JP5677193B2 - Aluminum alloy sheet for warm forming - Google Patents
Aluminum alloy sheet for warm forming Download PDFInfo
- Publication number
- JP5677193B2 JP5677193B2 JP2011111438A JP2011111438A JP5677193B2 JP 5677193 B2 JP5677193 B2 JP 5677193B2 JP 2011111438 A JP2011111438 A JP 2011111438A JP 2011111438 A JP2011111438 A JP 2011111438A JP 5677193 B2 JP5677193 B2 JP 5677193B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- aluminum alloy
- solid solution
- temperature
- warm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
本発明は、温間成形に好適に使用可能なアルミニウム合金板に関する。 The present invention relates to an aluminum alloy plate that can be suitably used for warm forming.
近年の自動車軽量化の対策として、鋼板よりも比強度の高いアルミニウム合金板の使用が検討され、実用化が進められている。しかし、アルミニウム合金板の成形性は鋼板に比べて劣るため、適用が可能な部品にその適用が限定されている。
そのため、従来、アルミニウム合金板の成形性を改善するため様々な特殊成形方法の適用が検討されている。温間成形、即ち、ダイス及びしわ押さえの金型温度を150〜300℃に加熱し、ポンチを冷却するプレス成形方法もその一例である(例えば、非特許文献1)。この成形方法では鋼板並みの成形性の確保が期待できるため、実用化への検討が進められている。
As measures for reducing the weight of automobiles in recent years, the use of an aluminum alloy plate having a specific strength higher than that of a steel plate has been studied and put into practical use. However, since the formability of an aluminum alloy plate is inferior to that of a steel plate, its application is limited to applicable parts.
Therefore, conventionally, various special forming methods have been studied in order to improve the formability of the aluminum alloy plate. One example is warm forming, that is, a press forming method in which the die temperature of the die and the wrinkle presser is heated to 150 to 300 ° C. and the punch is cooled (for example, Non-Patent Document 1). Since this forming method can be expected to ensure the formability equivalent to that of a steel sheet, studies for practical use are in progress.
この成形方法は、深絞り成形であるため、その成形性はポンチ部分の材料強度とダイス部分の降伏強度の差に依存する。ポンチを室温に保持し、ダイス部分を200℃もしくは250℃に保持した場合、ポンチ部分の材料強度は、室温のポンチに接触するため、室温時の引張強度(TS)であり、ダイス部分の材料強度は、200℃や250℃フランジに接触するため、高温時の降伏応力(YS)になる。したがって、温間成形用材料に優れた材料には、TS(室温)−YS(高温)の大きいことが必要となる。 Since this forming method is deep drawing, the formability depends on the difference between the material strength of the punch portion and the yield strength of the die portion. When the punch is kept at room temperature and the die part is kept at 200 ° C. or 250 ° C., the material strength of the punch part is the tensile strength (TS) at room temperature because it contacts the punch at room temperature. The strength is the yield stress (YS) at high temperature because it contacts the 200 ° C. or 250 ° C. flange. Therefore, a material excellent in warm molding material needs to have a large TS (room temperature) -YS (high temperature).
これまで温間成形用材料は一般的に成形性の高いAl−Mg系合金、特に非特許文献1のようにJIS5182合金が多く用いられてきた。 Up to now, as a warm forming material, generally an Al—Mg alloy having high formability, particularly JIS 5182 alloy as in Non-Patent Document 1, has been used.
しかしながら、未だ温間成形は実用化には至っていない。これはJIS5182合金の温間成形性では実用化には未だ不十分であることを示している。これまで温間成形用材料の開発はほとんど検討されておらず、JIS5182合金よりも成形性の高い温間成形用材料の開発が望まれている。 However, warm forming has not yet been put to practical use. This indicates that the warm formability of JIS 5182 alloy is still insufficient for practical use. Until now, the development of warm forming materials has not been studied, and the development of warm forming materials having higher formability than JIS 5182 alloy is desired.
本発明は、上記のような実状に鑑みてなされたものであり、JIS5182合金よりも温間成形性に優れた材料として、室温時のTSと温間成形時の温度でのYSとの差を最大にする材料を提供するものである。 The present invention has been made in view of the above situation, and as a material superior in warm formability to JIS 5182 alloy, the difference between TS at room temperature and YS at the temperature during warm forming is obtained. It provides the material to maximize.
本発明者らは前述の課題を解決すべく検討した結果、TS(室温)−YS(高温)を大きく増大させることは加工硬化量を増大させることと等価であると考えた。加工硬化量を上げるためには固溶強化に寄与する原子を多く固溶させることが必要である。
Al−Mg系合金の場合これらの原子はMg、Mn、Crである。これらのうち、Mgは添加量のほとんどが固溶するため、添加量の調整により固溶強化量の制御が可能である。一方、MnとCrは、他の原子と析出物を形成するため、それら析出物を低減させる製造工程の調整、すなわち熱処理の調整がこれら原子による固溶強化量制御に必要となる。
As a result of studying to solve the above-mentioned problems, the present inventors have considered that greatly increasing TS (room temperature) -YS (high temperature) is equivalent to increasing the work hardening amount. In order to increase the work hardening amount, it is necessary to dissolve a large number of atoms that contribute to solid solution strengthening.
In the case of an Al—Mg alloy, these atoms are Mg, Mn, and Cr. Among these, since most of the addition amount of Mg is dissolved, the amount of solid solution strengthening can be controlled by adjusting the addition amount. On the other hand, since Mn and Cr form precipitates with other atoms, adjustment of the manufacturing process for reducing these precipitates, that is, adjustment of heat treatment, is necessary for controlling the amount of solid solution strengthening by these atoms.
本発明者らは、Mg添加による制御に加えてMnおよび/またはCrの添加と熱処理条件の調整により、従来以上に高い温間成形性を有する材料の発明を試みた。特にMnおよび/またはCrの析出物が最も形成される温度域内での冷却速度を大きくすることで、上記の析出物を低減出来ることを見出した。その結果、Mn、Crの固溶量を確保し、固溶強化を得る手段を見出した。更に、Si添加量の低減や結晶粒径の減少も加工硬化量増に寄与することを見出した。本発明は以上の知見をもとになされたものである。 The present inventors tried to invent a material having higher warm formability than before by adding Mn and / or Cr and adjusting heat treatment conditions in addition to control by addition of Mg. In particular, it has been found that the above precipitates can be reduced by increasing the cooling rate within the temperature range in which Mn and / or Cr precipitates are most formed. As a result, the present inventors have found a means for securing solid solution amounts of Mn and Cr and obtaining solid solution strengthening. Furthermore, it has been found that a decrease in the amount of Si added and a decrease in crystal grain size also contribute to an increase in the work hardening amount. The present invention has been made based on the above findings.
上記目的を達成するため、本発明に係るアルミニウム合金板は、以下を特徴とする。
(1)Mg:2.0−6.0%(質量%、以下同じ)を含有し、かつMn:2.50%以下、Cr:0.50%以下のうちの1種または2種を含有し、残部がAlおよび不可避不純物よりなり、かつ
{(Mn添加量(質量%))−(Mn析出物の面積率(%))×0.24}+{(Cr添加量(質量%))−(Cr析出物の面積率(%))×0.15}
が0.4以上であることを特徴とする温間成形用アルミニウム合金板。
In order to achieve the above object, an aluminum alloy plate according to the present invention is characterized by the following.
(1) Mg: 2.0-6.0% (mass%, the same shall apply hereinafter) and Mn: 2.50% or less, Cr: 0.5% or less of 1 or 2 types And the balance consists of Al and inevitable impurities, and {(Mn addition amount (mass%))-(Mn precipitate area ratio (%)) × 0.24} + {(Cr addition amount (mass%)) − (Area ratio of Cr precipitates (%)) × 0.15}
Is an aluminum alloy sheet for warm forming.
(2)さらにCu:0.3−2.0%を含有することを特徴とする(1)の温間成形用アルミニウム合金板。
(3)前記温間成形用アルミニウム合金板がMnを含有するものであり、さらに、Si量を0.20%以下に規制することを特徴とする(1)〜(2)の温間成形用アルミニウム合金板。
(4)結晶粒が25μm以下であることを特徴とする、(1)〜(3)の温間成形用アルミニウム合金板。
(2) The aluminum alloy plate for warm forming according to (1), further containing Cu: 0.3-2.0%.
(3) The warm forming aluminum alloy plate contains Mn, and further, the Si content is restricted to 0.20% or less. Aluminum alloy plate.
(4) The aluminum alloy plate for warm forming according to (1) to (3), wherein the crystal grains are 25 μm or less.
本発明によれば、加工硬化量の増大に寄与するMn、Crの固溶量を最大限にし、従来のJIS5182合金よりもTS(室温)−YS(高温)が大きく、温間成形性に優れる温間成形用アルミニウム合金板を提供することが可能となった。 According to the present invention, the solid solution amount of Mn and Cr contributing to increase in work hardening amount is maximized, TS (room temperature) -YS (high temperature) is larger than that of the conventional JIS 5182 alloy, and warm formability is excellent. It has become possible to provide an aluminum alloy sheet for warm forming.
以下に本発明について詳細に説明する。
(アルミニウム合金の成分)
まず本発明のアルミニウム合金板の成分組成について説明する。ここで含有量の単位は質量%である。
The present invention is described in detail below.
(Components of aluminum alloy)
First, the component composition of the aluminum alloy plate of the present invention will be described. Here, the unit of content is mass%.
本発明のアルミニウム合金板の素材にはAl−Mg系合金が適している。
Al−Mg系合金では、Mgの添加量は2.0%以上が好ましい。Mgの含有量が2.0%以上であると高強度が得られる。一方、Mgが6.0%を超えて添加されると熱間加工性が劣化することがあり、製造コストが高くなる。
An Al—Mg alloy is suitable for the material of the aluminum alloy plate of the present invention.
In the Al-Mg alloy, the addition amount of Mg is preferably 2.0% or more. High strength is obtained when the Mg content is 2.0% or more. On the other hand, if Mg is added in excess of 6.0%, hot workability may be deteriorated, resulting in an increase in manufacturing cost.
MnとCrは固溶させることで加工硬化量を大きくするために有効な元素であるため、このうちから1種または2種を添加する。
Mnを添加する場合、Mnの含有量は2.50%以下とする。Mnの含有量が2.50%を超えると、破壊の起点となる析出物が増大する。また、Mnは、Al−Mn析出物を形成するため、添加したMnの全てがAl−Mg系合金中に固溶するわけではない。このため、Mnを添加する場合、十分な固溶量を確保するために、Mnを0.50%以上含有させることが好ましい。なお、アルミニウム合金中に不可避的不純物としてMnが含有されている場合、アルミニウム合金中に含有されているMnの含有量は、0.01%未満である。
Since Mn and Cr are effective elements for increasing the work hardening amount by solid solution, one or two of them are added.
When Mn is added, the Mn content is 2.50% or less. When the content of Mn exceeds 2.50%, precipitates that are the starting points of fracture increase. Further, since Mn forms an Al—Mn precipitate, not all of the added Mn is dissolved in the Al—Mg alloy. For this reason, when adding Mn, in order to ensure sufficient solid solution amount, it is preferable to contain Mn 0.50% or more. In addition, when Mn is contained as an inevitable impurity in the aluminum alloy, the content of Mn contained in the aluminum alloy is less than 0.01%.
Mnの固溶量は添加したMn量から、Al−Mn析出物に含まれるMn量を引いた値に等しいが、直接分析することは難しい。このことから、Mnの固溶量を近似的に示す指標として以下の式(1)を定義した。
(Mn添加量(質量%))−(Al−Mn析出物の面積率(%))×0.24 (1)
The solid solution amount of Mn is equal to a value obtained by subtracting the amount of Mn contained in the Al—Mn precipitate from the amount of Mn added, but it is difficult to directly analyze. From this, the following formula (1) was defined as an index that approximately indicates the solid solution amount of Mn.
(Mn addition amount (mass%))-(Al-Mn precipitate area ratio (%)) × 0.24 (1)
式(1)の「Al−Mn析出物の面積率」は、温間成形用材料を集束イオンビーム(FIB,Focused Ion Beam)等により0.3μm以下の一定の膜厚とし、透過電子顕微鏡で観察した観察像から以下の式(2)より求める。「Al−Mn析出物の面積率」は、透過電子顕微鏡の観察像より画像解析ソフトを用いて観察像中のAl−Mn析出物の面積を算出させて以下の式(2)を計算させることにより求めても良い。 The “area ratio of Al—Mn precipitates” in the formula (1) is determined by using a transmission electron microscope with a warm forming material having a constant film thickness of 0.3 μm or less with a focused ion beam (FIB). It calculates | requires from the observed image observed from the following formula | equation (2). “Area ratio of Al—Mn precipitates” is calculated from the observation image of the transmission electron microscope using the image analysis software to calculate the area of the Al—Mn precipitates in the observation image and calculate the following formula (2). You may ask for.
{(観察像中のAl−Mn析出物の面積)/(観察像全体の面積)}×100(%)(2)
Al−Mn析出物は多くがAl6Mnである。このため、原子量から計算するとAl−Mn析出物に含まれるMn量の割合は24(mass%)である。したがって、上記の式(1)に示すように、Al−Mn析出物中のMn量はAl−Mn析出物の面積率に0.24をかけて求める。
{(Area of Al-Mn precipitate in observed image) / (Area of entire observed image)} × 100 (%) (2)
Al-Mn precipitates are often al 6 Mn. For this reason, when calculated from the atomic weight, the proportion of the amount of Mn contained in the Al—Mn precipitate is 24 (mass%). Therefore, as shown in the above formula (1), the amount of Mn in the Al—Mn precipitate is obtained by multiplying the area ratio of the Al—Mn precipitate by 0.24.
同様にCrも固溶させることで加工硬化量を大きくするために有効な元素である。Crの場合の添加量範囲は、0.50%以下である。Crの含有量が0.50%を超えると、破壊の起点となる析出物が形成される。CrはAl−Cr析出物を形成するため、添加したCrが全て固溶するわけではない。また、Crの固溶量は多いほど加工硬化量を増大するため望ましい。このため、Crを添加する場合、0.20%以上の添加が好ましい。なお、アルミニウム合金中に不可避的不純物としてCrが含有されている場合、アルミニウム合金中に含有されているCrの含有量は、0.01%未満である。 Similarly, Cr is an effective element for increasing the work hardening amount by solid solution. The addition amount range in the case of Cr is 0.50% or less. When the Cr content exceeds 0.50%, precipitates are formed that serve as starting points for fracture. Since Cr forms Al—Cr precipitates, not all of the added Cr is in solid solution. Also, the larger the amount of Cr dissolved, the greater the work hardening amount, which is desirable. For this reason, when adding Cr, addition of 0.20% or more is preferable. In addition, when Cr is contained as an inevitable impurity in the aluminum alloy, the content of Cr contained in the aluminum alloy is less than 0.01%.
Crの固溶量は添加したCr量から、Al−Cr析出物に含まれるCr量を引いた値に等しい。このため、Mnの固溶量の場合と同様、以下の式(3)と定義する。
(Cr添加量(質量%))−(Al−Cr析出物の面積率(%))×0.15 (3)
The amount of solid solution of Cr is equal to a value obtained by subtracting the amount of Cr contained in the Al—Cr precipitates from the amount of added Cr. For this reason, it defines as the following formula | equation (3) similarly to the case of the solid solution amount of Mn.
(Cr addition amount (mass%))-(Al-Cr precipitate area ratio (%)) × 0.15 (3)
式(3)の「Al−Cr析出物の面積率」は、温間成形用材料をFIB等により0.3μm以下の一定の膜厚とし、透過電子顕微鏡で観察した観察像から以下の式(4)より求める。「Al−Cr析出物の面積率」は、透過電子顕微鏡の観察像より画像解析ソフトを用いて観察像中のAl−Cr析出物の面積を算出させて以下の式(4)を計算させることにより求めても良い。 The “area ratio of Al—Cr precipitates” in the formula (3) is determined by the following formula (from the observation image observed with a transmission electron microscope with the warm molding material having a constant film thickness of 0.3 μm or less by FIB or the like. 4). The “area ratio of Al—Cr precipitates” is calculated from the observation image of the transmission electron microscope using the image analysis software to calculate the area of the Al—Cr precipitates in the observation image and to calculate the following formula (4). You may ask for.
{(観察像中のAl−Cr析出物の面積)/(観察像全体の面積)}×100(%)(4)
透過電子顕微鏡の観察像におけるAl−Mn析出物とAl−Cr析出物の判断は透過電子顕微鏡に搭載された元素分析装置により行うと良い。
{(Area of Al—Cr precipitates in the observed image) / (Area of the entire observed image)} × 100 (%) (4)
The determination of the Al—Mn precipitate and the Al—Cr precipitate in the observation image of the transmission electron microscope may be performed by an elemental analyzer installed in the transmission electron microscope.
Al−Cr析出物は多くがCr2Mg3Al18である。このため、原子量から計算するとAl−Cr析出物に含まれるCr量の割合は15(mass%)である。したがって、上記の式(3)に示すように、Al−Cr析出物中のCr量はAl−Cr析出物の面積率に0.15をかけて求める。 Most of the Al—Cr precipitates are Cr 2 Mg 3 Al 18 . For this reason, when calculating from the atomic weight, the ratio of the Cr amount contained in the Al—Cr precipitates is 15 (mass%). Therefore, as shown in the above formula (3), the amount of Cr in the Al—Cr precipitate is obtained by multiplying the area ratio of the Al—Cr precipitate by 0.15.
上記の式(1)と(3)の和で表されるMnとCrの固溶量の和{(Mn添加量(質量%))−(Mn析出物の面積率(%))×0.24}+{(Cr添加量(質量%))−(Cr析出物の面積率(%))×0.15}が0.4%未満であると温間成形性の向上が小さいため、本発明ではMnとCrの固溶量の和を0.4%以上とする。なお、式(1)と式(3)は、母相とMn、Cr系析出物の比重は同じであると仮定した場合に成り立つ式である。 Sum of solid solution amounts of Mn and Cr represented by the sum of the above formulas (1) and (3) {(Mn addition amount (% by mass))-(Mn precipitate area ratio (%)) × 0. 24} + {(Cr addition amount (% by mass)) − (Area ratio of Cr precipitates (%)) × 0.15} is less than 0.4%, the improvement in warm formability is small. In the invention, the sum of the solid solution amounts of Mn and Cr is set to 0.4% or more. In addition, Formula (1) and Formula (3) are formulas that hold when it is assumed that the specific gravity of the matrix, Mn, and Cr-based precipitates is the same.
なお上述の合金において、必要に応じてCuを添加してもよい。Cuも固溶強化増大に寄与するが、過剰な添加は、破壊の起点の形成を介して、成形性を劣化させる。したがって、Cuを含有する場合は2.0%以下に添加量を制限する。一方Cuを含有する場合の下限値は、固溶強化向上効果の発現する量できまり、0.3%以上とする。 In the above-described alloy, Cu may be added as necessary. Although Cu also contributes to an increase in solid solution strengthening, excessive addition deteriorates formability through formation of a starting point of fracture. Therefore, when Cu is contained, the addition amount is limited to 2.0% or less. On the other hand, the lower limit in the case of containing Cu is determined by the amount at which the effect of improving the solid solution strengthening is achieved, and is 0.3% or more.
Siは添加するとAl−Mn析出物の析出を促進するため、Mn固溶量が減少する。したがって、本発明のアルミニウム合金板がMnを含有するものである場合にMnを多く固溶させるためには、Si含有量は少ないほど好ましい。しかし、Siは、固溶による強度を上昇させる効果が得られるものであるため、必要に応じてアルミニウム合金板に含有させてもよい。Siは、不可避的不純物としてMnとともに含む場合であっても、必要に応じてMnとともにSiを含有させる場合であっても、Al−Mn析出物の析出を抑制するため0.20%以下に規制する。なお、アルミニウム合金板の材料として、一般的なアルミ地金を用いた場合、0.20%未満のSiが不可避的に含有される。 When Si is added, the precipitation of Al—Mn precipitates is promoted, so that the amount of Mn solid solution decreases. Accordingly, when the aluminum alloy plate of the present invention contains Mn, the lower the Si content, the more preferable it is for solid solution of Mn. However, since Si has an effect of increasing the strength due to solid solution, it may be contained in the aluminum alloy plate as necessary. Si is restricted to 0.20% or less in order to suppress precipitation of Al-Mn precipitates even when it is included with Mn as an unavoidable impurity or when Si is included with Mn as necessary. To do. In addition, when a general aluminum ingot is used as a material of an aluminum alloy plate, less than 0.20% Si is inevitably contained.
これらAl−Mg系合金の上記成分組成には、さらにFeを添加しても良い。Feは溶解原料から混入し、不純物として含まれるFeは晶出物を生成する。これは、再結晶の核となる一方、0.30%を超えて添加すると、破壊の起点となり、成形性や曲げ加工性を劣化させる。したがって、添加量は0.30%以下とすることが好ましい。 Fe may be further added to the component composition of these Al—Mg alloys. Fe is mixed from the melted raw material, and Fe contained as impurities generates a crystallized product. While this becomes a nucleus of recrystallization, when it is added in excess of 0.30%, it becomes a starting point of fracture and deteriorates formability and bending workability. Therefore, the addition amount is preferably 0.30% or less.
その他、Zr、Vを上記成分組成にさらに添加しても良い。これら遷移元素は均質化熱処理時に分散粒子を生成し再結晶後の粒界移動を抑制する効果がある。ただし、多量の添加は金属間化合物を生成し、これが温間成形や曲げ加工においての破壊の起点となり、これら特性を劣化させる。したがって、添加する場合、Zrでは0.25%以下、Tiでは0.9%以下の添加量とすることが好ましい。 In addition, Zr and V may be further added to the above component composition. These transition elements have the effect of generating dispersed particles during the homogenization heat treatment and suppressing grain boundary migration after recrystallization. However, a large amount of addition produces an intermetallic compound, which becomes a starting point of fracture in warm forming and bending, and deteriorates these characteristics. Therefore, when Zr is added, it is preferable to add 0.25% or less for Zr and 0.9% or less for Ti.
結晶粒径は微細であるほど、加工硬化量が増加するため、小さい方が好ましい。結晶粒径が大きすぎると肌荒れを起こし、成形品外観を損なうため、25μm以下にすることが好ましい。望ましくは結晶粒径が10μm以下であると高温域で材料の一部が超塑性現象を起こし、延性が向上するので良い。 Since the work hardening amount increases as the crystal grain size becomes finer, a smaller one is preferable. If the crystal grain size is too large, it causes rough skin and impairs the appearance of the molded product. Desirably, when the crystal grain size is 10 μm or less, a part of the material causes a superplastic phenomenon at a high temperature range, and the ductility is improved.
(アルミニウム合金の製造方法)
次に、上記アルミニウム合金の製造方法について説明する。温間成形用のアルミニウム合金には、充分な強度と延性が必要である。
上記した成分組成のAl−Mg系合金の鋳塊を、均質化熱処理、熱間圧延、冷間圧延を施した後、溶体化熱処理および焼入れ処理を行う。これら工程は常法と同じである。なお、冷間圧延の間に1回以上の熱処理を行っても、また、熱間圧延後に熱延板の熱処理を行っても良い。また、成形品に充分な強度、延性、再結晶粒が要求されない場合は冷間圧延材料を使用しても良い。
(Aluminum alloy manufacturing method)
Next, the manufacturing method of the said aluminum alloy is demonstrated. An aluminum alloy for warm forming needs to have sufficient strength and ductility.
The ingot of the Al—Mg alloy having the above composition is subjected to homogenization heat treatment, hot rolling, and cold rolling, followed by solution heat treatment and quenching treatment. These steps are the same as in the conventional method. Note that one or more heat treatments may be performed during the cold rolling, or the hot-rolled sheet may be heat treated after the hot rolling. Further, when the molded article does not require sufficient strength, ductility, and recrystallized grains, a cold rolled material may be used.
先ず、溶解、鋳造工程では、上記した成分組成の合金の溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の常法の溶解鋳造法を選択実施する。特に連続鋳造圧延法を適用する場合には、製造コストの大幅な低減が期待できる。
次に行う均質化熱処理では材質の均質化を狙う。均質化熱処理は添加元素の偏析をなくすことが主目的である。加えて微細なAl−Mnおよび/またはAl−Cr系化合物を十分に固溶させるためには520℃以上融点以下の温度での熱処理が必要となる。好ましくはMnおよび/またはCrの固溶温度以上が良い。
First, in the melting and casting process, a conventional melting and casting method such as a continuous casting rolling method and a semi-continuous casting method (DC casting method) is selectively performed on the molten alloy having the above-described component composition. In particular, when the continuous casting and rolling method is applied, a significant reduction in manufacturing cost can be expected.
The next homogenization heat treatment is aimed at homogenizing the material. The main purpose of the homogenizing heat treatment is to eliminate segregation of additive elements. In addition, heat treatment at a temperature of 520 ° C. or higher and a melting point or lower is required to sufficiently dissolve fine Al—Mn and / or Al—Cr compounds. Preferably it is higher than the solid solution temperature of Mn and / or Cr.
熱処理時間は、添加元素量にもよるが、上記温度範囲内にて20分以上8時間以下であれば充分である。20分より短いと十分に偏析をなくすことは困難となり、一方8時間以上であれば製造コストが増加する。
また上記温度範囲内にて上記加熱時間保持した後は、180〜560℃の温度域を20℃/sec以上の冷却速度で冷却する必要があり、かつMn系析出物およびCr系析出物を最も形成する400〜560℃の温度域を30℃/sec以上の冷却速度で冷却することが必須である。冷却速度がこれよりも遅いとMn系析出物および/またはCr系析出物が形成し、Mnおよび/またはCrの固溶量が減少する。冷却速度を早める手段は、強制空冷、水冷などあるが、その手段に特に限定はない。
Although the heat treatment time depends on the amount of added elements, it is sufficient if it is 20 minutes or longer and 8 hours or shorter within the above temperature range. If it is shorter than 20 minutes, it is difficult to sufficiently eliminate segregation. On the other hand, if it is 8 hours or more, the production cost increases.
In addition, after holding the heating time within the above temperature range, it is necessary to cool the temperature range of 180 to 560 ° C. at a cooling rate of 20 ° C./sec or more, and the Mn-based precipitates and Cr-based precipitates are the most It is essential to cool the temperature range of 400 to 560 ° C. to be formed at a cooling rate of 30 ° C./sec or more. When the cooling rate is slower than this, Mn-based precipitates and / or Cr-based precipitates are formed, and the solid solution amount of Mn and / or Cr decreases. Means for increasing the cooling rate include forced air cooling and water cooling, but the means is not particularly limited.
続く熱間圧延では、開始温度の設定が必要であり、その温度は450℃以上にすべきである。450℃未満の温度では、熱間圧延中での再結晶の頻度が急激に低下し、これが最終製品での未再結晶化の可能性を高くする。好ましくは開始温度が520℃以上であれば微細なAl−Mnおよび/またはAl−Cr系化合物が固溶し、Mnおよび/またはCrの固溶量が増加する。
熱延開始温度到達から熱延開始までの時間は短い方が好ましい。特に20分以下が望ましい。前記時間が長くなるとAl−Mnおよび/またはAl−Cr系化合物が析出し、Mnおよび/またはCrの固溶量が減少する可能性がある。
In the subsequent hot rolling, it is necessary to set a starting temperature, which should be 450 ° C. or higher. At temperatures below 450 ° C., the frequency of recrystallization during hot rolling decreases sharply, which increases the possibility of non-recrystallization in the final product. Preferably, when the starting temperature is 520 ° C. or higher, fine Al—Mn and / or Al—Cr-based compounds are dissolved, and the solid solution amount of Mn and / or Cr increases.
It is preferable that the time from the hot rolling start temperature to the hot rolling start is shorter. 20 minutes or less is particularly desirable. When the said time becomes long, an Al-Mn and / or Al-Cr type compound will precipitate, and the solid solution amount of Mn and / or Cr may reduce.
また熱延後は熱延板を180〜560℃の温度域を20℃/sec以上の冷却速度で冷却する必要があり、かつMnおよびCr系析出物を最も形成する400〜560℃の温度域を30℃/sec以上の冷却速度で冷却することが必須である。冷却速度がこれよりも遅いとMnおよび/またはCr系析出物が形成し、MnおよびCrの固溶量が減少する。
最終板厚は特に制限は設けず、5mm以下であることが、続く冷間圧延工程の容易さの点から好ましい。
In addition, after hot rolling, it is necessary to cool the hot rolled sheet at a temperature range of 180 to 560 ° C. at a cooling rate of 20 ° C./sec or more, and a temperature range of 400 to 560 ° C. at which Mn and Cr-based precipitates are formed most. It is essential to cool at a cooling rate of 30 ° C./sec or more. When the cooling rate is slower than this, Mn and / or Cr-based precipitates are formed, and the solid solution amount of Mn and Cr decreases.
The final thickness is not particularly limited and is preferably 5 mm or less from the viewpoint of the ease of the subsequent cold rolling process.
なお、確実な再結晶を得るために、冷間圧延前に熱延板を焼鈍しても良い。その場合には400℃以上の温度にて20分以上であれば充分であり、長時間の焼鈍は製造コストを高める欠点となる。また、全体の製造コストを考慮して、この熱延板焼鈍を省略しても良い。この熱延板焼鈍後の冷却においても、180〜560℃の温度域を20℃/sec以上の冷却速度で冷却する必要があり、かつMnおよびCr系析出物を最も形成する400〜560℃の温度域を30℃/sec以上の冷却速度で冷却することが必須である。 In order to obtain reliable recrystallization, the hot-rolled sheet may be annealed before cold rolling. In that case, 20 minutes or more is sufficient at a temperature of 400 ° C. or higher, and annealing for a long time is a disadvantage of increasing the production cost. Further, in consideration of the entire manufacturing cost, this hot-rolled sheet annealing may be omitted. Also in the cooling after this hot-rolled sheet annealing, it is necessary to cool the temperature range of 180 to 560 ° C. at a cooling rate of 20 ° C./sec or more, and 400 to 560 ° C. that most forms Mn and Cr-based precipitates. It is essential to cool the temperature range at a cooling rate of 30 ° C./sec or more.
続く冷間圧延は所望の板厚まで冷間まで常法で圧延してよい。
また、熱延板焼鈍と同様、確実な再結晶を得るために、冷間圧延の途中に1回以上の熱処理(中間焼鈍)を実施しても良い。この時の温度は、MnおよびCrの固溶温度以上であれば、MnおよびCrの固溶量が増加するので好ましい。熱延板焼鈍同様、この中間焼鈍後の冷却においても、180〜560℃の温度域を20℃/sec以上の冷却速度で冷却する必要があり、かつMnおよびCr系析出物を最も形成する400〜560℃の温度域を30℃/sec以上の冷却速度で冷却することが必須である。
Subsequent cold rolling may be performed by a conventional method until cold to a desired thickness.
Moreover, in order to obtain reliable recrystallization similarly to hot-rolled sheet annealing, you may implement one or more heat processing (intermediate annealing) in the middle of cold rolling. If the temperature at this time is equal to or higher than the solid solution temperature of Mn and Cr, the solid solution amount of Mn and Cr increases, which is preferable. Similar to hot-rolled sheet annealing, it is necessary to cool a temperature range of 180 to 560 ° C. at a cooling rate of 20 ° C./sec or more in the cooling after the intermediate annealing, and 400 most forms Mn and Cr-based precipitates. It is essential to cool the temperature range of ˜560 ° C. at a cooling rate of 30 ° C./sec or more.
中間焼鈍から最終板厚までの冷間圧延率は大きい方が好ましい。冷間圧延率を大きくすることで最終焼鈍時の再結晶粒が微細化する。望ましくは中間焼鈍から最終板厚までの冷間圧延率を75%以上とすると良い。
冷間圧延終了後は、最終焼鈍を行う。最終焼鈍温度は400℃以上融点以下とする。好ましくはMnおよびCrの固溶温度以上が良い。最終焼鈍は連続焼鈍炉で行うことが好ましく180〜560℃の温度域を20℃/sec以上の冷却速度で冷却する必要があり、かつMnおよびCr系析出物を最も形成する400〜560℃の温度域を30℃/sec以上の冷却速度で冷却することが必須である。冷却速度がこれよりも遅いとMn、Cr系析出物が形成し、MnおよびCrの固溶量が減少する。
It is preferable that the cold rolling rate from the intermediate annealing to the final plate thickness is large. By increasing the cold rolling rate, the recrystallized grains at the time of final annealing are refined. Desirably, the cold rolling rate from the intermediate annealing to the final thickness is 75% or more.
After the cold rolling, final annealing is performed. The final annealing temperature is 400 ° C. or higher and the melting point or lower. The temperature is preferably higher than the solid solution temperature of Mn and Cr. The final annealing is preferably performed in a continuous annealing furnace, and it is necessary to cool a temperature range of 180 to 560 ° C. at a cooling rate of 20 ° C./sec or more, and 400 to 560 ° C. that most forms Mn and Cr-based precipitates. It is essential to cool the temperature range at a cooling rate of 30 ° C./sec or more. If the cooling rate is slower than this, Mn and Cr-based precipitates are formed, and the solid solution amount of Mn and Cr decreases.
(成形方法)
次に、本発明の成形方法について説明する。
上述のアルミニウム合金板を用いた温間成形は、ダイスおよびしわ押さえ金型の温度よりもポンチの温度を低くして行う。これらの温度差が大きいほど、材料中の強度差が大きくなり、深絞り成形性が向上する。必要なダイスおよびしわ押さえ金型とポンチとの温度差は50〜300℃である。上記温度差が50℃未満であると、充分な強度差は材料内に発現しない。また、300℃を超えた温度差を得るためには大幅な設備コストがかかるために工業的には不利となる。なお、加熱方法は電熱ヒーターを用いても、他の熱媒体による方法でも良く、特に限定はしない。
(Molding method)
Next, the molding method of the present invention will be described.
The warm forming using the above-described aluminum alloy plate is performed by lowering the temperature of the punch than the temperature of the die and the crease presser mold. The greater the temperature difference, the greater the strength difference in the material and the deep drawability improves. The necessary temperature difference between the die and wrinkle holding mold and the punch is 50 to 300 ° C. When the temperature difference is less than 50 ° C., a sufficient strength difference does not appear in the material. In addition, in order to obtain a temperature difference exceeding 300 ° C., a significant equipment cost is required, which is industrially disadvantageous. The heating method may be an electric heater or a method using another heat medium, and is not particularly limited.
なお、ダイス及びしわ押さえ金型の加熱温度が150℃未満では、フランジ部の変形抵抗の低下が不充分であるため、これら温度の下限を150℃以上とする。フランジ部の変形抵抗は、ダイス及びしわ押さえ金型の加熱温度の上昇によって低下する。このため、加熱温度は200℃以上とすることが好ましく、250〜300℃の範囲が最適な範囲である。 In addition, since the fall of the deformation resistance of a flange part is inadequate if the heating temperature of a die | dye and a wrinkle pressing die is less than 150 degreeC, let the minimum of these temperatures be 150 degreeC or more. The deformation resistance of the flange portion decreases as the heating temperature of the die and the wrinkle holding mold increases. For this reason, it is preferable that heating temperature shall be 200 degreeC or more, and the range of 250-300 degreeC is an optimal range.
更に、ポンチに接する材料の温度とダイス及びしわ押さえ金型に接する材料の温度差を大きくするためには、ポンチ内に配管を設け、水冷により冷却することが好ましい。なお、ポンチの冷却水は30℃以下で良く、通常の水道水の温度で冷却は可能である。なお、ポンチの温度は低いほど好ましく、10℃以下とすれば成形性が極めて良好になる。 Further, in order to increase the temperature difference between the temperature of the material in contact with the punch and the temperature of the material in contact with the die and the wrinkle holding mold, it is preferable to provide a pipe in the punch and cool it by water cooling. In addition, the cooling water of a punch may be 30 degrees C or less, and cooling is possible at the temperature of normal tap water. The punch temperature is preferably as low as possible, and if it is 10 ° C. or less, the moldability becomes extremely good.
ここで、ポンチを冷却するためには、ポンチ内に設けた配管を冷却装置に接続し、ポンチ内に温度管理された冷媒を循環させることが好ましい。冷媒及び冷却装置を用いる際には、配管等を考慮すると、冷媒の温度は−50℃以上が実用的な範囲であり、−30〜0℃の範囲が最適である。
ポンチを効率良く冷却するには、冷媒をエチレングリコール水溶液とすることが好ましい。また冷媒には、メタノール、エタノール等のアルコール類又は塩化メチレン等の有機ハロゲン化合物を使用しても良い。
Here, in order to cool the punch, it is preferable to connect a pipe provided in the punch to a cooling device and to circulate a temperature-controlled refrigerant in the punch. When using a refrigerant and a cooling device, considering piping and the like, the temperature of the refrigerant is practically in a range of −50 ° C. or more, and the range of −30 to 0 ° C. is optimal.
In order to efficiently cool the punch, the refrigerant is preferably an aqueous ethylene glycol solution. As the refrigerant, alcohols such as methanol and ethanol, or organic halogen compounds such as methylene chloride may be used.
冷媒を冷却する冷却装置は特に制限されるものではなく、汎用の装置を用いれば良い。
ポンチ肩部の冷却を促進するためには、ポンチと対向するカウンターポンチを設けても良く、その際には、カウンターポンチにも水冷手段を設け、ポンチと同じ温度に冷却することが好ましい。
The cooling device for cooling the refrigerant is not particularly limited, and a general-purpose device may be used.
In order to promote cooling of the punch shoulder portion, a counter punch opposite to the punch may be provided, and in this case, it is preferable to provide the counter punch with water cooling means to cool to the same temperature as the punch.
また、ポンチに接する材料の温度とダイス及びしわ押さえ金型に接する材料の温度差は、材料の熱伝導があるために、ダイス及びしわ押さえ金型とポンチの温度差よりも小さくなる。良好な成形性を得るには、上述したように、ダイス及びしわ押さえ金型に接する材料部分とポンチに接する材料部分との温度差を50℃以上とする必要がある。そのためには、ダイス及びしわ押さえ金型とポンチとの金型自体の温度差を90℃以上とすることが好ましい。これにより、アルミニウム合金板のフランジ部とポンチ肩部に相当する部分の強度差を適正な範囲とすることが可能になり、プレス成形性を更に向上させることができる。 Further, the temperature difference between the temperature of the material in contact with the punch and the temperature of the material in contact with the die and the wrinkle holding die is smaller than the temperature difference between the die and the wrinkle holding die and the punch due to the heat conduction of the material. In order to obtain good moldability, as described above, the temperature difference between the material portion in contact with the die and the crease pressing die and the material portion in contact with the punch needs to be 50 ° C. or more. For this purpose, it is preferable that the temperature difference between the die and the crease pressing die and the punch itself is 90 ° C. or more. Thereby, it becomes possible to make the intensity difference of the part equivalent to the flange part and punch shoulder part of an aluminum alloy plate into an appropriate range, and press formability can be improved further.
(合金板の好適な特性)
本発明の合金板は、以下の特性を与えるものであることが好ましい。LDR値(限界絞り比):2.4超えであることが好ましく、更には2.5以上、特に2.6以上であることが好ましい。
(Suitable properties of alloy plate)
The alloy plate of the present invention preferably gives the following characteristics. LDR value (limit drawing ratio): It is preferably more than 2.4, more preferably 2.5 or more, and particularly preferably 2.6 or more.
以下に本発明の実施例について説明する。
表1記載の成分を含有し、残部がAlおよび不可避不純物よりなる組成の合金を使用して表2および下記の製造条件により被成形板を製造した。その後、得られた被成形板に対して、下記に示す条件で温間成形を行い、下記に示す方法によりLDR値(限界絞り比)を測定した。
Examples of the present invention will be described below.
Using the alloy of the composition which contains the component of Table 1 and the remainder consists of Al and an unavoidable impurity, the to-be-formed board was manufactured on the basis of Table 2 and the following manufacturing conditions. Thereafter, the obtained plate to be molded was warm-formed under the following conditions, and the LDR value (limit drawing ratio) was measured by the following method.
<被成形板の製造条件>
被成形板の製造条件は以下の通りである。まず溶解鋳造により表1記載の合金番号1〜24の組成の鋳塊を製造し、均質化処理を行った。均質化処理温度は550℃、熱処理時間は4時間とした。均質化処理後は熱延を行い、その際熱延開始温度は550℃とした。熱延板は中間焼鈍なしで冷間圧延し、最終板厚1.0mmtとした。このとき熱延上がりの板厚を調整し、表2に示すように最終冷間圧延率を変えて製造した。冷延後は500℃で最終焼鈍を行い、被成形板とした(製造条件1〜31)。
なお、表1において、(−)は、その成分を積極的に添加していないことを示す。また、熱処理(均質化処理、熱延、最終焼鈍)の際の冷却速度は統一し、表2に示すように400〜560℃および180〜400℃の温度域の冷却速度を制御した。
<Manufacturing conditions of the plate to be molded>
The production conditions for the molded plate are as follows. First, ingots having the compositions of alloy numbers 1 to 24 shown in Table 1 were manufactured by melt casting, and homogenized. The homogenization temperature was 550 ° C. and the heat treatment time was 4 hours. After the homogenization treatment, hot rolling was performed, and the hot rolling start temperature was set to 550 ° C. The hot-rolled sheet was cold-rolled without intermediate annealing to a final sheet thickness of 1.0 mmt. At this time, the thickness of the hot rolled sheet was adjusted, and the final cold rolling rate was changed as shown in Table 2. After the cold rolling, final annealing was performed at 500 ° C. to obtain a molded plate (manufacturing conditions 1 to 31).
In Table 1, (-) indicates that the component is not positively added. In addition, the cooling rates during the heat treatment (homogenization treatment, hot rolling, final annealing) were unified, and the cooling rates in the temperature ranges of 400 to 560 ° C. and 180 to 400 ° C. were controlled as shown in Table 2.
<温間成形>
温間成形には、直径75mmの円筒ポンチと直径80mmのダイスを用いた。ダイスおよびしわ押さえ金型は金型に埋め込んだヒーターによる電熱加熱により加熱し、ポンチは冷却したエチレングリコール水の循環により冷却した。またポンチ温度を25℃に、ダイスとしわ押さえ金型の温度を250℃に設定した。潤滑には、汎用の2硫化モリブデンの水溶液を使用した。
<Warm forming>
For warm forming, a cylindrical punch having a diameter of 75 mm and a die having a diameter of 80 mm were used. The die and wrinkle holding mold were heated by electrothermal heating with a heater embedded in the mold, and the punch was cooled by circulation of cooled ethylene glycol water. The punch temperature was set to 25 ° C., and the temperature of the die and wrinkle holding mold was set to 250 ° C. A general-purpose molybdenum disulfide aqueous solution was used for lubrication.
<LDR値(限界絞り比)>
LDR値は深絞り成形性の評価値であり、破断することなく絞り抜けるまで成形できた最大の円形アルミ合金板の直径をポンチ径(ここでは75mm)で除した値である。この値が大きければ温間成形性が優れている。本試験条件においてJIS5182合金の一般的な温間成形でのLDR値は2.4であり、温間成形用材料には2.4より大きいLDR値が求められる。なお、BHF(しわ押さえ荷重)は1tに設定した。
<LDR value (limit aperture ratio)>
The LDR value is an evaluation value of deep drawing formability, which is a value obtained by dividing the diameter of the largest circular aluminum alloy plate that can be formed until drawing without breaking, by a punch diameter (here, 75 mm). If this value is large, the warm formability is excellent. Under this test condition, the LDR value in the general warm forming of JIS 5182 alloy is 2.4, and the LDR value greater than 2.4 is required for the warm forming material. In addition, BHF (wrinkle pressing load) was set to 1t.
<Mn固溶量とCr固溶量の和の算出>
Mn固溶量とCr固溶量の和の算出方法を説明する。製造した被成形板をFIBによりほぼ0.3μmの一定の膜厚になるように加工し、透過電子顕微鏡で観察した。観察像を画像解析ソフトに読み込み、Al−MnもしくはAl−Cr析出物の面積率を測定した。Al−Mn析出物とAl−Cr析出物の判断は透過電子顕微鏡搭載の元素分析装置で行った。測定した面積率を用いて式(1)の値と式(3)の値を足してMn固溶量とCr固溶量の和を算出した。
<Calculation of the sum of Mn solid solution amount and Cr solid solution amount>
A method for calculating the sum of the Mn solid solution amount and the Cr solid solution amount will be described. The manufactured plate was processed by FIB so as to have a constant film thickness of approximately 0.3 μm, and observed with a transmission electron microscope. The observation image was read into image analysis software, and the area ratio of Al—Mn or Al—Cr precipitates was measured. The determination of the Al—Mn precipitate and the Al—Cr precipitate was performed with an elemental analyzer equipped with a transmission electron microscope. The sum of the Mn solid solution amount and the Cr solid solution amount was calculated by adding the value of the formula (1) and the value of the formula (3) using the measured area ratio.
<実験結果>
表2記載の製造条件1〜31の被成形板の成形試験結果を説明する。
製造条件1〜24では、溶体化熱処理後の冷却速度を、400℃未満では25℃/secと、400から560℃では35℃/secと大きくすることで、MnおよびCrの固溶量増を図った。
<Experimental result>
The molding test results of the molded plates under the manufacturing conditions 1 to 31 shown in Table 2 will be described.
In production conditions 1 to 24, the cooling rate after solution heat treatment is increased to 25 ° C./sec at temperatures below 400 ° C. and 35 ° C./sec from 400 to 560 ° C., thereby increasing the solid solution amount of Mn and Cr. planned.
製造条件1〜5の比較によりMg含有量の影響を調査した。製造条件1ではMg含有量が少ないためにLDR値が低く、JIS5182合金を上回る温間成形性を得られなかった。一方製造条件2〜4はJIS5182合金を上回るLDRであり、またMg含有量が多いほど温間成形性は向上した。製造条件5ではMg含有量が多いために熱間圧延割れを起こし、評価に至らなかった。 The influence of Mg content was investigated by comparison of manufacturing conditions 1-5. In production condition 1, since the Mg content was small, the LDR value was low, and warm formability exceeding that of JIS 5182 alloy could not be obtained. On the other hand, production conditions 2 to 4 are LDR exceeding JIS 5182 alloy, and the warm formability is improved as the Mg content is increased. In manufacturing condition 5, since there was much Mg content, the hot rolling crack was raise | generated and it did not reach evaluation.
製造条件3、6〜10の比較によりMn含有量の影響を調査した。製造条件6〜8はMn添加量が少なく、Mn固溶量とCr固溶量の和が小さいためJIS5182合金を上回る温間成形性を得られなかった。製造条件3、9はJIS5182合金を上回るLDR値であり、またMn含有量が多いほどMn固溶量が増加し、温間成形性は向上した。しかし製造条件10ではMn含有量が多すぎるために粗大な金属間化合物が生成し、成形性が悪化した。 The effect of Mn content was investigated by comparison of production conditions 3 and 6-10. In production conditions 6 to 8, the amount of Mn added was small, and the sum of the Mn solid solution amount and the Cr solid solution amount was small, so that warm formability exceeding that of JIS 5182 alloy could not be obtained. Production conditions 3 and 9 were LDR values exceeding those of JIS 5182 alloy, and as the Mn content increased, the Mn solid solution amount increased and the warm formability improved. However, since the Mn content was too high under production condition 10, a coarse intermetallic compound was produced, and the moldability deteriorated.
製造条件8、11〜15の比較によりCr含有量の影響を調査した。製造条件8、11ではCr固溶量が少なく、Mn固溶量とCr固溶量の和が小さいためLDR値が低く、JIS5182合金を上回る温間成形性を得られなかった。一方製造条件12〜14はJIS5182合金を上回るLDR値であり、またCr含有量が多いほどCr固溶量が増加し、温間成形性は向上する傾向であった。しかし製造条件15ではCr含有量が多すぎるために粗大な金属間化合物が生成し、成形性が悪化した。なお製造条件13では、Cr固溶量のみで成形性向上がなされている。 The effect of Cr content was investigated by comparison of production conditions 8, 11-15. Under production conditions 8 and 11, the Cr solid solution amount was small, and the sum of the Mn solid solution amount and the Cr solid solution amount was small, so the LDR value was low, and warm formability exceeding that of JIS 5182 alloy was not obtained. On the other hand, production conditions 12 to 14 were LDR values exceeding those of JIS 5182 alloy, and as the Cr content increased, the Cr solid solution amount increased and the warm formability tended to improve. However, under production condition 15, since the Cr content was too high, a coarse intermetallic compound was produced, and the formability deteriorated. In the manufacturing condition 13, the formability is improved only by the amount of Cr solid solution.
製造条件3、16〜20の比較によりCu含有量の影響を調査した。製造条件16ではCu含有量が少ないため大きなLDR値の向上は見られなかった。一方製造条件17〜19はCu含有量が多いほど温間成形性は向上する傾向であった。しかし製造条件20ではCu含有量が多すぎたために、成形性が悪化した。 The influence of Cu content was investigated by comparison of production conditions 3 and 16-20. In the production condition 16, since the Cu content was small, no significant improvement in the LDR value was observed. On the other hand, in the production conditions 17 to 19, the warm formability tended to improve as the Cu content increased. However, since the Cu content was too high under the production condition 20, the moldability deteriorated.
製造条件12、21〜23の比較によりSi含有量の影響を調査した。製造条件12、21、22はSi含有量が少ないためにAl−Mn系析出物の量は少なく、Mn固溶量が多いために、JIS5182合金以上の良好な温間成形性を維持した。一方で製造条件23はSi含有量が多すぎるためにMn固溶量が減少し、温間成形性が悪化した。
製造条件24はMnを粗大な析出物が生成しない上限値に近い含有量とし、Crを粗大な析出物が生成しない上限値の含有量としたものであるが、非常に良好な温間成形性を示した。
The influence of Si content was investigated by comparison of production conditions 12, 21-23. In production conditions 12, 21, and 22, since the Si content was small, the amount of Al—Mn-based precipitates was small, and the Mn solid solution amount was large. Therefore, good warm formability higher than that of JIS 5182 alloy was maintained. On the other hand, since the manufacturing condition 23 had too much Si content, the Mn solid solution amount decreased and the warm formability deteriorated.
Production condition 24 is such that Mn has a content close to the upper limit at which coarse precipitates are not generated, and Cr has an upper limit content at which coarse precipitates are not generated, but very good warm formability. showed that.
製造条件12、25〜28の比較により、熱処理時の冷却速度がMn固溶量および温間成形性の及ぼす影響を調査した。製造条件12、25、27は冷却速度が大きくMn固溶量が維持され、温間成形性も良好であった。一方製造条件26では全体の冷却速度は20℃/sec以上であるが、Al−Mn析出物の形成が盛んな400〜560℃の温度域で冷却速度が小さかったため、Mn固溶量が減少し、温間成形性が悪化した。また製造条件28も400〜560℃の温度域での冷却速度は大きいが、180〜400℃の温度域における冷却速度が小さかったためにMn固溶量が減少し、温間成形性が悪化した。 By comparing the production conditions 12, 25 to 28, the influence of the cooling rate during the heat treatment on the Mn solid solution amount and the warm formability was investigated. In production conditions 12, 25, and 27, the cooling rate was high, the Mn solid solution amount was maintained, and the warm formability was also good. On the other hand, under the production condition 26, the overall cooling rate is 20 ° C./sec or more, but the cooling rate was low in the temperature range of 400 to 560 ° C. where the formation of Al—Mn precipitates was active, so the Mn solid solution amount decreased. Warm formability deteriorated. Moreover, although the cooling rate in the temperature range of 400-560 degreeC was large also in the manufacturing conditions 28, since the cooling rate in the temperature range of 180-400 degreeC was small, the amount of Mn solid solution decreased and the warm formability deteriorated.
製造条件3、29、30の比較、および製造条件1、31の比較により冷間圧延率が結晶粒径および温間成形性に及ぼす影響を調査した。冷間圧延率を上げることで結晶粒は微細化し、温間成形性は向上する傾向にあった。特に製造条件30は冷間圧延率を75%とすることで結晶粒径が10μm以下になり、温間成形性は大きく向上した。一方製造条件31は冷間圧延率が低く、結晶粒径も25μmより大きくなり、LDR値は良好だが、成形品表面外観に肌荒れが生じた。 The effects of the cold rolling rate on the crystal grain size and the warm formability were investigated by comparing the production conditions 3, 29, 30 and the comparison of the production conditions 1, 31. By increasing the cold rolling rate, the crystal grains became finer and the warm formability tended to improve. In particular, in the production condition 30, the crystal grain size became 10 μm or less by setting the cold rolling rate to 75%, and the warm formability was greatly improved. On the other hand, in the production condition 31, the cold rolling rate was low, the crystal grain size was larger than 25 μm, the LDR value was good, but the surface appearance of the molded product was rough.
Claims (4)
Mn:2.50%以下、
Cr:0.50%以下のうちの1種または2種を含有し、
残部がAlおよび不可避不純物よりなり、かつ
{(Mn添加量(質量%))−(Mn析出物の面積率(%))×0.24}+{(Cr添加量(質量%))−(Cr析出物の面積率(%))×0.15}
が0.4以上であることを特徴とする温間成形用アルミニウム合金板。 Mg: 2.0-6.0% (mass%, the same shall apply hereinafter) and Mn: 2.50% or less,
Cr: containing one or two of 0.50% or less,
The balance consists of Al and inevitable impurities, and {(Mn addition amount (% by mass)) − (Mn precipitate area ratio (%)) × 0.24} + {(Cr addition amount (% by mass)) − ( Area ratio of Cr precipitates (%)) × 0.15}
Is an aluminum alloy sheet for warm forming.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011111438A JP5677193B2 (en) | 2011-05-18 | 2011-05-18 | Aluminum alloy sheet for warm forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011111438A JP5677193B2 (en) | 2011-05-18 | 2011-05-18 | Aluminum alloy sheet for warm forming |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012241225A JP2012241225A (en) | 2012-12-10 |
JP5677193B2 true JP5677193B2 (en) | 2015-02-25 |
Family
ID=47463262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011111438A Expired - Fee Related JP5677193B2 (en) | 2011-05-18 | 2011-05-18 | Aluminum alloy sheet for warm forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5677193B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1566800A (en) * | 1975-10-29 | 1980-05-08 | Ti Ltd | Aluminium base alloys |
JPH03107439A (en) * | 1989-09-22 | 1991-05-07 | Sky Alum Co Ltd | Aluminum alloy for warm forming |
JPH07310137A (en) * | 1994-05-12 | 1995-11-28 | Sky Alum Co Ltd | Aluminum alloy sheet for warm forming and its production |
JP4996853B2 (en) * | 2006-01-12 | 2012-08-08 | 古河スカイ株式会社 | Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product |
JP5266676B2 (en) * | 2007-07-05 | 2013-08-21 | 住友軽金属工業株式会社 | Warm forming method and molded product produced by the warm forming method |
-
2011
- 2011-05-18 JP JP2011111438A patent/JP5677193B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012241225A (en) | 2012-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015109893A1 (en) | Al-mg-si-cu-zn series alloy of fast ageing response type and preparation method therefor | |
CN106350716B (en) | A kind of high intensity appearance member aluminum alloy materials and preparation method thereof | |
JP5847987B2 (en) | Copper alloy containing silver | |
JP6227222B2 (en) | Aluminum alloy sheet with excellent bake hardenability | |
JP5113318B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
CN104775062A (en) | High-strength aluminum-alloy material, aluminum-alloy plate and manufacturing method thereof | |
JPH05263203A (en) | Production of rolled sheet of aluminum alloy for forming | |
JP2015040340A (en) | Molding aluminum alloy sheet and method for manufacturing the same | |
CN104775059A (en) | Al-Mg-Si series aluminum-alloy material with long-time natural aging stability, aluminum-alloy plate and manufacturing method thereof | |
JP6355098B2 (en) | High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same | |
JP3849095B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4602195B2 (en) | Method for producing aluminum alloy sheet for forming | |
JP3845312B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4130613B2 (en) | Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof | |
JP2017133054A (en) | High strength aluminum alloy sheet excellent in moldability and manufacturing method therefor | |
JP5367250B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2004027253A (en) | Aluminum alloy sheet for molding, and method of producing the same | |
JP6581347B2 (en) | Method for producing aluminum alloy plate | |
JP2008231475A (en) | Aluminum alloy sheet for forming workpiece, and producing method therefor | |
JP2009148822A (en) | Warm press-forming method for high-strength aluminum alloy sheet | |
JP2008223054A (en) | Aluminum alloy sheet for forming-work having excellent deep drawability and burning/softening resistance, and producing method therefor | |
JP4798943B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP5677193B2 (en) | Aluminum alloy sheet for warm forming | |
JP5495538B2 (en) | Warm press forming method of bake hardening type aluminum alloy plate | |
JP2678404B2 (en) | Manufacturing method of aluminum alloy sheet for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140402 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141128 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5677193 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |