JP2844303B2 - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JP2844303B2 JP2844303B2 JP6021349A JP2134994A JP2844303B2 JP 2844303 B2 JP2844303 B2 JP 2844303B2 JP 6021349 A JP6021349 A JP 6021349A JP 2134994 A JP2134994 A JP 2134994A JP 2844303 B2 JP2844303 B2 JP 2844303B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- lithium secondary
- electrolyte
- lithium
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム二次電池に適
した炭素負極材を用いたリチウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using a carbon anode material suitable for a lithium secondary battery.
【0002】[0002]
【従来の技術】有機溶媒を電解液として、負極に金属リ
チウムを用いたリチウム一次電池は、多くの利点がある
ことから広く普及している。この電池の負極では使用時
(放電時)に、金属リチウムがリチウムイオンに酸化さ
れて溶出し、同時に生成した自由電子が外部回路に供給
される。2. Description of the Related Art Lithium primary batteries using an organic solvent as an electrolyte and lithium metal as a negative electrode are widely used because of their many advantages. In the negative electrode of this battery, during use (during discharge), metallic lithium is oxidized and eluted into lithium ions, and simultaneously generated free electrons are supplied to an external circuit.
【0003】このリチウム一次電池の優れた性能を活か
して充放電可能な二次電池としてそのままの構成で使用
しようとすると、充電時には、上記金属リチウム極で放
電時と逆に、外部回路から供給された自由電子によりリ
チウムイオンが還元されて金属リチウムが析出すること
になる。[0003] If an attempt is made to use this lithium primary battery as it is as a chargeable / dischargeable secondary battery by taking advantage of its excellent performance, it is supplied from an external circuit at the time of charging, contrary to the time of discharging at the above-mentioned metal lithium electrode. Lithium ions are reduced by the free electrons, and metallic lithium is deposited.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記負
極で金属リチウムが析出する際、金属リチウムが粒子状
乃至樹枝状に析出してしまい、負極が元の状態に戻ら
ず、正負極の短絡等、様々な障害を引起こすため、可逆
的に充放電を繰返す二次電池として使用することはでき
なかった。However, when metallic lithium is deposited on the negative electrode, the metallic lithium precipitates in the form of particles or dendrites, so that the negative electrode does not return to its original state, and a short circuit between the positive and negative electrodes, etc. Since it causes various obstacles, it cannot be used as a secondary battery that repeatedly charges and discharges reversibly.
【0005】最近の研究では、金属リチウムに代えて負
極に炭素材料を用いると、該炭素材料がリチウムイオン
を可逆的に取込み(ドープ)、放出(脱ドープ)して、
充放電可能な二次電池として使用できることが提唱さ
れ、実用化されつつある。すなわち、負極の炭素材にリ
チウムイオンをドープすることにより充電し、放電時に
は逆にリチウムイオンを脱ドープすることになる。した
がって、炭素材料のリチウムイオンのドープ量によって
負極での充電容量が、そして、脱ドープ量によって負極
での放電容量が決まる。In a recent study, when a carbon material was used for the negative electrode instead of metallic lithium, the carbon material reversibly took in (doped) and released (undoped) lithium ions,
It has been proposed that it can be used as a chargeable / dischargeable secondary battery, and is being put to practical use. That is, the carbon material of the negative electrode is charged by doping lithium ions, and the lithium ions are undoped during discharging. Therefore, the charge capacity at the negative electrode is determined by the doping amount of lithium ions in the carbon material, and the discharge capacity at the negative electrode is determined by the undoped amount.
【0006】上記リチウム二次電池の負極に用いる炭素
材料としては、当初は、リチウムイオンを層間化合物と
して取込むことができる黒鉛が注目された。この場合、
炭素原子6個にリチウム原子1個の割合が、理論的に
は、負極での最大ドープ量(取込み量)であり、それに
よって最大充電容量も決まる。As a carbon material used for the negative electrode of the lithium secondary battery, graphite, which can take in lithium ions as an interlayer compound, has been noticed at first. in this case,
The ratio of one lithium atom to six carbon atoms is theoretically the maximum doping amount (incorporation amount) in the negative electrode, and the maximum charging capacity is also determined thereby.
【0007】したがって、リチウム二次電池の電池容量
を向上させるためには、負極に用いる炭素材料の充電容
量を向上させるだけでなく、その時の放電容量を充電容
量に近付けて不可逆容量を極小化することが必要であ
る。Accordingly, in order to improve the battery capacity of the lithium secondary battery, not only the charge capacity of the carbon material used for the negative electrode is improved, but also the discharge capacity at that time is made closer to the charge capacity to minimize the irreversible capacity. It is necessary.
【0008】このようなことから、近年、比表面積の大
きい多孔質材料である難黒鉛化性炭素材料を用いると、
前記黒鉛を用いたときの理論量を上回る電池容量が得ら
れることが報告された。この難黒鉛化性炭素材料は、一
般に、炭素を主成分とする有機化合物を乾留し、熱処理
によって炭素原子の配列構造を発達させることにより製
造されている。そして、後工程の熱処理によって、難黒
鉛化性炭素材料の最終的な特性が制御されるので、電池
容量(放電容量及び充電容量)は、その熱処理温度に大
きく依存する。For these reasons, in recent years, when a non-graphitizable carbon material which is a porous material having a large specific surface area is used,
It was reported that a battery capacity exceeding the theoretical amount when using the graphite was obtained. This non-graphitizable carbon material is generally produced by carbonizing an organic compound containing carbon as a main component, and developing an array structure of carbon atoms by heat treatment. Then, the final characteristics of the non-graphitizable carbon material are controlled by the heat treatment in the post-process, so that the battery capacity (discharge capacity and charge capacity) greatly depends on the heat treatment temperature.
【0009】また、リチウム二次電池の負極に、フルフ
リルアルコール樹脂を原料とした難黒鉛化性炭素材料を
用いた場合の熱処理温度と電池容量との関係において、
充電容量は、熱処理温度が比較的低温の800℃で最大
値となるが、放電容量は、熱処理温度が比較的高温の1
100℃で最大値となることが報告されている。したが
って、800℃で熱処理しても、充電量が全部放電に消
費されず、不可逆容量が残ることになる。実用上は、放
電容量最大の熱処理温度1100℃を採用することにな
るので、不十分な充電量の状態で使用することになる。
すなわち、従来の炭素材料を負極として用いたリチウム
二次電池では、充電容量を高めると放電効率(放電量を
充電量で除した値)が減少し、放電量が少なくなるとい
う不都合があった。Further, in the case where a non-graphitizable carbon material using a furfuryl alcohol resin as a raw material is used for a negative electrode of a lithium secondary battery, the relationship between a heat treatment temperature and a battery capacity is
The charge capacity reaches its maximum value at 800 ° C. where the heat treatment temperature is relatively low.
It is reported that the maximum value is obtained at 100 ° C. Therefore, even if the heat treatment is performed at 800 ° C., the entire charge amount is not consumed for discharging, and the irreversible capacity remains. In practice, the heat treatment temperature of 1100 ° C., which has the maximum discharge capacity, is adopted, so that the battery is used in an insufficiently charged state.
That is, in a conventional lithium secondary battery using a carbon material as a negative electrode, increasing the charge capacity decreases discharge efficiency (a value obtained by dividing the discharge amount by the charge amount), and reduces the discharge amount.
【0010】しかしながら、リチウム二次電池におい
て、上記の難黒鉛化性炭素電極にリチウムイオンがどの
ようにドープされ、脱ドープされるのかという電極反応
のメカニズムについてはいまだ定説がなく、したがっ
て、前述したように充電容量と放電容量とが一致しない
不可逆容量の原因についても明確にされていないのが実
状である。However, in a lithium secondary battery, the mechanism of the electrode reaction such as how lithium ions are doped and dedoped in the above non-graphitizable carbon electrode has not been established yet. As described above, the cause of the irreversible capacity in which the charge capacity and the discharge capacity do not match has not been clarified.
【0011】そこで本発明者らは、リチウム二次電池の
負極として用いる難黒鉛化性炭素の挙動を考究し、充電
容量の向上とともに充電量を最大限に放電させて不可逆
容量を極小化させ、電池容量に優れたリチウム二次電池
を得ることを目的として鋭意研究を重ねた。その結果、
負極となる難黒鉛化性炭素への有機溶媒の吸着量を少な
くすると、充電容量を高めても放電効率がそれほど減少
しないことを知見した。すなわち、難黒鉛化性炭素の物
理化学的特性と、それを用いた時の充放電容量との関係
を考究した結果、リチウム二次電池の電解液として用い
る有機溶媒の難黒鉛化性炭素への吸着量が、電池容量、
特に、放電容量に著しい影響を与えることを見出した。
つまり、難黒鉛化性炭素への有機溶媒の吸着量が大きい
と、放電容量が低下するという知見を得た。Therefore, the present inventors have studied the behavior of non-graphitizable carbon used as a negative electrode of a lithium secondary battery, and minimized the irreversible capacity by discharging the charge amount as much as possible while improving the charge capacity. Intensive research was conducted with the aim of obtaining a lithium secondary battery with excellent battery capacity. as a result,
It has been found that when the amount of the organic solvent adsorbed on the non-graphitizable carbon serving as the negative electrode is reduced, the discharge efficiency does not decrease so much even when the charge capacity is increased. That is, as a result of studying the relationship between the physicochemical properties of non-graphitizable carbon and the charge / discharge capacity when using it, the organic solvent used as the electrolyte of the lithium secondary battery was converted to non-graphitizable carbon. The amount of adsorption depends on the battery capacity,
In particular, it has been found that the discharge capacity is significantly affected.
That is, it was found that when the amount of the organic solvent adsorbed on the non-graphitizable carbon was large, the discharge capacity was reduced.
【0012】[0012]
【課題を解決するための手段】本発明のリチウム二次電
池は、上記知見に基づいて成されたもので、正極、負極
及び電解液で構成されるリチウム二次電池において、前
記負極を構成する炭素負極材に、表面の細孔入口径が、
電解液中のリチウムイオンが通過可能で、かつ、電解液
中の有機溶媒が実質的に通過不可能な径である細孔を有
する難黒鉛化性炭素の微粒子を用いたことを特徴とす
る。また、前記難黒鉛化性炭素の微粒子は、その内部に
電解液中の有機溶媒を吸着できる細孔があり、該難黒鉛
化性炭素の表面には熱分解炭素が析出しており、その結
果前記細孔は、電解液中のリチウムイオンがドープ及び
脱ドープ可能であるとともに電解液中の有機溶媒がみか
け上吸着不可能であること、平均粒径を半分以下に粉砕
したときの電解液中の有機溶媒の吸着量が2.5〜2
4.9重量%であること、結合剤とペースト化剤とを添
加してプレス成型されていることを特徴としている。 The lithium secondary battery of the present invention has been made based on the above findings, and has a positive electrode, a negative electrode and a negative electrode.
And a lithium secondary battery composed of the electrolyte solution, before
The pore diameter of the pores on the surface of the carbon anode material constituting the anode is
It has pores that allow lithium ions in the electrolyte to pass through and have a diameter that does not allow the organic solvent in the electrolyte to pass substantially.
Characterized by using fine particles of non-graphitizable carbon . Further, the non- graphitizable carbon fine particles have
There are pores that can adsorb the organic solvent in the electrolyte,
Pyrolytic carbon is deposited on the surface of
As a result, the pores are doped with lithium ions in the electrolyte and
Dedopable and organic solvent in electrolyte
Not be able to be adsorbed, and the average particle size is reduced to less than half
The adsorption amount of the organic solvent in the electrolytic solution at the time of
4.9% by weight, adding a binder and a pasting agent
In addition, it is characterized by being press-molded.
【0013】さらに、前記難黒鉛化性炭素の微粒子の表
面に析出した熱分解炭素は、熱分解性炭化水素の熱分解
法により析出されたものであることを特徴とする。ま
た、前記熱分解性炭化水素は、トルエン、ベンゼン、ブ
タン、2,4−キシレノール、キノリン、クレオソート
のいずれかであることを特徴とする。前記電解液中の有
機溶媒は、プロピレンカーボネートとジメトキシエタン
の1:1混合液であり、前記電解液中の支持電解質は、
過塩素酸リチウムであることを特徴としている。 Further, a table of the finely graphitizable carbon fine particles is provided.
The pyrolytic carbon deposited on the surface is the pyrolysis of pyrolytic hydrocarbons.
It is characterized by being deposited by a method. Ma
Further, the thermally decomposable hydrocarbons include toluene, benzene,
Tan, 2,4-xylenol, quinoline, creosote
Or any one of the following. In the electrolyte
The solvent is propylene carbonate and dimethoxyethane.
Wherein the supporting electrolyte in the electrolyte is:
It is characterized by being lithium perchlorate.
【0014】一般に、上記難黒鉛化性炭素は細孔の多い
多孔質材料であって、極めて大きな比表面積を有する。
このような表面活性が、リチウムイオンを多く取込み、
電極触媒能を高める主要な原因と考えられる。そして、
このことが、同時に、電解液として用いられている有機
溶媒の吸着量も増加させることになる。ところが、前述
したように、有機溶媒の吸着量が多いと放電容量を減少
させるので、これを防止するためには比表面積の大きい
多孔質特性を保ちつつ、有機溶媒の吸着量を極力低下さ
せる必要がある。Generally, the non-graphitizable carbon is a porous material having many pores and has an extremely large specific surface area.
Such surface activity takes up a lot of lithium ions,
It is considered to be the main cause of enhancing the electrocatalytic ability. And
This also increases the amount of adsorption of the organic solvent used as the electrolyte. However, as described above, when the amount of organic solvent adsorbed is large, the discharge capacity is reduced. To prevent this, it is necessary to reduce the amount of adsorbed organic solvent as much as possible while maintaining the porous property with a large specific surface area. There is.
【0015】一方、難黒鉛化性炭素の細孔入口径は、分
子篩炭素の製造工程で行われているように、熱分解性炭
化水素の熱分解法により細孔の入口に炭素を析出させる
ことで調整することが可能である。したがって、熱分解
性炭化水素の熱分解法における処理条件を最適な条件に
選定することにより、リチウムイオンは自由に出入りで
きるが、有機溶媒は細孔内に侵入することができない径
にすることができ、この場合、難黒鉛化性炭素の細孔容
積は実質的に変わらない。On the other hand, the diameter of the pore inlet of the non-graphitizable carbon is determined by depositing carbon at the inlet of the pore by a pyrolysis method of a pyrolytic hydrocarbon as in the production process of molecular sieve carbon. Can be adjusted. Therefore, by selecting the optimum treatment conditions in the pyrolysis method for pyrolytic hydrocarbons, it is possible to make the diameter such that lithium ions can freely enter and exit, but the organic solvent cannot enter the pores. In this case, the pore volume of the non-graphitizable carbon does not substantially change.
【0016】すなわち、細孔の入口部分に、熱分解で生
じた炭素を析出させて細孔の入口径を絞ることにより、
リチウムイオンがドープされる細孔容積を変えずに、有
機溶媒の吸着量を実質的に零、すなわち、電解液中の有
機溶媒がみかけ上吸着不可能にすることができる。That is, by depositing carbon generated by thermal decomposition at the entrance of the pores and narrowing the entrance diameter of the pores,
The adsorption amount of the organic solvent is substantially zero without changing the pore volume in which lithium ions are doped , that is, the amount of
Solvent can be made apparently impossible to adsorb .
【0017】[0017]
【作 用】上記構成によれば、炭素負極材となる難黒鉛
化性炭素微粒子の細孔入口径が、リチウムイオンが通過
可能で、該リチウムイオンに比べて大きな分子サイズを
有する有機溶媒が通過不可能な径となっているので、難
黒鉛化性炭素微粒子の細孔には、リチウムイオンは侵入
できるが有機溶媒は実質的に侵入できず、放電容量低下
の原因となる有機溶媒がみかけ上吸着不可能になる。こ
のように、難黒鉛化性炭素の細孔にリチウムイオンのみ
を侵入可能としたので、放電効率は余り低下せず、充電
量を高めるほど放電量も増加することができる。これに
よって、放電容量を充電容量に近付けることができ、リ
チウム二次電池の電池容量を飛躍的に向上させることが
できる。 [Operation] According to the above configuration, the non-graphitizable carbon fine particles serving as the carbon negative electrode material have a pore entrance diameter in which lithium ions can pass and an organic solvent having a larger molecular size than the lithium ions can pass. Since the diameter is impossible, lithium ions can penetrate into the pores of the non-graphitizable carbon fine particles, but the organic solvent cannot substantially penetrate, and the organic solvent causing a decrease in discharge capacity is apparent. Adsorption becomes impossible . As described above, since only lithium ions can enter the pores of the non-graphitizable carbon, the discharge efficiency does not decrease so much, and the discharge amount can be increased as the charge amount is increased. to this
Therefore, the discharge capacity can be made closer to the charge capacity, and
Dramatically improve the battery capacity of rechargeable lithium batteries
it can.
【0018】[0018]
【実施例】【Example】
以下、本発明の実施例を説明する。Hereinafter, embodiments of the present invention will be described.
正極、負Positive, negative
極及び電解液で構成される本実施例のリチウム二次電池Lithium secondary battery of this embodiment composed of electrodes and electrolyte
は、例えば、図3に示す如く、リチウムイオンを含有すContains lithium ions, for example, as shown in FIG.
る有機溶媒を電解液として含浸したセパレーター11のOf the separator 11 impregnated with an organic solvent as an electrolyte
一方に正極12を、他方に負極13を対向配置するととA positive electrode 12 is disposed on one side and a negative electrode 13 is disposed on the other side.
もに、これらの周囲を、缶体14,キャップ15及び該In addition, the periphery of these cans, the cap 15, and the
缶体14とキャップ15とを絶縁状態で固着するパッキA package for fixing the can 14 and the cap 15 in an insulated state
ング16で覆うようにしてコイン型に形成したものであFormed in a coin shape so as to be covered with the ring 16.
る。You.
【0019】本実施例のリチウム二次電池に使用される
負極は、特定の処理を施した難黒鉛化性炭素からなる負
極材を所望の形状に加工したものである。まず上記負極
材を製造し、細孔入口径の確認試験を行った。これを実
施例1に示す。The negative electrode used in the lithium secondary battery of the present embodiment is obtained by processing a negative electrode material made of non-graphitizable carbon which has been subjected to a specific treatment into a desired shape. First, the negative electrode material was manufactured, and a confirmation test of a pore entrance diameter was performed. This is shown in Example 1.
【0020】実施例1 負極材となる難黒鉛化性炭素の原料としてフェノール樹
脂(群栄化学工業(株)製 PGA−4560)を用
い、これを550℃で乾留した後、窒素気流中800℃
で1時間熱処理して難黒鉛化性炭素を得た。次いで、こ
の難黒鉛化性炭素をアルミナボールを用いた振動ボール
ミルにて10分間粉砕した。得られた難黒鉛化性炭素粒
子の平均粒径をレーザー散乱光回折式粒度分布測定器で
測定した結果、6.2μmであった。Example 1 A phenol resin (PGA-4560 manufactured by Gunei Chemical Industry Co., Ltd.) was used as a raw material of non-graphitizable carbon as a negative electrode material, which was carbonized at 550 ° C., and then 800 ° C. in a nitrogen stream.
For 1 hour to obtain non-graphitizable carbon. Next, the non-graphitizable carbon was pulverized for 10 minutes by a vibration ball mill using alumina balls. As a result of measuring the average particle size of the obtained non-graphitizable carbon particles with a laser scattering light diffraction type particle size distribution analyzer, it was 6.2 μm.
【0021】次に、細孔入口径を調整するための処理と
して、上記難黒鉛化性炭素微粒子を700℃に加熱する
とともに、25℃でトルエンを飽和した窒素ガスを毎分
3リットルの割合で1時間流し、その表面に、トルエン
の熱分解により生じた炭素を析出させた。Next, as a treatment for adjusting the pore entrance diameter, the non-graphitizable carbon fine particles were heated to 700 ° C., and nitrogen gas saturated with toluene at 25 ° C. was supplied at a rate of 3 liters per minute. After flowing for 1 hour, carbon generated by thermal decomposition of toluene was deposited on the surface.
【0022】さらに、上記処理後の難黒鉛化性炭素粒子
を再粉砕し、再粉砕の前後における各細孔容積と、電池
の溶媒であるプロピレンカーボネート(PC)及びジメ
トキシエタン(DME)の吸着量とをそれぞれ測定し、
上記細孔入口径の調整処理を行うことにより細孔入口径
が絞られたことを確認した。その結果を表1に示す。な
お、再粉砕時間は、2時間及び20時間とした。Further, the non-graphitizable carbon particles after the above treatment are crushed again, and the pore volumes before and after the crushing and the adsorption amounts of propylene carbonate (PC) and dimethoxyethane (DME), which are the solvent of the battery, are measured. And each is measured,
It was confirmed that the pore inlet diameter was reduced by performing the pore inlet diameter adjusting process. Table 1 shows the results. The re-grinding time was 2 hours and 20 hours.
【0023】[0023]
【表1】 [Table 1]
【0024】表1に示すように、粒径6.2μmの微粒
子表面の細孔入口径調整処理後の難黒鉛化性炭素粒子を
再粉砕すると、再粉砕時間2時間で平均微粒子径が半分
の3.1μmとなり、20時間で更に1.6μmとなっ
た。いずれも、再粉砕によって細孔容積はほとんど変わ
らないが、PC及びDMEの吸着量が増大したことが判
る。つまり、再粉砕前には細孔入口の径が有機溶媒であ
るPC及びDMEが実質的に通過不可能な径に絞られて
おり、PC及びDMEは細孔内に侵入できなかったが、
再粉砕によって平均粒径を半分以下に粉砕したときに新
たに入口が生じて、PC及びDMEが細孔内に侵入でき
るようになったものと理解される。そして、このときの
PC及びDMEの吸着量は2.5〜24.9重量%であ
った。 As shown in Table 1, when the non-graphitizable carbon particles having been subjected to the pore inlet diameter adjustment treatment on the surface of the fine particles having a particle diameter of 6.2 μm were crushed again, the average fine particle diameter was halved in 2 hours of the crushing time. It became 3.1 μm and further became 1.6 μm in 20 hours. In each case, the pore volume hardly changed by re-milling, but it can be seen that the adsorption amounts of PC and DME increased. In other words, before re-grinding, the pore inlet diameter is
That is PC and DME is focused on can not pass through diameter that the actual quality, although PC and DME could not penetrate into the pores,
It is understood that a new inlet was created when the average particle size was reduced to less than half by re-grinding, so that PC and DME could enter the pores. And at this time
The adsorption amount of PC and DME is 2.5 to 24.9% by weight.
Was.
【0025】次に、上記負極材を用いたテストセル(評
価セル)を製作し、充放電容量試験により本発明の負極
材の性能を評価した。Next, a test cell (evaluation cell) using the above-described negative electrode material was manufactured, and the performance of the negative electrode material of the present invention was evaluated by a charge / discharge capacity test.
【0026】図1はテストセルの構造で、1は本発明の
炭素負極材を用いた電極、2は対極として用いるリチウ
ム電極、3は両極間のセパレータ、4は電解液、5はリ
チウム電極でなる参照電極である。FIG. 1 shows the structure of a test cell, 1 is an electrode using the carbon anode material of the present invention, 2 is a lithium electrode used as a counter electrode, 3 is a separator between both electrodes, 4 is an electrolyte, and 5 is a lithium electrode. Reference electrode.
【0027】負極材1は、細孔入口径の調整処理を終え
た難黒鉛化性炭素粒子に対して結合剤として10重量%
のポリフッ化ビニリデンを加え、ペースト化剤としてジ
メチルホルムアミドを加えてペースト状にした後、直径
10mm、厚さ0.5mmのコイン型にプレス成型して
用いた。The negative electrode material 1 was used as a binder in an amount of 10% by weight with respect to the non-graphitizable carbon particles having been subjected to the pore diameter adjustment process.
Of polyvinylidene fluoride from
After adding methylformamide to form a paste, it was pressed into a coin having a diameter of 10 mm and a thickness of 0.5 mm and used.
【0028】電解液には、プロピレンカーボネートとジ
メトキシエタンの1:1混合溶液からなる有機溶媒に、
支持電解質として過塩素酸リチウム(LiClO4)を
1.0mol/l加えたものを用いた。In the electrolyte, an organic solvent consisting of a 1: 1 mixed solution of propylene carbonate and dimethoxyethane was used.
As the supporting electrolyte, one to which 1.0 mol / l of lithium perchlorate (LiClO 4 ) was added was used.
【0029】製作したテストセルについて充放電試験を
行った際の電流電位変化の概念図を図2に示す。なお、
厳密に言うと、このテストセルにおいては炭素極は正極
となり、炭素極へのリチウムのドーピングは放電という
ことになるが、実電池に合わせて便宜上この過程を充電
と呼ぶこととし、これとは逆に炭素極からリチウムを取
出す過程を放電と呼ぶこととする。FIG. 2 is a conceptual diagram showing a change in current potential when a charge / discharge test is performed on the manufactured test cell. In addition,
Strictly speaking, in this test cell, the carbon electrode is a positive electrode, and lithium doping of the carbon electrode is discharge, but for convenience, this process is called charging for the actual battery, and conversely. The process of extracting lithium from the carbon electrode is referred to as discharge.
【0030】図2に示すように、先ず充電を行った。負
極の炭素電極の通電前の初期電位は、リチウム参照電極
に対して約1.5Vであり、電流密度0.53mA/c
m2の定電流で通電を開始すると、電極電位は徐々に下
降した。電極電位が0mVに達した時に,定電流から定
電位に切換えて電流密度が微小になったときに電源を切
り、電位の回復が2時間休止後に20mV程度以下の時
を充電終了とした。As shown in FIG. 2, charging was first performed. The initial potential of the negative electrode before energization is about 1.5 V with respect to the lithium reference electrode, and the current density is 0.53 mA / c.
When current supply was started at a constant current of m 2 , the electrode potential gradually decreased. When the electrode potential reached 0 mV, the power was turned off when the current density was reduced by switching from the constant current to the constant potential, and the charging was terminated when the potential recovery was about 20 mV or less after a pause of 2 hours.
【0031】そして、2時間の休止の後、放電を行っ
た。放電は、0.53mA/cm2 の定電流で開始し、
電位が1.5Vに達した時点で定電位に切換え、電流密
度が0.05mA/cm2 以下になった時点で放電終了
とした。このときの充放電容量等の測定結果を表2に示
す。なお、充放電容量は炭素1g当たりの容量であり、
以後の実施例についても同様である。After a pause of 2 hours, discharge was performed. The discharge starts with a constant current of 0.53 mA / cm 2 ,
When the potential reached 1.5 V, the potential was switched to the constant potential, and when the current density became 0.05 mA / cm 2 or less, the discharge was terminated. Table 2 shows the measurement results of the charge / discharge capacity and the like at this time. The charge / discharge capacity is a capacity per 1 g of carbon,
The same applies to the following embodiments.
【0032】実施例2 原料としてフラン樹脂(日立化成工業(株)製 VF−
307)を用い、これを600℃で乾留した後、窒素気
流中800℃で1時間熱処理して難黒鉛化性炭素を得
た。次いで、実施例1と同様にして粉砕,細孔入口径調
整処理を行い、電極を作成して充放電試験を行った。こ
のときのPC及びDMEの吸着量、充放電容量等の測定
結果を表2に示す。 Example 2 A furan resin (VF-manufactured by Hitachi Chemical Co., Ltd.) was used as a raw material.
307), which was carbonized at 600 ° C.
Heat treatment at 800 ° C for 1 hour in flow to obtain non-graphitizable carbon
Was. Then, in the same manner as in Example 1, pulverization and pore inlet diameter adjustment
The electrode was prepared, and a charge / discharge test was performed. This
Of PC and DME adsorption amount, charge / discharge capacity, etc.
Table 2 shows the results.
【0033】実施例3 原料としてヤシガラチャーを用い、これを希塩酸で洗浄
して脱アルカリ処理を行い、水洗して乾燥した後、窒素
気流中800℃で1時間熱処理して難黒鉛化性炭素を得
た。次いで、実施例1と同様にして粉砕,細孔入口径調
整処理を行い、電極を作成して充放電試験を行った。こ
のときのPC及びDMEの吸着量,充放電容量等の測定
結果を表2に示す。 EXAMPLE 3 Coconut garnish was used as a raw material, and this was washed with dilute hydrochloric acid.
To remove alkali, wash with water and dry.
Heat treatment at 800 ° C for 1 hour in air stream to obtain non-graphitizable carbon
Was. Then, in the same manner as in Example 1, pulverization and pore inlet diameter adjustment
The electrode was prepared, and a charge / discharge test was performed. This
Of adsorption amount of PC and DME, charge / discharge capacity, etc.
Table 2 shows the results.
【0034】[0034]
【表2】 [Table 2]
【0035】比較例1〜3 実施例1〜3において、細孔入口径調整処理を行わなか
ったこと以外は同様にして電極を作成し、充放電試験を
行った。このときのPC及びDMEの吸着量、充放電容
量等の測定結果を表3に示す。Comparative Examples 1 to 3 Electrodes were prepared in the same manner as in Examples 1 to 3, except that the pore inlet diameter adjusting treatment was not performed, and a charge / discharge test was performed. Table 3 shows the measurement results of the amounts of PC and DME adsorbed and the charge / discharge capacity at this time.
【0036】[0036]
【表3】 [Table 3]
【0037】表2及び表3に示す結果から、細孔入口径
調整処理を行って細孔の入口径を絞り、該細孔入口径
を、リチウムイオンが通過可能で、かつ、電解液中の有
機溶媒が実質的に通過不可能な径、すなわち、リチウム
イオンの通過により充放電が可能で、かつ、放電容量低
下の原因となる有機溶媒が細孔内に侵入して吸着するこ
とを防止できるような径とし、負極となる難黒鉛化性炭
素への有機溶媒の吸着量を実質的に零、すなわち、電解
液中の有機溶媒がみかけ上吸着不可能にすることによ
り、放電容量を向上させて不可逆容量を極小化させるこ
とができる。From the results shown in Tables 2 and 3, a pore inlet diameter adjusting process is performed to narrow the pore inlet diameter, and the pore inlet diameter is adjusted so that lithium ions can pass therethrough and that A diameter through which the organic solvent cannot substantially pass, that is, charging and discharging are possible by passing lithium ions, and it is possible to prevent the organic solvent that causes a decrease in discharge capacity from entering the pores and being adsorbed. With such a diameter, the adsorption amount of the organic solvent to the non-graphitizable carbon that becomes the negative electrode is substantially zero ,
By making the organic solvent in the liquid apparently impossible to adsorb , the discharge capacity can be improved and the irreversible capacity can be minimized.
【0038】実施例4 フェノール樹脂を550℃で乾留した後、窒素気流中9
00℃で1時間熱処理し、次いで、これを粉砕して難黒
鉛化性炭素微粒子を得た。次に、上記炭素微粒子表面の
細孔入口径を調整するための処理として、熱分解性炭化
水素蒸気として、トルエン,ベンゼン,ブタンを用い
て、実施例1と同様に炭素の析出処理を施した。次い
で、実施例1と同様に図1のテストセルにて性能試験を
行った。この結果を表4に示す。Example 4 A phenol resin was carbonized at 550 ° C.
Heat treatment was performed at 00 ° C. for 1 hour, and then pulverized to obtain non-graphitizable carbon fine particles. Next, as a treatment for adjusting the pore entrance diameter on the surface of the carbon fine particles, carbon precipitation treatment was performed in the same manner as in Example 1 using toluene, benzene, and butane as the thermally decomposable hydrocarbon vapor. . Next, a performance test was performed using the test cell of FIG. Table 4 shows the results.
【0039】[0039]
【表4】 [Table 4]
【0040】実施例5 実施例4と同様にして得た難黒鉛化性炭素微粒子の細孔
入口径を調整するため、析出処理を液状の熱分解性炭化
水素として、2,4ーキシレノール,キノリン,クレオ
ソートを用いて行った。すなわち、上記炭化水素を添着
して、900℃で1時間熱処理した。炭素析出処理にお
ける添加量は、それぞれ、10重量%、5重量%、15
重量%であった。Example 5 In order to adjust the pore entrance diameter of the non-graphitizable carbon fine particles obtained in the same manner as in Example 4, the deposition treatment was carried out using a liquid pyrolytic hydrocarbon as 2,4-xylenol, quinoline, Performed using creosote. That is, the above-mentioned hydrocarbon was impregnated and heat-treated at 900 ° C. for 1 hour. The amounts added in the carbon deposition treatment were 10% by weight, 5% by weight, and 15% by weight, respectively.
% By weight.
【0041】次いで、実施例1と同様に図1のテストセ
ルにて性能試験を行った。この結果を表5に示す。Next, a performance test was performed using the test cell of FIG. Table 5 shows the results.
【0042】[0042]
【表5】 [Table 5]
【0043】比較例4 実施例4と同様にして難黒鉛化性炭素微粒子を得た。炭
素微粒子表面の細孔入口径を調整する処理を施さない以
外は実施例1と同様にして電極を作成し、PC及びDM
Eの吸着量、充放電容量等の測定結果を表6に示す。Comparative Example 4 In the same manner as in Example 4, hardly graphitizable carbon fine particles were obtained. An electrode was prepared in the same manner as in Example 1 except that the treatment for adjusting the pore entrance diameter on the surface of the carbon fine particles was not performed, and PC and DM were prepared.
Table 6 shows the measurement results of the adsorption amount of E, charge / discharge capacity, and the like.
【0044】[0044]
【表6】 [Table 6]
【0045】炭素微粒子表面の細孔入口径を調整する処
理を、実施例4においては、トルエン,ベンゼン及びブ
タン等の蒸気状の熱分解性炭化水素を用い、実施例5に
おいては、キシレノール,キノリン及びクレオソート等
の液状の熱分解性炭化水素を用いたが、いずれも、比較
例4と比べてPC及びDME吸着量が殆ど零となってお
り、充電量が大きく、放電量は大幅に大きくなった。The treatment for adjusting the pore entrance diameter on the surface of the carbon fine particles was carried out in Example 4 using a thermally decomposable hydrocarbon in the form of vapor such as toluene, benzene and butane. In Example 5, xylenol and quinoline were used. And the use of liquid pyrolytic hydrocarbons such as creosote, etc., in both cases, the PC and DME adsorption amounts were almost zero compared to Comparative Example 4, the charge amount was large, and the discharge amount was significantly large. became.
【0046】実施例6 次に、試験用のリチウム二次電池を、図3に示す如くコ
イン型に製作してその性能を試験した。このリチウム二
次電池は、セパレーター11に、リチウムイオンを含有
する有機溶媒を電解質として含浸し、該セパレーター1
1の両側に、LiCoO2を主成分とする正極12と、
難黒鉛化性炭素からなる負極13とを対向配置し、これ
らの周囲を、缶体14,キャップ15及び該缶体14と
キャップ15とを絶縁状態で固着するパッキング16で
覆ったものである。Example 6 Next, a lithium secondary battery for testing was assembled as shown in FIG.
An in-mold was fabricated and its performance was tested. This lithium two
The following cell, the separator 11 was impregnated with an organic solvent containing lithium ions as the electrolyte, the separator 1
1 on both sides, a positive electrode 12 containing LiCoO 2 as a main component;
A negative electrode 13 consisting of non-graphitizable carbon was opposed, these surroundings, can body 14, Tsu covered <br/> the cap 15 and the can body 14 and the cap 15 in the packing 16 fixed in an insulated state It is a thing.
【0047】負極13には、実施例1で作成した炭素電
極を用いた。正極12には、コバルト酸リチウム10g
にグラファイト1g,ポリテトラフルオロエチレン1g
を加えて良く混合した後、その2gを採り直径10mm
にプレス成型したものを用いた。セパレータ11は、ポ
リプロピレンの多孔性膜とした。電解液には、PC+D
ME(1:1)に、支持電解質としてLiClO4を
1.0mol/lの濃度に加えたものを用いた。As the negative electrode 13, the carbon electrode prepared in Example 1 was used. The positive electrode 12 has 10 g of lithium cobalt oxide.
1g of graphite, 1g of polytetrafluoroethylene
, And mix well, then take 2 g and take 10 mm in diameter.
What was press-molded was used. The separator 11 was a porous film of polypropylene. PC + D for electrolyte
ME (1: 1) obtained by adding LiClO 4 to a concentration of 1.0 mol / l as a supporting electrolyte was used.
【0048】上記リチウム二次電池により、電流密度
0.53mA/cm2 の定電流で、電圧が3.5Vに達
するまで充電を行った後、同電流密度で放電終止電圧を
1.0Vとして放電を行った。この操作を繰り返して充
放電容量の変化を測定した。この結果を表7に示す。Using the above lithium secondary battery, charging was performed at a constant current of 0.53 mA / cm 2 until the voltage reached 3.5 V, and then discharge was performed at the same current density with a discharge end voltage of 1.0 V. Was done. This operation was repeated to measure the change in charge / discharge capacity. Table 7 shows the results.
【0049】[0049]
【表7】 [Table 7]
【0050】なお、本発明においては、リチウム二次電
池自体の形状、例えば缶体14やキャップ15の形状、
その大きさ、正極12に使用する材料、電解質を構成す
る有機溶媒の種類等は、特に限定されるものではなく、
リチウム二次電池の使用状態、電池容量等の諸条件に応
じて任意に選定することが可能である。In the present invention, the shape of the lithium secondary battery itself, for example, the shape of the can 14 and the cap 15,
The size, the material used for the positive electrode 12, the type of organic solvent constituting the electrolyte, and the like are not particularly limited.
It can be arbitrarily selected according to various conditions such as a use state of the lithium secondary battery and a battery capacity.
【0051】比較例5 比較例1で作成した炭素電極を負極として、実施例6と
同様にしてコイン型のリチウム二次電池を作成し、繰返
し充放電容量の変化を測定した結果を表8に示す。Comparative Example 5 Using the carbon electrode prepared in Comparative Example 1 as a negative electrode, a coin-type lithium secondary battery was prepared in the same manner as in Example 6, and the results of repeatedly measuring the change in charge / discharge capacity are shown in Table 8. Show.
【0052】[0052]
【表8】 [Table 8]
【0053】実施例6は、本発明による炭素微粒子表面
の細孔入口径を調整する処理を施した炭素負極を用いた
電池であり、処理をしていない比較例5に比べて、大き
な充放電容量を有し、しかも、繰り返し充放電特性も優
れている。Example 6 is a battery using a carbon anode treated to adjust the pore entrance diameter on the surface of carbon fine particles according to the present invention, and has a larger charge / discharge as compared with Comparative Example 5 not treated. It has a capacity and excellent repetition charge / discharge characteristics.
【0054】[0054]
【発明の効果】以上説明したように、本発明のリチウム
二次電池は、炭素負極材とし用いた難黒鉛化性炭素の細
孔入口径を、リチウム二次電池の電解液中のリチウムイ
オンが通過可能で、かつ、電解液中の有機溶媒が実質的
に通過不可能な径としたから、リチウム二次電池の電解
液として用いる有機溶媒が負極の難黒鉛化性炭素に吸着
して放電容量を低下させることを防止でき、同時に充電
容量も増加させ、放電効率を高めてリチウム二次電池の
電池容量を大幅に向上させることができる。As described in the foregoing, the lithium secondary battery of the present invention, the pore inlet diameter of non-graphitizable carbon was used as a carbon negative electrode material, lithium ions in the electrolytic solution of a lithium secondary battery The diameter is such that the organic solvent used in the lithium secondary battery is adsorbed on the non-graphitizable carbon of the negative electrode, so that the discharge capacity can be reduced. Can be prevented, and at the same time, the charge capacity can be increased, the discharge efficiency can be increased, and the battery capacity of the lithium secondary battery can be significantly improved.
【図1】 実施例及び比較例で製作したテストセルの断
面図である。FIG. 1 is a sectional view of a test cell manufactured in an example and a comparative example.
【図2】 実施例1で製作したテストセルの充放電試験
の際の電流電位変化の概念図である。FIG. 2 is a conceptual diagram of a change in current potential during a charge / discharge test of a test cell manufactured in Example 1.
【図3】 リチウム二次電池の一例を示す断面図であ
る。FIG. 3 is a cross-sectional view illustrating an example of a lithium secondary battery.
1…本発明の炭素負極材を用いた電極、2…対極として
用いるリチウム電極、3…セパレータ、4…電解液、5
…参照電極、11…セパレーター、12…正極、13…
負極、14…缶、15…キャップ、16…パッキングDESCRIPTION OF SYMBOLS 1 ... Electrode using the carbon negative electrode material of this invention, 2 ... Lithium electrode used as a counter electrode, 3 ... Separator, 4 ... Electrolyte solution, 5
... Reference electrode, 11 ... Separator, 12 ... Positive electrode, 13 ...
Negative electrode, 14 ... can, 15 ... cap, 16 ... packing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 若泉 章 山梨県北巨摩郡高根町下黒沢3054−3 日本酸素株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 4/58 H01M 10/40────────────────────────────────────────────────── ─── Continuing on the front page (72) Akira Wakaizumi 3054-3 Shimokurosawa, Takane-machi, Kita-Koma-gun, Yamanashi Prefecture Inside Nippon Sanso Corporation (58) Field surveyed (Int.Cl. 6 , DB name) 4/58 H01M 10/40
Claims (8)
ウム二次電池において、前記負極を構成する炭素負極材
に、表面の細孔入口径が、電解液中のリチウムイオンが
通過可能で、かつ、電解液中の有機溶媒が実質的に通過
不可能な径である細孔を有する難黒鉛化性炭素の微粒子
を用いたことを特徴とするリチウム二次電池。1. A lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution , wherein a carbon negative electrode material constituting said negative electrode is provided.
In addition, the pore inlet diameter of the surface, the lithium ions in the electrolyte solution can pass, and the organic solvent in the electrolyte solution is substantially non- graphitizable carbon having pores of a diameter that is substantially impermeable. Fine particles
A lithium secondary battery using :
部に電解液中の有機溶媒を吸着できる細孔があり、該難
黒鉛化性炭素の表面には熱分解炭素が析出しており、そ
の結果前記細孔は、電解液中のリチウムイオンがドープ
及び脱ドープ可能であるとともに電解液中の有機溶媒が
みかけ上吸着不可能であることを特徴とする請求項1記
載のリチウム二次電池。2. The fine particles of non-graphitizable carbon, wherein
There are pores in the part that can adsorb the organic solvent in the electrolyte,
Pyrolytic carbon is deposited on the surface of the graphitizable carbon,
As a result, the pores are doped with lithium ions in the electrolyte.
And undoped, and the organic solvent in the electrolyte is
2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is apparently not adsorbable .
径を半分以下に粉砕したときの電解液中の有機溶媒の吸
着量が2.5〜24.9重量%であることを特徴とする
請求項1又は2記載のリチウム二次電池。3. The method according to claim 1, wherein the non-graphitizable carbon fine particles are average particles.
Absorption of organic solvent in electrolyte when crushed to less than half the diameter
The lithium secondary battery according to claim 1 or 2, wherein the Chakuryou is 2.5 to 24.9 wt%.
とペースト化剤とを添加してプレス成型されていること
を特徴とする請求項1乃至3のいずれか1項記載のリチ
ウム二次電池。 4. The method according to claim 1, wherein the fine particles of the non-graphitizable carbon are a binder.
And press-molding
The lithium secondary battery according to any one of claims 1 to 3, wherein :
出した熱分解炭素は、熱分解性炭化水素の熱分解法によ
り析出されたものであることを特徴とする請求項2記載
のリチウム二次電池。 5. The method according to claim 5, wherein the fine particles of non-graphitizable carbon are deposited on the surface of the fine particles.
The released pyrolytic carbon is obtained by pyrolysis of pyrolytic hydrocarbons.
3. The composition according to claim 2, wherein the substance is deposited.
Lithium secondary battery.
ンゼン、ブタン、2,4−キシレノール、キノリン、ク
レオソートのいずれかであることを特徴とする請求項5
記載のリチウム二次電池。 6. The thermally decomposable hydrocarbon is toluene,
Senzen, butane, 2,4-xylenol, quinoline,
6. The method according to claim 5, wherein the material is any one of Leosote.
The lithium secondary battery according to the above.
カーボネートとジメトキシエタンの1:1混合液である
ことを特徴とする請求項1乃至6のいずれか1項記載の
リチウム二次電池。 7. The organic solvent in the electrolyte is propylene.
1: 1 mixture of carbonate and dimethoxyethane
The method according to any one of claims 1 to 6, wherein
Lithium secondary battery.
リチウムであることを特徴とする請求項1乃至7のいず
れか1項記載のリチウム二次電池。 8. The supporting electrolyte in the electrolyte is perchloric acid.
8. The method according to claim 1, wherein said lithium is lithium.
The lithium secondary battery according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6021349A JP2844303B2 (en) | 1994-02-18 | 1994-02-18 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6021349A JP2844303B2 (en) | 1994-02-18 | 1994-02-18 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07230804A JPH07230804A (en) | 1995-08-29 |
JP2844303B2 true JP2844303B2 (en) | 1999-01-06 |
Family
ID=12052621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6021349A Expired - Fee Related JP2844303B2 (en) | 1994-02-18 | 1994-02-18 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2844303B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4535761B2 (en) * | 2004-03-30 | 2010-09-01 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP4618308B2 (en) | 2007-04-04 | 2011-01-26 | ソニー株式会社 | Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier |
JP5533912B2 (en) * | 2007-04-04 | 2014-06-25 | ソニー株式会社 | Secondary battery electrode material and manufacturing method thereof, and electric double layer capacitor material and manufacturing method thereof |
KR20130030769A (en) * | 2010-06-18 | 2013-03-27 | 비티알 뉴 에너지 머티리얼즈 인코포레이티드 | Composite hard carbon material of negative electrode for lithium ion battery and method for preparing the same |
-
1994
- 1994-02-18 JP JP6021349A patent/JP2844303B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07230804A (en) | 1995-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2844302B2 (en) | Carbon negative electrode material for lithium secondary battery and method for producing the same | |
EP2892096B1 (en) | Method for manufacturing a carbon material for nonaqueous electrolyte secondary battery | |
KR101513820B1 (en) | Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor | |
EP1487038B1 (en) | Positive electrode material, its manufacturing method and lithium batteries | |
KR101038637B1 (en) | Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material | |
EP1478038B1 (en) | Negative electrode material for lithium ion secondary battery | |
EP2991141A1 (en) | Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same | |
EP3179542B1 (en) | Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery | |
EP3179543B1 (en) | Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery | |
US9755237B2 (en) | Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery | |
JP2000340226A (en) | Lithium manganese composite oxide particle and manufacture thereof | |
JPH0831422A (en) | Carbon material for negative electrode of lithium secondary battery and manufacture thereof | |
EP3896758A1 (en) | Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same | |
KR20150050167A (en) | Porous silicon based anode active material and preparation method thereof | |
JPH1012241A (en) | Negative electrode material for lithium ion secondary battery | |
EP0386305A1 (en) | Alkaline storage battery and method of producing negative electrode thereof | |
EP3179541B1 (en) | Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery | |
JP4014637B2 (en) | Lithium ion secondary battery negative electrode material, manufacturing method thereof, and lithium ion secondary battery using the negative electrode material | |
KR20150078068A (en) | Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery | |
JP2024500147A (en) | Metal-carbon composite negative electrode material for lithium ion secondary batteries, method for producing the same, and secondary batteries containing the same | |
JP2844303B2 (en) | Lithium secondary battery | |
US5658692A (en) | Carbon negative electrode materials and lithium secondary cells containing the same | |
US9825297B2 (en) | Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery | |
JP2849561B2 (en) | Lithium ion secondary battery and negative electrode material for the secondary battery | |
JPH0896852A (en) | Nonaqueous electrolytic secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |