JP5667368B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5667368B2
JP5667368B2 JP2010039386A JP2010039386A JP5667368B2 JP 5667368 B2 JP5667368 B2 JP 5667368B2 JP 2010039386 A JP2010039386 A JP 2010039386A JP 2010039386 A JP2010039386 A JP 2010039386A JP 5667368 B2 JP5667368 B2 JP 5667368B2
Authority
JP
Japan
Prior art keywords
plasma
cavity
circular waveguide
plasma processing
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010039386A
Other languages
Japanese (ja)
Other versions
JP2011176147A5 (en
JP2011176147A (en
Inventor
田村 仁
仁 田村
僚一 磯村
僚一 磯村
真一 磯崎
真一 磯崎
崇 植村
崇 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010039386A priority Critical patent/JP5667368B2/en
Publication of JP2011176147A publication Critical patent/JP2011176147A/en
Publication of JP2011176147A5 publication Critical patent/JP2011176147A5/ja
Application granted granted Critical
Publication of JP5667368B2 publication Critical patent/JP5667368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、被処理基板をプラズマ処理するプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus for plasma processing a substrate to be processed.

半導体メモリやロジックLSI等の半導体装置の製造に用いられる基板は、生産性向上等のために大径化する傾向にあり、最先端の半導体メモリ等の半導体装置では直径300mmのシリコン基板を用いることが主流となっている。さらに直径450mmと巨大なシリコン基板が必要との意見もあり、基板大径化の傾向は続くと考えられる。これらの半導体装置の製造工程でプラズマ処理装置が用いられるが、被処理基板上に均一なプラズマ処理を施す必要があり、被処理基板の大径化に伴う技術的な難易度は増す傾向にある。   Substrates used in the manufacture of semiconductor devices such as semiconductor memories and logic LSIs tend to be increased in diameter to improve productivity, and the most advanced semiconductor devices such as semiconductor memories use a silicon substrate having a diameter of 300 mm. Has become the mainstream. Furthermore, there is an opinion that a silicon substrate with a diameter of 450 mm is necessary, and it is thought that the trend of increasing the substrate diameter will continue. Although a plasma processing apparatus is used in the manufacturing process of these semiconductor devices, it is necessary to perform uniform plasma processing on the substrate to be processed, and the technical difficulty associated with increasing the diameter of the substrate to be processed tends to increase. .

被処理基板上で均一なプラズマ処理を施すには、被処理基板付近でのプラズマの密度や温度などのプラズマ特性の分布が重要であり、プラズマ分布をプラズマ処理均一化の観点から最適化する技術が重要となっている。   In order to perform uniform plasma processing on the substrate to be processed, the distribution of plasma characteristics such as plasma density and temperature in the vicinity of the substrate to be processed is important, and the technology to optimize the plasma distribution from the viewpoint of uniform plasma processing Is important.

マイクロ波電力によりプラズマを発生させるプラズマ処理装置は低圧力下でも高密度のプラズマを生成できる、静磁界との併用でプラズマの分布を静磁界分布調整で容易に制御できる等の特徴を持ち、前記半導体装置の製造等に広く用いられている。前述の基板大径化の傾向に対応してマイクロ波プラズマ処理装置においても、プラズマ分布の制御が重要である。しかしマイクロ波は波長が数cmから十数cm程度と短く波長と同等オーダーの寸法でマイクロ波の分布が変わりやすく、広い範囲で均一なプラズマ処理を得るべくマイクロ波の分布を最適化することが困難となる傾向にある。   The plasma processing apparatus that generates plasma by microwave power has the characteristics that it can generate high-density plasma even under low pressure, and the plasma distribution can be easily controlled by adjusting the static magnetic field distribution in combination with the static magnetic field. Widely used in the manufacture of semiconductor devices. In response to the above-mentioned trend of increasing the diameter of the substrate, it is important to control the plasma distribution in the microwave plasma processing apparatus. However, microwaves have a wavelength as short as a few centimeters to several tens of centimeters, and the distribution of microwaves is easy to change with dimensions on the same order as the wavelength. The microwave distribution can be optimized to obtain a uniform plasma treatment over a wide range. It tends to be difficult.

マイクロ波を用いてプラズマを発生させるプラズマ処理装置の従来例を図1に示す。図1に示すように、プラズマ処理の軸対称性の観点から、処理室にマイクロ波電力を投入する導波管等の伝送路は処理室中央に接続することが多い。そのためマイクロ波電力は処理室中央付近で高くなることが多い。また処理室の壁面でプラズマが損失するため、壁面から離れた中央付近で密度が高くなりやすい傾向がある。これらの影響から、被処理基板上でも中心軸付近で密度が高く、プラズマ密度分布が凸分布となりやすい傾向にあることが多い。   A conventional example of a plasma processing apparatus for generating plasma using microwaves is shown in FIG. As shown in FIG. 1, from the viewpoint of axial symmetry of plasma processing, a transmission path such as a waveguide for supplying microwave power to the processing chamber is often connected to the center of the processing chamber. Therefore, the microwave power often becomes high near the center of the processing chamber. Further, since plasma is lost on the wall surface of the processing chamber, the density tends to increase near the center away from the wall surface. Because of these effects, the density is often high near the central axis even on the substrate to be processed, and the plasma density distribution tends to be a convex distribution in many cases.

なお、円形導波管中を伝播するマイクロ波については、導波管内部の電磁界分布や管内波長等の伝播特性は明らかとなっており、非特許文献1等に記載されている。   Note that propagation characteristics of the microwave propagating in the circular waveguide, such as the electromagnetic field distribution inside the waveguide and the wavelength in the tube, have been clarified, and are described in Non-Patent Document 1, etc.

中島将光著、「マイクロ波工学」、森北出版Masamitsu Nakajima, “Microwave Engineering”, Morikita Publishing

上述の従来技術では、被処理基板上でプラズマ密度分布が中央部で高く周辺部で低い凸分布となりやすく、プラズマ処理特性もプラズマ密度分布の凸分布に対応した不均一が現れやすい。   In the above-described prior art, the plasma density distribution on the substrate to be processed tends to be a convex distribution that is high in the central portion and low in the peripheral portion, and the plasma processing characteristics tend to show non-uniformity corresponding to the convex distribution of the plasma density distribution.

本発明の解決しようとする課題は、プラズマ密度分布の凸分布傾向を緩和し、被処理基板上で均一なプラズマ処理特性を得ることの出来るプラズマ処理装置を提供することである。   The problem to be solved by the present invention is to provide a plasma processing apparatus capable of relaxing the convex distribution tendency of the plasma density distribution and obtaining uniform plasma processing characteristics on the substrate to be processed.

本発明のプラズマ処理装置は、内部をマイクロ波の電界が伝播する円形導波管と、この円形導波管の下方に接続されて配置され前記円形導波管より径の大きな円柱状の空洞部と、この空洞部の下方に配置され当該空洞部に伝播された電界が内部に供給されてプラズマが形成されるプラズマ処理室とを有し、このプラズマ処理室内に配置された被処理基板を前記プラズマを用いて処理するプラズマ処理装置であって、前記円形導波管が接続される前記空洞部の上部に円環状に配置されたリッジであって、円柱状の前記空洞部の天井に形成される前記電界の弱い位置に軸周りに配置された複数のリッジを備えるものである。また、前記円形導波管の下端部と前記空洞部の上部との間でこれらを接続して配置され下方に向けて径が広がったその断面がテーパ状であって前記空洞部と接続される下端部の径が当該空洞部の径より小さくされたテーパ導波管と、このテーパ導波管が接続される前記空洞部内部の上部であって前記電界の弱い位置で前記テーパ導波管の軸回りに円環状に配置されたリッジを備えることもできる。
A plasma processing apparatus according to the present invention includes a circular waveguide through which a microwave electric field propagates, and a cylindrical cavity having a diameter larger than that of the circular waveguide. And a plasma processing chamber which is disposed below the cavity and in which an electric field propagated to the cavity is supplied to form plasma, and the substrate to be processed disposed in the plasma processing chamber is A plasma processing apparatus for processing using plasma, wherein the ridge is arranged in an annular shape above the cavity to which the circular waveguide is connected, and is formed on the ceiling of the columnar cavity. A plurality of ridges arranged around the axis at a position where the electric field is weak. The lower end of the circular waveguide and the upper part of the cavity are connected to each other, and the cross section whose diameter is expanded downward is tapered and connected to the cavity. and a lower end a tapered waveguide diameter is smaller than the diameter of the cavity, of the tapered waveguide at the weak position of the tapered waveguide is a the hollow portion inside of the upper to be connected field A ridge arranged in an annular shape around the axis can also be provided.

本発明によれば、マイクロ波立体回路系を用いることで、処理室内のマイクロ波電磁界の分布が均一化されるため、プラズマ処理の均一性が向上する効果がある。   According to the present invention, by using the microwave three-dimensional circuit system, the distribution of the microwave electromagnetic field in the processing chamber is made uniform, so that the plasma processing uniformity is improved.

図1は従来例のマイクロ波を用いたエッチング装置の構成を説明する概略図である。FIG. 1 is a schematic diagram illustrating the configuration of a conventional etching apparatus using microwaves. 図2は従来例の円形導波管と空洞部の電界分布解析結果を示す模式図である。FIG. 2 is a schematic diagram showing the electric field distribution analysis result of the conventional circular waveguide and cavity. 図3は従来例の円形導波管と空洞部の電界分布解析結果を示す模式図である。FIG. 3 is a schematic diagram showing a result of electric field distribution analysis of a conventional circular waveguide and a cavity. 図4は本発明の実施例1の円形導波管とリッジを設けた空洞部の電界分布を示す模式図である。FIG. 4 is a schematic diagram showing the electric field distribution of the hollow portion provided with the circular waveguide and the ridge according to the first embodiment of the present invention. 図5は本発明の実施例2の円形導波管と空洞部の接続にテーパを用い、リッジを設けた空洞部の電界分布を示す模式図である。FIG. 5 is a schematic diagram showing an electric field distribution of a cavity portion provided with a ridge using a taper for connection between the circular waveguide and the cavity portion according to the second embodiment of the present invention. 図6は本発明と従来例のプラズマ密度測定結果を示すグラフである。FIG. 6 is a graph showing the plasma density measurement results of the present invention and the conventional example.

図1から図6を用いて、本発明にかかる一実施例として本発明を用いたプラズマエッチング装置を説明する。   A plasma etching apparatus using the present invention will be described with reference to FIGS. 1 to 6 as an embodiment of the present invention.

従来例として、図1にマイクロ波を用いたプラズマエッチング装置の概略図を示す。マイクロ波源101から発振されたマイクロ波は方形導波管103を用いて伝送され、円矩形変換器104により、円形導波管105にもたらされる。   As a conventional example, FIG. 1 shows a schematic diagram of a plasma etching apparatus using a microwave. Microwaves oscillated from the microwave source 101 are transmitted using the rectangular waveguide 103 and brought to the circular waveguide 105 by the circular-rectangular converter 104.

自動整合機102により負荷インピーダンスを調整して反射波を自動的に抑制することができる。マイクロ波源としては発振周波数2.45GHzのマグネトロンを用いた。マイクロ波源保護のためにアイソレータ119を用いた。円形導波管105は空洞部106に接続される。空洞部106はマイクロ波電磁界分布をプラズマ処理に適した分布に調整する働きを持つ。空洞部106の下部にはマイクロ波導入窓107、シャワープレート108を介してプラズマ処理室110がある。   The automatic matching machine 102 can adjust the load impedance to automatically suppress the reflected wave. As the microwave source, a magnetron having an oscillation frequency of 2.45 GHz was used. An isolator 119 was used to protect the microwave source. The circular waveguide 105 is connected to the cavity 106. The cavity 106 has a function of adjusting the microwave electromagnetic field distribution to a distribution suitable for plasma processing. Below the cavity 106 is a plasma processing chamber 110 through a microwave introduction window 107 and a shower plate 108.

シャワープレート108はプラズマ処理室110に発生するプラズマに直接曝されるため、プラズマ耐性が高く、プラズマ処理に悪影響を及ぼさない材質が望ましい。マイクロ波導入窓107、シャワープレート108の材質としてはマイクロ波を効率よく透過し、プラズマ処理室を気密に保持する材料として石英を用いた。マイクロ波導入窓107とシャワープレート108の間には図示しない微小な間隙が設けられており、プラズマ処理に用いる処理ガスの供給系109よりガスが供給される。シャワープレート108には図示しない微細なガス供給孔が複数設けられ、処理ガスをプラズマ処理室110にシャワー状に供給する。   Since the shower plate 108 is directly exposed to the plasma generated in the plasma processing chamber 110, a material that has high plasma resistance and does not adversely affect the plasma processing is desirable. As a material for the microwave introduction window 107 and the shower plate 108, quartz was used as a material that efficiently transmits microwaves and keeps the plasma processing chamber airtight. A minute gap (not shown) is provided between the microwave introduction window 107 and the shower plate 108, and gas is supplied from a processing gas supply system 109 used for plasma processing. The shower plate 108 is provided with a plurality of fine gas supply holes (not shown) to supply the processing gas to the plasma processing chamber 110 in a shower shape.

プラズマ処理室110内には被処理基板111を戴置するための基板電極112が設置されている。基板電極112には被処理基板111にバイアス電力を供給するために自動整合機113を介してバイアス電源114が接続されている。バイアス電源の周波数として400kHzのものを用いた。   A substrate electrode 112 for placing a substrate to be processed 111 is installed in the plasma processing chamber 110. A bias power supply 114 is connected to the substrate electrode 112 via an automatic matching machine 113 in order to supply bias power to the substrate 111 to be processed. A frequency of 400 kHz was used as the frequency of the bias power source.

プラズマ処理室110の周囲には静磁界発生装置115が設けられ、プラズマ処理室110内に静磁界を加えることができる。電子サイクロトロン周波数とマイクロ波の周波数が一致した場合にマイクロ波の電力が電子に共鳴的に吸収される電子サイクロトロン共鳴現象を用いると、通常はプラズマの発生が困難な高真空領域でもプラズマの発生が可能となり、プラズマ処理可能な領域が拡大する効果がある。   A static magnetic field generator 115 is provided around the plasma processing chamber 110, and a static magnetic field can be applied to the plasma processing chamber 110. When the electron cyclotron resonance phenomenon, in which the microwave power is resonantly absorbed by electrons when the electron cyclotron frequency matches the microwave frequency, plasma is generated even in a high vacuum region where it is usually difficult to generate plasma. It becomes possible, and there is an effect that a region where plasma treatment can be performed is expanded.

また静磁界をプラズマ処理室に加えることでプラズマの損失を抑制しプラズマの着火性を高めたり、静磁界の分布を調整することでプラズマの発生領域や拡散を制御してプラズマの分布を制御することができる。   In addition, by applying a static magnetic field to the plasma processing chamber, plasma loss is suppressed and plasma ignitability is enhanced, and by adjusting the distribution of the static magnetic field, the plasma generation region and diffusion are controlled to control the plasma distribution. be able to.

プラズマ分布の制御により、被処理基板111に施すプラズマ処理の均一性を制御することができる。マイクロ波の周波数が2.45GHzの場合、電子サイクロトロン共鳴を起こす静磁界の大きさは0.0875テスラとなる。   By controlling the plasma distribution, it is possible to control the uniformity of plasma processing performed on the substrate 111 to be processed. When the microwave frequency is 2.45 GHz, the magnitude of the static magnetic field that causes electron cyclotron resonance is 0.0875 Tesla.

この場合、電子サイクロトロン共鳴現象を活用するにはプラズマ処理室内に0.0875テスラの静磁界を発生させる必要があり、処理室内の任意の場所にこの大きさの静磁界を発生させることができる静磁界発生装置を用いることが望ましい。静磁界の発生装置として多段の電磁石を用いた。多段の電磁石を用いることにより静磁界分布と大きさの調整が電磁石に流す電流により容易に制御できる効果がある。   In this case, in order to utilize the electron cyclotron resonance phenomenon, it is necessary to generate a static magnetic field of 0.0875 Tesla in the plasma processing chamber, and a static magnetic field capable of generating a static magnetic field of this magnitude in any place in the processing chamber. It is desirable to use a magnetic field generator. A multistage electromagnet was used as a static magnetic field generator. By using a multi-stage electromagnet, there is an effect that the adjustment of the static magnetic field distribution and the size can be easily controlled by the current flowing through the electromagnet.

プラズマ処理室110はバルブ116、コンダクタンス可変バルブ117を介して接続された真空排気ポンプ118が接続され、排気されている。真空排気ポンプ118として排気側をロータリーポンプにより排気したターボ分子ポンプを用いた。プラズマ処理室110の圧力は圧力計120によりモニタしている。処理ガスの供給系109により供給されるガスやエッチング処理時に発生するガス等のガスを排気する排気速度をコンダクタンス可変バルブにより自動的に制御して、一定の圧力を保持する機構を設けた。   The plasma processing chamber 110 is evacuated by a vacuum exhaust pump 118 connected through a valve 116 and a conductance variable valve 117. As the vacuum exhaust pump 118, a turbo molecular pump whose exhaust side was exhausted by a rotary pump was used. The pressure in the plasma processing chamber 110 is monitored by a pressure gauge 120. There is provided a mechanism for maintaining a constant pressure by automatically controlling the exhaust speed for exhausting a gas such as a gas supplied by the processing gas supply system 109 or a gas generated during the etching process using a conductance variable valve.

円矩形変換器104の円形導波管部に円偏波発生器を組み合わせて用いることで、マイクロ波を円偏波化し処理の軸対称性を向上させることもできる。また円偏波の回転方向によりプラズマへの伝播吸収特性が異なることが知られている。電子サイクロトロン共鳴現象を有効に起こすにはマイクロ波電界による電子の加速が常に行われる方向に回転する円偏波を用いる必要がある。この方向の円偏波を用いた場合にはマイクロ波電力をより効率よく電子に吸収させることができる。   By using a circularly polarized wave generator in combination with the circular waveguide portion of the circular-rectangular converter 104, the microwave can be circularly polarized to improve the axial symmetry of processing. In addition, it is known that the characteristic of propagation and absorption to plasma differs depending on the direction of rotation of circularly polarized waves. In order to effectively cause the electron cyclotron resonance phenomenon, it is necessary to use circularly polarized waves that rotate in a direction in which electrons are always accelerated by a microwave electric field. When circularly polarized waves in this direction are used, microwave power can be more efficiently absorbed by electrons.

図1に示す装置において、基板電極上のプラズマ密度分布を測定すると、中央付近で密度が高く周辺で密度が低い凸分布になりやすい傾向にあることがわかった。プラズマ密度分布が凸分布になる原因を探るため、円形導波管と空洞部の接続部より放射されるマイクロ波電磁界の分布を調査した。結果を図2,図3に模式的に示す。   In the apparatus shown in FIG. 1, when the plasma density distribution on the substrate electrode was measured, it was found that the density tends to be a convex distribution with a high density near the center and a low density near the center. In order to investigate the cause of the convex distribution of the plasma density distribution, the distribution of the microwave electromagnetic field radiated from the connection between the circular waveguide and the cavity was investigated. The results are schematically shown in FIGS.

図3は円形導波管と空洞部の接続面で切った断面図であり、図2は図3におけるy軸で切った場合の断面図である。図2、図3において電界ベクトルを示しており、図2では電界ベクトルの方向は紙面に平行、図3では紙面に垂直となる。空洞部202の出口側はマイクロ波が自由空間に放射されるものと考えて解析した。解析はマックスウェルの方程式を有限要素法により解くことで行った。円形導波管201は円形導波管の最低次モードであるTE11モードでマイクロ波が供給される。   3 is a cross-sectional view taken along the connection surface between the circular waveguide and the cavity, and FIG. 2 is a cross-sectional view taken along the y-axis in FIG. 2 and 3, electric field vectors are shown. In FIG. 2, the direction of the electric field vector is parallel to the paper surface, and in FIG. 3, it is perpendicular to the paper surface. The analysis was performed on the outlet side of the cavity 202 on the assumption that microwaves are emitted into free space. The analysis was performed by solving Maxwell's equations by the finite element method. The circular waveguide 201 is supplied with microwaves in the TE11 mode, which is the lowest order mode of the circular waveguide.

円形導波管中を伝播するマイクロ波については、導波管内部の電磁界分布や管内波長等の伝播特性は明らかとなっており、上記の非特許文献等に記載されている。   As for the microwave propagating in the circular waveguide, propagation characteristics such as the electromagnetic field distribution inside the waveguide and the wavelength in the tube have been clarified, and are described in the above non-patent documents.

円形導波管201の直径は円形導波管TE11モードのみが伝送可能な寸法とした。図2について説明する。電界ベクトル203を矢印で模式的に示す。空洞部202の円形導波管201接続面に沿う表面波的な電界204と、空洞部202内部に放射される電界205があることがわかった。表面波的な電界204は中心から外に向けて定在波のピークが徐々に小さくなる傾向があり、中央付近で密度が高くなる原因の一つと考えた。   The diameter of the circular waveguide 201 was set to a size that allows transmission only in the circular waveguide TE11 mode. With reference to FIG. The electric field vector 203 is schematically indicated by an arrow. It was found that there was a surface wave-like electric field 204 along the connection surface of the circular waveguide 201 of the cavity 202 and an electric field 205 radiated inside the cavity 202. The surface wave-like electric field 204 has a tendency that the peak of the standing wave gradually decreases from the center toward the outside, which is considered to be one of the causes of the increase in density near the center.

図3について説明する。円形導波管と空洞部の接続面での電界ベクトルの分布を表示しており、図2における表面波的な電界のみを強調して表示していることになる。中心軸からy軸方向に表面波の定在波が分布することがわかる。定在波の腹および節の位置は、ほぼ中心軸に対して同一半径に位置している。   With reference to FIG. The electric field vector distribution at the connection surface between the circular waveguide and the cavity is displayed, and only the surface wave electric field in FIG. 2 is highlighted. It can be seen that standing waves of surface waves are distributed in the y-axis direction from the central axis. The positions of the antinodes and nodes of the standing wave are located at substantially the same radius with respect to the central axis.

表面波的な電界204を抑制するための構造を検討した。図4に結果を模式的に示す。表面波的な電界204を抑制するために円環状のリッジ301を空洞部の上部に設けた。リッジ301を設けない場合に生じる元の表面波的電界204(図4で破線の矢印にて示す)の弱くなる位置にリッジ301を配置した。リッジは完全導体として解析した。   A structure for suppressing the surface wave-like electric field 204 was examined. FIG. 4 schematically shows the result. In order to suppress the surface wave-like electric field 204, an annular ridge 301 was provided at the top of the cavity. The ridge 301 is disposed at a position where the original surface wave electric field 204 (indicated by a broken arrow in FIG. 4) generated when the ridge 301 is not provided is weakened. Ridge was analyzed as a perfect conductor.

一般にリッジ301先端の様に曲率の大きい部分には電界が集中し、リッジ間の溝の底にあたる部分には電界が入りにくくなる傾向がある。この性質を利用し、元の表面波的電界204の強い位置にリッジ間の溝部を配置し、弱い位置にリッジ先端部を配置することで、表面波的電界204を抑制することを狙った。解析の結果、表面波的電界は抑制できることがわかった。   In general, an electric field concentrates on a portion having a large curvature such as the tip of the ridge 301, and the electric field tends to hardly enter a portion corresponding to the bottom of the groove between the ridges. By utilizing this property, an attempt was made to suppress the surface wave electric field 204 by disposing the groove between the ridges at a position where the original surface wave electric field 204 is strong and disposing the ridge tip at a weak position. As a result of the analysis, it was found that the surface wave electric field can be suppressed.

上記の様にリッジ301により表面波的電界は抑制できたが、空洞部内部に放射される電界はリッジの設置によりあまり影響を受けなかった。空洞部内の円形導波管に近い位置では中心軸上に電界が集中しており、この影響も緩和する必要があると考えた。図5に立案した構造を示す。円形導波管と空洞部の間にテーパ401を設けた。   As described above, the surface wave-like electric field could be suppressed by the ridge 301, but the electric field radiated inside the cavity was not significantly affected by the installation of the ridge. The electric field is concentrated on the central axis at a position close to the circular waveguide in the cavity, and it was thought that this effect needs to be mitigated. FIG. 5 shows the proposed structure. A taper 401 is provided between the circular waveguide and the cavity.

テーパ401により円形導波管のTE11モード分布の乱れを抑制して径を拡大することが出来る。テーパの開き角は小さくテーパ下部の直径は大きい方が円形導波管TE11モードの分布の乱れは抑制できるが、装置が大型化する欠点がある。またテーパ下部の直径が空洞の直径と同程度まで大きい場合には、表面波的電界が発生する余地がなく、リッジの設置が不要あるいはリッジ設置の余地が無くなる場合がある。   The taper 401 can suppress the disturbance of the TE11 mode distribution of the circular waveguide and increase the diameter. Disturbances in the distribution of the circular waveguide TE11 mode can be suppressed when the taper opening angle is small and the taper lower diameter is large, but there is a drawback that the apparatus becomes large. When the diameter of the taper lower part is as large as the diameter of the cavity, there is no room for generating a surface wave electric field, and there is a case where installation of the ridge is unnecessary or there is no room for installation of the ridge.

またリッジを設置しないテーパのみの場合でも円形導波管TE11モードを拡大する効果があるので、マイクロ波電界の中心集中抑制に効果がある。以上、テーパまたはリッジにより腹節の少ない低次のモードでのマイクロ波の放射が可能との解析結果を得た。   In addition, even when only a taper without a ridge is provided, there is an effect of expanding the circular waveguide TE11 mode, which is effective in suppressing the central concentration of the microwave electric field. As mentioned above, the analysis result that microwave radiation was possible in the low-order mode with few abdominal nodes by taper or ridge was obtained.

テーパ開き角を小さくテーパ下側の径を大きくすると、円形導波管TE11モードに与える分布の乱れを抑制することが出来る。しかし分布の乱れの抑制を優先するとテーパが大きくなり装置が大型化する欠点がある。本実施例では装置の小型化を優先し、図5に示すテーパ開き角を60度、テーパ下側の直径は空洞部直径の43%とした。   When the taper opening angle is reduced and the diameter on the taper lower side is increased, the disturbance of the distribution given to the circular waveguide TE11 mode can be suppressed. However, if priority is given to suppression of distribution disturbance, there is a drawback that the taper increases and the apparatus becomes larger. In this example, priority was given to downsizing of the apparatus, the taper opening angle shown in FIG. 5 was set to 60 degrees, and the diameter on the lower side of the taper was set to 43% of the diameter of the cavity.

図5に示すテーパとリッジを用いた構造を適用したエッチング装置を製作し、電極上のプラズマ密度分布を測定した。円形導波管部に円偏波発生機構適用し、円偏波化したマイクロ波を用いた。図6に結果を示す。比較として図1に示す同じ条件で測定した従来例での結果も合わせて示す。従来例では凸分布であったが本発明により凹分布になっていることがわかる。   An etching apparatus to which the structure using the taper and ridge shown in FIG. 5 was applied was manufactured, and the plasma density distribution on the electrode was measured. A circularly polarized microwave was used by applying a circularly polarized wave generation mechanism to the circular waveguide part. The results are shown in FIG. For comparison, the results of the conventional example measured under the same conditions shown in FIG. 1 are also shown. Although it was a convex distribution in the conventional example, it can be seen that the present invention has a concave distribution.

101 マイクロ波源
102 自動整合機
103 方形導波管
104 円矩形変換器
105 円形導波管
106 空洞共振部
107 マイクロ波導入窓
108 シャワープレート
109 処理ガスの供給系
110 プラズマ処理室
111 被処理基板
112 基板電極
113 自動整合機
114 バイアス電源
115 静磁界発生装置
116 バルブ
117 コンダクタンス可変バルブ
118 真空排気ポンプ
119 アイソレータ
120 圧力計
201 円形導波管
202 空洞部
203 マイクロ波電界ベクトル
204 表面波的な電界
205 空洞部内部に放射される電界
301 リッジ
401 テーパ
DESCRIPTION OF SYMBOLS 101 Microwave source 102 Automatic matching machine 103 Rectangular waveguide 104 Circular rectangular converter 105 Circular waveguide 106 Cavity resonance part 107 Microwave introduction window 108 Shower plate 109 Processing gas supply system 110 Plasma processing chamber 111 Substrate 112 Substrate Electrode 113 Automatic matching machine 114 Bias power supply 115 Static magnetic field generator 116 Valve 117 Variable conductance valve 118 Vacuum exhaust pump 119 Isolator 120 Pressure gauge 201 Circular waveguide 202 Cavity 203 Microwave electric field vector 204 Surface wave electric field 205 Cavity Electric field radiated inside 301 Ridge 401 Taper

Claims (2)

内部をマイクロ波の電界が伝播する円形導波管と、この円形導波管の下方に接続されて配置され前記円形導波管より径の大きな円柱状の空洞部と、この空洞部の下方に配置され当該空洞部に伝播された電界が内部に供給されてプラズマが形成されるプラズマ処理室とを有し、このプラズマ処理室内に配置された被処理基板を前記プラズマを用いて処理するプラズマ処理装置であって、
前記円形導波管が接続される前記空洞部の上部に円環状に配置されたリッジであって、円柱状の前記空洞部の天井に形成される前記電界の弱い位置に軸周りに配置された複数のリッジを備えたプラズマ処理装置。
A circular waveguide through which a microwave electric field propagates, a cylindrical hollow portion connected to the lower portion of the circular waveguide and having a larger diameter than the circular waveguide, and a lower portion of the hollow portion A plasma processing chamber in which an electric field that is disposed and propagated to the cavity is supplied to form a plasma, and a substrate to be processed disposed in the plasma processing chamber is processed using the plasma A device,
A ridge arranged in an annular shape above the cavity to which the circular waveguide is connected, and arranged around the axis at a position where the electric field is weak formed on the ceiling of the columnar cavity. A plasma processing apparatus having a plurality of ridges.
内部をマイクロ波の電界が伝播する円形導波管と、この円形導波管の下方に接続されて配置され前記円形導波管より径の大きな円柱状の空洞部と、この空洞部の下方に配置され当該空洞部に伝播された電界が内部に供給されてプラズマが形成されるプラズマ処理室とを有し、このプラズマ処理室内に配置された被処理基板を前記プラズマを用いて処理するプラズマ処理装置であって、
前記円形導波管の下端部と前記空洞部の上部との間でこれらを接続して配置され下方に向けて径が広がったその断面がテーパ状であって前記空洞部と接続される下端部の径が当該空洞部の径より小さくされたテーパ導波管と、このテーパ導波管が接続される前記空洞部内部の上部であって前記電界の弱い位置で前記テーパ導波管の軸回りに円環状に配置されたリッジを備えたプラズマ処理装置。
A circular waveguide through which a microwave electric field propagates, a cylindrical hollow portion connected to the lower portion of the circular waveguide and having a larger diameter than the circular waveguide, and a lower portion of the hollow portion A plasma processing chamber in which an electric field that is disposed and propagated to the cavity is supplied to form a plasma, and a substrate to be processed disposed in the plasma processing chamber is processed using the plasma A device,
The lower end portion of the circular waveguide, which is disposed between the lower end portion of the circular waveguide and the upper portion of the cavity portion, has a tapered cross section with a diameter extending downward, and is connected to the cavity portion. and diameter tapered waveguide is smaller than the diameter of the cavity, axis of the tapered waveguide at the weak position of the electric field the tapered waveguide is a the hollow portion inside of the upper to be connected A plasma processing apparatus comprising a ridge arranged in an annular shape.
JP2010039386A 2010-02-24 2010-02-24 Plasma processing equipment Expired - Fee Related JP5667368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039386A JP5667368B2 (en) 2010-02-24 2010-02-24 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039386A JP5667368B2 (en) 2010-02-24 2010-02-24 Plasma processing equipment

Publications (3)

Publication Number Publication Date
JP2011176147A JP2011176147A (en) 2011-09-08
JP2011176147A5 JP2011176147A5 (en) 2013-04-04
JP5667368B2 true JP5667368B2 (en) 2015-02-12

Family

ID=44688746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039386A Expired - Fee Related JP5667368B2 (en) 2010-02-24 2010-02-24 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5667368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7074795B2 (en) * 2020-04-21 2022-05-24 宏碩系統股▲フン▼有限公司 Synthetic diamond manufacturing equipment and microwave emission module used for it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567586A (en) * 1991-09-09 1993-03-19 Nec Corp Ecr plasma etching apparatus
JPH0673567A (en) * 1992-08-28 1994-03-15 Hitachi Ltd Microwave plasma treatment device
JPH07263187A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Plasma treatment device

Also Published As

Publication number Publication date
JP2011176147A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP2006324551A (en) Plasma generator and plasma processing apparatus
KR20100003293A (en) Plasma process apparatus
JP2010050046A (en) Plasma treatment device
KR20080038323A (en) Plasma processing apparatus and gas permeable plate
KR19980024249A (en) Surface Wave Plasma Treatment Equipment
JP5723397B2 (en) Plasma processing equipment
JP7001456B2 (en) Plasma processing equipment
JP2008027816A (en) Plasma processing device, and plasma processing method
JP5663175B2 (en) Plasma processing equipment
JP6442242B2 (en) Plasma processing equipment
JP2012190899A (en) Plasma processing apparatus
JP5063626B2 (en) Plasma processing equipment
JP4537032B2 (en) Plasma processing apparatus and plasma processing method
JP2012049353A (en) Plasma processing equipment
JP5667368B2 (en) Plasma processing equipment
JP2011077292A (en) Plasma processing apparatus
JP4600928B2 (en) Microwave directional coupler, plasma generator, and plasma processing apparatus
JP4967107B2 (en) Microwave introducer, plasma generator, and plasma processing apparatus
JP4900768B2 (en) Plasma generator and plasma processing apparatus
TWI802840B (en) Plasma treatment device
JP5676675B2 (en) Plasma generator and plasma processing apparatus
JP2016091603A (en) Microwave plasma processing device
JP5382958B2 (en) Plasma generator and plasma processing apparatus
JPH0217636A (en) Dry etching device
TW201345325A (en) Microwave irradiating antenna, microwave plasma source, and plasma processing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141212

R150 Certificate of patent or registration of utility model

Ref document number: 5667368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees