JP5673874B2 - Periodic structure and wiring board - Google Patents

Periodic structure and wiring board Download PDF

Info

Publication number
JP5673874B2
JP5673874B2 JP2014008544A JP2014008544A JP5673874B2 JP 5673874 B2 JP5673874 B2 JP 5673874B2 JP 2014008544 A JP2014008544 A JP 2014008544A JP 2014008544 A JP2014008544 A JP 2014008544A JP 5673874 B2 JP5673874 B2 JP 5673874B2
Authority
JP
Japan
Prior art keywords
periodic structure
conductor
conductors
signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014008544A
Other languages
Japanese (ja)
Other versions
JP2014068043A (en
Inventor
茂夫 奈良
茂夫 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2014008544A priority Critical patent/JP5673874B2/en
Publication of JP2014068043A publication Critical patent/JP2014068043A/en
Application granted granted Critical
Publication of JP5673874B2 publication Critical patent/JP5673874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、周期構造体及び配線基板に関する。   The present invention relates to a periodic structure and a wiring board.

特許文献1には、シート状のシールド導体と絶縁体が積層され、絶縁体中に、シールド導体に接続されたシールドグラウンド線、シールド導体に接続されていない独立したグラウンド線及び高速信号線が平行に設けられており、シールドグラウンド線とグラウンド線は隣り合い、高速信号線はグラウンド線と隣り合ってシールドグラウンド線と隣り合わないように配置されたフレキシブルケーブルが記載されている。   In Patent Document 1, a sheet-like shield conductor and an insulator are stacked, and in the insulator, a shield ground line connected to the shield conductor, an independent ground line not connected to the shield conductor, and a high-speed signal line are parallel. A flexible cable is described in which the shield ground line and the ground line are adjacent to each other, and the high-speed signal line is adjacent to the ground line and not adjacent to the shield ground line.

特許文献2には、基板本体にシールドフィルムを巻き回すときに、シールドフィルムの端部付近の重複領域を、信号配線の平行に配置された部分に対して斜めに交差させ、各信号配線が重複領域を斜めに横断するようにした配線基板が記載されている。   In Patent Document 2, when a shield film is wound around a substrate body, an overlapping region near the end of the shield film is obliquely intersected with a portion arranged in parallel with the signal wiring, and each signal wiring is overlapped. A wiring board that crosses the region diagonally is described.

特許文献3には、プリント基板において、同一の基板面上に隣接して配置される2つのグランドが特性の違いから直接接続できない場合に、その2つのグランド間を、抵抗素子、コンデンサ、インダクタのうちのいずれか一つの回路素子を介して接続するプリント基板構造が記載されている。   In Patent Document 3, when two grounds arranged adjacent to each other on the same board surface cannot be directly connected in a printed circuit board due to a characteristic difference, a resistance element, a capacitor, and an inductor are connected between the two grounds. A printed circuit board structure is described which is connected via any one of the circuit elements.

特開2002−117726号公報JP 2002-117726 A 特開2007−035787号公報JP 2007-035787 A 特開2008−130584号公報JP 2008-130484 A

本発明は、第1の導体を辺同士が隣り合うように第1の方向及び第1の方向と交差する第2の方向に複数配列した周期構造体と比べて、透過抑制の対象となる信号に起因する電磁波の放射を低減させることができる周期構造体及び配線基板を提供することを目的とする。   The present invention is a signal subject to suppression of transmission compared to a periodic structure in which a plurality of first conductors are arranged in the first direction and the second direction intersecting the first direction so that the sides are adjacent to each other. It is an object of the present invention to provide a periodic structure and a wiring board that can reduce the radiation of electromagnetic waves caused by.

請求項1の発明の周期構造体は、第1の方向に対向するように配置された一対の隅部と前記第1の方向と交差する第2の方向に対向するように配置された一対の隅部とを備えた第1の導体を隅部同士が隣り合うように前記第1の方向及び前記第2の方向に複数配列した導体群と、前記第1の方向に沿って配列された前記第1の導体の隣り合う隅部の各々を接続する前記第1の導体より小さな複数の第2の導体と、前記第2の方向に沿って配列された前記第1の導体の隣り合う隅部の各々を接続する前記第1の導体より小さな複数の第3の導体と、を有し、前記第2の方向を、外部の信号層に配設された複数の信号線の延在方向としている。 The periodic structure according to claim 1 is a pair of corners arranged to face each other in a first direction and a pair of corners arranged to face each other in a second direction intersecting the first direction. A plurality of conductors arranged in the first direction and the second direction so that the corners are adjacent to each other, and the conductors arranged along the first direction. A plurality of second conductors smaller than the first conductor connecting each of the adjacent corners of the first conductor, and the adjacent corners of the first conductor arranged along the second direction a of said first third smaller plurality than conductors of conductors connecting each, a, a pre-Symbol second direction, extending Zaikata direction of the plurality of signal lines arranged outside the signal layer It is set to.

請求項2の発明は、請求項1に記載の周期構造体において、隣り合うように配置された4つの前記第1の導体で囲まれた領域の各々に、前記第1の導体、前記第2の導体、及び前記第3の導体のいずれにも接続されない第4の導体を設けたものである。   According to a second aspect of the present invention, in the periodic structure according to the first aspect, each of the first conductor and the second conductor is provided in each of the regions surrounded by the four first conductors arranged adjacent to each other. And a fourth conductor that is not connected to any of the third conductors.

請求項3の発明は、請求項2に記載の周期構造体において、前記第4の導体の各々に、接地された接続対象と電気的に接続するための少なくとも1つの接続孔を設けたものである。   The invention according to claim 3 is the periodic structure according to claim 2, wherein each of the fourth conductors is provided with at least one connection hole for electrically connecting to a grounded connection object. is there.

請求項4の発明の配線基板は、少なくとも1本の信号線が配設された信号層と、前記信号層と隣り合い、かつ請求項1から請求項3のいずれか1項記載の周期構造体を有する電源層と、を備えている。   A wiring board according to a fourth aspect of the present invention is a signal layer in which at least one signal line is disposed, the signal layer adjacent to the signal layer, and the periodic structure according to any one of the first to third aspects. And a power supply layer.

請求項5の発明の配線基板は、少なくとも1本の信号線が配設された信号層と、前記信号層と隣り合い、かつ請求項3記載の周期構造体を有する電源層と、前記接続孔を介して前記第4の導体と接続される接地層と、を備えている。   According to a fifth aspect of the present invention, there is provided a wiring board having at least one signal line, a power supply layer adjacent to the signal layer and having the periodic structure according to the third aspect, and the connection hole. And a ground layer connected to the fourth conductor via the first conductor.

請求項1に記載の発明によれば、第1の導体を辺同士が隣り合うように第1の方向及び第1の方向と交差する第2の方向に複数配列した周期構造体と比べて、透過抑制の対象となる信号に起因する電磁波の放射を低減させることができる。また、複数の信号線間のクロストークを低減させることができる。   According to the invention described in claim 1, compared to the periodic structure in which a plurality of first conductors are arranged in the first direction and the second direction intersecting the first direction so that the sides are adjacent to each other, It is possible to reduce the emission of electromagnetic waves caused by a signal that is subject to transmission suppression. Further, crosstalk between a plurality of signal lines can be reduced.

請求項2に記載の発明によれば、第4の導体を設けない構成と比較して上記信号に起因する電磁波の放射を更に低減させることができる。   According to the second aspect of the present invention, it is possible to further reduce the radiation of the electromagnetic wave caused by the signal as compared with the configuration in which the fourth conductor is not provided.

請求項3に記載の発明によれば、第4の導体に接続孔を設けない構成と比較して、上記信号に起因する電磁波の放射を更に低減させることができる。   According to the third aspect of the present invention, it is possible to further reduce the radiation of the electromagnetic wave caused by the signal as compared with the configuration in which the connection hole is not provided in the fourth conductor.

請求項4に記載の発明によれば、第1の導体を辺同士が隣り合うように第1の方向及び第1の方向と交差する第2の方向に複数配列した周期構造体が電源層に配置された場合と比べて、信号層に配設された信号線を伝搬する透過抑制の対象となる信号に起因する電磁波の放射を低減させることができる。   According to the invention of claim 4, the periodic structure in which a plurality of first conductors are arranged in the first direction and the second direction intersecting the first direction so that the sides are adjacent to each other is provided in the power supply layer. Compared with the case of being arranged, it is possible to reduce the radiation of electromagnetic waves caused by the signal that is the object of transmission suppression propagating through the signal line arranged in the signal layer.

請求項5に記載の発明によれば、第1の導体を辺同士が隣り合うように第1の方向及び第1の方向と交差する第2の方向に複数配列した周期構造体が電源層に配置された場合と比べて、信号層に配設された信号線を伝搬する透過抑制の対象となる信号に起因する電磁波の放射を低減させることができる。   According to the fifth aspect of the present invention, the power supply layer includes a periodic structure in which a plurality of first conductors are arranged in the first direction and the second direction intersecting the first direction so that the sides are adjacent to each other. Compared with the case of being arranged, it is possible to reduce the radiation of electromagnetic waves caused by the signal that is the object of transmission suppression propagating through the signal line arranged in the signal layer.

実施の形態に係る配線基板の上面模式図である。It is an upper surface schematic diagram of the wiring board which concerns on embodiment. 実施の形態に係る配線基板の断面模式図である。It is a cross-sectional schematic diagram of the wiring board which concerns on embodiment. 実施の形態に係る周期構造体の一例を示す上面図である。It is a top view which shows an example of the periodic structure which concerns on embodiment. 図2に示す周期構造体の一部を拡大した図である。It is the figure which expanded a part of periodic structure shown in FIG. 実施の形態に係る周期構造体の他の例を示す上面図である。It is a top view which shows the other example of the periodic structure which concerns on embodiment. 実施の形態に係る周期構造体の他の例を示す上面図である。It is a top view which shows the other example of the periodic structure which concerns on embodiment. 図5に示す第4の導体の拡大図である。It is an enlarged view of the 4th conductor shown in FIG. 従来の周期構造体の一例を示す上面図である。It is a top view which shows an example of the conventional periodic structure. 図2、図4、図5、及び図7に示す各周期構造体において測定点1から測定点2まで信号を伝搬させたときの周波数に対する放射電界強度の変化の測定結果の一例を示す図である。FIG. 8 is a diagram illustrating an example of a measurement result of a change in radiated electric field intensity with respect to a frequency when a signal is propagated from measurement point 1 to measurement point 2 in each periodic structure shown in FIGS. 2, 4, 5, and 7. is there. 図7に示す従来の周期構造体について測定されたx方向の電界のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the surface near the z direction of the electric field of the x direction measured about the conventional periodic structure shown in FIG. 図2に示す周期構造体について測定されたx方向の電界のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the surface near the z direction of the electric field of the x direction measured about the periodic structure shown in FIG. 図7に示す従来の周期構造体について測定されたy方向の電界のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the surface near the z direction of the electric field of the y direction measured about the conventional periodic structure shown in FIG. 図2に示す周期構造体について測定されたy方向の電界のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the surface near the z direction of the electric field of the y direction measured about the periodic structure shown in FIG. 図7に示す従来の周期構造体について測定されたz方向の電界のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the surface near the z direction of the electric field of the z direction measured about the conventional periodic structure shown in FIG. 図2に示す周期構造体について測定されたz方向の電界のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the surface near the z direction of the electric field of the z direction measured about the periodic structure shown in FIG. 図7に示す従来の周期構造体について測定されたx方向、y方向、及びz方向の各電界をベクトル合成した絶対値のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the near surface of the z direction of the absolute value which carried out the vector synthesis | combination of each electric field of the x direction, y direction, and z direction measured about the conventional periodic structure shown in FIG. 図2に示す周期構造体について測定されたx方向、y方向、及びz方向の各電界をベクトル合成した絶対値のz方向の近傍面における電界分布の一例を示す図である。It is a figure which shows an example of the electric field distribution in the near surface of the z direction of the absolute value which carried out vector composition of each electric field of the x direction, y direction, and z direction measured about the periodic structure shown in FIG. 図2、図4、図5、及び図7に示す各周期構造体において測定点1から測定点2まで信号を伝搬させたときの周波数に対する透過量(S21)の変化の測定結果の一例を示す図である。An example of a measurement result of a change in transmission amount (S21) with respect to a frequency when a signal is propagated from measurement point 1 to measurement point 2 in each periodic structure shown in FIGS. 2, 4, 5, and 7 is shown. FIG. 単一の導体が設けられた領域に対して、該領域の上層にy方向に沿って延在する2本の信号線をx方向に離間させて配設した状態を示す図である。It is a figure which shows the state which has arrange | positioned the two signal lines extended along the y direction on the upper layer of this area | region with respect to the area | region in which the single conductor was provided spaced apart in the x direction. 図2に示す周期構造体が設けられた領域に対して、該領域の上層にy方向に沿って延在する2本の信号線をx方向に離間させて配設した状態を示す図である。FIG. 3 is a diagram showing a state in which two signal lines extending along the y direction are arranged in the upper layer of the region and separated from each other in the x direction with respect to the region where the periodic structure shown in FIG. 2 is provided. . 図4に示す周期構造体が設けられた領域に対して、該領域の上層にy方向に沿って延在する2本の信号線をx方向に離間させて配設した状態を示す図である。FIG. 5 is a diagram showing a state in which two signal lines extending along the y direction are arranged in the upper layer of the region and separated from each other in the x direction with respect to the region where the periodic structure shown in FIG. 4 is provided. . 図5に示す周期構造体が設けられた領域に対して、該領域の上層にy方向に沿って延在する2本の信号線をx方向に離間させて配設した状態を示す図である。FIG. 6 is a diagram showing a state in which two signal lines extending along the y direction are arranged in the upper layer of the region and separated from each other in the x direction with respect to the region where the periodic structure shown in FIG. 5 is provided. . 図14Aに示す導体における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the permeation | transmission amount change to each measurement point with respect to the frequency in the conductor shown to FIG. 14A. 図14Bに示す周期構造体における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the change of the permeation | transmission amount to each measurement point with respect to the frequency in the periodic structure shown to FIG. 14B. 図14Cに示す周期構造体における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the permeation | transmission amount to each measurement point with respect to the frequency in the periodic structure shown to FIG. 14C. 図14Dに示す周期構造体における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the permeation | transmission amount to each measurement point with respect to the frequency in the periodic structure shown to FIG. 14D. 図15〜図18の各々から、S41の測定結果を抽出して示した図である。It is the figure which extracted and showed the measurement result of S41 from each of FIGS. 図14Bに示す周期構造体に対して2本の信号線をx方向に対して71.4度傾けて配置した状態を示す図である。FIG. 14B is a diagram showing a state in which two signal lines are inclined with respect to the x direction by 71.4 degrees with respect to the periodic structure shown in FIG. 14B. 図14Bに示す周期構造体に対して2本の信号線をx方向に対して56.1度傾けて配置した状態を示す図である。FIG. 14B is a diagram showing a state in which two signal lines are inclined with respect to the x direction by 56.1 degrees with respect to the periodic structure shown in FIG. 14B. 図14Bに示す周期構造体に対して2本の信号線をx方向に対して44.7度傾けて配置した状態を示す図である。FIG. 14B is a diagram showing a state where two signal lines are inclined with respect to the x direction by 44.7 degrees with respect to the periodic structure shown in FIG. 14B. 図14Bに示す周期構造体に対して図20A〜Cに示すように2本の信号線を配置した場合において、測定点1から測定点2まで信号を伝搬させたときのS41の測定結果の一例を示した図である。An example of the measurement result of S41 when a signal is propagated from measurement point 1 to measurement point 2 when two signal lines are arranged as shown in FIGS. 20A to 20C with respect to the periodic structure shown in FIG. 14B. FIG. 図14Aに示す導体に対して2本の信号線をx方向に71.4度傾けて配置した状態を示す図である。FIG. 14B is a diagram showing a state in which two signal lines are inclined by 71.4 degrees in the x direction with respect to the conductor shown in FIG. 14A. 図14Aに示す導体に対して2本の信号線をx方向に56.1度傾けて配置した状態を示す図である。FIG. 14B is a diagram showing a state in which two signal lines are inclined with respect to the conductor shown in FIG. 14A by 56.1 degrees in the x direction. 図14Aに示す導体に対して2本の信号線をx方向に44.7度傾けて配置した状態を示す図である。FIG. 14B is a diagram showing a state in which two signal lines are inclined by 44.7 degrees in the x direction with respect to the conductor shown in FIG. 14A. 図14Aに示す導体に対して図22A〜Cに示すように2本の信号線を配置した場合に、測定点1から測定点2まで信号を伝搬させたときのS41の測定結果の一例を示した図である。FIG. 14A shows an example of the measurement result of S41 when a signal is propagated from measurement point 1 to measurement point 2 when two signal lines are arranged as shown in FIGS. 22A to 22C with respect to the conductor shown in FIG. 14A. It is a figure. 第4の導体に接続孔が設けられた周期構造体の他の例を示す図である。It is a figure which shows the other example of the periodic structure body by which the connection hole was provided in the 4th conductor. 第4の導体に接続孔が設けられた周期構造体の他の例を示す図である。It is a figure which shows the other example of the periodic structure body by which the connection hole was provided in the 4th conductor. 第4の導体に接続孔が設けられた周期構造体の他の例を示す図である。It is a figure which shows the other example of the periodic structure body by which the connection hole was provided in the 4th conductor. 第4の導体に接続孔が設けられた周期構造体の他の例を示す図である。It is a figure which shows the other example of the periodic structure body by which the connection hole was provided in the 4th conductor. 接続孔が設けられていない周期構造体、図24A〜D及び図5に示す接続孔が設けられた周期構造体の各々において、測定点1から測定点2まで信号を伝搬させたときの周波数に対する放射電界強度の変化の測定結果の一例を示す図である。In each of the periodic structure having no connection hole and the periodic structure having the connection hole shown in FIGS. 24A to 24D and FIG. 5, the frequency with respect to the frequency when the signal is propagated from the measurement point 1 to the measurement point 2 It is a figure which shows an example of the measurement result of the change of radiation electric field strength. 接続孔が設けられていない周期構造体、図24A〜D及び図5に示す接続孔が設けられた周期構造体の各々において、測定点1から測定点2まで信号を伝搬させたときの周波数に対するS21の変化の測定結果の一例を示す図である。In each of the periodic structure having no connection hole and the periodic structure having the connection hole shown in FIGS. 24A to 24D and FIG. 5, the frequency with respect to the frequency when the signal is propagated from the measurement point 1 to the measurement point 2 is shown. It is a figure which shows an example of the measurement result of the change of S21. 図25に示す測定結果から6.5〜8.5GHzの周波数帯域における測定結果を抽出して示した図である。It is the figure which extracted and showed the measurement result in the 6.5-8.5 GHz frequency band from the measurement result shown in FIG. 図25に示す測定結果から9〜11GHzの周波数帯域における測定結果を抽出して示した図である。It is the figure which extracted and showed the measurement result in a 9-11 GHz frequency band from the measurement result shown in FIG. 図25に示す測定結果から12〜14GHzの周波数帯域における測定結果を抽出して示した図である。It is the figure which extracted and showed the measurement result in a 12-14 GHz frequency band from the measurement result shown in FIG. 図25に示す測定結果から14〜16GHzの周波数帯域における測定結果を抽出して示した図である。It is the figure which extracted and showed the measurement result in the 14-16 GHz frequency band from the measurement result shown in FIG. 図25に示す測定結果から17〜19GHzの周波数帯域における測定結果を抽出して示した図である。It is the figure which extracted and showed the measurement result in the frequency band of 17-19 GHz from the measurement result shown in FIG.

以下、図面を参照して、様々な実施の形態について詳細に説明する。   Hereinafter, various embodiments will be described in detail with reference to the drawings.

[第1の実施の形態] [First Embodiment]

まず、図1を参照して、一実施の形態に係る配線基板の構成を説明する。
図1Aは、本実施の形態に係る配線基板10の上面模式図であり、図1Bは配線基板10の断面模式図である。
First, a configuration of a wiring board according to an embodiment will be described with reference to FIG.
FIG. 1A is a schematic top view of the wiring board 10 according to the present embodiment, and FIG. 1B is a schematic cross-sectional view of the wiring board 10.

配線基板10は、信号層10a、電源層10b、及び接地層10cを備えている。信号層10a、電源層10b、及び接地層10cの各々は、互いに絶縁層を挟んで積層されている。なお、ここでは、配線基板10を、信号層10a、電源層10b、及び接地層10cの各々を絶縁層を挟んで1層ずつ積層した多層配線基板として説明するが、こうした構造に限定するものではなく、接地層がない構成としてもよいし、信号層が2層以上あってもよいし、電源層や接地層が2層以上あってもよい。また、信号層10aが電源層10bと接地層10cとに挟まれて設けられていてもよい。   The wiring board 10 includes a signal layer 10a, a power supply layer 10b, and a ground layer 10c. Each of the signal layer 10a, the power supply layer 10b, and the ground layer 10c is laminated with an insulating layer interposed therebetween. Here, the wiring board 10 will be described as a multilayer wiring board in which each of the signal layer 10a, the power supply layer 10b, and the ground layer 10c is laminated one by one with an insulating layer in between. However, the present invention is not limited to such a structure. Alternatively, there may be a configuration without a ground layer, or there may be two or more signal layers, or there may be two or more power supply layers or ground layers. Further, the signal layer 10a may be provided between the power supply layer 10b and the ground layer 10c.

信号層10aには、メモリ11、LSI(Large Scale Integration:集積回路)12、メモリ11及びLSI12を接続する複数の信号線13が設けられている。また、信号層10aには、端子14、15が設けられている。LSI12は、信号線16を介して端子14に接続されると共に、信号線17を介して端子15に接続される。端子14、15は他の配線基板に接続されており、LSI12は、信号線16,17、および端子14,15を介して他の配線基板と互いに信号をやりとりする。なお、本実施の形態に係る信号層10aに配設された配線や回路は一例であり、これに限定されるものではない。   The signal layer 10 a is provided with a memory 11, an LSI (Large Scale Integration) 12, and a plurality of signal lines 13 that connect the memory 11 and the LSI 12. Further, terminals 14 and 15 are provided in the signal layer 10a. The LSI 12 is connected to the terminal 14 through the signal line 16 and is connected to the terminal 15 through the signal line 17. The terminals 14 and 15 are connected to other wiring boards, and the LSI 12 exchanges signals with other wiring boards via the signal lines 16 and 17 and the terminals 14 and 15. Note that the wirings and circuits arranged in the signal layer 10a according to the present embodiment are examples, and the present invention is not limited to this.

電源層10bには、不図示の電力供給部からの電力を電力供給対象に供給する。接地層10cは接地されている。   The power supply layer 10b is supplied with power from a power supply unit (not shown) to a power supply target. The ground layer 10c is grounded.

信号層10aにおける信号線16,17が配置された領域に対応する電源層10bの領域(図1A及び図1Bの太破線で示す領域)には、大きさの異なる複数の導体が周期的に配置され接続された周期構造体が配置されている。   A plurality of conductors having different sizes are periodically arranged in a region of the power supply layer 10b corresponding to a region where the signal lines 16 and 17 are disposed in the signal layer 10a (a region indicated by a thick broken line in FIGS. 1A and 1B). The connected periodic structures are arranged.

図2に周期構造体の一例を示す。図3は図2に示す周期構造体の一部を拡大した図である。この周期構造体22は、x方向に対向するように配置された一対の隅部31a、31bとy方向に対向するように配置された一対の隅部31c、31dとを備えた第1の導体31を隅部同士が隣り合うようにx方向及びy方向に複数配列した導体群30を備えている。   FIG. 2 shows an example of the periodic structure. FIG. 3 is an enlarged view of a part of the periodic structure shown in FIG. The periodic structure 22 includes a first conductor including a pair of corner portions 31a and 31b disposed so as to face each other in the x direction and a pair of corner portions 31c and 31d disposed so as to face each other in the y direction. A conductor group 30 is provided in which a plurality of 31 are arranged in the x direction and the y direction so that the corners are adjacent to each other.

また、この周期構造体22は、x方向に沿って配列された第1の導体31の隣り合う隅部の各々を接続する第1の導体31より小さな第2の導体32を複数備えている。また、この周期構造体22は、y方向に沿って配列された第1の導体31の隣り合う隅部の各々を接続する第1の導体31より小さな第3の導体33を複数備えている。   The periodic structure 22 includes a plurality of second conductors 32 that are smaller than the first conductors 31 that connect adjacent corners of the first conductors 31 that are arranged along the x direction. The periodic structure 22 includes a plurality of third conductors 33 that are smaller than the first conductors 31 connecting the adjacent corners of the first conductors 31 arranged along the y direction.

ここに挙げた例では、第1の導体31を正方形状とし、第2の導体32、および第3の導体33を長方形状としているが、各導体は該形状に限定されるものではない。また、第2の導体32及び第3の導体33の大きさ及び形状は同じであってもよいし、異なっていてもよい。   In the example given here, the first conductor 31 has a square shape, and the second conductor 32 and the third conductor 33 have a rectangular shape. However, each conductor is not limited to this shape. The size and shape of the second conductor 32 and the third conductor 33 may be the same or different.

図4に本実施の形態に係る周期構造体の他の例を示す。図4に示す周期構造体24は、図2に示す周期構造体22の構造に加え、隣り合うように配置された4つの第1の導体31で囲まれた領域の各々に、第1の導体31、第2の導体32、及び第3の導体33のいずれにも接続されない第4の導体34が配置されて構成されている。   FIG. 4 shows another example of the periodic structure according to the present embodiment. In addition to the structure of the periodic structure 22 shown in FIG. 2, the periodic structure 24 shown in FIG. 4 includes a first conductor in each of the regions surrounded by the four first conductors 31 arranged adjacent to each other. 31, a second conductor 32, and a fourth conductor 34 that is not connected to any of the third conductors 33 is disposed.

なお、第4の導体34の各々はシールド導体としての役割を担い、電気的にはフローティング状態(電気的にいかなる電位点にも接続されていない浮いた状態)となっている。また、ここに挙げた例では、第4の導体34を正方形状としているが、第4の導体34は該形状に限定されるものではない。   Note that each of the fourth conductors 34 plays a role as a shield conductor, and is in an electrically floating state (a floating state that is not electrically connected to any potential point). In the example given here, the fourth conductor 34 has a square shape, but the fourth conductor 34 is not limited to this shape.

図5に本実施の形態に係る周期構造体の他の例を示す。図5に示す周期構造体26は、図2に示す周期構造体22の構造に加え、隣り合うように配置された4つの第1の導体31で囲まれた領域の各々に、第1の導体31、第2の導体32、及び第3の導体33のいずれにも接続されない第4の導体35が配置されて構成されている。図6は、第4の導体35の拡大図である。図6に示すように、周期構造体26の第4の導体35には、接地層10cに電気的に接続するための接続孔(ビアともいう)36が格子状に25個設けられている。第4の導体35は、接続孔36により接地層10cに電気的に接続される。なお、本実施の形態では、接続孔36が設けられていない第4の導体には34の符号を付し、接続孔36が設けられた第4の導体には符号35を付して区別した。   FIG. 5 shows another example of the periodic structure according to the present embodiment. In addition to the structure of the periodic structure 22 shown in FIG. 2, the periodic structure 26 shown in FIG. 5 includes a first conductor in each of the regions surrounded by the four first conductors 31 arranged adjacent to each other. 31, a second conductor 32, and a fourth conductor 35 that is not connected to any of the third conductors 33 is disposed. FIG. 6 is an enlarged view of the fourth conductor 35. As shown in FIG. 6, the fourth conductor 35 of the periodic structure 26 is provided with 25 connection holes (also referred to as vias) 36 for electrical connection to the ground layer 10 c in a lattice shape. The fourth conductor 35 is electrically connected to the ground layer 10 c through the connection hole 36. In the present embodiment, the fourth conductor in which the connection hole 36 is not provided is denoted by reference numeral 34, and the fourth conductor in which the connection hole 36 is provided is identified by reference numeral 35. .

第4の導体35の各々はシールド導体としての役割を担う。また、ここに挙げた例では、第4の導体35を正方形状としているが、第4の導体35は該形状に限定されるものではない。また、接続孔36の個数は少なくとも1個以上であればよく、上記に限定されるものではなく、また接続孔36の配置状態も格子状に限定されるものではない。   Each of the fourth conductors 35 plays a role as a shield conductor. In the example given here, the fourth conductor 35 has a square shape, but the fourth conductor 35 is not limited to this shape. Further, the number of the connection holes 36 is not limited to the above as long as it is at least one, and the arrangement state of the connection holes 36 is not limited to the lattice shape.

次に、図2、図4、及び図5に示す周期構造体22、24、26の特性について説明する。   Next, the characteristics of the periodic structures 22, 24, and 26 shown in FIGS. 2, 4, and 5 will be described.

まず、周期構造体22、24、26に対する比較例としての従来の周期構造体28について説明する。   First, a conventional periodic structure 28 as a comparative example for the periodic structures 22, 24, 26 will be described.

図7に示す従来の周期構造体28は、x方向に対向するように配置された一対の辺とy方向に対向するように配置された一対の辺とを備えた第1の導体41を辺同士が隣り合うようにx方向及びy方向に複数配列した導体群40と、x方向に沿って配列された第1の導体41の隣り合う辺の各々を接続する第1の導体41より小さな複数の第2の導体42と、y方向に沿って配列された第1の導体41の隣り合う辺の各々を接続する第1の導体41より小さな複数の第3の導体43と、を備えている。   The conventional periodic structure 28 shown in FIG. 7 includes a first conductor 41 having a pair of sides arranged so as to face each other in the x direction and a pair of sides arranged so as to face each other in the y direction. A plurality of conductor groups 40 arranged in the x direction and the y direction so as to be adjacent to each other and a plurality of conductors smaller than the first conductor 41 connecting each of the adjacent sides of the first conductors 41 arranged in the x direction. Second conductors 42 and a plurality of third conductors 43 smaller than the first conductors 41 connecting adjacent sides of the first conductors 41 arranged along the y direction. .

図8は、図2、図4、図5、及び図7に示す各周期構造体において測定点1から測定点2まで信号を伝搬させたときの周波数に対する放射電界強度の変化の測定結果の一例を示す図である。ここで、(1)は周期構造体22における測定結果、(2)は周期構造体24における測定結果、(3)は周期構造体26における測定結果、(4)は従来の周期構造体28における測定結果を示す。なお、測定条件は以下の通りである。   FIG. 8 shows an example of the measurement result of the change in the intensity of the radiated electric field with respect to the frequency when the signal is propagated from the measurement point 1 to the measurement point 2 in each periodic structure shown in FIG. 2, FIG. 4, FIG. 5, and FIG. FIG. Here, (1) is the measurement result in the periodic structure 22, (2) is the measurement result in the periodic structure 24, (3) is the measurement result in the periodic structure 26, and (4) is in the conventional periodic structure 28. The measurement results are shown. Measurement conditions are as follows.

(a)図2の周期構造体22の測定条件
・第1の導体31のx方向の配列個数:6個
・第1の導体31のy方向の配列個数:3個
・第1の導体31の形状及び大きさ:対角線の長さが15mmの正方形状
・第2の導体32の形状及び大きさ:第1の導体31と接触しない辺の長さを0.5mm、第1の導体31と接触する辺の長さを1mmとする長方形状
・第3の導体33の形状及び大きさ:第1の導体31と接触しない辺の長さを0.5mm、第1の導体31と接触する辺の長さを1mmとする長方形状
・周期構造体22全体の大きさ:x方向が92.5mm、y方向が46mm
(A) Measurement conditions of the periodic structure 22 in FIG. 2 • Number of arrangements of the first conductors 31 in the x direction: 6 pieces • Number of arrangements of the first conductors 31 in the y direction: 3 pieces • of the first conductors 31 Shape and size: Square shape with a diagonal length of 15 mm. Shape and size of second conductor 32: Length of side not in contact with first conductor 31 is 0.5 mm and in contact with first conductor 31. Rectangular shape with side length of 1 mm / shape and size of third conductor 33: length of side not in contact with first conductor 31 is 0.5 mm, length of side in contact with first conductor 31 The overall size of the rectangular / periodic structure 22 with 1 mm of: 92.5 mm in the x direction and 46 mm in the y direction

(b)図4の周期構造体24の測定条件
・第1の導体31の配列個数、第1の導体31の形状及び大きさ、第2の導体32の形状及び大きさ、及び第3の導体33の形状及び大きさ、周期構造体24全体の大きさについては測定条件(a)と同じ
・第4の導体34の形状:対角線の長さが13mmの正方形状
(B) Measurement conditions for the periodic structure 24 in FIG. 4. Number of arrangement of the first conductors 31, shape and size of the first conductor 31, shape and size of the second conductor 32, and third conductor The shape and size of 33 and the size of the periodic structure 24 as a whole are the same as the measurement condition (a). Shape of the fourth conductor 34: square shape with a diagonal length of 13 mm

(c)図5の周期構造体26の測定条件
・第1の導体31の配列個数、第1の導体31の形状及び大きさ、第2の導体32の形状及び大きさ、及び第3の導体33の形状及び大きさ、周期構造体26全体の大きさについては測定条件(a)と同じ
・第4の導体35の形状及び大きさ:対角線の長さが13mmの正方形状
・接続孔36の形状及び大きさ:一辺が0.5mmの正方形状
・接続孔36の個数及び配置状態:25個、格子状
(C) Measurement conditions for the periodic structure 26 in FIG. 5-Number of first conductors 31 arranged, shape and size of the first conductor 31, shape and size of the second conductor 32, and third conductor The shape and size of 33 and the size of the entire periodic structure 26 are the same as the measurement condition (a). Shape and size of the fourth conductor 35: square shape with a diagonal length of 13 mm. Shape and size: Square shape with a side of 0.5 mm ・ Number and arrangement of connection holes 36: 25, lattice shape

(d)図7の従来の周期構造体28の測定条件
・第1の導体41のx方向の配列個数:6個
・第1の導体41のy方向の配列個数:3個
・第1の導体41の形状及び大きさ:一辺の長さが15mmの正方形状
・第2の導体42の形状及び大きさ:第1の導体41と接触しない辺の長さを0.5mm、第1の導体41と接触する辺の長さを1mmとする長方形状
・第3の導体43の形状及び大きさ:第1の導体41と接触しない辺の長さを0.5mm、第1の導体41と接触する辺の長さを1mmとする長方形状
・周期構造体28全体の大きさ:x方向が92.5mm、y方向が46mm
(D) Measurement conditions of the conventional periodic structure 28 in FIG. 7 • Number of arrangements of the first conductors 41 in the x direction: 6 pieces • Number of arrangements of the first conductors 41 in the y direction: 3 pieces • First conductors 41 shape and size: square shape with a side length of 15 mm. Shape and size of second conductor 42: length of side not in contact with first conductor 41 is 0.5 mm. The shape and size of the rectangular shape / third conductor 43 with a side length of 1 mm in contact: the length of the side not in contact with the first conductor 41 is 0.5 mm, and the side in contact with the first conductor 41 Overall size of the rectangular / periodic structure 28 with a length of 1 mm: 92.5 mm in the x direction and 46 mm in the y direction

第1の導体31を隅部同士が隣り合うようにx方向及びy方向に複数配列した周期構造体22、24、26は、第1の導体41を辺同士が隣り合うようにx方向及びy方向に複数配列した周期構造体28に比べて、第1の導体41同士の電気的な結合が小さい。   The periodic structures 22, 24, and 26 in which a plurality of first conductors 31 are arranged in the x direction and the y direction so that the corners are adjacent to each other include the first conductor 41 in the x direction and the y direction so that the sides are adjacent to each other. The electrical coupling between the first conductors 41 is small as compared to the periodic structures 28 arranged in the direction.

図8において、(1)〜(3)の測定結果と(4)の測定結果とを比較すると、6.5〜8GHz以外の周波数帯域で周期構造体22、24、26における放射電界強度は従来の周期構造体28より低く、放射電界特性が改善されている。   In FIG. 8, when the measurement results of (1) to (3) and the measurement result of (4) are compared, the radiated electric field intensity in the periodic structures 22, 24, and 26 in the frequency band other than 6.5 to 8 GHz is the conventional period. Lower than the structure 28, the radiation field characteristics are improved.

また、(1)の周期構造体22についての測定結果と、(2)の周期構造体24についての測定結果とを比較すると、6.5GHz以上の周波数帯域において周期構造体24における放射電界強度は周期構造体22における放射電界強度より低く、放射電界特性が改善されている。   Further, when the measurement result of the periodic structure 22 in (1) is compared with the measurement result of the periodic structure 24 in (2), the radiated electric field intensity in the periodic structure 24 is periodic in the frequency band of 6.5 GHz or higher. The radiation field strength is lower than the radiation field strength in the structure 22, and the radiation field characteristics are improved.

さらに、(2)の周期構造体24についての測定結果と、(3)の周期構造体26についての測定結果とを比較すると、6.5GHz以上の周波数帯域において周期構造体26における放射電界強度は周期構造体24における放射電界強度より低く、放射電界特性が改善されている。   Further, when the measurement result of the periodic structure 24 in (2) and the measurement result of the periodic structure 26 in (3) are compared, the radiated electric field intensity in the periodic structure 26 is periodic in the frequency band of 6.5 GHz or more. The radiation field characteristics are improved by being lower than the radiation field intensity in the structure 24.

図9〜図12は、周期構造体22及び従来の周期構造体28において、上記と同じ測定条件で、測定点1から測定点2まで周波数5GHzかつ電力1Wの信号を伝搬させて測定した各周期構造体における電界分布の一例を模式的に表した図である。なお、測定条件は、上記測定条件(a)、(d)と同じである。図9〜図12において、向かって左下部分が測定点1に対応し、向かって右上部分が測定点2に対応する。   9 to 12 show each period measured by propagating a signal having a frequency of 5 GHz and a power of 1 W from the measurement point 1 to the measurement point 2 in the periodic structure 22 and the conventional periodic structure 28 under the same measurement conditions as described above. It is the figure which represented typically an example of the electric field distribution in a structure. The measurement conditions are the same as the measurement conditions (a) and (d). 9 to 12, the lower left portion corresponds to the measurement point 1 and the upper right portion corresponds to the measurement point 2.

図9Aは、従来の周期構造体28について測定されたx方向の電界のz方向の近傍面における電界分布の一例を示す図であり、図9Bは、周期構造体22について測定されたx方向の電界のz方向の近傍面における電界分布の一例を示す図である。   FIG. 9A is a diagram showing an example of an electric field distribution in the vicinity of the z-direction electric field measured for the conventional periodic structure 28, and FIG. 9B is an x-direction measured for the periodic structure 22. It is a figure which shows an example of the electric field distribution in the surface near the z direction of an electric field.

図10Aは、従来の周期構造体28について測定されたy方向の電界のz方向の近傍面における電界分布の一例を示す図であり、図10Bは、周期構造体22について測定されたy方向の電界のz方向の近傍面における電界分布の一例を示す図である。   FIG. 10A is a diagram illustrating an example of an electric field distribution in the vicinity of the z-direction of the electric field in the y direction measured for the conventional periodic structure 28, and FIG. It is a figure which shows an example of the electric field distribution in the surface near the z direction of an electric field.

図11Aは、従来の周期構造体28について測定されたz方向の電界のz方向の近傍面における電界分布の一例を示す図であり、図11Bは、周期構造体22について測定されたz方向の電界のz方向の近傍面における電界分布の一例を示す図である。   FIG. 11A is a diagram illustrating an example of an electric field distribution in the vicinity surface in the z direction of the electric field in the z direction measured for the conventional periodic structure 28, and FIG. 11B is a diagram in the z direction measured for the periodic structure 22. It is a figure which shows an example of the electric field distribution in the surface near the z direction of an electric field.

図12Aは、図9A、図10A、図11Aに示した従来の周期構造体28について測定されたx方向、y方向、及びz方向の各電界をベクトル合成した絶対値のz方向の近傍面における電界分布の一例を示す図であり、図12Bは、図9B、図10B、図11Bに示した周期構造体22について測定されたx方向、y方向、及びz方向の各電界をベクトル合成した絶対値のz方向の近傍面における電界分布の一例を示す図である。   FIG. 12A shows an absolute value obtained by vector synthesis of the electric fields in the x-direction, y-direction, and z-direction measured for the conventional periodic structure 28 shown in FIGS. 9A, 10A, and 11A in the vicinity surface in the z-direction. FIG. 12B is a diagram illustrating an example of the electric field distribution, and FIG. 12B is an absolute value obtained by vector synthesis of the electric fields in the x, y, and z directions measured for the periodic structure 22 shown in FIGS. 9B, 10B, and 11B. It is a figure which shows an example of the electric field distribution in the surface near the z direction of a value.

図9〜図12に示すように、いずれの測定結果においても、周期構造体22の方が、従来の周期構造体28に比べて、信号源である測定点1からの電界の広がりが小さい。   As shown in FIGS. 9 to 12, in any measurement result, the periodic structure 22 has a smaller electric field spread from the measurement point 1 as the signal source than the conventional periodic structure 28.

図13は、図2、図4、図5、及び図7に示す各周期構造体において測定点1から測定点2まで信号を伝搬させたときの周波数に対する透過量(以下、S21と呼称する)の変化の測定結果の一例を示す図である。ここで、(1)が周期構造体22における測定結果、(2)が周期構造体24における測定結果、(3)が周期構造体26における測定結果、(4)が従来の周期構造体28における測定結果である。なお、測定条件は図8の放射電界強度についての測定条件(a)〜(d)と同じである。図13において、0に近いほど減衰量が小さい(透過量が大きい)ことを示している。   FIG. 13 shows the transmission amount with respect to the frequency when a signal is propagated from measurement point 1 to measurement point 2 in each periodic structure shown in FIGS. 2, 4, 5, and 7 (hereinafter referred to as S21). It is a figure which shows an example of the measurement result of a change. Here, (1) is the measurement result in the periodic structure 22, (2) is the measurement result in the periodic structure 24, (3) is the measurement result in the periodic structure 26, and (4) is in the conventional periodic structure 28. It is a measurement result. The measurement conditions are the same as the measurement conditions (a) to (d) for the radiation electric field intensity in FIG. In FIG. 13, the closer to 0, the smaller the attenuation amount (the larger the transmission amount).

図13において、(1)の周期構造体22、(2)の周期構造体24、及び(3)の周期構造体26についての測定結果と、(4)の従来の周期構造体28についての測定結果とを比較すると、2GHzを超える高周波数帯域では、周期構造体22,24、26のS21の値は、従来の周期構造体28に比べて高いものの、周期構造体22,24、26を設けた場合、S21=0に比べて、十分小さなS21の特性が得られている。なお、直流成分に近い2GHz以下の低周波数帯域では、周期構造体22、24、26のいずれにおいても減衰量が小さく、周期構造体22、24、26を電源層10bに設ける場合には、十分な電源供給性能が得られる。   In FIG. 13, the measurement results for the periodic structure 22 of (1), the periodic structure 24 of (2), and the periodic structure 26 of (3), and the measurement of the conventional periodic structure 28 of (4). Comparing the results, in the high frequency band exceeding 2 GHz, the values of S21 of the periodic structures 22, 24, 26 are higher than those of the conventional periodic structure 28, but the periodic structures 22, 24, 26 are provided. In this case, a sufficiently small characteristic of S21 is obtained compared to S21 = 0. It should be noted that in the low frequency band of 2 GHz or less close to the direct current component, the attenuation amount is small in any of the periodic structures 22, 24, and 26, which is sufficient when the periodic structures 22, 24, and 26 are provided in the power supply layer 10b. Power supply performance can be obtained.

次に、周期構造体22、24、26についての、複数の信号線間に生じるクロストーク(信号漏れ、干渉)に関する特性について、周期構造体22と同じ外形だが周期構造を有しない単一の導体29(図14A参照)と比較して説明する。   Next, with respect to the characteristics related to crosstalk (signal leakage, interference) generated between a plurality of signal lines for the periodic structures 22, 24, and 26, a single conductor having the same external shape as the periodic structure 22 but having no periodic structure is used. 29 (see FIG. 14A).

ここでは、図14A〜Dに示すように、導体29、及び周期構造体22、24、26が設けられた領域の各々の上層に、y方向に沿って延在する2本の信号線50、52をx方向に離間させて配設した状態で、該2本の信号線50、52の一方の信号線50の一端を測定点1、他端を測定点2とし、他方の信号線52の一端を測定点3、他端を測定点4とした場合に、測定点1から測定点2まで信号を伝搬させたときの周波数に対する各測定点への透過量の変化を測定した。   Here, as shown in FIGS. 14A to 14D, two signal lines 50 extending in the y direction are formed on the upper layer of each of the regions where the conductor 29 and the periodic structures 22, 24, 26 are provided. One of the two signal lines 50, 52 is set as a measurement point 1, the other end is set as a measurement point 2, and the other signal line 52 is connected to the other signal line 52. When one end is the measurement point 3 and the other end is the measurement point 4, the change in the transmission amount to each measurement point with respect to the frequency when the signal is propagated from the measurement point 1 to the measurement point 2 was measured.

なお、この測定において、周期構造体22、24、26についての測定条件は、図8の放射電界強度の測定条件(a)、(b)、(c)に等しいものとする。また、今回比較例として挙げる単一の導体29の全体の形状及び大きさは、周期構造体22全体の形状及び大きさに等しいものとする(すなわち、x方向が92.5mm、y方向が46mm)。なお、導体29、及び各周期構造体22、24、26のいずれについても、2本の信号線50、52のx方向の離間距離を62mmとして測定した。測定結果の一例を図15〜図19に示す。   In this measurement, the measurement conditions for the periodic structures 22, 24, and 26 are the same as the measurement conditions (a), (b), and (c) of the radiated electric field intensity in FIG. In addition, the entire shape and size of the single conductor 29 given as a comparative example this time are the same as the entire shape and size of the periodic structure 22 (that is, the x direction is 92.5 mm and the y direction is 46 mm). . The conductor 29 and each of the periodic structures 22, 24, and 26 were measured with the distance between the two signal lines 50 and 52 in the x direction being 62 mm. Examples of measurement results are shown in FIGS.

図15は、導体29における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。図16は、周期構造体22における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。図17は、周期構造体24における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。図18は、周期構造体26における周波数に対する各測定点への透過量の変化の測定結果の一例を示す図である。   FIG. 15 is a diagram illustrating an example of a measurement result of a change in the amount of transmission to each measurement point with respect to the frequency in the conductor 29. FIG. 16 is a diagram illustrating an example of a measurement result of a change in the transmission amount to each measurement point with respect to the frequency in the periodic structure 22. FIG. 17 is a diagram illustrating an example of the measurement result of the change in the transmission amount to each measurement point with respect to the frequency in the periodic structure 24. FIG. 18 is a diagram illustrating an example of a measurement result of a change in the transmission amount to each measurement point with respect to the frequency in the periodic structure 26.

ここで、図15〜図18において各測定結果を示す各Sパラメータ(S11、S21、S31、S41)は、以下の物理量を示す。
・S11:測定点1から伝搬させた信号が測定点1に戻ってくる反射量
・S21:測定点1から測定点2に伝搬する信号の透過量
・S31:測定点1から測定点3に伝搬する信号の透過量
・S41:測定点1から測定点4に伝搬する信号の透過量
Here, each S parameter (S11, S21, S31, S41) which shows each measurement result in FIGS. 15-18 shows the following physical quantities.
S11: Reflection amount of signal propagated from measurement point 1 to return to measurement point 1. S21: Transmission amount of signal propagated from measurement point 1 to measurement point 2. S31: Propagation from measurement point 1 to measurement point 3. S41: Transmission amount of signal propagating from measurement point 1 to measurement point 4

なお、S31は近端クロストークの評価指標、S41は遠端クロストークの評価指標として広く用いられるパラメータである。   S31 is a parameter widely used as an evaluation index for near-end crosstalk, and S41 is a parameter widely used as an evaluation index for far-end crosstalk.

図15〜図18の測定結果から明らかなように、単一の導体29に比べて、周期構造体22、24、26のほうがS31及びS41の値が低い。   As is clear from the measurement results of FIGS. 15 to 18, the periodic structures 22, 24, and 26 have lower values of S 31 and S 41 than the single conductor 29.

また、図19は、図15〜図18の各々から、導体29、及び周期構造体22、24、26のS41の測定結果を抽出して示した図である。図19において(A)が導体29についての測定結果、(B)が周期構造体22についての測定結果、(C)が周期構造体24についての測定結果、(D)が周期構造体26についての測定結果を示す。   FIG. 19 is a diagram showing the measurement results of S41 of the conductor 29 and the periodic structures 22, 24, and 26 extracted from each of FIGS. In FIG. 19, (A) is a measurement result about the conductor 29, (B) is a measurement result about the periodic structure 22, (C) is a measurement result about the periodic structure 24, and (D) is about the periodic structure 26. The measurement results are shown.

この測定結果から明らかなように、2GHz〜6GHzの周波数帯域では、導体29、周期構造体22、周期構造体24、周期構造体26の順に、S41の値が低くなっている。   As is clear from this measurement result, in the frequency band of 2 GHz to 6 GHz, the value of S41 decreases in the order of the conductor 29, the periodic structure 22, the periodic structure 24, and the periodic structure 26.

上記図15〜図19では、信号線50、52の延在方向をy方向とした場合(言い換えると、x方向に対する信号線50、52の延在方向の傾きθが90度の場合)の測定結果を例に挙げて周期構造体22、24、26の特性を説明したが、以下では、θ=90でない場合の測定結果を例に挙げて、周期構造体22、24、26の特性について説明する。なお、周期構造体22は、3種類の周期構造体22、24、26の各々に共通する基本構成を有しているため、代表して、周期構造体22におけるS41を測定し、その測定結果を例に挙げながら本実施の形態に係る周期構造体22、24、26の特性について説明する。   15 to 19, the measurement is performed when the extending direction of the signal lines 50 and 52 is the y direction (in other words, the inclination θ of the extending direction of the signal lines 50 and 52 with respect to the x direction is 90 degrees). The characteristics of the periodic structures 22, 24, and 26 have been described by taking the results as examples. Hereinafter, the characteristics of the periodic structures 22, 24, and 26 will be described by taking measurement results when θ = 90 as an example. To do. Since the periodic structure 22 has a basic configuration common to each of the three types of periodic structures 22, 24, and 26, representatively, S41 in the periodic structure 22 is measured, and the measurement result As an example, the characteristics of the periodic structures 22, 24, and 26 according to the present embodiment will be described.

図21は、周期構造体22において、θが、θ=90(図14B参照)、θ=71.4(図20A)、θ=56.1(図20B参照)、θ=44.7(図20C参照)の4つの場合に、測定点1から測定点2まで信号を伝搬させたときのS41の測定結果の一例を示した図である。なお、この測定において、θ以外の測定条件は、前述した図8の放射電界強度の測定条件(a)に等しいものとする。   FIG. 21 shows that in the periodic structure 22, θ is θ = 90 (see FIG. 14B), θ = 71.4 (FIG. 20A), θ = 56.1 (see FIG. 20B), θ = 44.7 (see FIG. 20C) is a diagram illustrating an example of the measurement result of S41 when a signal is propagated from measurement point 1 to measurement point 2 in the four cases of FIG. In this measurement, the measurement conditions other than θ are equal to the measurement condition (a) of the radiated electric field intensity shown in FIG.

図21に示すように、信号線50、52をx方向に傾けて配置したθ=71.4、θ=56.1、θ=44.7の場合のS41の値は、θ=90の場合に比べて高くなっている。   As shown in FIG. 21, the value of S41 in the case of θ = 71.4, θ = 56.1, θ = 44.7 in which the signal lines 50 and 52 are tilted in the x direction is the case of θ = 90. It is higher than

図23は、導体29において、θが、θ=90(図14A参照)、θ=71.4(図22A)、θ=56.1(図22B参照)、θ=44.7(図22C参照)の4つの場合に、測定点1から測定点2まで信号を伝搬させたときのS41の測定結果の一例を示した図である。なお、この測定において、導体29の全体の形状及び大きさは、周期構造体22全体の形状及び大きさに等しいものとする(すなわち、x方向が92.5mm、y方向が46mm)。   23, in the conductor 29, θ is θ = 90 (see FIG. 14A), θ = 71.4 (FIG. 22A), θ = 56.1 (see FIG. 22B), θ = 44.7 (see FIG. 22C). ) Is a diagram showing an example of the measurement result of S41 when a signal is propagated from measurement point 1 to measurement point 2. In this measurement, it is assumed that the overall shape and size of the conductor 29 are equal to the overall shape and size of the periodic structure 22 (that is, 92.5 mm in the x direction and 46 mm in the y direction).

図23に示すように、導体29の場合には、θが変化してもS41の値は大きく変化しない。   As shown in FIG. 23, in the case of the conductor 29, the value of S41 does not change greatly even if θ changes.

なお、周期構造体は、上記例示した周期構造体22、24、26に限定されない。例えば、周期構造体26の第4の導体35に設ける接続孔36の配置や数を変更してもよい。   Note that the periodic structure is not limited to the periodic structures 22, 24, and 26 exemplified above. For example, the arrangement and number of connection holes 36 provided in the fourth conductor 35 of the periodic structure 26 may be changed.

例えば、図24Aに示すように、1個の接続孔36を第4の導体35の中央に設けてもよい。また、図24Bに示すように、第4の導体35の4辺の中央部の各々に1個ずつ、及び第4の導体35の中央に1個、合計5個の接続孔36を設けてもよい。また、図24Cに示すように、第4の導体35の4つの隅部の各々に1個ずつ、合計4個の接続孔36を設けてもよい。また、図24Dに示すように、格子状に9個の接続孔36を配置してもよい。   For example, as shown in FIG. 24A, one connection hole 36 may be provided in the center of the fourth conductor 35. In addition, as shown in FIG. 24B, a total of five connection holes 36 may be provided, one at each of the central portions of the four sides of the fourth conductor 35 and one at the center of the fourth conductor 35. Good. In addition, as shown in FIG. 24C, a total of four connection holes 36 may be provided, one at each of the four corners of the fourth conductor 35. Further, as shown in FIG. 24D, nine connection holes 36 may be arranged in a lattice shape.

以下に、接続孔36に応じた周期構造体の特性について説明する。
なお、ここでは、接続孔36の配置に応じて周期構造体を区別するため、便宜上、各周期構造体に以下のように符号を付す。
・図24Aに示す第4の導体35を有する周期構造体:周期構造体26a
・図24Bに示す第4の導体35を有する周期構造体:周期構造体26b
・図24Cに示す第4の導体35を有する周期構造体:周期構造体26c
・図24Dに示す第4の導体35を有する周期構造体:周期構造体26d
・図5、図6に示す第4の導体35を有する周期構造体:周期構造体26e
Below, the characteristic of the periodic structure according to the connection hole 36 is demonstrated.
Here, in order to distinguish the periodic structures according to the arrangement of the connection holes 36, the following reference numerals are given to the periodic structures for convenience.
-Periodic structure which has the 4th conductor 35 shown to FIG. 24A: Periodic structure 26a
-Periodic structure which has the 4th conductor 35 shown to FIG. 24B: Periodic structure 26b
-Periodic structure which has the 4th conductor 35 shown to FIG. 24C: Periodic structure 26c
-Periodic structure having the fourth conductor 35 shown in FIG. 24D: Periodic structure 26d
-Periodic structure which has the 4th conductor 35 shown in FIG. 5, FIG. 6: Periodic structure 26e

図25は、図4に示す周期構造体24、図24A〜D及び図5に示す周期構造体26a〜26eの各々において、測定点1から測定点2まで信号を伝搬させたときの周波数に対する放射電界強度の変化の測定結果の一例を示す図である。   FIG. 25 shows the radiation with respect to the frequency when the signal is propagated from the measurement point 1 to the measurement point 2 in each of the periodic structure 24 shown in FIG. 4 and the periodic structures 26a to 26e shown in FIG. It is a figure which shows an example of the measurement result of a change of electric field strength.

また、図26は、上記周期構造体24及び周期構造体26a〜eの各々において、測定点1から測定点2まで信号を伝搬させたときの周波数に対するS21の変化の測定結果の一例を示す図である。   FIG. 26 is a diagram illustrating an example of a measurement result of a change in S21 with respect to frequency when a signal is propagated from measurement point 1 to measurement point 2 in each of the periodic structure 24 and the periodic structures 26a to 26e. It is.

図25,図26の各々において、(1)は周期構造体24における測定結果、(2)は周期構造体26aにおける測定結果、(3)は周期構造体26bにおける測定結果、(4)は周期構造体26cにおける測定結果、(5)は周期構造体26dにおける測定結果、(6)は周期構造体26eにおける測定結果を示す。なお、周期構造体24の測定条件は、上述した測定条件(b)と同じであり、周期構造体26eの測定条件は、上述した測定条件(c)と同じである。また、周期構造体26a〜26dの測定条件は、各々、接続孔36の個数・配置状態を除いて上述した測定条件(c)と同じである。   In each of FIGS. 25 and 26, (1) is a measurement result in the periodic structure 24, (2) is a measurement result in the periodic structure 26a, (3) is a measurement result in the periodic structure 26b, and (4) is a period. The measurement result in the structure 26c, (5) shows the measurement result in the periodic structure 26d, and (6) shows the measurement result in the periodic structure 26e. The measurement conditions of the periodic structure 24 are the same as the measurement conditions (b) described above, and the measurement conditions of the periodic structure 26e are the same as the measurement conditions (c) described above. The measurement conditions for the periodic structures 26a to 26d are the same as the measurement conditions (c) described above except for the number and arrangement state of the connection holes 36.

図25に示すように、接続孔36の配置個数と放射電界強度との関係は周波数に応じて異なっている。例えば、7.5〜8.0GHzの周波数帯域では、放射電界強度は接続孔36の数が多いほど高くなっている。   As shown in FIG. 25, the relationship between the number of connection holes 36 arranged and the radiated electric field strength differs depending on the frequency. For example, in the frequency band of 7.5 to 8.0 GHz, the radiation electric field strength increases as the number of connection holes 36 increases.

また、図26に示すように、接続孔36の配置個数とS21の値との関係も周波数に応じて異なっている。例えば、6GHzの周波数では、S21の値は接続孔36の数が多いほど低くなっている。   Further, as shown in FIG. 26, the relationship between the number of connection holes 36 arranged and the value of S21 also differs depending on the frequency. For example, at a frequency of 6 GHz, the value of S21 decreases as the number of connection holes 36 increases.

ここで、図25に示す放射電界強度の測定結果について、より詳しく見ていくこととする。図27は、図25に示す測定結果から6.5〜8.5GHzの周波数帯域における測定結果を抽出して示した図である。図28は、図25に示す測定結果から9〜11GHzの周波数帯域における測定結果を抽出して示した図である。図29は、図25に示す測定結果から12〜14GHzの周波数帯域における測定結果を抽出して示した図である。図30は、図25に示す測定結果から14〜16GHzの周波数帯域における測定結果を抽出して示した図である。図31は、図25に示す測定結果から17〜19GHzの周波数帯域における測定結果を抽出して示した図である。   Here, the measurement result of the radiation electric field intensity shown in FIG. 25 will be examined in more detail. FIG. 27 is a diagram in which measurement results in the 6.5 to 8.5 GHz frequency band are extracted from the measurement results shown in FIG. FIG. 28 is a diagram showing the measurement results in the 9 to 11 GHz frequency band extracted from the measurement results shown in FIG. FIG. 29 is a diagram in which measurement results in the frequency band of 12 to 14 GHz are extracted from the measurement results shown in FIG. FIG. 30 is a diagram showing the measurement results in the frequency band of 14 to 16 GHz extracted from the measurement results shown in FIG. FIG. 31 is a diagram obtained by extracting measurement results in the frequency band of 17 to 19 GHz from the measurement results shown in FIG.

図27〜図31に示す測定結果において、低い周波数帯域(例えば、6.5〜8.5GHz)では、接続孔36の数が多い周期構造体(接続孔36が2個以上)は、少ない周期構造体(接続孔36が1個以下)に比べて、放射電界強度が低くなっている。また、高い周波数帯域(例えば、12〜19GHz)では、接続孔36の数と放射電界強度との関係は見いだせない。   In the measurement results shown in FIGS. 27 to 31, in a low frequency band (for example, 6.5 to 8.5 GHz), a periodic structure having a large number of connection holes 36 (two or more connection holes 36) has a small periodic structure ( The intensity of the radiated electric field is lower than that of the connection hole 36 or less. Further, in a high frequency band (for example, 12 to 19 GHz), the relationship between the number of connection holes 36 and the radiation electric field strength cannot be found.

10 配線基板
10a 信号層
10b 電源層
10c 接地層
14,15 端子
16,17 信号線
22、24、26 周期構造体
31 第1の導体
31a、31b、31c、31d 隅部
32 第2の導体
33 第3の導体
34、35 第4の導体
36 接続孔
DESCRIPTION OF SYMBOLS 10 Wiring board 10a Signal layer 10b Power supply layer 10c Ground layer 14, 15 Terminal 16, 17 Signal line 22, 24, 26 Periodic structure 31 1st conductor 31a, 31b, 31c, 31d Corner 32 2nd conductor 33 2nd 3 conductors 34, 35 4th conductor 36 Connection hole

Claims (5)

第1の方向に対向するように配置された一対の隅部と前記第1の方向と交差する第2の方向に対向するように配置された一対の隅部とを備えた第1の導体を隅部同士が隣り合うように前記第1の方向及び前記第2の方向に複数配列した導体群と、
前記第1の方向に沿って配列された前記第1の導体の隣り合う隅部の各々を接続する前記第1の導体より小さな複数の第2の導体と、
前記第2の方向に沿って配列された前記第1の導体の隣り合う隅部の各々を接続する前記第1の導体より小さな複数の第3の導体と、を有し、
記第2の方向を、外部の信号層に配設された複数の信号線の延在方向とした周期構造体。
A first conductor having a pair of corners arranged to face each other in a first direction and a pair of corners arranged to face each other in a second direction intersecting the first direction; A conductor group arranged in the first direction and the second direction so that the corners are adjacent to each other;
A plurality of second conductors smaller than the first conductors connecting each of the adjacent corners of the first conductors arranged along the first direction;
A plurality of third conductors smaller than the first conductor connecting each of the adjacent corners of the first conductor arranged along the second direction,
Previous SL second direction, extending Zaikata direction and the periodic structure of the plurality of signal lines arranged outside the signal layer.
隣り合うように配置された4つの前記第1の導体で囲まれた領域の各々に、前記第1の導体、前記第2の導体、及び前記第3の導体のいずれにも接続されない第4の導体を設けた請求項1に記載の周期構造体。   A fourth region that is not connected to any of the first conductor, the second conductor, and the third conductor in each of the regions surrounded by the four first conductors that are arranged adjacent to each other. The periodic structure according to claim 1, wherein a conductor is provided. 前記第4の導体の各々に、接地された接続対象と電気的に接続するための少なくとも1つの接続孔を設けた請求項2に記載の周期構造体。   The periodic structure according to claim 2, wherein each of the fourth conductors is provided with at least one connection hole for electrically connecting to a grounded connection target. 少なくとも1本の信号線が配設された信号層と、
前記信号層と隣り合い、かつ請求項1から請求項3のいずれか1項記載の周期構造体を有する電源層と、
を備えた配線基板。
A signal layer provided with at least one signal line;
A power supply layer adjacent to the signal layer and having the periodic structure according to any one of claims 1 to 3,
Wiring board equipped with.
少なくとも1本の信号線が配設された信号層と、
前記信号層と隣り合い、かつ請求項3記載の周期構造体を有する電源層と、
前記接続孔を介して前記第4の導体と接続される接地層と、
を備えた配線基板。
A signal layer provided with at least one signal line;
A power supply layer adjacent to the signal layer and having the periodic structure according to claim 3,
A ground layer connected to the fourth conductor via the connection hole;
Wiring board equipped with.
JP2014008544A 2014-01-21 2014-01-21 Periodic structure and wiring board Expired - Fee Related JP5673874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008544A JP5673874B2 (en) 2014-01-21 2014-01-21 Periodic structure and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008544A JP5673874B2 (en) 2014-01-21 2014-01-21 Periodic structure and wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009152754A Division JP2011009565A (en) 2009-06-26 2009-06-26 Periodic structure and wiring board

Publications (2)

Publication Number Publication Date
JP2014068043A JP2014068043A (en) 2014-04-17
JP5673874B2 true JP5673874B2 (en) 2015-02-18

Family

ID=50744079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008544A Expired - Fee Related JP5673874B2 (en) 2014-01-21 2014-01-21 Periodic structure and wiring board

Country Status (1)

Country Link
JP (1) JP5673874B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579046B2 (en) * 1990-09-19 1997-02-05 日本電気株式会社 Multilayer wiring board
JP4494714B2 (en) * 2002-12-27 2010-06-30 東北リコー株式会社 Printed wiring board
JP2006114623A (en) * 2004-10-13 2006-04-27 Nec Toppan Circuit Solutions Inc Substrate module, printed circuit board and electronic device employing it

Also Published As

Publication number Publication date
JP2014068043A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP6252699B2 (en) Transmission line and flat cable
US8354975B2 (en) Electromagnetic band gap element, and antenna and filter using the same
KR100283508B1 (en) Non-solid reference plane with bidirectional impedance control
JP5194440B2 (en) Printed wiring board
JP6013298B2 (en) High frequency transmission line
CN203040005U (en) Printed circuit board
US8420946B2 (en) Printed circuit board
US20130313013A1 (en) Printed circuit boards
TW201019801A (en) High frequency circuit module
US9590288B2 (en) Multilayer circuit substrate
JP6013297B2 (en) High frequency transmission line
US20070194434A1 (en) Differential signal transmission structure, wiring board, and chip package
US20140375394A1 (en) Attenuation reduction control structure for high-frequency signal transmission lines of flexible circuit board
JP6013296B2 (en) High frequency transmission line
JP5673874B2 (en) Periodic structure and wiring board
JPWO2017006553A1 (en) Printed wiring board
US9526165B2 (en) Multilayer circuit substrate
JP2011009565A (en) Periodic structure and wiring board
TWI565385B (en) Multilayer substrate structure
TWI393514B (en) Flexible printed circuit board
CN100561608C (en) Eliminate the differential pair spread pattern that high-speed digital circuit is crosstalked
JP6425632B2 (en) Printed board
TWI442839B (en) Flexible printed circuit board
JP6013280B2 (en) High frequency transmission line
CN109688698B (en) Circuit board and electric connector with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees