガスは、植物由来のチャーを構成する炭素成分と反応しないガスであればよい。不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン、クリプトン、又はそれらの混合ガスを用いることができる。好ましい不活性ガスは窒素である。 In the vapor phase deashing, the halogen-containing compound may be used by mixing with an inert gas. The inert gas should just be a gas which does not react with the carbon component which comprises the plant-derived char. As the inert gas, for example, nitrogen, helium, argon, krypton, or a mixed gas thereof can be used. A preferred inert gas is nitrogen.
 気相脱灰において、ハロゲン含有化合物と不活性ガスとの混合比は、十分な脱灰が達成できる限り限定されないが、例えば不活性ガスに対するハロゲン含有化合物の比率は0.01~10.0体積%であり、好ましくは0.05~8.0体積%であり、さらに好ましくは0.1~5.0体積%である。 In the gas phase deashing, the mixing ratio of the halogen-containing compound and the inert gas is not limited as long as sufficient deashing can be achieved. For example, the ratio of the halogen-containing compound to the inert gas is 0.01 to 10.0 volume. %, Preferably 0.05 to 8.0% by volume, more preferably 0.1 to 5.0% by volume.
 気相脱灰の温度は、例えば500~950℃、好ましくは600~940℃、より好ましくは650~940℃、さらに好ましくは850~930℃である。脱灰温度が低すぎると、脱灰効率が低下し、十分に脱灰できないことがある。脱灰温度が高くなりすぎると、ハロゲン含有化合物による賦活が起きることがある。気相脱灰の時間は、特に制限されるものではないが、例えば5~300分であり、好ましくは10~200分であり、より好ましくは20~150分である。 The temperature of the vapor phase decalcification is, for example, 500 to 950 ° C., preferably 600 to 940 ° C., more preferably 650 to 940 ° C., and further preferably 850 to 930 ° C. When the deashing temperature is too low, the deashing efficiency is lowered and the deashing may not be sufficiently performed. If the deashing temperature is too high, activation by a halogen-containing compound may occur. The time for vapor phase decalcification is not particularly limited, but is, for example, 5 to 300 minutes, preferably 10 to 200 minutes, and more preferably 20 to 150 minutes.
 気相脱灰の条件は、炭素前駆体の諸物性、例えば後述するラマンスペクトルのピークの半値幅及び比表面積に影響を与えることがある。 The conditions for vapor phase demineralization may affect various physical properties of the carbon precursor, such as the half-value width and specific surface area of the Raman spectrum peak described below.
 気相脱灰により、植物由来のチャーに含まれているカリウム、鉄等の含有率は低下する。気相脱灰処理後に得られる炭素前駆体に含まれるカリウムの含有率は、0.1重量%以下が好ましく、0.05重量%以下がより好ましく、0.03重量%以下がさらに好ましい。気相脱灰処理後に得られる炭素前駆体に含まれる鉄の含有率は、0.02重量%以下が好ましく、0.015重量%以下がより好ましく、0.01重量%以下がさらに好ましい。 Vapor phase decalcification reduces the content of potassium, iron, etc. contained in plant-derived char. The content of potassium contained in the carbon precursor obtained after the vapor phase deashing treatment is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.03% by weight or less. The content of iron contained in the carbon precursor obtained after the vapor phase deashing treatment is preferably 0.02% by weight or less, more preferably 0.015% by weight or less, and further preferably 0.01% by weight or less.
 気相脱灰の対象となる植物由来のチャーの粒子径が小さすぎる場合、除去されたカリウム等を含む気相と植物由来のチャーとの分離が困難になり得ることから、粒子径の平均値の下限は100μm以上が好ましく、300μm以上がより好ましく、500μm以上がさらに好ましい。また、粒子径の平均値の上限は10000μm以下が好ましく、8000μm以下がより好ましく、5000μm以下がさらに好ましい。 If the particle diameter of the plant-derived char that is the target of vapor phase demineralization is too small, it may be difficult to separate the gas phase containing removed potassium and the plant-derived char from the average value of the particle diameter. Is preferably 100 μm or more, more preferably 300 μm or more, and even more preferably 500 μm or more. Further, the upper limit of the average value of the particle diameter is preferably 10,000 μm or less, more preferably 8000 μm or less, and further preferably 5000 μm or less.
 気相脱灰に用いる装置は、植物由来のチャーとハロゲン含有化合物を含む気相とを混合しながら加熱できる装置であれば、特に限定されない。例えば、流動炉を用い、流動床等による連続式又はバッチ式の層内流通方式により気相脱灰を実施することができる。気相の供給量(流動量)は、例えば植物由来のチャー1g当たり1ml/分以上、好ましくは5ml/分以上、さらに好ましくは10ml/分以上である。 The apparatus used for vapor phase demineralization is not particularly limited as long as it can be heated while mixing the plant-derived char and the vapor phase containing the halogen-containing compound. For example, vapor phase deashing can be carried out by using a fluidized furnace and using a fluidized bed or the like by a continuous or batch-type in-layer flow system. The supply amount (flow amount) of the gas phase is, for example, 1 ml / min or more, preferably 5 ml / min or more, more preferably 10 ml / min or more per 1 g of plant-derived char.
 気相脱灰を行った後に、気相脱灰処理後の炭素前駆体の脱酸処理を実施してもよい。例えば、植物由来のチャーにハロゲン含有化合物と窒素ガスとを供給しながら加熱処理して気相脱灰を行った後、ハロゲン含有化合物の供給のみを停止し、窒素ガスを供給しながらさらに処理を続けることによって、気相脱酸処理を行うことができる。 After the vapor phase deashing, the carbon precursor after the vapor phase deashing treatment may be deoxidized. For example, after supplying a halogen-containing compound and nitrogen gas to a plant-derived char and performing vapor phase decalcification, the supply of the halogen-containing compound is stopped, and further treatment is performed while supplying nitrogen gas. By continuing, vapor phase deoxidation treatment can be performed.
 レーザーラマン分光法により観測されるラマンスペクトルにおいて、炭素前駆体の1360cm-1付近のピークの半値幅の値は230~260cm-1の範囲にあることが好ましく、235~250cm-1の範囲にあることがより好ましい。ラマンスペクトルの1360cm-1付近のピークの半値幅は、炭素前駆体が有する非晶質の量と関連する。ラマンスペクトルの1360cm-1付近のピークの半値幅が上記の範囲に含まれる炭素前駆体を焼成すると、熱的に安定な構造が形成され、結晶構造が発達しやすい。その結果、このような炭素前駆体を焼成して得られる炭素質材料に含まれる微細欠陥の量を、十分に減少できると考えられる。このような欠陥の少ない炭素質材料は、非水電解質二次電池の電気抵抗の抑制に寄与し得る。 In the Raman spectrum observed by laser Raman spectroscopy, the half-value width of the peak around 1360 cm −1 of the carbon precursor is preferably in the range of 230 to 260 cm −1 and in the range of 235 to 250 cm −1. It is more preferable. The full width at half maximum of the peak near 1360 cm −1 of the Raman spectrum is related to the amorphous amount of the carbon precursor. When a carbon precursor in which the half width of the peak near 1360 cm −1 of the Raman spectrum is included in the above range is fired, a thermally stable structure is formed and the crystal structure is easily developed. As a result, it is considered that the amount of fine defects contained in the carbonaceous material obtained by firing such a carbon precursor can be sufficiently reduced. Such a carbonaceous material with few defects can contribute to suppression of the electrical resistance of a nonaqueous electrolyte secondary battery.
 なお、ラマンスペクトルは後述する方法を用いて測定することができる。本明細書において、半値幅とは、半値全幅(FWHM)を示す。ラマンスペクトルの1360cm-1付近のピークは、Dバンドと呼ばれ、炭素前駆体や炭素質材料における非弾性散乱を伴う二重共鳴効果によってラマンスペクトルに現れるピークである。 The Raman spectrum can be measured using a method described later. In this specification, the half width indicates the full width at half maximum (FWHM). A peak in the vicinity of 1360 cm −1 of the Raman spectrum is called a D band, and is a peak that appears in the Raman spectrum due to a double resonance effect accompanied by inelastic scattering in a carbon precursor or a carbonaceous material.
 炭素前駆体は、必要に応じて、粉砕工程、分級工程を経て、その平均粒子径を調整される。 The average particle diameter of the carbon precursor is adjusted as necessary through a pulverization step and a classification step.
 粉砕工程では、炭素前駆体を粉砕し、焼成工程後の炭素質材料の平均粒子径が例えば3~30μmの範囲になるように調整する。 In the pulverization step, the carbon precursor is pulverized and adjusted so that the average particle size of the carbonaceous material after the firing step is in the range of 3 to 30 μm, for example.
 粉砕工程は、例えばジェットミル、ボールミル、ハンマーミル、又はロッドミル等の粉砕機を用いて実施することができる。炭素前駆体に含まれる微粉の量を減らすためには、粉砕工程において、分級機能を備えたジェットミルを使用することが好ましい。ボールミル、ハンマーミル、又はロッドミル等を用いる場合は、粉砕工程後に分級を行うことで微粉を取り除くことができる。 The pulverization step can be performed using a pulverizer such as a jet mill, a ball mill, a hammer mill, or a rod mill. In order to reduce the amount of fine powder contained in the carbon precursor, it is preferable to use a jet mill having a classification function in the pulverization step. When using a ball mill, a hammer mill, a rod mill or the like, fine powder can be removed by classification after the pulverization step.
 分級工程では、炭素前駆体を粒子径に基づいて選別する。分級工程によって、例えば炭素前駆体に含まれる微粉の量を減少させることができ、より具体的には粒子径が1μm以下の粒子を除くことができる。また、炭素前駆体を分級することによって、炭素前駆体を焼成して得られる炭素質材料の粒子径を正確に調整することが可能となる。 In the classification process, the carbon precursor is selected based on the particle size. By the classification step, for example, the amount of fine powder contained in the carbon precursor can be reduced, and more specifically, particles having a particle diameter of 1 μm or less can be removed. Further, by classifying the carbon precursor, the particle diameter of the carbonaceous material obtained by firing the carbon precursor can be accurately adjusted.
 分級方法は、例えば篩を用いた分級、湿式分級、乾式分級により実施することができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。 The classification method can be carried out by, for example, classification using a sieve, wet classification, or dry classification. As the wet classifier, for example, a classifier using principles such as gravity classification, inertia classification, hydraulic classification, centrifugal classification, and the like can be given. Examples of the dry classifier include a classifier using a principle such as sedimentation classification, mechanical classification, and centrifugal classification.
 本実施形態において、炭素前駆体の比表面積は、100~500m2/gの範囲にあり、好ましくは200~500m2/gの範囲にあり、場合によっては200~400m2/gの範囲にある。上記の範囲の比表面積を有する炭素前駆体を焼成することによって、炭素質材料の有する微細孔を減少させることができる。このような炭素質材料を非水電解質二次電池に用いると、炭素質材料に含まれる水分に起因する反応、例えば電解液の加水分解反応や水の電気分解反応が生じにくく、電解液の加水分解により生じる酸や水の電気分解により生じるガスの発生が抑制される。さらに、この炭素質材料は、比表面積が小さいため、空気雰囲気下において酸化されにくく、炭素質材料の酸化に起因する非水電解質二次電池の電池性能の低下を抑制することができる。また、この炭素質材料は、比表面積が小さいため、炭素質材料とリチウムイオンとの接触可能な面積が小さく、リチウムイオンの利用効率の低下の一因である炭素質材料とリチウムイオンとの反応が発生しにくい。従って、この炭素質材料を用いると、非水電解質二次電池におけるリチウムイオンの利用効率を向上させることができる。炭素前駆体の比表面積は、気相脱灰の温度等の条件を制御することによって調整できる。なお、本明細書において、比表面積はBET法(窒素吸着BET3点法)により定まる比表面積(BET比表面積)を意味する。具体的には、比表面積は、後述する方法を用いて測定することができる。 In this embodiment, the specific surface area of the carbon precursor is in the range of 100 to 500 m 2 / g, preferably in the range of 200 to 500 m 2 / g, and in some cases in the range of 200 to 400 m 2 / g. . By firing the carbon precursor having a specific surface area in the above range, the fine pores of the carbonaceous material can be reduced. When such a carbonaceous material is used in a non-aqueous electrolyte secondary battery, a reaction caused by moisture contained in the carbonaceous material, for example, a hydrolysis reaction of the electrolytic solution or an electrolysis reaction of water is unlikely to occur. Generation of gas generated by electrolysis of acid and water generated by decomposition is suppressed. Furthermore, since this carbonaceous material has a small specific surface area, it is difficult to oxidize in an air atmosphere, and a decrease in battery performance of the nonaqueous electrolyte secondary battery due to oxidation of the carbonaceous material can be suppressed. In addition, since this carbonaceous material has a small specific surface area, the contactable area between the carbonaceous material and lithium ions is small, and the reaction between the carbonaceous material and lithium ions, which is one of the causes of a decrease in the utilization efficiency of lithium ions. Is unlikely to occur. Therefore, the use efficiency of lithium ions in the nonaqueous electrolyte secondary battery can be improved by using this carbonaceous material. The specific surface area of the carbon precursor can be adjusted by controlling conditions such as the temperature of vapor phase decalcification. In the present specification, the specific surface area means a specific surface area (BET specific surface area) determined by a BET method (nitrogen adsorption BET three-point method). Specifically, the specific surface area can be measured using a method described later.
 炭素前駆体と揮発性有機物との混合物を焼成することによって、本実施形態の炭素質材料が得られる。炭素前駆体は、揮発性有機物と混合して焼成されることにより、比表面積が低減した炭素質材料となる。炭素前駆体と揮発性有機物とを混合して焼成することにより、炭素質材料への二酸化炭素の吸着量を低減することができる。 The carbonaceous material of the present embodiment is obtained by firing a mixture of a carbon precursor and a volatile organic substance. A carbon precursor becomes a carbonaceous material with a reduced specific surface area by being mixed with a volatile organic material and fired. The amount of carbon dioxide adsorbed on the carbonaceous material can be reduced by mixing and baking the carbon precursor and the volatile organic substance.
 揮発性有機物としては、常温で固体状態であり、残炭率が5重量%未満である有機物が好ましい。揮発性有機物としては、植物由来のチャーから製造される炭素前駆体の比表面積を低減させることのできる揮発物質(例えば、炭化水素系ガスやタール)を発生させるものが好ましい。 As the volatile organic substance, an organic substance that is in a solid state at room temperature and has a residual carbon ratio of less than 5% by weight is preferable. As a volatile organic substance, what generates the volatile substance (for example, hydrocarbon gas and tar) which can reduce the specific surface area of the carbon precursor manufactured from plant-derived char is preferable.
 揮発性有機物としては、例えば熱可塑性樹脂、低分子有機化合物を用いることができる。具体的には、熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル等を用いることができる。なお、この明細書において、(メタ)アクリルとは、メタクリルとメタアクリルの総称である。低分子有機化合物としては、トルエン、キシレン、メシチレン、スチレン、ナフタレン、フェナントレン、アントラセン、ピレン等を用いることができる。このような揮発性有機物は、焼成温度下で揮発し、熱分解した場合に炭素前駆体の表面を酸化賦活しないものが好ましい。従って、熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレンを用いることが好ましい。低分子有機化合物としては、さらに安全上の観点から常温下において揮発性が小さいことが好ましく、ナフタレン、フェナントレン、アントラセン、ピレン等を用いることが好ましい。 As the volatile organic substance, for example, a thermoplastic resin or a low molecular organic compound can be used. Specifically, polystyrene, polyethylene, polypropylene, poly (meth) acrylic acid, poly (meth) acrylic acid ester, or the like can be used as the thermoplastic resin. In this specification, (meth) acryl is a general term for methacryl and methacryl. As the low molecular weight organic compound, toluene, xylene, mesitylene, styrene, naphthalene, phenanthrene, anthracene, pyrene, or the like can be used. Such a volatile organic substance is preferably one that does not oxidize and activate the surface of the carbon precursor when it volatilizes at the firing temperature and is thermally decomposed. Therefore, it is preferable to use polystyrene, polyethylene, or polypropylene as the thermoplastic resin. As the low molecular weight organic compound, it is preferable that volatility is low at room temperature from the viewpoint of safety, and naphthalene, phenanthrene, anthracene, pyrene, or the like is preferably used.
 残炭率は、試料を不活性ガス中で強熱した後の強熱残分の炭素量を定量することにより測定する。強熱とは、揮発性有機物およそ1g(この正確な重量をW1(g)とする)を坩堝に入れ、1分間に20リットルの窒素を流しながらこの坩堝を電気炉にて、10℃/分の昇温速度で常温から800℃まで昇温、その後800℃で1時間熱することである。このときの残存物を強熱残分とし、その重量をW2(g)とする。 The residual carbon ratio is measured by quantifying the carbon content of the ignition residue after the sample is ignited in an inert gas. Intense heat means that about 1 g of volatile organic substances (this exact weight is W 1 (g)) is put in a crucible and 20 liters of nitrogen is allowed to flow for 1 minute in an electric furnace. The temperature is raised from room temperature to 800 ° C. at a heating rate of minutes, and then heated at 800 ° C. for 1 hour. The residue at this time is regarded as an ignition residue, and its weight is defined as W 2 (g).
 次いで上記強熱残分について、JIS(日本工業規格)M8819:1997に定められた方法に準拠して元素分析を行い、強熱残分中の炭素の重量割合P1(%)を測定する。これらの得られた値を用いて、残炭率P2(%)は以下の式により算出する。 Next, the ignition residue is subjected to elemental analysis in accordance with the method defined in JIS (Japanese Industrial Standard) M8819: 1997, and the weight ratio P 1 (%) of carbon in the ignition residue is measured. Using these obtained values, the residual coal rate P 2 (%) is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 炭素前駆体と揮発性有機物との混合物は、炭素前駆体と揮発性有機物とを97:3~40:60の重量比で含むことが好ましい。この混合物における炭素前駆体と揮発性有機物との重量比は、より好ましくは95:5~60:40であり、さらに好ましくは93:7~80:20である。揮発性有機物が上記の比率で含まれた混合物を用いることによって、炭素前駆体に対する揮発性有機物の吸着の効率が良好になり、得られる炭素質材料の比表面積を十分に低減することができる。 The mixture of the carbon precursor and the volatile organic substance preferably contains the carbon precursor and the volatile organic substance in a weight ratio of 97: 3 to 40:60. The weight ratio of the carbon precursor to the volatile organic substance in this mixture is more preferably 95: 5 to 60:40, and still more preferably 93: 7 to 80:20. By using the mixture in which the volatile organic substance is contained in the above ratio, the efficiency of adsorption of the volatile organic substance to the carbon precursor is improved, and the specific surface area of the obtained carbonaceous material can be sufficiently reduced.
 炭素前駆体と揮発性有機物との混合は、炭素前駆体と揮発性有機物とを粉砕装置に同時に供給することにより実施してもよい。また、粉砕工程の後に、公知の混合方法を用いて炭素前駆体と揮発性有機物とを混合してもよい。このような揮発性有機物は粒子形状であることが好ましい。揮発性有機物を炭素前駆体に均一に分散させる観点から、揮発性有機物の平均粒子径は好ましくは0.1~2000μm、より好ましくは1~1000μm、さらに好ましくは2~600μmである。 The mixing of the carbon precursor and the volatile organic substance may be performed by supplying the carbon precursor and the volatile organic substance to the pulverizer at the same time. Further, after the pulverization step, the carbon precursor and the volatile organic material may be mixed using a known mixing method. Such volatile organic substances are preferably in the form of particles. From the viewpoint of uniformly dispersing the volatile organic substance in the carbon precursor, the average particle size of the volatile organic substance is preferably 0.1 to 2000 μm, more preferably 1 to 1000 μm, and still more preferably 2 to 600 μm.
 炭素前駆体と揮発性有機物との混合物は、炭素前駆体及び揮発性有機物以外の成分をさらに含んでいてもよい。炭素前駆体及び揮発性有機物以外の成分としては、例えば、天然黒鉛、人造黒鉛、金属系材料、合金系材料、又は酸化物系材料を用いることができる。このような成分の含有比率は、炭素前駆体と揮発性有機物との混合物100重量部に対して、好ましくは50重量部以下であり、より好ましくは30重量部以下であり、さらに好ましくは20重量部以下であり、最も好ましくは10重量部以下である。 The mixture of the carbon precursor and the volatile organic substance may further contain components other than the carbon precursor and the volatile organic substance. As components other than the carbon precursor and the volatile organic substance, for example, natural graphite, artificial graphite, metal-based material, alloy-based material, or oxide-based material can be used. The content ratio of such components is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and further preferably 20 parts by weight with respect to 100 parts by weight of the mixture of the carbon precursor and the volatile organic substance. Part or less, and most preferably 10 parts by weight or less.
 焼成工程では、炭素前駆体と揮発性有機物との混合物を800~1400℃で焼成する。 In the firing step, a mixture of the carbon precursor and the volatile organic material is fired at 800 to 1400 ° C.
 焼成工程は、
(a)炭素前駆体と揮発性有機物との混合物を800~1400℃で焼成する焼成工程(本焼成工程)のみであってもよく、
(b)炭素前駆体と揮発性有機物との混合物を350℃以上800℃未満で予備焼成する工程(予備焼成工程)と、その後800~1400℃で焼成する焼成工程(本焼成工程)とを具備していてもよい。
The firing process
(A) It may be only a firing step (main firing step) in which a mixture of a carbon precursor and a volatile organic material is fired at 800 to 1400 ° C.,
(B) comprising a step of pre-baking a mixture of a carbon precursor and a volatile organic substance at 350 ° C. or higher and lower than 800 ° C. (pre-baking step), and then a baking step (main baking step) of baking at 800 to 1400 ° C. You may do it.
 (予備焼成)
 予備焼成工程を実施する温度は、400℃以上であることがより好ましい。予備焼成工程は、本焼成と同様、不活性ガス雰囲気中で実施することが好ましい。予備焼成工程は、減圧下、例えば10kPa以下、で実施できる。予備焼成工程を実施する時間は、例えば0.5~10時間の範囲、好ましくは1~5時間の範囲である。予備焼成工程を実施すると、本焼成工程における揮発分や過剰なタール分の発生を軽減して、焼成機の負担を軽減することができる。
(Preliminary firing)
The temperature at which the preliminary firing step is performed is more preferably 400 ° C. or higher. The pre-baking step is preferably performed in an inert gas atmosphere as in the case of the main baking. The pre-baking step can be performed under reduced pressure, for example, 10 kPa or less. The time for performing the pre-baking step is, for example, in the range of 0.5 to 10 hours, preferably in the range of 1 to 5 hours. When the pre-baking step is performed, generation of volatile components and excessive tar components in the main baking step can be reduced, and the burden on the baking machine can be reduced.
 (本焼成)
 本焼成工程を実施する温度は、800~1400℃であり、1000~1350℃であることが好ましく、1100~1300℃であることがより好ましい。本焼成工程は、不活性ガス雰囲気下で実施する。本明細書において、不活性ガス雰囲気とは、不活性ガスを主成分、すなわち50体積%以上を占める成分とし、炭素に対する活性が高い酸素に代表される酸化性ガスを含まない雰囲気を言う。不活性ガスとしては、窒素、アルゴン等の前述のガスを用いることができる。不活性ガス雰囲気は、不活性ガスから構成されることが好ましいが、不活性ガスとともに、ハロゲン含有化合物等を含有していてもよい。また、本焼成工程は、減圧下、例えば10kPa以下、で実施できる。本焼成工程を実施する時間は、例えば0.05~10時間、好ましくは0.05~8時間、より好ましくは0.05~6時間である。
(Main firing)
The temperature for carrying out the main baking step is 800 to 1400 ° C., preferably 1000 to 1350 ° C., more preferably 1100 to 1300 ° C. The main firing step is performed in an inert gas atmosphere. In this specification, an inert gas atmosphere refers to an atmosphere that contains an inert gas as a main component, that is, a component that occupies 50% by volume or more and does not contain an oxidizing gas typified by oxygen having high activity against carbon. As the inert gas, the aforementioned gases such as nitrogen and argon can be used. The inert gas atmosphere is preferably composed of an inert gas, but may contain a halogen-containing compound or the like together with the inert gas. Moreover, this baking process can be implemented under reduced pressure, for example, 10 kPa or less. The time for performing the main baking step is, for example, 0.05 to 10 hours, preferably 0.05 to 8 hours, and more preferably 0.05 to 6 hours.
 炭素質材料の窒素吸着BET3点法により求められる比表面積は、好ましくは1m2/g~10m2/gであり、より好ましくは1.2m2/g~9.5m2/gであり、さらに好ましくは1.4m2/g~9.0m2/gである。炭素質材料の比表面積が小さすぎると、炭素質材料に対するリチウムイオンの吸着量が少なくなり、この炭素質材料を用いた非水電解質二次電池の充電容量が低下することがある。比表面積が大きすぎると、リチウムイオンが炭素質材料の表面で反応し、この炭素質材料を用いた非水電解質二次電池におけるリチウムイオンの利用効率が低くなることがある。 Specific surface area determined by nitrogen adsorption BET3 point method of the carbonaceous material is preferably 1m 2 / g ~ 10m 2 / g, more preferably 1.2m 2 /g~9.5m 2 / g, further preferably from 1.4m 2 /g~9.0m 2 / g. If the specific surface area of the carbonaceous material is too small, the amount of lithium ions adsorbed on the carbonaceous material is reduced, and the charge capacity of a non-aqueous electrolyte secondary battery using this carbonaceous material may be reduced. If the specific surface area is too large, lithium ions react on the surface of the carbonaceous material, and the utilization efficiency of lithium ions in a nonaqueous electrolyte secondary battery using the carbonaceous material may be reduced.
 炭素質材料は、広角X線回折法からBragg式を用いて算出される(002)面の平均面間隔d002が、0.38nm以上0.40nm以下の範囲にあることが好ましく、0.381nm以上0.389nm以下の範囲にあることがより好ましい。炭素質材料の(002)面の平均面間隔d002が小さすぎる場合には、炭素質材料にリチウムイオンがドープ及び脱ドープする時の抵抗が大きくなることがある。その結果、この炭素質材料を用いた非水電解質二次電池における入出力特性が低下することがある。また、炭素質材料はリチウムイオンのドープ及び脱ドープ時に膨張収縮を繰り返すため、炭素質材料が損傷を受けることがあり、電池材料としての安定性が低下することがある。炭素質材料の(002)面の平均面間隔d002が大きすぎる場合には、リチウムイオンの拡散抵抗は小さくなるものの、炭素質材料の体積が大きくなるため、炭素質材料の体積あたりの実効容量が小さくなることがある。 The carbonaceous material preferably has an average interplanar spacing d 002 of (002) plane calculated from the wide-angle X-ray diffraction method using the Bragg equation in the range of 0.38 nm to 0.40 nm, and 0.381 nm. More preferably, it is in the range of 0.389 nm or less. When the average spacing d 002 of (002) plane of the carbonaceous material is too small, there is the resistance when the lithium ion to the carbon material to doping and dedoping increases. As a result, the input / output characteristics of the nonaqueous electrolyte secondary battery using the carbonaceous material may be deteriorated. In addition, since the carbonaceous material repeatedly expands and contracts when lithium ions are doped and dedoped, the carbonaceous material may be damaged, and the stability as a battery material may be reduced. When the average interplanar spacing d 002 of the (002) plane of the carbonaceous material is too large, the diffusion resistance of lithium ions is reduced, but the volume of the carbonaceous material is increased, so that the effective capacity per volume of the carbonaceous material is increased. May become smaller.
 炭素質材料に含まれる窒素原子の量は、少ないほどよいが、元素分析により得られた分析値(炭素質材料の重量に対する炭素質材料に含まれる窒素原子の重量の比率)が0.5重量%以下であることが好ましい。このような炭素質材料を非水電解質二次電池に用いると、リチウムイオンと炭素質材料に含まれる窒素原子との反応を抑制できる。このような炭素質材料を用いると、窒素原子を含む炭素質材料と空気中の酸素との反応が生じにくくなる。 The smaller the amount of nitrogen atoms contained in the carbonaceous material, the better, but the analytical value obtained by elemental analysis (ratio of the weight of nitrogen atoms contained in the carbonaceous material to the weight of the carbonaceous material) is 0.5 weight. % Or less is preferable. When such a carbonaceous material is used for a nonaqueous electrolyte secondary battery, the reaction between lithium ions and nitrogen atoms contained in the carbonaceous material can be suppressed. When such a carbonaceous material is used, the reaction between the carbonaceous material containing nitrogen atoms and oxygen in the air is less likely to occur.
 炭素質材料に含まれる酸素原子の量は、少ないほどよいが、元素分析により得られた分析値(炭素質材料の重量に対する炭素質材料に含まれる酸素原子の重量の比率)が0.25重量%以下であることが好ましい。このような炭素質材料を非水電解質二次電池に用いると、リチウムイオンと炭素質材料に含まれる酸素原子との反応が生じにくい。このような炭素質材料には空気中の水分が吸着されにくい。 The smaller the amount of oxygen atoms contained in the carbonaceous material, the better, but the analytical value obtained by elemental analysis (the ratio of the weight of oxygen atoms contained in the carbonaceous material to the weight of the carbonaceous material) is 0.25 weight. % Or less is preferable. When such a carbonaceous material is used for a nonaqueous electrolyte secondary battery, the reaction between lithium ions and oxygen atoms contained in the carbonaceous material is unlikely to occur. Such carbonaceous materials are difficult to adsorb moisture in the air.
 ラマンスペクトルにおいて観察される炭素質材料の1360cm-1付近のピークの半値幅の値は、155~190cm-1の範囲にあることが好ましく、175~190cm-1の範囲にあることがより好ましく、175~180cm-1の範囲にあることがさらに好ましい。このような炭素質材料にはより多くのリチウムイオン及びリチウムクラスターが吸蔵され得るため、この炭素質材料を用いると、良好な電池特性を有する非水電解質二次電池を得ることが可能になる。また、この炭素質材料は良好な導電性を有するため、この炭素質材料を用いた非水電解質二次電池は十分な放電特性(放電容量)を有することができる。なお、リチウムクラスターとは、リチウムイオン間の相互作用によりリチウムイオンが結合したものである。リチウムイオンは、リチウムイオン又はリチウムクラスターの状態で炭素質材料に吸蔵されるが、リチウムクラスターを形成して吸蔵されることによって電池特性のより良好な非水電解質二次電池を得ることができる。炭素質材料の吸湿性を特に抑制する観点から、炭素質材料の半値幅の値は、上記の範囲内で小さい値であることが、好ましい。 The half-width value of the peak around 1360 cm −1 of the carbonaceous material observed in the Raman spectrum is preferably in the range of 155 to 190 cm −1 , more preferably in the range of 175 to 190 cm −1 . More preferably, it is in the range of 175 to 180 cm −1 . Since such a carbonaceous material can occlude more lithium ions and lithium clusters, a nonaqueous electrolyte secondary battery having good battery characteristics can be obtained by using this carbonaceous material. Moreover, since this carbonaceous material has favorable electroconductivity, the nonaqueous electrolyte secondary battery using this carbonaceous material can have sufficient discharge characteristics (discharge capacity). The lithium cluster is a combination of lithium ions due to the interaction between lithium ions. Lithium ions are occluded in the carbonaceous material in the form of lithium ions or lithium clusters, but by forming the lithium clusters and occluded, a nonaqueous electrolyte secondary battery with better battery characteristics can be obtained. From the viewpoint of particularly suppressing the hygroscopicity of the carbonaceous material, the half-value width of the carbonaceous material is preferably a small value within the above range.
 焼成前の炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値と、焼成後に得られる炭素質材料の1360cm-1付近のピークの半値幅の値との差(半値幅の値の差)は、50cm-1以上88cm-1以下の範囲にあることが好ましい。この半値幅の値の差は、50cm-1以上84cm-1以下の範囲にあることがより好ましく、55cm-1以上83cm-1以下の範囲にあることがさらに好ましく、60cm-1以上80cm-1以下の範囲にあることが特に好ましい。半値幅の値の差が50cm-1以上になるように炭素前駆体を焼成すると、熱的に安定な構造が形成されやすくなるために、結晶性の高い炭素質材料が得られると考えられる。このような炭素質材料は、非電解質二次電池の充放電効率の向上に寄与し得る。炭素質材料の吸湿性を特に抑制する観点からは、半値幅の値の差が大きいことが好ましい。吸湿性を低減した炭素質材料においては、炭素質材料に含まれる水分に起因する反応が生じにくく、炭素質材料が劣化しにくい。しかし、半値幅の値の差が大きくなりすぎると、焼成工程において炭素質材料に欠陥が形成されることがある。欠陥を有する炭素質材料を用いると、非水電解質二次電池の充放電の効率が低下することがある。また、半値幅の値の差が大きくなりすぎると、炭素質材料の吸湿性が高くなることがある。吸湿性の高い炭素質材料を非水電解質二次電池に用いると、炭素質材料に含まれる水分に起因する反応、例えば電解液の加水分解反応や水の電気分解反応が生じることがある。これらの反応により生じた酸又はガス、具体的には電解液の加水分解反応により生じた酸や水の電気分解反応により生じたガス、により、炭素質材料が劣化することがある。 The half-width value of the peak near 1360 cm −1 of the Raman spectrum observed by laser Raman spectroscopy of the carbon precursor before firing, and the half-width value of the peak near 1360 cm −1 of the carbonaceous material obtained after firing. (The difference in half-value width) is preferably in the range of 50 cm −1 to 88 cm −1 . Difference between the value of the half width is more preferably in the range of 50 cm -1 or more 84cm -1 or less, more preferably in the range of 55cm -1 or 83cm -1 or less, 60cm -1 or 80 cm -1 The following range is particularly preferable. When the carbon precursor is fired so that the difference in the half-value width is 50 cm −1 or more, a thermally stable structure is easily formed, and it is considered that a carbonaceous material having high crystallinity can be obtained. Such a carbonaceous material can contribute to the improvement of the charge / discharge efficiency of the non-electrolyte secondary battery. From the viewpoint of particularly suppressing the hygroscopicity of the carbonaceous material, it is preferable that the difference in the half-value width is large. In a carbonaceous material with reduced hygroscopicity, a reaction due to moisture contained in the carbonaceous material is unlikely to occur, and the carbonaceous material is unlikely to deteriorate. However, if the difference in half-value width is too large, defects may be formed in the carbonaceous material in the firing step. If a carbonaceous material having defects is used, the charge / discharge efficiency of the nonaqueous electrolyte secondary battery may be reduced. Moreover, if the difference in the half-value width is too large, the hygroscopicity of the carbonaceous material may increase. When a highly hygroscopic carbonaceous material is used in a non-aqueous electrolyte secondary battery, a reaction caused by moisture contained in the carbonaceous material, for example, a hydrolysis reaction of an electrolytic solution or an electrolysis reaction of water may occur. The carbonaceous material may be deteriorated by an acid or gas generated by these reactions, specifically, an acid generated by a hydrolysis reaction of an electrolytic solution or a gas generated by an electrolysis reaction of water.
 上記のように、炭素質材料の(002)面の平均面間隔d002、比表面積、ラマンスペクトルにおいて観察される炭素前駆体の1360cm-1付近のピークの半値幅の値と、炭素質材料の1360cm-1付近のピークの半値幅の値との差は、炭素質材料の劣化の抑制と吸湿性の抑制、さらにこの炭素質材料を非水電解質二次電池の負極として用いた場合に良好な充放電容量を得ることに効果がある。従って、本発明は、その別の側面から、
 非水電解質二次電池用炭素質材料の製造方法であって、
 炭素前駆体と揮発性有機物とを800~1400℃の不活性ガス雰囲気下で焼成し、炭素質材料を得る工程、
を具備し、
 広角X線回折法においてBragg式を用いて算出される、前記炭素質材料の(002)面の平均面間隔d002が0.38~0.40nmの範囲にあり、
 窒素吸着BET3点法により求めた前記炭素質材料の比表面積が1~10m2/gの範囲にあり、
 ラマンスペクトルにおいて観察される前記炭素前駆体の1360cm-1付近のピークの半値幅の値と、前記炭素質材料の1360cm-1付近のピークの半値幅の値との差が50~84cm-1である、
 非水電解質二次電池用炭素質材料の製造方法を提供する。
As described above, the average spacing d 002 of the (002) plane of the carbonaceous material, the specific surface area, the half-width value of the peak near 1360 cm −1 of the carbon precursor observed in the Raman spectrum, and the carbonaceous material The difference from the half-width value of the peak near 1360 cm −1 is good when the carbonaceous material is suppressed from deterioration and hygroscopicity, and when this carbonaceous material is used as the negative electrode of a nonaqueous electrolyte secondary battery. It is effective in obtaining charge / discharge capacity. Therefore, the present invention from another aspect thereof,
A method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery, comprising:
A step of firing a carbon precursor and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C. to obtain a carbonaceous material;
Comprising
The average interplanar spacing d 002 of the (002) plane of the carbonaceous material calculated using the Bragg equation in the wide-angle X-ray diffraction method is in the range of 0.38 to 0.40 nm,
The specific surface area of the carbonaceous material determined by the nitrogen adsorption BET three-point method is in the range of 1 to 10 m 2 / g,
The difference between the half-width value of the peak near 1360 cm −1 of the carbon precursor observed in the Raman spectrum and the half-width value of the peak near 1360 cm −1 of the carbonaceous material is 50 to 84 cm −1 . is there,
A method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery is provided.
 この側面によれば、良好な充放電効率とともに、さらに低い吸湿性とを有し、炭素質材料の劣化の生じにくい、非水電解質二次電池用炭素質材料の製造方法を提供することができる。 According to this aspect, it is possible to provide a method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery that has good charge / discharge efficiency and lower hygroscopicity and is less likely to cause deterioration of the carbonaceous material. .
 本実施形態で得られる炭素質材料の平均粒子径(Dv50)は、好ましくは3~30μmである。平均粒子径が小さすぎると、炭素質材料中に含まれる微粉の比率が多くなり、炭素質材料の比表面積が大きくなり過ぎことがある。比表面積の大きな炭素質材料を用いると、炭素質材料と電解液とが反応する可能性が高くなる。このような炭素質材料を非水電解質二次電池に用いると、非水電解質二次電池の不可逆容量が大きくなることがある。ここで、不可逆容量とは、非電解質二次電池に充電した容量(充電容量)と放電容量との差である。また、平均粒子径が小さすぎる炭素質材料を用いて負極電極を製造した場合、炭素質材料間の有する空隙が小さくなり、負極電極中における電解液中のリチウムの移動が制限されることがある。従って、炭素質材料の平均粒子径の下限値は、より好ましくは4μm以上、特に好ましくは5μm以上である。また、適切な平均粒子径の炭素質材料を用いると、炭素質材料の粒子内でのリチウムの拡散に起因する抵抗が小さくなり、急速な充放電が可能な非水電解質二次電池を得られる。また、適切な平均粒子径の炭素質材料を用いることによって、集電板へ活物質を塗工する厚みを薄くすることができ、電極の面積を大きくすることができ、その結果非水電解質二次電池の入出力特性を向上することができる。従って、炭素質材料の平均粒子径の上限値は、30μm以下が好ましく、より好ましくは19μm以下であり、さらに好ましくは17μm以下であり、さらに好ましくは16μm以下、最も好ましくは15μm以下である。 The average particle diameter (Dv 50 ) of the carbonaceous material obtained in the present embodiment is preferably 3 to 30 μm. If the average particle size is too small, the proportion of fine powder contained in the carbonaceous material increases, and the specific surface area of the carbonaceous material may become too large. When a carbonaceous material having a large specific surface area is used, the possibility that the carbonaceous material and the electrolytic solution react with each other increases. When such a carbonaceous material is used for a non-aqueous electrolyte secondary battery, the irreversible capacity of the non-aqueous electrolyte secondary battery may increase. Here, the irreversible capacity is the difference between the capacity (charge capacity) charged in the non-electrolyte secondary battery and the discharge capacity. In addition, when a negative electrode is produced using a carbonaceous material having an average particle size that is too small, the voids between the carbonaceous materials may be reduced, and movement of lithium in the electrolyte solution in the negative electrode may be restricted. . Accordingly, the lower limit value of the average particle diameter of the carbonaceous material is more preferably 4 μm or more, and particularly preferably 5 μm or more. In addition, when a carbonaceous material having an appropriate average particle size is used, a non-aqueous electrolyte secondary battery capable of rapid charge and discharge can be obtained because resistance due to diffusion of lithium in the particles of the carbonaceous material is reduced. . In addition, by using a carbonaceous material having an appropriate average particle size, the thickness of the active material applied to the current collector plate can be reduced, and the area of the electrode can be increased. The input / output characteristics of the secondary battery can be improved. Therefore, the upper limit of the average particle diameter of the carbonaceous material is preferably 30 μm or less, more preferably 19 μm or less, still more preferably 17 μm or less, still more preferably 16 μm or less, and most preferably 15 μm or less.
 (非水電解質二次電池用負極)
 本実施形態の非水電解質二次電池用負極は、本発明の非水電解質二次電池用炭素質材料を含むものである。
(Negative electrode for non-aqueous electrolyte secondary battery)
The negative electrode for a nonaqueous electrolyte secondary battery according to this embodiment includes the carbonaceous material for a nonaqueous electrolyte secondary battery according to the present invention.
 以下において、本実施形態の非水電解質二次電池用の負極の製造方法を具体的に述べる。本実施形態の負極は、本発明の炭素質材料に結合剤(バインダー)を添加し、適切な溶媒を適量添加、混練し、電極合剤を調製し、この電極合剤を金属板等からなる集電板に塗布及び乾燥した後、乾燥後の集電板を加圧成形することにより製造することができる。 Hereinafter, a method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to this embodiment will be described in detail. In the negative electrode of this embodiment, a binder (binder) is added to the carbonaceous material of the present invention, an appropriate amount of an appropriate solvent is added and kneaded to prepare an electrode mixture, and this electrode mixture is made of a metal plate or the like. After applying and drying the current collector plate, the current collector plate after drying can be produced by pressure molding.
 本発明の炭素質材料を用いると、良好な導電性を有する電極を製造するための電極合剤を調製できる。この電極合剤に、さらに導電助剤を添加することによって、より良好な導電性を有する電極を形成することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブ等を用いることができる。十分な導電性及び良好な分散性を有する電極合剤を得る観点から、0.5~10重量%(ここで、活物質(炭素質材料)の重量+結合剤の重量+導電助剤の重量=100重量%とする)、好ましくは0.5~7重量%、さらに好ましくは0.5~5重量%の導電助剤を配合することができる。 When the carbonaceous material of the present invention is used, an electrode mixture for producing an electrode having good conductivity can be prepared. By adding a conductive additive to the electrode mixture, an electrode having better conductivity can be formed. As the conductive assistant, conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, or the like can be used. From the viewpoint of obtaining an electrode mixture having sufficient conductivity and good dispersibility, 0.5 to 10% by weight (wherein the weight of the active material (carbonaceous material) + the weight of the binder + the weight of the conductive assistant) = 100% by weight), preferably 0.5 to 7% by weight, more preferably 0.5 to 5% by weight.
 電極合剤に含まれる結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物等の電解液と反応しないものを用いることができる。結合剤は、特にPVDFを用いることが好ましい。活物質の表面に付着したPVDFはリチウムイオンの移動を阻害することが少ないため、PVDFを用いると非水電解質二次電池の入出力特性の向上に寄与できるためである。適切な量の結合剤を添加することにより、電極の抵抗値及び電池の内部抵抗を抑制でき、良好な電池特性を有する非水電解質二次電池を得ることができる。また、適切な量の結合剤を添加することにより、負極材である炭素質材料の粒子相互間の結合が良好になり、炭素質材料と集電材との結合が良好になる。このような結合剤は、溶媒等に溶解又は分散させて用いることができる。例えばPVDFは、極性溶媒を用いてスラリー状態を形成して用いることができる。このような極性溶媒としては、N-メチルピロリドン(NMP)等を用いることができる。このようなPVDF系の結合剤を用いる場合には、電極合剤の合計重量に対し結合剤を3~13重量%添加することが好ましく、3~10重量%添加することがより好ましい。また、SBR等の水性エマルジョンやCMCは、水に溶解して用いることができる。このような水に溶解して用いることのできる結合剤は、複数の種類を混合して使用することが好ましい。この場合、電極合剤の合計重量に対する結合剤の合計重量の比率は、0.5~5重量%の範囲が好ましく、1~4重量%の範囲がより好ましい。 As the binder contained in the electrode mixture, PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene / butadiene / rubber) and CMC (carboxymethylcellulose) and the like that does not react with an electrolyte solution. Can be used. As the binder, it is particularly preferable to use PVDF. This is because PVDF adhering to the surface of the active material hardly inhibits migration of lithium ions, and thus PVDF can contribute to improvement of input / output characteristics of the nonaqueous electrolyte secondary battery. By adding an appropriate amount of the binder, the resistance value of the electrode and the internal resistance of the battery can be suppressed, and a nonaqueous electrolyte secondary battery having good battery characteristics can be obtained. Further, by adding an appropriate amount of the binder, the bonding between the particles of the carbonaceous material as the negative electrode material becomes good, and the bonding between the carbonaceous material and the current collector becomes good. Such a binder can be used by dissolving or dispersing in a solvent or the like. For example, PVDF can be used by forming a slurry state using a polar solvent. As such a polar solvent, N-methylpyrrolidone (NMP) or the like can be used. When such a PVDF-based binder is used, the binder is preferably added in an amount of 3 to 13% by weight, more preferably 3 to 10% by weight based on the total weight of the electrode mixture. In addition, an aqueous emulsion such as SBR or CMC can be used by dissolving in water. It is preferable to use a mixture of a plurality of types of binders that can be used by dissolving in water. In this case, the ratio of the total weight of the binder to the total weight of the electrode mixture is preferably in the range of 0.5 to 5% by weight, and more preferably in the range of 1 to 4% by weight.
 電極活物質層は、一般に集電板の両面に形成されるが、集電板の片面のみに形成されてもよい。適切な厚みの電極活物質層を形成することによって、十分な容量を有し、良好な入出力特性を有する非水電解質二次電池を得ることができる。活物質層(片面当たり)の厚みは、好ましくは10~80μmであり、さらに好ましくは20~75μm、特に好ましくは20~60μmである。 The electrode active material layer is generally formed on both surfaces of the current collector plate, but may be formed only on one surface of the current collector plate. By forming an electrode active material layer having an appropriate thickness, a nonaqueous electrolyte secondary battery having sufficient capacity and good input / output characteristics can be obtained. The thickness of the active material layer (per one side) is preferably 10 to 80 μm, more preferably 20 to 75 μm, and particularly preferably 20 to 60 μm.
 (非水電解質二次電池)
 本実施形態の非水電解質二次電池は、本発明の非水電解質二次電池用負極を含むものである。本発明の炭素質材料を使用した非水電解質二次電池用負極電極を用いた非水電解質二次電池は、優れた出力特性及び優れたサイクル特性を示す。
(Non-aqueous electrolyte secondary battery)
The nonaqueous electrolyte secondary battery of this embodiment includes the negative electrode for a nonaqueous electrolyte secondary battery of the present invention. The nonaqueous electrolyte secondary battery using the negative electrode for a nonaqueous electrolyte secondary battery using the carbonaceous material of the present invention exhibits excellent output characteristics and excellent cycle characteristics.
 本発明の炭素質材料(負極材)を用いて、非水電解質二次電池用の負極電極を形成した場合、正極材料、セパレータ、及び電解液等の電池を構成する他の材料は特に限定されることなく、非水溶媒二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。 When the carbonaceous material (negative electrode material) of the present invention is used to form a negative electrode for a non-aqueous electrolyte secondary battery, other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are particularly limited. It is possible to use various materials conventionally used or proposed as a nonaqueous solvent secondary battery.
 例えば、正極材料としては、層状酸化物系(LiMO2と表されるもので、Mは金属:例えばLiCoO2、LiNiO2、LiMnO2、又はLiNixCoyMoz2(ここでx、y、zは組成比を表わす))、オリビン系(LiMPO4で表され、Mは金属:例えばLiFePO4等)、スピネル系(LiM24で表され、Mは金属:例えばLiMn24等)の複合金属カルコゲン化合物を好ましく用いることができる。これらのカルコゲン化合物は、必要に応じて複数の種類を混合して用いてもよい。これらの正極材料と、適切なバインダー及び電極に導電性を付与するための炭素材料とを用いて、導電性の集電材上に層を形成することにより正極が形成される。 For example, as the cathode material, one represented layered oxide (LiMO 2, M is a metal: for example LiCoO 2, LiNiO 2, LiMnO 2 , or LiNi x Co y Mo z O 2 ( where x, y , Z represents a composition ratio)), olivine system (represented by LiMPO 4 , M is a metal: for example, LiFePO 4, etc.), spinel system (represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc. ) Can be preferably used. These chalcogen compounds may be used in combination of a plurality of types as required. A positive electrode is formed by forming a layer on a conductive current collector using these positive electrode materials and a carbon material for imparting conductivity to an appropriate binder and electrode.
 非水電解質二次電池に用いる非水溶媒型電解液は、非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソラン等の有機溶媒を用いることができる。これらの有機溶媒は、単独で又は二種以上を組み合わせて用いることができる。電解質としては、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiCl、LiBr、LiB(C654、又はLiN(SO3CF32等を用いることができる。 A non-aqueous solvent electrolyte used for a non-aqueous electrolyte secondary battery is formed by dissolving an electrolyte in a non-aqueous solvent. Nonaqueous solvents include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. Can be used. These organic solvents can be used alone or in combination of two or more. As the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , LiN (SO 3 CF 3 ) 2, or the like can be used.
 非水電解質二次電池は、上記のようにして形成した正極及び負極と、これらの両極の間に設置した多孔質材料(例えば不織布)等からなる透液性セパレータとを、電解液中に浸漬させることにより形成される。このようなセパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料を用いることができる。セパレータの代わりに又はセパレータと併用して、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 A nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode formed as described above, and a liquid-permeable separator made of a porous material (for example, non-woven fabric) disposed between the two electrodes, and is immersed in the electrolytic solution. Is formed. As such a separator, a non-woven fabric or other porous material usually used for a secondary battery can be used. Instead of the separator or in combination with the separator, a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can also be used.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。なお、以下に非水電解質二次電池用炭素質材料の物性値の測定法を記載するが、実施例を含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づくものである。 Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention. In addition, although the measuring method of the physical-property value of the carbonaceous material for nonaqueous electrolyte secondary batteries is described below, the physical-property value described in this specification including an Example is the value calculated | required by the following method. Is based.
 (窒素吸着法による比表面積測定)
 以下にBETの式から誘導された近似式を記す。
(Specific surface area measurement by nitrogen adsorption method)
An approximate expression derived from the BET expression is described below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の近似式を用いて、液体窒素温度において、窒素吸着による3点法によりvmを求め、次式により試料の比表面積を計算した。 Using the above approximate equation, vm was determined by a three-point method by nitrogen adsorption at liquid nitrogen temperature, and the specific surface area of the sample was calculated by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このとき、vmは試料表面に単分子層を形成するために必要な吸着量(cm3/g)、vは実測される吸着量(cm3/g)、pは飽和蒸気圧、pは絶対圧、cは定数(吸着熱を反映)、Nはアボガドロ数6.022×1023、a(nm2)は吸着質分子が試料表面で占める面積(分子占有断面積)である。 In this case, v m adsorption amount necessary to form a monomolecular layer on the surface of the sample (cm 3 / g), v adsorption amount is measured (cm 3 / g), p 0 is saturation vapor pressure, p Is an absolute pressure, c is a constant (reflecting heat of adsorption), N is Avogadro's number 6.022 × 10 23 , and a (nm 2 ) is an area occupied by the adsorbate molecule on the sample surface (molecular occupation cross section).
 具体的には、日本BELL社製「BELL Sorb Mini」を用いて、以下のようにして液体窒素温度における炭素前駆体又は炭素質材料への窒素の吸着量を測定した。粒子径約5~50μmに粉砕した炭素前駆体又は炭素質材料を試料管に充填し、試料管を-196℃に冷却した状態で、一旦減圧し、その後所望の相対圧にて炭素前駆体又は炭素質材料に窒素(純度99.999%)を吸着させた。所望の相対圧にて平衡圧に達した時の試料に吸着した窒素量を吸着ガス量vとした。 Specifically, the amount of nitrogen adsorbed on the carbon precursor or carbonaceous material at the liquid nitrogen temperature was measured using “BELL Sorb Mini” manufactured by BELL Japan, as follows. A carbon precursor or a carbonaceous material pulverized to a particle size of about 5 to 50 μm is filled in a sample tube, and the sample tube is cooled to −196 ° C., and the pressure is once reduced. Nitrogen (purity 99.999%) was adsorbed on the carbonaceous material. The amount of nitrogen adsorbed on the sample when the equilibrium pressure was reached at the desired relative pressure was defined as the amount of adsorbed gas v.
 (X線回折法による平均層面間隔d002測定)
 「株式会社リガク製MiniFlexII」を用い、炭素質材料粉末を試料ホルダーに充填し、Niフィルターにより単色化したCuKα線を線源とし、X線回折図形を得た。回折図形のピーク位置は重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、以下に記すBraggの公式によりd002を算出した。
(Measurement of average layer surface distance d 002 by X-ray diffraction method)
Using “MiniFlexII, manufactured by Rigaku Corporation”, an X-ray diffraction pattern was obtained using CuKα rays filled with a carbonaceous material powder in a sample holder and monochromated by a Ni filter as a radiation source. The peak position of the diffraction pattern is obtained by the barycentric method (a method of obtaining the barycentric position of the diffraction line and obtaining the peak position by the corresponding 2θ value), and using the diffraction peak on the (111) plane of the high-purity silicon powder for standard materials. Corrected. The wavelength of the CuKα ray was 0.15418 nm, and d 002 was calculated according to the Bragg formula described below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (ラマンスペクトル)
 株式会社堀場製作所製、LabRAM ARAMISを用い、レーザー波長532nmの光源を用いて、ラマンスペクトルを測定した。試験は、各サンプルにおいて無作為に3箇所の粒子をサンプリングし、さらにサンプリングした各粒子内において2箇所について測定した。測定条件は、波長範囲50~2000cm-1、積算回数1000回であり、計6箇所の平均値を計測値として算出した。
 半値幅は、上記測定条件にて得られたスペクトルに対し、Dバンド(1360cm-1付近)とGバンド(1590cm-1付近)とのピーク分離を、ガウス関数でフィッティングして実施した後、測定した。
(Raman spectrum)
Using a LabRAM ARAMIS manufactured by HORIBA, Ltd., a Raman spectrum was measured using a light source having a laser wavelength of 532 nm. In the test, three particles were randomly sampled in each sample, and two points were measured in each sampled particle. The measurement conditions were a wavelength range of 50 to 2000 cm −1 , an integration count of 1000 times, and an average value at a total of 6 locations was calculated as a measurement value.
The full width at half maximum is measured after fitting the spectrum obtained under the above measurement conditions with a Gaussian function for peak separation between the D band (near 1360 cm −1 ) and the G band (near 1590 cm −1 ). did.
 (元素分析)
 株式会社堀場製作所製、酸素・窒素・水素分析装置EMGA-930を用いて元素分析を行った。当該装置の検出方法は、酸素:不活性ガス融解-非分散型赤外線吸収法(NDIR)、窒素:不活性ガス融解-熱伝導度法(TCD)、水素:不活性ガス融解-非分散型赤外線吸収法(NDIR)を用いた。校正は、(酸素・窒素)Niカプセル、TiH2(H標準試料)、SS-3(N、O標準試料)で行い、前処理として250℃、約10分で水分量を測定した試料20mgをNiカプセルに取り、元素分析装置内で30秒脱ガスした後に測定した。3検体で分析し、得られた3検体の平均値を分析値とした。
(Elemental analysis)
Elemental analysis was performed using an oxygen / nitrogen / hydrogen analyzer EMGA-930 manufactured by HORIBA, Ltd. The detection method of the apparatus is oxygen: inert gas melting-non-dispersive infrared absorption method (NDIR), nitrogen: inert gas melting-thermal conductivity method (TCD), hydrogen: inert gas melting-non-dispersive infrared ray. Absorption method (NDIR) was used. Calibration is performed with (oxygen / nitrogen) Ni capsules, TiH2 (H standard sample), SS-3 (N, O standard sample), and 20 mg of the sample whose moisture content was measured at 250 ° C. for about 10 minutes as a pretreatment The measurement was performed after taking the capsule and degassing it in the elemental analyzer for 30 seconds. Three samples were analyzed, and the average value of the three samples obtained was used as the analysis value.
 (残炭率の測定)
 残炭率は、試料を不活性ガス中で強熱した後の強熱残分の炭素量を定量することにより測定した。強熱とは、揮発性有機物およそ1g(この正確な重量をW1(g)とする)を坩堝にいれ、1分間に20リットルの窒素を流しながら坩堝を電気炉にて、10℃/分の昇温速度で常温から800℃まで昇温、その後800℃で1時間熱した。このときの残存物を強熱残分とし、その重量をW2(g)とした。
 次いで上記強熱残分について、JIS(日本工業規格)M8819:1997に定められた方法に準拠して元素分析を行い、強熱残分中の炭素の重量割合P1(%)を測定した。これらの得られた値を用いて、残炭率P2(%)は以下の式により算出した。
(Measurement of residual coal rate)
The residual carbon ratio was measured by quantifying the carbon content of the ignition residue after the sample was ignited in an inert gas. Ignition is about 1 g of volatile organics (this exact weight is W 1 (g)) in a crucible, and 20 liters of nitrogen is allowed to flow for 1 minute in an electric furnace at 10 ° C./min. The temperature was increased from room temperature to 800 ° C. at a temperature increase rate of 1, and then heated at 800 ° C. for 1 hour. The residue at this time was regarded as an ignition residue, and its weight was defined as W 2 (g).
Subsequently, the ignition residue was subjected to elemental analysis in accordance with the method defined in JIS (Japanese Industrial Standard) M8819: 1997, and the weight ratio P 1 (%) of carbon in the ignition residue was measured. Using these obtained values, the remaining coal rate P 2 (%) was calculated by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 (調製例1)
 椰子殻を破砕し、500℃で乾留して、粒子径2.360~0.850mmの椰子殻チャー(粒子径2.360~0.850mmの粒子を98重量%含有)を得た。この椰子殻チャー100gに対して、塩化水素ガスを1体積%含む窒素ガスを10L/分の流量で供給しながら870℃で50分間気相脱灰処理を実施した。その後、塩化水素ガスの供給のみを停止し、窒素ガスを10L/分の流量で供給しながら、さらに900℃で30分間気相脱酸処理を実施し、炭素前駆体を得た。
 得られた炭素前駆体を、ボールミルを用いて平均粒子径10μmに粗粉砕した後、コンパクトジェットミル(株式会社セイシン企業製、コジェットシステムα―mkIII)を用いて粉砕及び分級し、平均粒子径9.6μmの炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は245cm-1であった。
(Preparation Example 1)
The coconut shell was crushed and dry-distilled at 500 ° C. to obtain coconut shell char having a particle size of 2.360 to 0.850 mm (containing 98% by weight of particles having a particle size of 2.360 to 0.850 mm). A vapor phase deashing process was performed for 50 minutes at 870 ° C. while supplying nitrogen gas containing 1% by volume of hydrogen chloride gas at a flow rate of 10 L / min to 100 g of this coconut shell char. Thereafter, only the supply of hydrogen chloride gas was stopped, and while supplying nitrogen gas at a flow rate of 10 L / min, vapor phase deoxidation treatment was further performed at 900 ° C. for 30 minutes to obtain a carbon precursor.
The obtained carbon precursor was roughly pulverized to an average particle size of 10 μm using a ball mill, and then pulverized and classified using a compact jet mill (manufactured by Seishin Enterprise Co., Ltd., Kodget System α-mkIII) to obtain an average particle size. A carbon precursor of 9.6 μm was obtained. The full width at half maximum of the peak near 1360 cm −1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 245 cm −1 .
 (調製例2)
 気相脱灰処理温度及び気相脱酸処理温度を900℃に変更した以外は、調製例1と同様にして、炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は237cm-1であった。得られた炭素前駆体の比表面積は、210m2/gであった。
(Preparation Example 2)
A carbon precursor was obtained in the same manner as in Preparation Example 1 except that the vapor phase deashing treatment temperature and the vapor phase deoxidation treatment temperature were changed to 900 ° C. The half-width value of the peak near 1360 cm −1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 237 cm −1 . The specific surface area of the obtained carbon precursor was 210 m 2 / g.
 (調製例3)
 気相脱灰処理温度及び気相脱酸処理温度を870℃に変更した以外は、調製例2と同様にして、炭素前駆体を得た。得られた炭素前駆体の比表面積は、350m2/gであった。
(Preparation Example 3)
A carbon precursor was obtained in the same manner as in Preparation Example 2, except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 870 ° C. The specific surface area of the obtained carbon precursor was 350 m 2 / g.
 (調製例4)
 気相脱灰処理温度及び気相脱酸処理温度を980℃に変更した以外は、調製例1と同様にして、炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は220cm-1であった。
(Preparation Example 4)
A carbon precursor was obtained in the same manner as in Preparation Example 1 except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 980 ° C. The full width at half maximum of the peak around 1360 cm −1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 220 cm −1 .
 (調製例5)
 気相脱灰処理温度及び気相脱酸処理温度を800℃に変更した以外は、調製例1と同様にして、炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は267cm-1であった。得られた炭素前駆体の比表面積は、520m2/gであった。
(Preparation Example 5)
A carbon precursor was obtained in the same manner as in Preparation Example 1, except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 800 ° C. The half width of the peak near 1360 cm −1 of the Raman spectrum observed by laser Raman spectroscopy of the obtained carbon precursor was 267 cm −1 . The specific surface area of the obtained carbon precursor was 520 m 2 / g.
 (調製例6)
 気相脱灰処理温度及び気相脱酸処理温度を950℃に変更した以外は、調製例2と同様にして、炭素前駆体を得た。得られた炭素前駆体の比表面積は、70m2/gであった。
(Preparation Example 6)
A carbon precursor was obtained in the same manner as in Preparation Example 2, except that the vapor phase deashing temperature and the vapor phase deoxidation temperature were changed to 950 ° C. The specific surface area of the obtained carbon precursor was 70 m 2 / g.
 (実施例1)
 調製例2で調製した炭素前駆体9.1gと、ポリスチレン0.9g(積水化成品工業株式会社製、平均粒径400μm、残炭率1.2重量%)を混合した。この混合物10gを、黒鉛製鞘(縦100mm、横100mm、高さ50mm)に入れ、株式会社モトヤマ製高速昇温炉中、毎分5Lの窒素流量下、毎分60℃の昇温速度で1290℃まで昇温した後、1290℃(焼成温度)において11分間保持し、自然冷却した。炉内温度が200℃以下に低下したことを確認し、炉内から炭素質材料を取り出した。回収された炭素質材料は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
Example 1
9.1 g of the carbon precursor prepared in Preparation Example 2 and 0.9 g of polystyrene (manufactured by Sekisui Plastics Co., Ltd., average particle size of 400 μm, residual carbon ratio of 1.2% by weight) were mixed. 10 g of this mixture was placed in a graphite sheath (length 100 mm, width 100 mm, height 50 mm) and 1290 at a heating rate of 60 ° C. per minute under a nitrogen flow rate of 5 L per minute in a fast heating furnace manufactured by Motoyama Co., Ltd. After raising the temperature to 0 ° C., the mixture was kept at 1290 ° C. (calcination temperature) for 11 minutes and naturally cooled. After confirming that the furnace temperature had dropped to 200 ° C. or less, the carbonaceous material was taken out of the furnace. The recovered carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例2)
 調製例1で調製した炭素前駆体を用いた以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 2)
A carbonaceous material was obtained in the same manner as in Example 1 except that the carbon precursor prepared in Preparation Example 1 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例3)
 焼成温度を1270℃に変更した以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
Example 3
A carbonaceous material was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1270 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例4)
 焼成温度を1270℃に変更した以外は、実施例2と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
Example 4
A carbonaceous material was obtained in the same manner as in Example 2 except that the firing temperature was changed to 1270 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例5)
 焼成温度を1300℃に変更した以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 5)
A carbonaceous material was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1300 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例6)
 焼成温度を1300℃に変更した以外は、実施例2と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 6)
A carbonaceous material was obtained in the same manner as in Example 2 except that the firing temperature was changed to 1300 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例7)
 焼成温度を1350℃に変更した以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 7)
A carbonaceous material was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1350 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例8)
 焼成温度を1350℃に変更した以外は、実施例2と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 8)
A carbonaceous material was obtained in the same manner as in Example 2 except that the firing temperature was changed to 1350 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例9)
 調製例3で調製した炭素前駆体を用いた以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
Example 9
A carbonaceous material was obtained in the same manner as in Example 1 except that the carbon precursor prepared in Preparation Example 3 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例10)
 焼成温度を1270℃に変更した以外は、実施例9と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 10)
A carbonaceous material was obtained in the same manner as in Example 9 except that the firing temperature was changed to 1270 ° C. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例11)
 1290℃における保持時間を23分に変更した以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Example 11)
A carbonaceous material was obtained in the same manner as in Example 1 except that the holding time at 1290 ° C. was changed to 23 minutes. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (実施例12)
 1290℃における保持時間を23分に変更した以外は、実施例9と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
Example 12
A carbonaceous material was obtained in the same manner as in Example 9 except that the holding time at 1290 ° C. was changed to 23 minutes. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (比較例1)
 調製例4で調製した炭素前駆体9.1gと、ポリスチレン0.9g(積水化成品工業株式会社製、平均粒径400μm、残炭率1.2重量%)とを混合した。この混合物10gを、黒鉛製鞘(縦100mm、横100mm、高さ50mm)に入れ、株式会社モトヤマ製高速昇温炉中、毎分5Lの窒素流量下、毎分60℃の昇温速度で1290℃まで昇温、その後1290℃(焼成温度)において11分間保持した後、自然冷却した。炉内温度が200℃以下に低下したことを確認し、炉内から炭素質材料を取り出した。回収された炭素質材料は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Comparative Example 1)
9.1 g of the carbon precursor prepared in Preparation Example 4 and 0.9 g of polystyrene (manufactured by Sekisui Plastics Co., Ltd., average particle size of 400 μm, residual carbon ratio of 1.2% by weight) were mixed. 10 g of this mixture was placed in a graphite sheath (length 100 mm, width 100 mm, height 50 mm) and 1290 at a heating rate of 60 ° C. per minute under a nitrogen flow rate of 5 L per minute in a fast heating furnace manufactured by Motoyama Co., Ltd. The temperature was raised to 0 ° C., then held at 1290 ° C. (calcination temperature) for 11 minutes, and then naturally cooled. After confirming that the furnace temperature had dropped to 200 ° C. or less, the carbonaceous material was taken out of the furnace. The recovered carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (比較例2)
 調製例5で調製した炭素前駆体を使用した以外は、比較例1と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Comparative Example 2)
A carbonaceous material was obtained in the same manner as in Comparative Example 1 except that the carbon precursor prepared in Preparation Example 5 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (比較例3)
 調製例6で調製した炭素前駆体を使用した以外は、比較例1と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(Comparative Example 3)
A carbonaceous material was obtained in the same manner as in Comparative Example 1 except that the carbon precursor prepared in Preparation Example 6 was used. The recovered amount of the carbonaceous material was 8.1 g, and the recovery rate with respect to the carbon precursor was 89%. Table 1 shows the physical properties of the obtained carbonaceous material.
 (電極の作製方法)
 実施例1~12、比較例1~3で得られた炭素質材料をそれぞれ用いて、以下の手順に従って負極電極を作製した。
 負極用炭素質材料92質量部、アセチレンブラック2質量部、PVDF(ポリフッ化ビニリデン)6質量部及びNMP(N-メチルピロリドン)90質量部を混合し、スラリーを得た。厚さ14μmの銅箔に、得られたスラリーを塗布し、乾燥後プレスして、厚さ60μmの電極を得た。得られた電極の密度は、0.9~1.1g/cm3であった。
(Production method of electrode)
Using the carbonaceous materials obtained in Examples 1 to 12 and Comparative Examples 1 to 3, negative electrodes were prepared according to the following procedure.
92 parts by mass of the carbonaceous material for negative electrode, 2 parts by mass of acetylene black, 6 parts by mass of PVDF (polyvinylidene fluoride) and 90 parts by mass of NMP (N-methylpyrrolidone) were mixed to obtain a slurry. The obtained slurry was applied to a copper foil having a thickness of 14 μm, dried and pressed to obtain an electrode having a thickness of 60 μm. The density of the obtained electrode was 0.9 to 1.1 g / cm 3 .
 (電池初期容量及び充放電効率)
 上記で作製した電極を作用極とし、金属リチウムを対極及び参照極として使用した。溶媒は、エチレンカーボネートとメチルエチルカーボネートとを、3:7の体積比で混合して用いた。この溶媒に、電解質として1mol/LのLiPF6を溶解した。セパレータにはガラス繊維不織布を使用した。これらを用いて、アルゴン雰囲気下のグローブボックス内でリチウム二次電池を作製した。
(Battery initial capacity and charge / discharge efficiency)
The electrode produced above was used as a working electrode, and metallic lithium was used as a counter electrode and a reference electrode. As the solvent, ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7. In this solvent, 1 mol / L LiPF 6 was dissolved as an electrolyte. A glass fiber nonwoven fabric was used for the separator. Using these, a lithium secondary battery was produced in a glove box under an argon atmosphere.
 上記構成のリチウム二次電池を用い、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて充放電試験を行った。リチウムのドーピングは、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量(mAh/g)を充電容量とした。次いで、活物質重量に対し70mA/gの速度で、リチウム電位に対して2.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量とした。放電容量/充電容量の百分率を充放電効率(初期の充放電効率)とし、電池内におけるリチウムイオンの利用効率(リチウム効率)の指標とした。また、7日後に再度同様の電池性能を測定し、放電容量、充電容量、充放電効率を測定した。初期の充放電効率の値に対する、7日後の充放電効率の値を、効率維持率(%)とし、炭素質材料の劣化に対する耐久性の指標とした。得られた電池性能を表2に示す。 Using the lithium secondary battery having the above configuration, a charge / discharge test was performed using a charge / discharge test apparatus (“TOSCAT” manufactured by Toyo System Co., Ltd.). Lithium was doped at a rate of 70 mA / g with respect to the mass of the active material, and was doped until 1 mV with respect to the lithium potential. Further, a constant voltage of 1 mV with respect to the lithium potential was applied for 8 hours to complete the doping. The capacity (mAh / g) at this time was defined as the charge capacity. Next, dedoping was performed at a rate of 70 mA / g with respect to the weight of the active material until 2.5 V with respect to the lithium potential, and the capacity discharged at this time was defined as the discharge capacity. The percentage of discharge capacity / charge capacity was defined as charge / discharge efficiency (initial charge / discharge efficiency), and used as an index of lithium ion utilization efficiency (lithium efficiency) in the battery. Further, after 7 days, the same battery performance was measured again, and the discharge capacity, charge capacity, and charge / discharge efficiency were measured. The value of the charge / discharge efficiency after 7 days with respect to the initial value of the charge / discharge efficiency was defined as the efficiency maintenance rate (%), which was used as an index of durability against deterioration of the carbonaceous material. The obtained battery performance is shown in Table 2.
 表1における、半値幅の値の差は、焼成前の半値幅の値(炭素前駆体の半値幅の値)と焼成後の半値幅の値(炭素質材料の半値幅の値)との差である。なお、表において、炭素質材料の窒素含量は、元素分析により求めた分析値(炭素質材料の重量に対する炭素質材料が含む窒素原子の重量の比率)を意味する。炭素質材料の酸素含量は、同様に元素分析により求めた分析値を意味する。 In Table 1, the difference between the half width values is the difference between the half width value before firing (half width value of the carbon precursor) and the half width value after firing (the half width value of the carbonaceous material). It is. In the table, the nitrogen content of the carbonaceous material means an analytical value obtained by elemental analysis (ratio of the weight of nitrogen atoms contained in the carbonaceous material to the weight of the carbonaceous material). Similarly, the oxygen content of the carbonaceous material means an analytical value obtained by elemental analysis.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12で得られた炭素質材料を用いると、充電容量及び放電容量は、比較例1~3で得られた炭素質材料と同等の値が得られた。この値は満足できるレベルであった。さらに炭素質材料の酸化劣化に対する耐性の指標でもある効率維持率の値も良好となった。また、実施例1~12で得られた炭素質材料の吸湿量は、比較例1~3で得られた炭素質材料の吸湿量よりも低減できた。さらに、実施例1~12で得られた炭素質材料を用いると、充放電効率が良好であり、7日後の効率維持率も良好となった。 When the carbonaceous materials obtained in Examples 1 to 12 were used, the charge capacity and the discharge capacity were equivalent to those of the carbonaceous materials obtained in Comparative Examples 1 to 3. This value was satisfactory. Furthermore, the value of the efficiency maintenance rate, which is an index of the resistance against oxidative deterioration of the carbonaceous material, was also good. Further, the moisture absorption of the carbonaceous materials obtained in Examples 1 to 12 could be reduced more than the moisture absorption of the carbonaceous materials obtained in Comparative Examples 1 to 3. Furthermore, when the carbonaceous materials obtained in Examples 1 to 12 were used, the charge / discharge efficiency was good, and the efficiency maintenance rate after 7 days was also good.
 本発明の炭素質材料を用いた非水電解質二次電池は、良好な充放電効率とともに、さらに低い吸湿性とを有し、炭素質材料の劣化が生じにくい。従って、長寿命が求められるハイブリッド自動車(HEV)及び電気自動車(EV)等の車載用途に特に用いることができる。 The non-aqueous electrolyte secondary battery using the carbonaceous material of the present invention has good charge / discharge efficiency and lower hygroscopicity, and the carbonaceous material is unlikely to deteriorate. Therefore, it can be used particularly for in-vehicle applications such as hybrid vehicles (HEV) and electric vehicles (EV) that require a long life.

Claims (7)

  1.  比表面積100~500m/gの炭素前駆体と揮発性有機物との混合物を800~1400℃の不活性ガス雰囲気下で焼成し、炭素質材料を得る工程、
    を具備する、
     非水電解質二次電池用炭素質材料の製造方法。
    Calcining a mixture of a carbon precursor having a specific surface area of 100 to 500 m 2 / g and a volatile organic substance in an inert gas atmosphere at 800 to 1400 ° C. to obtain a carbonaceous material;
    Comprising
    A method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery.
  2.  前記炭素前駆体が植物由来である、
     請求項1に記載の非水電解質二次電池用炭素質材料の製造方法。
    The carbon precursor is derived from a plant,
    The manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries of Claim 1.
  3.  前記揮発性有機物は、常温で固体状態であり、残炭率が5重量%未満である、
     請求項1に記載の非水電解質二次電池用炭素質材料の製造方法。
     ここで、残炭率とは、前記揮発性有機物1gを、不活性ガス中で常温から10℃/分の昇温速度で800℃まで昇温した後、800℃で1時間灰化して得た残存物の重量と前記残存物の炭素含有率との積により定まる数値である。
    The volatile organic matter is in a solid state at room temperature, and the residual carbon ratio is less than 5% by weight.
    The manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries of Claim 1.
    Here, the residual carbon ratio is obtained by heating 1 g of the volatile organic matter from an ordinary temperature to 800 ° C. at a temperature rising rate of 10 ° C./min in an inert gas, and then ashing at 800 ° C. for 1 hour. It is a numerical value determined by the product of the weight of the residue and the carbon content of the residue.
  4.  広角X線回折法によりBragg式を用いて算出される、前記炭素質材料の(002)面の平均面間隔d002が0.38~0.40nmの範囲にあり、
     窒素吸着BET3点法により求めた前記炭素質材料の比表面積が1~10m2/gの範囲にある、
     請求項1に記載の非水電解質二次電池用炭素質材料の製造方法。
    The average interplanar spacing d 002 of the (002) plane of the carbonaceous material calculated using the Bragg equation by wide-angle X-ray diffraction is in the range of 0.38 to 0.40 nm,
    The specific surface area of the carbonaceous material determined by the nitrogen adsorption BET three-point method is in the range of 1 to 10 m 2 / g.
    The manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries of Claim 1.
  5.  ラマンスペクトルにおいて観察される前記炭素前駆体の1360cm-1付近のピークの半値幅の値と、前記炭素質材料の1360cm-1付近のピークの半値幅の値との差が50~88cm-1である、
     請求項1に記載の非水電解質二次電池用炭素質材料の製造方法。
    The difference between the half-width value of the peak near 1360 cm −1 of the carbon precursor observed in the Raman spectrum and the half-width value of the peak near 1360 cm −1 of the carbonaceous material is 50 to 88 cm −1 . is there,
    The manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries of Claim 1.
  6.  ラマンスペクトルにおいて観察される前記炭素質材料の1360cm-1付近のピークの半値幅の値が、155~190cm-1の範囲にある、
     請求項1に記載の非水電解質二次電池用炭素質材料の製造方法。
    The half-value width of the peak around 1360 cm −1 of the carbonaceous material observed in the Raman spectrum is in the range of 155 to 190 cm −1 .
    The manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries of Claim 1.
  7.  ラマンスペクトルにおいて観察される前記炭素前駆体の1360cm-1付近のピークの半値幅の値が、230~260cm-1の範囲にある、
     請求項1に記載の非水電解質二次電池用炭素質材料の製造方法。
    The half-width value of the peak near 1360 cm −1 of the carbon precursor observed in the Raman spectrum is in the range of 230 to 260 cm −1 .
    The manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries of Claim 1.
PCT/JP2015/000734 2014-02-28 2015-02-17 Method for manufacturing carbonaceous material for non-aqueous electrolyte secondary cell WO2015129200A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014039742 2014-02-28
JP2014-039742 2014-02-28
JP2014039741A JP5957631B2 (en) 2014-02-28 2014-02-28 Method for producing carbonaceous material for non-aqueous electrolyte secondary battery
JP2014-039741 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129200A1 true WO2015129200A1 (en) 2015-09-03

Family

ID=54008537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000734 WO2015129200A1 (en) 2014-02-28 2015-02-17 Method for manufacturing carbonaceous material for non-aqueous electrolyte secondary cell

Country Status (2)

Country Link
TW (1) TWI644859B (en)
WO (1) WO2015129200A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034155A1 (en) * 2016-08-16 2018-02-22 株式会社クラレ Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
CN108140835A (en) * 2015-10-30 2018-06-08 株式会社可乐丽 Non-aqueous electrolyte secondary battery carbonaceous material, anode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2018107005A (en) * 2016-12-27 2018-07-05 株式会社クラレ Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing carbonaceous material
WO2019009333A1 (en) * 2017-07-06 2019-01-10 株式会社クラレ Carbon material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and carbon material production method
WO2019009332A1 (en) * 2017-07-06 2019-01-10 株式会社クラレ Carbon material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and carbon material production method
WO2020071547A1 (en) * 2018-10-04 2020-04-09 株式会社クラレ Carbonaceous material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for producing carbonaceous material, carbide and method for producing carbide
US10734650B2 (en) 2015-10-30 2020-08-04 Kuraray Co., Ltd. Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbonaceous material for non-aqueous electrolyte secondary battery
WO2022059646A1 (en) * 2020-09-15 2022-03-24 株式会社クラレ Carbonaceous material suitable for negative electrode active material of power storage device, negative electrode for power storage device, and power storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484000B (en) * 2020-04-17 2021-12-17 齐鲁工业大学 Preparation method and application of nano carbon spheres

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021919A (en) * 1996-06-28 1998-01-23 Kureha Chem Ind Co Ltd Carbonaceous material for electrode for non-aqueous solvent type secondary battery and manufacture thereof, as well as non-aqueous solvent type secondary battery
JPH1059703A (en) * 1996-05-13 1998-03-03 Moli Energy 1990 Ltd Method for reducing surface area of carbonaceous powder
JP2004253363A (en) * 2002-12-26 2004-09-09 Hitachi Ltd Non-aqueous electrolyte lithium secondary battery and negative electrode material
JP2011029197A (en) * 2010-09-21 2011-02-10 Hitachi Chem Co Ltd Negative electrode carbon material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2013534024A (en) * 2010-06-18 2013-08-29 深▲せん▼市貝特瑞新能源材料股▲ふん▼有限公司 Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059703A (en) * 1996-05-13 1998-03-03 Moli Energy 1990 Ltd Method for reducing surface area of carbonaceous powder
JPH1021919A (en) * 1996-06-28 1998-01-23 Kureha Chem Ind Co Ltd Carbonaceous material for electrode for non-aqueous solvent type secondary battery and manufacture thereof, as well as non-aqueous solvent type secondary battery
JP2004253363A (en) * 2002-12-26 2004-09-09 Hitachi Ltd Non-aqueous electrolyte lithium secondary battery and negative electrode material
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2013534024A (en) * 2010-06-18 2013-08-29 深▲せん▼市貝特瑞新能源材料股▲ふん▼有限公司 Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof
JP2011029197A (en) * 2010-09-21 2011-02-10 Hitachi Chem Co Ltd Negative electrode carbon material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery, and lithium secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140835A (en) * 2015-10-30 2018-06-08 株式会社可乐丽 Non-aqueous electrolyte secondary battery carbonaceous material, anode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11355755B2 (en) * 2015-10-30 2022-06-07 Kuraray Co., Ltd. Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte
US10734650B2 (en) 2015-10-30 2020-08-04 Kuraray Co., Ltd. Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbonaceous material for non-aqueous electrolyte secondary battery
CN109565049B (en) * 2016-08-16 2022-05-17 株式会社可乐丽 Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
JPWO2018034155A1 (en) * 2016-08-16 2019-01-10 株式会社クラレ Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
WO2018034155A1 (en) * 2016-08-16 2018-02-22 株式会社クラレ Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
CN109565049A (en) * 2016-08-16 2019-04-02 株式会社可乐丽 The manufacturing method of the carbonaceous material of the negative electrode active material of non-aqueous electrolyte secondary battery, anode for nonaqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and carbonaceous material
EP3503271A4 (en) * 2016-08-16 2020-04-08 Kuraray Co., Ltd. Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
US11345601B2 (en) 2016-08-16 2022-05-31 Kuraray Co., Ltd. Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
JP2018107005A (en) * 2016-12-27 2018-07-05 株式会社クラレ Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing carbonaceous material
JP7032857B2 (en) 2016-12-27 2022-03-09 株式会社クラレ Method for manufacturing carbonaceous material for negative electrode active material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and carbonaceous material
WO2019009333A1 (en) * 2017-07-06 2019-01-10 株式会社クラレ Carbon material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and carbon material production method
WO2019009332A1 (en) * 2017-07-06 2019-01-10 株式会社クラレ Carbon material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and carbon material production method
US11492260B2 (en) 2017-07-06 2022-11-08 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material
US11637286B2 (en) 2017-07-06 2023-04-25 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material
WO2020071547A1 (en) * 2018-10-04 2020-04-09 株式会社クラレ Carbonaceous material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for producing carbonaceous material, carbide and method for producing carbide
WO2022059646A1 (en) * 2020-09-15 2022-03-24 株式会社クラレ Carbonaceous material suitable for negative electrode active material of power storage device, negative electrode for power storage device, and power storage device

Also Published As

Publication number Publication date
TW201545976A (en) 2015-12-16
TWI644859B (en) 2018-12-21

Similar Documents

Publication Publication Date Title
KR101552089B1 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same
TWI644859B (en) Manufacturing method of carbonaceous material for non-aqueous electrolyte secondary battery
JP5957631B2 (en) Method for producing carbonaceous material for non-aqueous electrolyte secondary battery
JP6910296B2 (en) Graphitized carbonaceous material for non-aqueous electrolyte secondary batteries used when fully charged, its manufacturing method, negative electrode material for non-aqueous electrolyte secondary batteries, and fully charged non-aqueous electrolyte secondary batteries
TWI543431B (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and its manufacturing method, and the use of the carbonaceous material of the negative and non-aqueous electrolyte secondary battery
JP6612507B2 (en) Non-aqueous electrolyte secondary battery carbonaceous material, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP6456474B2 (en) Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
JP2015179666A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016121711A1 (en) Method for manufacturing graphite powder for negative-electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2017073687A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbonaceous material for non-aqueous electrolyte secondary battery
JP2015130324A (en) Nonaqueous electrolyte secondary battery
WO2018034155A1 (en) Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
JP2016178049A (en) Carbonaceous material for lithium ion secondary battery
JP6245412B2 (en) Non-aqueous electrolyte secondary battery carbonaceous material, non-aqueous electrolyte secondary battery anode and non-aqueous electrolyte secondary battery
JP2016152225A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016152223A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6396040B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode material
JP2019008910A (en) Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016152224A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7017297B2 (en) Manufacturing method of carbonaceous material for non-aqueous electrolyte secondary battery
JP2016152226A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2021172584A (en) Carbonaceous material, method for producing the same, and electrochemical device
JP6590493B2 (en) Method for producing fine carbonaceous material for non-aqueous electrolyte secondary battery
JPWO2020138233A1 (en) Carbonaceous materials for electrochemical devices, negative electrodes for electrochemical devices and electrochemical devices
JP2020087670A (en) Method for manufacturing carbonaceous material for nonaqueous electrolyte secondary battery negative electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755364

Country of ref document: EP

Kind code of ref document: A1