JP5661964B1 - Seismic isolation device and manufacturing method thereof - Google Patents

Seismic isolation device and manufacturing method thereof Download PDF

Info

Publication number
JP5661964B1
JP5661964B1 JP2014122757A JP2014122757A JP5661964B1 JP 5661964 B1 JP5661964 B1 JP 5661964B1 JP 2014122757 A JP2014122757 A JP 2014122757A JP 2014122757 A JP2014122757 A JP 2014122757A JP 5661964 B1 JP5661964 B1 JP 5661964B1
Authority
JP
Japan
Prior art keywords
metal
core
metal core
seismic isolation
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122757A
Other languages
Japanese (ja)
Other versions
JP2016003671A (en
Inventor
宮崎 光生
光生 宮崎
Original Assignee
株式会社ダイナミックデザイン
宮崎 光生
光生 宮崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイナミックデザイン, 宮崎 光生, 光生 宮崎 filed Critical 株式会社ダイナミックデザイン
Priority to JP2014122757A priority Critical patent/JP5661964B1/en
Application granted granted Critical
Publication of JP5661964B1 publication Critical patent/JP5661964B1/en
Priority to TW105132215A priority patent/TWI627336B/en
Priority to TW104113029A priority patent/TW201600690A/en
Priority to US14/727,025 priority patent/US20150361656A1/en
Publication of JP2016003671A publication Critical patent/JP2016003671A/en
Priority to US15/271,969 priority patent/US20170044788A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids

Abstract

【課題】ダンパー内蔵型の免震装置において、内蔵コアの抵抗力を自在に設定でき、過酷な地震動入力に対しても安定したエネルギー吸収性能を発揮できる信頼性の高い免震装置を提供する。【解決手段】積層ゴムに内蔵されるダンパー用コアを2種類の金属材料を組み合わせた複合金属コアとして構成し、外側金属に剛性・強度の高い塑性変形性能に富む材料を、内側金属に剛性・強度が低く塑性変形性能に富む金属材料を配置する。複合金属コアのせん断剛性上昇率よりも曲げ剛性上昇率を大きく高めることにより、せん断変形が卓越する変形モードとして、塑性変形によるエネルギー吸収性能をより安定化させ、同時に内蔵金属コアの水平せん断平均降伏力度レベルを2種類の金属の降伏応力度の間の任意の強度レベルに設定可能とした。【選択図】 図2An object of the present invention is to provide a highly reliable seismic isolation device capable of freely setting the resistance force of a built-in core in a built-in damper type seismic isolation device and exhibiting stable energy absorption performance against severe seismic motion input. A damper core built in a laminated rubber is configured as a composite metal core combining two types of metal materials, and a material with high rigidity and strength in plastic deformation performance is applied to the outer metal. A metal material having low strength and high plastic deformation performance is disposed. By increasing the bending rigidity increase rate significantly higher than the shear rigidity increase rate of the composite metal core, the energy absorption performance by plastic deformation is further stabilized as a deformation mode in which shear deformation is excellent, and at the same time the horizontal shear average yield of the built-in metal core The strength level could be set to any strength level between the yield stress levels of the two metals. [Selection] Figure 2

Description

本発明は、地震から構造物を安全に守ることのできる免震装置の中で、特にエネルギー吸収用ダンパーを内蔵する積層ゴム体を備えた免震装置に関するものである。   The present invention relates to a seismic isolation device having a laminated rubber body with a built-in energy absorbing damper among seismic isolation devices capable of safely protecting a structure from an earthquake.

免震構造は、大地震時の強い地震動に対して構造物の揺れそのものを低減できるので、建物の構造体骨組と共に、家具や設備備品などの内部収容物を含めた建物全体の耐震安全性を高めることができる。   Since the seismic isolation structure can reduce the shaking of the structure itself against strong ground motion during a large earthquake, it can improve the seismic safety of the entire building including internal structures such as furniture and equipment together with the structural framework of the building. Can be increased.

免震構造物を実現するための免震装置には、構造物の重量を支えながら大きな水平変形ができるアイソレータ機能と、地震により構造物に投入された振動エネルギーを吸収するダンパー機能の両機能を有していることが必要である。これまでに実用化されている免震システムとしては、1)天然ゴム系積層ゴム+別置きダンパ−、2)高減衰積層ゴム、3)鉛コア入り積層ゴムなどの積層ゴム系免震システムがあり、その他に4)すべり支承系の免震装置、5)転がり系支承系の免震装置等も実用化されている。   The seismic isolation device for realizing a seismic isolation structure has both an isolator function that allows large horizontal deformation while supporting the weight of the structure, and a damper function that absorbs vibration energy input to the structure due to the earthquake. It is necessary to have. Examples of seismic isolation systems that have been put to practical use include 1) natural rubber-based laminated rubber + separate dampers, 2) high-damping laminated rubber, 3) laminated rubber-based seismic isolation systems such as lead-core laminated rubber. In addition, 4) sliding-base seismic isolation devices and 5) rolling-base seismic isolation devices have been put into practical use.

これらの免震装置の中で、世界的に高い評価を受け、且つ多くの実績を有するものにニュージーランドで発明・開発された「鉛コア入り積層ゴム免震装置」がある(特許文献1および特許文献2参照)。この装置は、アイソレータとしての積層ゴム支承の平面中央部1カ所もしくは平面内複数箇所に、ダンパー(エネルギー吸収機構)として機能する鉛コアを封入したもので、日本および海外(ニュージーランド・米国・イタリア・台湾・トルコ・中国、南米等)も含めて世界的に評価の高い代表的な免震装置である。   Among these seismic isolation devices, “Laminated rubber seismic isolation device with lead core”, which was invented and developed in New Zealand, is one that has been highly evaluated worldwide and has many achievements (Patent Document 1 and Patents). Reference 2). This device has a lead core functioning as a damper (energy absorption mechanism) in one central part of the plane of a laminated rubber bearing as an isolator or in a plurality of locations in the plane. Japan and overseas (New Zealand, USA, Italy, (Taiwan, Turkey, China, South America, etc.)

この免震装置は、免震構造に必要とされるアイソレータ機能とダンパー機能の両者を一装置で兼備していること、ダンパー機能を担う鉛コアとアイソレータ機能を担う積層ゴムの組み合わせにより免震構造としての性能、即ち免震装置の復元力特性をかなり自由に調整できるという特長を有している。   This seismic isolation device has both the isolator function and the damper function required for the seismic isolation structure in one device, and the seismic isolation structure is a combination of a lead core responsible for the damper function and laminated rubber responsible for the isolator function. Performance, that is, the restoring force characteristic of the seismic isolation device can be adjusted considerably freely.

一方、近年では環境問題に対する社会的認識が高まってきたことから、材料としての鉛の有する毒性を嫌う社会的風潮の高まりを受けて、鉛と同様に塑性変形性能に優れた超塑性金属を内蔵コア材料として利用する提案が行われている。具体的な材料としては、鉛と同じ結晶構造である面心立方格子を有する錫および錫−ビスマス合金等を用いる「錫プラグ入り積層ゴム」(特許文献3)、亜鉛−アルミニウム系合金を利用するもの(特許文献4)等も開発あるいは提案されている。   On the other hand, the social awareness of environmental issues has increased in recent years, and as a result of the growing social trend that dislikes the toxicity of lead as a material, superplastic metals with excellent plastic deformation performance as well as lead are incorporated. Proposals for use as a core material have been made. As specific materials, “laminated rubber with a tin plug” using tin and tin-bismuth alloy having a face-centered cubic lattice having the same crystal structure as lead (Patent Document 3), a zinc-aluminum alloy is used. A thing (patent document 4) etc. are also developed or proposed.

その他にもエネルギー吸収用のコア材料として、減衰性能の高い高減衰ゴム等の高分子材料を利用するもの、硬度の異なる2種類のプラスチック樹脂材料を混合成形するもの(特許文献5、6)、ゴム等の高分子材料と鉄粉やガラスビーズ等の粒状物を混合・成型した人造的なダンパー材料を用いるもの(特許文献7)等も提案されている。   In addition, as a core material for energy absorption, a material using a high-damping rubber or other polymer material having high damping performance, a material in which two types of plastic resin materials having different hardness are mixed and molded (Patent Documents 5 and 6), A material using an artificial damper material obtained by mixing and molding a polymer material such as rubber and a granular material such as iron powder or glass beads has also been proposed (Patent Document 7).

特開昭59−62742号公報JP 59-62742 A 特許第3024562号公報Japanese Patent No. 30245562 特開2008−082386号公報JP 2008-082386 A 特開2007−139108号公報JP 2007-139108 A 特開2005−009558号公報Japanese Patent Laid-Open No. 2005-009558 特開2007−092818号公報Japanese Patent Laid-Open No. 2007-092818 特開平9−177368号公報JP-A-9-177368

図1に、本発明が対象とする従来のダンパー(金属コア)内蔵型の免震装置の基本構成を示しており、(1)は縦断面図、(2)は水平断面図である。積層ゴム体1の中心部に金属コア3を内蔵しており、その上下端部付近に厚さの厚い端部鋼板25を有し、その外側にフランジ鋼板4を有している。本例では、円形平面の積層ゴム体1の平面中央に内蔵金属コア3を有しており、その金属コア3の平面形状は円形である。
通称「LRB」と呼ばれる鉛プラグ入り積層ゴムや「SnRB」と呼ばれる錫プラグ入り積層ゴム等の金属コア内蔵型免震装置あるいはゴムと鉄粉の混合による人造材料コア等を内蔵する免震装置は、図1に示すように、薄い平板形状の弾性材料11(通常はゴム層)と剛性材料2(通常は鋼板)を交互に上下方向に積層した積層ゴム体1の内部に、少なくとも一つ以上の塑性変形に伴うエネルギー吸収機能を担うコア材料3を内蔵した構造とされている。エネルギー吸収用のコア材料3(内蔵コア)は、複数個に分散配置されることもあるが、それは積層ゴム体の平面が非常に大きい大型装置の場合で、通常は積層ゴム体1の平面中央部に一個配置されるのが基本である。
FIG. 1 shows a basic configuration of a conventional damper (metal core) built-in seismic isolation device targeted by the present invention, wherein (1) is a longitudinal sectional view and (2) is a horizontal sectional view. A metal core 3 is built in the central portion of the laminated rubber body 1, a thick end steel plate 25 is provided near the upper and lower ends, and a flange steel plate 4 is provided on the outer side thereof. In this example, a built-in metal core 3 is provided at the center of the plane of the laminated rubber body 1 having a circular plane, and the plane shape of the metal core 3 is circular.
Seismic isolation devices with built-in metal cores such as laminated rubber with lead plug called “LRB” and laminated rubber with tin plug called “SnRB”, or man-made material cores by mixing rubber and iron powder, etc. As shown in FIG. 1, at least one or more inside a laminated rubber body 1 in which thin flat elastic materials 11 (usually rubber layers) and rigid materials 2 (usually steel plates) are alternately laminated in the vertical direction. It is set as the structure which incorporated the core material 3 which bears the energy absorption function accompanying plastic deformation. The core material 3 (built-in core) for energy absorption may be distributed in a plurality, but this is the case of a large apparatus having a very large plane of the laminated rubber body, and is usually the center of the plane of the laminated rubber body 1. Basically, one piece is arranged in each part.

免震装置の減衰性能を高めるためには、エネルギー吸収性能を担う内蔵コアを大きくすればよいが、内蔵コアの直径(平面寸法)が積層ゴム直径に対してある一定比率以上に大きくなりすぎると、積層ゴム体の水平変形モードが崩れたり、水平変形をした場合の積層ゴム体の安定性や鉛直荷重支持能力に問題を生じるようになるので、一般的には積層ゴム直径の20%程度乃至それ以下にコア直径を抑えることが必要になる。   In order to improve the damping performance of the seismic isolation device, the built-in core responsible for energy absorption performance can be increased. However, if the built-in core diameter (planar dimension) becomes larger than a certain ratio to the laminated rubber diameter, Since the horizontal deformation mode of the laminated rubber body collapses or a problem arises in the stability and vertical load support capacity of the laminated rubber body when it is horizontally deformed, it is generally about 20% of the diameter of the laminated rubber. It is necessary to keep the core diameter below that.

そこでコア材料の選択により減衰性能を調整するという観点から、積層ゴムに内蔵するダンパー材料としてこれまでにも上記のように種々の材料が提案されてきたが、上記特許文献5〜7に例示した樹脂材料や粒状物を利用するものは、その抵抗力が小さい(単位断面積当たりのせん断抵抗力(応力度レベル)が低い)ために、大重量の大型構造物用の免震装置を前提とすると、コア直径を非常に大きくしなければならず、現実的寸法としては成立しないことになる。使用可能な対象物としては、戸建て住宅等の軽量で小規模の構造物に限定せざるをえない。   Therefore, from the viewpoint of adjusting the damping performance by selecting the core material, various materials as described above have been proposed as the damper material incorporated in the laminated rubber. Those using resin materials and granular materials are premised on seismic isolation devices for large heavy structures due to their low resistance (low shear resistance per unit cross-sectional area (stress level)). As a result, the core diameter must be very large, which is not a realistic dimension. The usable objects must be limited to lightweight and small-scale structures such as detached houses.

従って、大重量の大型構造物用の免震装置を対象とすると、内蔵コア用のダンパー材料としては、抵抗力の応力度レベルの観点からはやはり金属材料が相応しいことになる。
金属材料の内、特許文献3には錫−ビスマス、錫−インジウム等の低融点合金材料が提案されているが、その融点は表1のとおり117〜138℃と極めて低温で融解する。

表1 低融点合金材料の組成と機械的性質(特許文献3による)
Therefore, if the seismic isolation device for a large heavy structure is a target, a metal material is suitable as a damper material for the built-in core from the viewpoint of the stress level of resistance.
Among metal materials, Patent Document 3 proposes a low melting point alloy material such as tin-bismuth, tin-indium and the like, and its melting point is 117 to 138 ° C. as shown in Table 1 and melts at an extremely low temperature.

Table 1 Composition and mechanical properties of low melting point alloy materials (according to Patent Document 3)

免震装置のダンパー機能を担う内蔵コアは、構造物への地震入力エネルギーを免震層の層間変位に伴う自らの塑性変形によって吸収することを目的にしているので、地震時にはその吸収エネルギーによって発熱する。その上昇温度は、これまでの多くの実験により厳しい地震動に対しては容易に100℃を超えることが知られている。   The built-in core responsible for the damper function of the seismic isolation device aims to absorb the seismic input energy to the structure by its own plastic deformation accompanying the interlayer displacement of the seismic isolation layer. To do. It is known that the temperature rise easily exceeds 100 ° C. for severe earthquake motions by many experiments so far.

従って、これらの低融点合金材料は、過酷な地震動が作用する場合には融点に到達して融解する可能性が高く、その融解前の高温時には抵抗力が低下して、エネルギー吸収性能が著しく低下することになる。そのため、これらの低融点合金材料は、塑性金属材料ではあるものの、大地震時の塑性変形に伴うエネルギー吸収を目的とした免震装置の内蔵コア用材料としては不適であると言わざるを得ない。   Therefore, these low-melting-point alloy materials are likely to reach the melting point and melt when severe seismic motion is applied, the resistance decreases at high temperatures before melting, and the energy absorption performance decreases significantly. Will do. Therefore, although these low-melting-point alloy materials are plastic metal materials, it must be said that they are unsuitable as materials for the built-in core of seismic isolation devices for the purpose of absorbing energy associated with plastic deformation during a large earthquake. .

これまでに注目・検討されている塑性変形性能に優れていると考えられる金属材料としては、鉛、錫、アルミニウム、亜鉛、銅およびそれらの合金材料の利用が考えられる。
これらの代表的超塑性金属の縦弾性係数E、せん断弾性係数G、体積弾性係数K、ポアソン比ν、融点、室温および融点での密度等の物質としての基本特性(機械的性質)を表2に示す。
表2 代表的超塑性金属の機械的性質
As metal materials considered to be excellent in plastic deformation performance that has been noticed and studied so far, use of lead, tin, aluminum, zinc, copper, and alloy materials thereof can be considered.
Table 2 shows basic characteristics (mechanical properties) of these representative superplastic metals as materials such as longitudinal elastic modulus E, shear elastic modulus G, bulk elastic modulus K, Poisson's ratio ν, melting point, room temperature, and density at the melting point. Shown in
Table 2 Mechanical properties of typical superplastic metals

周知のとおり、これらの材料の内これまでに最も採用実績の多い免震装置用内蔵コアの金属材料は、純度99.99%以上の純鉛である。鉛は、超塑性金属として非常に大きな塑性変形能力を有するという優れた機械的性質を有しているものの、人体に対する毒性を有するために、環境衛生問題に厳しい昨今の情勢からはその使用が敬遠される傾向にある。また、その抵抗力もダンパー用としては若干低めである点も改良の余地がある。   As is well known, among these materials, the metal material of the built-in core for seismic isolation devices, which has been most adopted so far, is pure lead with a purity of 99.99% or more. Although lead has excellent mechanical properties as a superplastic metal and has a very large plastic deformation capability, it is toxic to the human body, so its use is discouraged from the current situation of severe environmental health issues. Tend to be. Also, there is room for improvement in that the resistance is slightly lower for dampers.

一方、鉛の毒性を避ける観点から、毒性のない超塑性金属として注目されているのが錫である。内蔵金属コア材料として錫を採用した錫プラグ入り積層ゴムが実用化されており、その採用実績も着実に進展しつつあるが、錫プラグは鉛に比較するとその抵抗力が約2倍程度と高いために、個々の積層ゴムに採用するには抵抗力がやや強すぎる傾向がある。また、その強さは金属としての硬さと連動しており、その硬さの故に塑性域における抵抗力が一定で変形できる鉛のような均一性には欠け、変形と共に抵抗力が増大する蝶型の履歴形状を示す。即ち、塑性変形特性としては鉛の方が優れている。   On the other hand, from the viewpoint of avoiding toxicity of lead, tin is attracting attention as a non-toxic superplastic metal. Laminated rubber with tin plug that uses tin as a built-in metal core material has been put into practical use, and its adoption has been steadily progressing, but the resistance of tin plugs is about twice as high as that of lead. For this reason, the resistance tends to be slightly too strong to be adopted for each laminated rubber. Its strength is linked to the hardness of the metal, but because of its hardness, the resistance in the plastic region is constant and lacks uniformity like lead that can be deformed, butterfly shape whose resistance increases with deformation The history shape is shown. That is, lead is superior in plastic deformation characteristics.

また錫プラグは、熱的特性の観点において以下に示す致命的欠点を有している。
表3に、主として鉛と錫の熱的特性と機械的性質の比較を示す。即ち、錫はその抵抗力(せん断降伏応力度)が鉛の2倍程度強い一方で、融点が鉛よりも100℃近くも低いという際だった特性を有している。
Moreover, the tin plug has the following fatal defects from the viewpoint of thermal characteristics.
Table 3 compares the thermal and mechanical properties of lead and tin. That is, tin has the characteristic that its resistance (shear yield stress) is about twice as strong as that of lead, but its melting point is nearly 100 ° C. lower than that of lead.

表3 鉛と錫の熱的性質と強度特性の比較
Table 3 Comparison of thermal and strength properties of lead and tin

今、最も一般的(標準的)な建築物用積層ゴムとして、直径1000mmφの積層ゴム(コア寸法:直径200mmφx高さH400mm)を想定し、これに大地震時の水平変形として±300mmの強制変形が作用する場合を想定し、地震前の想定温度20℃からこの金属プラグが融点に達するまでの加振サイクル数を算定すると、表3(下半部)に示すとおり、鉛プラグでは約18サイクルであるのに対して、錫プラグではその1/3程度の7.6サイクルで融点に達することになる。
この違いは、錫プラグの特徴として、その抵抗力が鉛の約2倍近く高いために1サイクル当りの吸収エネルギー量、即ち発熱量が2倍近く高い反面、融点が鉛よりも100℃も低いという特性に起因している。エネルギー吸収に伴う温度上昇によって抵抗力が低下するため、融点に達する実際の加振サイクル数はもう少し多くなると予想されるが、いずれにしても抵抗力の低下によりエネルギー吸収性能が著しく早期に低下していくことは明らかである。
Assuming that the most common (standard) laminated rubber for buildings is a laminated rubber with a diameter of 1000mmφ (core dimensions: diameter 200mmφxheight H400mm), and this is forced deformation of ± 300mm as a horizontal deformation during a large earthquake. When the number of vibration cycles until the metal plug reaches the melting point is calculated from the estimated temperature of 20 ° C before the earthquake, as shown in Table 3 (lower half), about 18 cycles for the lead plug On the other hand, with a tin plug, the melting point is reached in 7.6 cycles, which is about 1/3 of that.
This difference is characteristic of the tin plug, because its resistance is nearly twice as high as that of lead, so the absorbed energy amount per cycle, that is, the calorific value is nearly twice as high, but the melting point is 100 ° C lower than that of lead. This is due to the characteristics. Since the resistance decreases due to the temperature rise accompanying energy absorption, the actual number of excitation cycles that reach the melting point is expected to increase slightly, but in any case, the energy absorption performance decreases significantly early due to the decrease in resistance. It is clear that we will go.

特に、2011年の東北地方太平洋沖地震よりも近くで発生する可能性が高いマグニチュードM9レベルの超巨大地震が南海トラフ沿いで発生した場合には、この想定以上に大きな振幅で長時間に渡り多数回の繰り返し加振を受ける可能性が高いので、強い長周期・長時間継続地震動に対しては、錫プラグ入り積層ゴムは深刻な問題を抱えていると言わざるを得ない。   In particular, when a massive M9 level huge earthquake that is likely to occur near the 2011 off the Pacific coast of Tohoku Earthquake occurred along the Nankai Trough, many earthquakes with a larger amplitude than this assumption for a long time. Since it is highly likely to be subjected to repeated vibrations, it is necessary to say that the laminated rubber with tin plug has a serious problem against strong long-period, long-lasting seismic motion.

以上の免震装置(積層ゴム)用内蔵コアに関する議論、問題点を要約すると以下にようになる。先ず、コア材料として高分子材料を利用することは、抵抗力レベルが低いためにダンパー機能としての性能が低く、コア寸法を非常に大きくすると装置自体の不安定化に繋がることになり、コア材料としての性能上劣っている。また金属コアの内、低融点合金材料(表1)は融点が低すぎて、吸収エネルギーにより容易に融点に到達し得るので、これまたコア材料としては不適である。   The following is a summary of discussions and problems related to the built-in core for seismic isolation devices (laminated rubber). First, the use of a polymer material as the core material results in low performance as a damper function due to a low resistance level. If the core size is very large, the device itself will become unstable. As the performance is inferior. Further, among the metal cores, the low melting point alloy material (Table 1) has an excessively low melting point, and can easily reach the melting point by absorbed energy, and therefore is not suitable as a core material.

内蔵コア材料として現実的な金属材料は、やはりこれまでの実績の多い鉛と錫が有望となるが、表2に示すとおり、最も柔らかい鉛とその次の錫は、弾性係数で3倍以上、せん断降伏強度で約2倍近くの差があり、その他の材料は更に大きな相違がある。即ち、金属コアとしての鉛は、変形性能には優れているものの、強度的には少し柔らかめであり、逆に錫は硬すぎて変形特性も鉛に比較すると難がある。その他のアルミニウム、亜鉛、銅等の金属は、錫以上に剛性が高いために、錫プラグ以上に強すぎる傾向を有することになる。また鉛には、毒性を有するという問題点もある。
以上のとおり、免震装置の内蔵コア材料としては強度レベルの観点から金属コアを利用せざるをえないものの、最適の強度、変形特性や機械的性質、環境衛生上・取り扱い上の安全性(毒性のなさ)等の諸観点において、「すべての要求条件を完備した理想的な金属コア材料は存在しない」ということになる。
As for the metal material that is practical as the built-in core material, lead and tin, which have been proven so far, are promising. However, as shown in Table 2, the softest lead and the next tin are more than three times in elastic modulus. There is a nearly double difference in shear yield strength, with other materials having even greater differences. That is, although lead as a metal core is excellent in deformation performance, it is slightly softer in strength, and conversely, tin is too hard and its deformation characteristics are difficult compared to lead. Other metals such as aluminum, zinc, and copper have a tendency to be too strong as compared with a tin plug because they are more rigid than tin. Lead also has a problem of toxicity.
As described above, as a core material for the seismic isolation device, a metal core must be used from the viewpoint of strength level, but optimal strength, deformation characteristics, mechanical properties, environmental health and safety in handling ( From various viewpoints, such as “non-toxic”, it means that “there is no ideal metal core material that has all the requirements”.

本発明は以上の問題点を解決するため次の構成を採用する。
〈構成1〉
薄い平板形状の弾性材料と剛性材料を交互に上下方向に積層した積層ゴム体の内部に、少なくとも一つ以上の塑性変形に伴うエネルギー吸収機能を担うダンパー機構としての塑性金属コアを内蔵したダンパー内蔵型の積層ゴム免震装置において、
前記塑性金属コアが、降伏強度および弾性係数の異なる2種類の塑性変形能力をそれぞれ備えた内側金属と外側金属とを水平断面において同心状に複合配置して構成されており、かつ、前記内側金属の外側に降伏強度および弾性係数が前記内側金属よりも高い外側金属を配置して両者を密着させ一体化した複合金属コアとしており、
同一平断面寸法の金属コアの全断面を前記内側金属単独で構成した金属コアに対して、複合金属コアのせん断剛性上昇率よりも曲げ剛性上昇率を大きく高めることにより、せん断変形が卓越する変形モードとして、塑性変形によるエネルギー吸収性能をより安定化させると共に、
前記塑性金属コアの水平せん断抵抗力を同一断面積で比較した場合、前記外側金属単独で全断面を構成した金属コアAの水平せん断抵抗力QAと前記内側金属単独で全断面を構成した金属コアBの水平せん断抵抗力QB(QB<QA)に対して、前記複合金属コアCの水平せん断抵抗力QCを、前記金属コアAの水平せん断抵抗力QAと前記金属コアBの水平せん断抵抗力QBの間の任意の強さの水平せん断抵抗力とし、QB≦QC<QAと設定していることを特徴とする免震装置。
The present invention adopts the following configuration in order to solve the above problems.
<Configuration 1>
Built-in damper with built-in plastic metal core as a damper mechanism responsible for energy absorption function accompanying at least one plastic deformation inside laminated rubber body with thin flat plate elastic material and rigid material alternately laminated in the vertical direction In the type of laminated rubber seismic isolation device,
The plastic metal core is configured by concentrically arranging an inner metal and an outer metal each having two types of plastic deformation capacities having different yield strength and elastic modulus in a horizontal section, and the inner metal And a composite metal core in which an outer metal whose yield strength and elastic modulus are higher than those of the inner metal is arranged on the outside of the inner metal, and both are in close contact with each other.
Deformation in which shear deformation is excellent by increasing the bending rigidity increase rate to a larger degree than the composite metal core's shear rigidity increase rate for a metal core composed of the inner metal alone with the entire cross section of a metal core having the same plane cross-sectional dimension. As a mode, energy absorption performance by plastic deformation is further stabilized,
When the horizontal shear resistance of the plastic metal core is compared with the same cross-sectional area, the horizontal shear resistance QA of the metal core A having the entire cross section made of the outer metal alone and the metal core having the entire cross section made of the inner metal alone The horizontal shear resistance QC of the composite metal core C is compared to the horizontal shear resistance QB of the metal core A and the horizontal shear resistance QB of the metal core B with respect to the horizontal shear resistance QB of B (QB <QA). A seismic isolation device characterized in that the horizontal shear resistance is of any strength between and is set as QB ≦ QC <QA.

〈構成2〉
構成1に記載した免震装置において、前記複合金属コアを構成する前記外側金属および前記内側金属の材料の組み合わせとして、組合せ1(前記外側金属を錫、前記内側金属を鉛)、組合せ2(前記外側金属をアルミニウム、前記内側金属を鉛もしくは錫)、組合せ3(前記外側金属を亜鉛、前記内側金属を鉛、錫、アルミニウムのいずれか)、組合せ4(前記外側金属を銅、前記内側金属を鉛、錫、アルミニウム、亜鉛のいずれか)のいずれか(但し、各材料はそれぞれの合金を含む)としていることを特徴とする免震装置。
<Configuration 2>
In the seismic isolation device described in Configuration 1, as a combination of the material of the outer metal and the inner metal constituting the composite metal core, a combination 1 (the outer metal is tin and the inner metal is lead), a combination 2 (the above Outer metal as aluminum, inner metal as lead or tin, combination 3 (outer metal as zinc, inner metal as lead, tin, or aluminum), combination 4 (outer metal as copper, inner metal as One of lead, tin, aluminum, and zinc (however, each material includes the respective alloy).

〈構成3〉
構成1または構成2に記載した免震装置において、前記複合金属コアの縦断面形状が、上端部から下端部にかけての平面寸法がほぼ同一か、僅かに異なるテーパー付き柱状体であり、前記外側金属および前記内側金属の平断面形状を、円形、概正方形もしくは八角形以下の概正多角形のいずれかとしており、且つ、平面形状が円形の場合には、前記外側金属の外側面および内外両金属の境界面に凹形状もしくは凸形状の2以上の縦リブを設けていることを特徴とする免震装置。
<Configuration 3>
In the seismic isolation device according to Configuration 1 or Configuration 2, the vertical cross-sectional shape of the composite metal core is a tapered columnar body having a plane dimension from the upper end to the lower end that is substantially the same or slightly different, and the outer metal And when the planar cross-sectional shape of the inner metal is any one of a circle, an approximate square, or an approximately regular polygon less than an octagon, and the planar shape is a circle, both the outer surface of the outer metal and the inner and outer metals A seismic isolation device, wherein two or more vertical ribs having a concave shape or a convex shape are provided on the boundary surface of the base plate.

〈構成4〉
構成1乃至構成3のいずれかに記載した免震装置において、
前記複合金属コアを構成する前記外側金属の材質を錫もしくはその合金とし、前記内側金属の材質を鉛もしくはその合金としており、
前記外側金属および前記内側金属の平断面形状を、円形、概正方形もしくは八角形以下の概正多角形のいずれかとしており、
前記外側金属の厚さt1を前記複合金属コアの外形寸法dpに対して0.35以下(t1/dp≦0.35)としていることを特徴とする免震装置。
<Configuration 4>
In the seismic isolation device described in any one of Configuration 1 to Configuration 3,
The material of the outer metal constituting the composite metal core is tin or an alloy thereof, and the material of the inner metal is lead or an alloy thereof,
The cross-sectional shape of the outer metal and the inner metal is either a circle, a square, or a regular regular polygon less than an octagon,
A seismic isolation device characterized in that the thickness t1 of the outer metal is 0.35 or less (t1 / dp ≦ 0.35) with respect to the outer dimension dp of the composite metal core.

〈構成5〉
構成1乃至構成4のいずれかに記載した免震装置において、前記複合金属コアの上端部、もしくは下端部、あるいは上下両端部に、平面中央部にねじきりを行ったコア定着用蓋部材を埋設しており、前記コア定着用蓋部材の材質を銅もしくは銅合金としていることを特徴とする免震装置。
<Configuration 5>
In the seismic isolation device according to any one of Configurations 1 to 4, a core fixing lid member in which a center portion of a plane is twisted is embedded in an upper end portion, a lower end portion, or upper and lower end portions of the composite metal core. A seismic isolation device, wherein the core fixing lid member is made of copper or a copper alloy.

〈構成6〉
構成1乃至構成5のいずれかに記載した複合金属コアを内蔵する免震装置の製造方法であって、
前記外側金属および前記内側金属に使用されている金属材料の融点の相違を利用して、
前記外側金属の融点が前記内側金属の融点より高い場合は、予め所定の寸法・形状に整形された前記外側金属の内部空洞に、前記外側金属の融点以下の温度で溶融状態にした内側金属を注入することにより前記複合金属コアを製造し、もしくは、
前記外側金属の融点が前記内側金属の融点より低い場合は、前記外側金属の外面形状に等しい内面形状を有する金型を作成し、その内部に予め整形した前記内側金属を配置して、両者の隙間に前記内側金属の融点以下の温度で溶融状態にした前記外側金属を注入することによって前記複合金属コアを製造することを特徴とする免震装置の製造方法。
<Configuration 6>
A method of manufacturing a seismic isolation device including the composite metal core according to any one of Configurations 1 to 5,
Utilizing the difference in melting point of the metal material used for the outer metal and the inner metal,
When the melting point of the outer metal is higher than the melting point of the inner metal, the inner metal that has been melted at a temperature equal to or lower than the melting point of the outer metal is inserted into the inner cavity of the outer metal that has been shaped to a predetermined size and shape in advance. Producing the composite metal core by pouring, or
When the melting point of the outer metal is lower than the melting point of the inner metal, a mold having an inner surface shape equal to the outer surface shape of the outer metal is created, and the inner metal shaped in advance is placed inside the mold, A method of manufacturing a seismic isolation device, wherein the composite metal core is manufactured by injecting the outer metal in a molten state at a temperature lower than the melting point of the inner metal into the gap.

〈構成7〉
構成1乃至構成5のいずれかに記載した複合金属コアを内蔵する免震装置の製造方法であって、
予め前記内側金属を所定の寸法、形状に整形しておき、前記外側金属を溶融した槽内に浸漬して、前記内側金属の外表面に前記外側金属の表面メッキ層を形成することによって前記複合金属コアを製造し、もしくは、
予め所定の寸法、形状に整形された前記内側金属の少なくとも側面表面上に前記外側金属を溶射により吹き付けて前記外側金属の薄膜を形成することによって前記複合金属コアを製造することを特徴とする複合金属コアを内蔵する免震装置の製造方法。
<Configuration 7>
A method of manufacturing a seismic isolation device including the composite metal core according to any one of Configurations 1 to 5,
The composite is obtained by shaping the inner metal into a predetermined size and shape in advance, immersing the outer metal in a molten bath, and forming a surface plating layer of the outer metal on the outer surface of the inner metal. Manufacture metal cores, or
The composite metal core is manufactured by spraying the outer metal on at least a side surface of the inner metal shaped in advance into a predetermined size and shape to form a thin film of the outer metal. A method of manufacturing a seismic isolation device incorporating a metal core.

本発明の効果第1点は、金属コアの水平せん断抵抗力を任意に設定できることである。
本発明は、積層ゴムに内蔵される金属コアを2種類の金属材料を複合化したハイブリッドコアとして構成するために、金属コアの水平せん断抵抗力を2種類の金属コア単独で構成した場合の両水平せん断抵抗力の中間の範囲内において、任意の水平せん断抵抗力に自由に設定することができる。
即ち、塑性金属コアの水平せん断抵抗力を同一断面積で比較した場合、外側金属単独で全断面を構成した金属コアAの水平せん断抵抗力QAと内側金属単独で全断面を構成した金属コアBの水平せん断抵抗力QB(QB<QA)に対して、複合金属コアCの水平せん断抵抗力QCを、金属コアAの水平せん断抵抗力QAと金属コアBの水平せん断抵抗力QBの間の任意の強さの水平せん断抵抗力とし、QB≦QC<QAに設定可能となる。
尚、上記においてQC=QBを含めているのは、構成7において外側金属Aをメッキもしくは溶射により薄膜として構成した場合、その抵抗力QCは概ねQBに近くなる(QC≒QB)場合を意味している。
The first effect of the present invention is that the horizontal shear resistance of the metal core can be set arbitrarily.
In the present invention, in order to configure the metal core incorporated in the laminated rubber as a hybrid core in which two kinds of metal materials are combined, both horizontal shear resistances of the metal core are constituted by two kinds of metal cores alone. Any horizontal shear resistance can be freely set within the intermediate range of the horizontal shear resistance.
That is, when the horizontal shear resistance of the plastic metal core is compared with the same cross-sectional area, the horizontal shear resistance QA of the metal core A in which the entire cross section is constituted by the outer metal alone and the metal core B in which the entire cross section is constituted by the inner metal alone. The horizontal shear resistance QC of the composite metal core C is an arbitrary value between the horizontal shear resistance QA of the metal core A and the horizontal shear resistance QB of the metal core B with respect to the horizontal shear resistance QB (QB <QA). It is possible to set the horizontal shear resistance of the strength of QB ≦ QC <QA.
In the above description, QC = QB is included when the outer metal A is formed as a thin film by plating or thermal spraying in the configuration 7, and the resistance QC is approximately close to QB (QC≈QB). ing.

本発明の効果第2点は、第1点と同様の効果であるが、金属コアの強度(単位面積当たりの水平せん断抵抗力)を自在に調整できることである。
金属コアの水平せん断抵抗力を単位面積当たりの平均せん断応力度で表現すると、外側金属の降伏せん断応力度をτ1、内側金属の降伏せん断応力度をτ2(τ2<τ1)とし、金属コアの全断面積A0に対する外側金属の断面積A1の割合をRA1(=A1/A0)とすると、複合金属コアの単位面積当たりの平均降伏せん断応力度τ3は、τ3=τ1×RA1+τ2(1−RA1)となり、複合する2種類の金属の面積比により、τ1とτ2の間の任意の強さの平均せん断降伏応力度τ3(τ2≦τ3<τ1 )に設定可能である。
The second effect of the present invention is the same effect as the first point, but the strength (horizontal shear resistance per unit area) of the metal core can be freely adjusted.
When the horizontal shear resistance of the metal core is expressed as the average shear stress per unit area, the yield shear stress of the outer metal is τ1, the yield shear stress of the inner metal is τ2 (τ2 <τ1), When the ratio of the cross-sectional area A1 of the outer metal to the cross-sectional area A0 is RA1 (= A1 / A0), the average yield shear stress degree τ3 per unit area of the composite metal core is τ3 = τ1 × RA1 + τ2 (1-RA1). The average shear yield stress degree τ3 (τ2 ≦ τ3 <τ1) having an arbitrary strength between τ1 and τ2 can be set according to the area ratio of the two kinds of metals combined.

次ぎに本発明の効果の第3点として、外側金属に内側金属よりも弾性係数の高い材料を採用した複合金属コアの曲げ剛性EI3およびせん断剛性GA3を、内側金属コア単独の曲げ剛性EI2およびせん断剛性GA2と比較した場合、金属コアの曲げ剛性を決定する断面2次モーメントIはコア断面の外側ほど寄与率が高い(断面内の各部微小面積の断面2次モーメントへの寄与は、コア中心からその存在位置までの距離の2乗に比例する)ので、前者(複合金属コアの断面性能)の後者(内側金属コア単独の断面性能)に対する上昇率CEI=EI3/EI2、CGA=GA3/GA2を比較すると、一般的に CEI>CGA となる。従って、本発明の複合金属コアでは、せん断剛性の上昇率よりも曲げ剛性の上昇率が高くなるので、複合金属コアに水平力を作用させた場合の変形モードとして、曲げ変形が生じにくくなる。即ち、本発明の複合金属コアは、曲げ変形が生じにくくなるため、せん断変形卓越型の変形モードとなり、より安定したせん断変形を生じ、安定したエネルギー吸収特性を示すようになる。   Next, as the third point of the effect of the present invention, the bending rigidity EI3 and shear rigidity GA3 of the composite metal core adopting a material having a higher elastic modulus than the inner metal as the outer metal, and the bending rigidity EI2 and shear of the inner metal core alone are used. When compared with the rigidity GA2, the contribution of the secondary moment I, which determines the bending rigidity of the metal core, to the outside of the cross section of the core is higher The rate of increase CEI = EI3 / EI2 and CGA = GA3 / GA2 with respect to the latter (cross-sectional performance of the inner metal core alone) of the former (cross-sectional performance of the composite metal core) and the latter (cross-sectional performance of the inner metal core alone). In general, CEI> CGA. Therefore, in the composite metal core of the present invention, the rate of increase in bending stiffness is higher than the rate of increase in shear stiffness, so bending deformation is less likely to occur as a deformation mode when a horizontal force is applied to the composite metal core. That is, since the composite metal core of the present invention is less likely to bend and deform, it becomes a shear deformation-dominant deformation mode, generates more stable shear deformation, and exhibits stable energy absorption characteristics.

本発明の効果の第4点としては、複合金属コアの内側金属に鉛を使用し、外側金属に錫等の鉛以外の材料を複合した場合、人体に対する毒性を有するとされる鉛が毒性のない外側金属で被覆されることになり、製造過程における取り扱い上の安全性、作業者に対する安全・衛生上の課題が改善される。   The fourth point of the effect of the present invention is that when lead is used for the inner metal of the composite metal core and a material other than lead, such as tin, is used for the outer metal, lead that is toxic to the human body is toxic. Therefore, the safety in handling during the manufacturing process and the safety and hygiene issues for workers are improved.

本発明の複合金属コアの組合せ方として、内側金属に鉛を使用し、外側金属の厚さをメッキや溶射により薄膜とした場合には、複合金属コアの機械的性質は内部金属(鉛)の特性に殆ど一致し、且つ取り扱い上表面は毒性を有しない金属コアを実現することができる。   As a method of combining the composite metal core of the present invention, when lead is used for the inner metal and the thickness of the outer metal is reduced to a thin film by plating or thermal spraying, the mechanical properties of the composite metal core are those of the inner metal (lead). It is possible to realize a metal core that almost matches the characteristics and that the surface has no toxicity in handling.

本発明の効果の第5点は、錫プラグ入り積層ゴムの弱点解消効果である。
鉛以外の金属コアを内蔵した積層ゴム免震装置として、錫プラグ入り積層ゴムがあり、近年その採用実績が伸長しつつあるが、この装置は段落[0018]〜[0021]で指摘した熱的弱点を有している。これに対して、外側金属に錫、内側金属に鉛を複合した本発明の装置では、錫部分で発生した熱を、熱容量が大きく発熱量の低い鉛部分に伝達することができるので、錫部分の温度上昇を抑制でき、且つコア全体の熱容量を高め、溶融温度の高い鉛が錫の熱的劣化をカバーするので、錫プラグ入り積層ゴムに比較すると、発熱による装置全体の熱的弱点が大きく改善され、錫プラグ入り積層ゴムの抱える熱問題を解消することができる。
The fifth point of the effect of the present invention is the effect of eliminating the weak point of the laminated rubber containing a tin plug.
As a laminated rubber seismic isolation device with a metal core other than lead, there is a laminated rubber with a tin plug, and its adoption has been increasing in recent years. This device is a thermal material pointed out in paragraphs [0018] to [0021]. Has weaknesses. On the other hand, in the device of the present invention in which tin is used for the outer metal and lead is used for the inner metal, the heat generated in the tin portion can be transferred to the lead portion having a large heat capacity and a low calorific value. Temperature rise, and the heat capacity of the entire core is increased, and lead with a high melting temperature covers the thermal degradation of tin. It is improved and the thermal problem of the laminated rubber with tin plug can be solved.

更に第6の効果として、本発明では複合金属コアの平面形状にも工夫がある。即ち、平面が正方形等の多角形の場合はリブなしでよいが、複合金属コアの平面形状を円形にした場合は、金属コアの外側側面および外部金属と内部金属の境界面に2以上の縦リブを設けることになっている。これにより、免震装置が水平2方向の変形を同時に強制された場合、特に装置底面に対して装置上面が平面的に回転する加振を受けた場合にも、積層ゴム内部において、金属コアが鉛直軸周りの回転を起こすことが不可能であり、如何なる加振モード、特に円形加振に対しても安定した塑性変形によるエネルギー吸収性能を発揮することができる。   As a sixth effect, in the present invention, the planar shape of the composite metal core is also devised. That is, when the plane is a polygon such as a square, the rib may be omitted. However, when the plane shape of the composite metal core is circular, two or more vertical surfaces are formed on the outer side surface of the metal core and the boundary surface between the outer metal and the inner metal. Ribs are to be provided. As a result, when the seismic isolation device is forced to deform in two horizontal directions at the same time, especially when the device upper surface is subjected to vibration that rotates the upper surface of the device in a plane, It is impossible to cause rotation around the vertical axis, and energy absorption performance by stable plastic deformation can be exhibited in any vibration mode, particularly circular vibration.

また金属コアの平面形状として正方形(辺長D)を採用した場合、従来の円形断面(直径dφ)に較べて同じ平面寸法(D=d)を採用した場合には、コアの断面積が1.27倍(=4/π)となるので、それだけ減衰性能(エネルギー吸収性能)が高い装置となるという効果もある。   Further, when a square (side length D) is adopted as the planar shape of the metal core, when the same planar dimension (D = d) is adopted as compared with the conventional circular section (diameter dφ), the cross-sectional area of the core is 1.27. Since it is doubled (= 4 / π), there is an effect that the device has a higher attenuation performance (energy absorption performance).

更に、経済的観点での効果もある。現時点における錫プラグ入り積層ゴムの課題の一つにコストの問題がある。即ち、コアに用いる錫の材料費が極めて高価であるために、錫プラグ入り積層ゴムの価格が極めて高くなることである。本発明の複合金属コアとして、内側金属を鉛、外側金属に錫を採用し、且つ外側金属の錫の厚さを適度に制限することにより、毒性解消、強度改善を図りながら、コストを適切なレベルに抑制することが可能となる。
Furthermore, there is an effect from an economic viewpoint. One of the issues with tin plug-containing laminated rubber at present is the problem of cost. That is, since the material cost of tin used for the core is extremely high, the price of the laminated rubber containing a tin plug is extremely high. As the composite metal core of the present invention, lead is used for the inner metal, tin is used for the outer metal, and the thickness of the outer metal tin is appropriately restricted, thereby eliminating the toxicity and improving the strength. It becomes possible to suppress to the level.

従来のダンパー内蔵型の免震装置の基本構成を示す図であり、 (1)積層ゴム体の中心にコアを有することを示す縦断面図、 (2)積層ゴム体の平面中央に円形コアを内蔵していることを示す水平断面図である。It is a figure which shows the basic composition of the conventional damper built-in type seismic isolation device, (1) The longitudinal cross-sectional view which shows having a core in the center of a laminated rubber body, (2) A circular core in the plane center of a laminated rubber body It is a horizontal sectional view showing that it is built. 本発明の実施例1を示しており、複合金属コアを内蔵する免震装置全体の基本構成を示す説明図であり、 (1)積層ゴム体の中心に複合金属コアを有することを示す縦断面図、 (2)積層ゴム体の平面中央に正方形平面の複合金属コアを内蔵していることを示す水平断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows Example 1 of this invention, and shows the basic composition of the whole seismic isolation apparatus which incorporates a composite metal core, (1) The longitudinal cross-section which shows having a composite metal core in the center of a laminated rubber body (2) It is a horizontal sectional view showing that a square plane composite metal core is built in the center of the plane of the laminated rubber body. 本発明の実施例2(構成3)を示す説明図であり、 (1A)平面形状が円形の複合金属コアで、外周側面および外側金属と内側金属の境界面に縦リブ4個を有している場合を示す水平断面図、 (2A)上記複合金属コアの立面図、 (3A)上記複合金属コアの上下端部に吊下げ用連結部材を内蔵している場合を示す縦断面図、 (1B)平面形状が概正方形の複合金属コアを示す水平断面図、 (2B)上記複合金属コアの立面図、 (3A)上記複合金属コアの、上下端部にコア定着用蓋部材を内蔵している場合の縦断面図である。It is explanatory drawing which shows Example 2 (Structure 3) of this invention, (1A) It is a composite metal core with a circular planar shape, and has four vertical ribs on the outer peripheral side surface and the boundary surface between the outer metal and the inner metal. (2A) Elevated view of the composite metal core, (3A) Longitudinal cross section showing a case where a suspension connecting member is built in the upper and lower ends of the composite metal core, 1B) A horizontal sectional view showing a composite metal core having a substantially square planar shape, (2B) an elevation view of the composite metal core, and (3A) a core fixing lid member is built in the upper and lower ends of the composite metal core. FIG. 本発明の実施例3(構成7で製造された金属コア)を示す図であり、 (1A)平面形状が円形の複合金属コアを示す図で、側面および外側金属と内側金属の境界面に縦リブ4個を有している場合で外側金属はメッキもしくは溶射による薄膜のため複合金属コア断面は殆どが内側金属で構成されている状況を示す水平断面図、 (2A)上記複合金属コアの立面図、 (1B)平面形状が概正方形の複合金属コアを示す図で、外側金属がメッキもしくは溶射による薄膜のため複合金属コア断面が殆どが内側金属で構成されている状況を示す水平断面図、 (2B)上記複合金属コアの立面図である。It is a figure which shows Example 3 (metal core manufactured by the structure 7) of this invention, (1A) It is a figure which shows the composite metal core with a circular planar shape, and is vertical to the side surface and the boundary surface of an outer side metal and an inner side metal. Horizontal cross-sectional view showing a situation in which the outer metal is a thin film formed by plating or thermal spraying, and the cross section of the composite metal core is mostly composed of the inner metal in the case of having four ribs. (2A) Standing of the composite metal core (1B) Horizontal sectional view showing a state in which the cross section of the composite metal core is mostly composed of the inner metal because the outer metal is a thin film formed by plating or spraying. (2B) Elevated view of the composite metal core. 本発明の複合金属コアの実施例4を示す図であり、 複合金属コアの平面形状を円形もしくは正方形とした場合で、且つ外側金属の材質を錫、内側金属の材質を鉛とした場合において、外側金属の厚さの比率による複合金属コアの平均せん断降伏応力度τの変化を示す説明図である。It is a figure which shows Example 4 of the composite metal core of this invention, In the case where the planar shape of a composite metal core is circular or square, and the material of an outer metal is tin, and the material of an inner metal is lead, It is explanatory drawing which shows the change of the average shear yield stress degree (tau) of a composite metal core by the ratio of the thickness of an outer side metal. 本発明の実施例5を示す図であり、 複合金属コアの平面形状を円形とし、外側金属の材質を錫、内側金属の材質を鉛とした場合における複合金属コアの平面寸法(直径)と外側金属の厚さによる複合金属コアの水平せん断抵抗力Qdの変化を示す説明図である。It is a figure which shows Example 5 of this invention, The planar dimension (diameter) of a composite metal core when the planar shape of a composite metal core is circular, the material of an outer metal is tin, and the material of an inner metal is lead, and an outer side It is explanatory drawing which shows the change of the horizontal shearing resistance force Qd of the composite metal core by the thickness of a metal. 本発明の実施例6を示す図であり、 複合金属コアの平面形状を正方形とし、外側金属の材質を錫、内側金属の材質を鉛とした場合における複合金属コアの平面寸法(直径)と外側金属の厚さによる複合金属コアの水平せん断抵抗力Qdの変化を示す説明図である。It is a figure which shows Example 6 of this invention, The planar dimension (diameter) of a composite metal core when the planar shape of a composite metal core is square, the material of an outer metal is tin, and the material of an inner metal is lead, and an outer side It is explanatory drawing which shows the change of the horizontal shearing resistance force Qd of the composite metal core by the thickness of a metal. 本発明の実施例7を示す図であり、 外側金属の材質を錫、内側金属の材質を鉛とした場合において、外側金属と複合金属コア全体の面積比(A1/A0)による複合金属コアの曲げ剛性EIおよびせん断剛性GAの(コア全体を鉛で構成したコアに対する)上昇率を示す説明図である。It is a figure which shows Example 7 of this invention, The material of a composite metal core by the area ratio (A1 / A0) of an outer metal and the whole composite metal core when the material of an outer metal is tin and the material of an inner metal is lead. It is explanatory drawing which shows the raise rate (with respect to the core which comprised the whole core with lead) of bending rigidity EI and shear rigidity GA. 本発明の実施例8を示す図であり、 外側金属の材質を錫、内側金属の材質を鉛とした場合において、外側金属の厚さの比(2t1/dp)による複合金属コアの曲げ剛性EIおよびせん断剛性GAの(コア全体を鉛で構成したコアに対する)上昇率を示す説明図である。 コアの平面形状が円形でも、正方形でも、この上昇率曲線は共通(外周形状と内側金属が同じ平面形状で外側金属の厚さt1が均一であれば共通)である。FIG. 10 is a diagram showing Example 8 of the present invention, where the outer metal material is tin and the inner metal material is lead, and the bending stiffness EI of the composite metal core according to the thickness ratio (2t1 / dp) of the outer metal. It is explanatory drawing which shows the increase rate (with respect to the core which comprised the whole core with lead) of shear rigidity GA. Regardless of whether the planar shape of the core is circular or square, the increase rate curve is common (common if the outer peripheral shape and the inner metal are the same planar shape and the outer metal has a uniform thickness t1). 本発明の第6の効果を説明するための図であり、 (1)積層ゴム体の中心にコアを有する積層ゴムが水平方向(5の方向)に強制変形を受けた状態を示す縦断面図、 (2)上記5の方向に変形した後、直交方向(6の方向)に変形を受けた場合、即ち基礎側に固定された下端面に対して積層ゴム体の上端面が7のように回転する方向の強制変形を受けた場合に、従来装置では、内蔵された円形平面のコアが8のように鉛直軸周りの回転を起こす可能性を示すアイソメ図、 (3)上記2と同様の強制変形を受けた場合でも、本発明の内蔵された正方形平面(もしくは縦リブつき円形平面)のコアは鉛直軸周りの回転は不可能であることを示すアイソメ図である。It is a figure for demonstrating the 6th effect of this invention, (1) The longitudinal cross-sectional view which shows the state which the laminated rubber which has a core in the center of a laminated rubber body received the forced deformation in the horizontal direction (5 direction) (2) After being deformed in the above 5 direction, when deformed in the orthogonal direction (6 direction), that is, the upper end surface of the laminated rubber body is 7 as compared to the lower end surface fixed to the base side. Isometric view showing the possibility that the built-in circular plane core may rotate around the vertical axis like 8 in the conventional device when subjected to forced deformation in the rotating direction. (3) Same as 2 above It is an isometric view showing that the core of the square plane (or circular plane with vertical ribs) of the present invention cannot be rotated about the vertical axis even when subjected to forced deformation.

以下、本発明の実施例を図面に基づいて説明する。なお、各実施例において共通する部分には同一符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the part which is common in each Example.

図2は、本発明の構成1および構成2の実施例1を示している。図2(1)は縦断面図、図2(2)は、水平断面図である。
実施例1の免震装置は、薄い平板形状のゴム層11(弾性材料)と内部鋼板2(剛性材料)を交互に上下方向に積層した積層ゴム体1の内部に、少なくとも一つ以上の塑性変形に伴うエネルギー吸収機能を担うダンパー機構としての塑性金属コア30を内蔵したダンパー内蔵型の積層ゴム免震装置である。
塑性金属コア30は、降伏強度および弾性係数の異なる2種類の塑性変形能力をそれぞれ備えた内側金属32と外側金属31とを水平断面において同心状に複合配置して構成されている。且つ、両者の組合せ条件として、内側金属32の外側に弾性係数および降伏強度が内側金属32よりも高い外側金属31を配置して両者を密着させ一体化した複合金属コア30としている。複合金属コア30は、図2(2)に示すように平面形状が概正方形に形成されている。
外側金属31に内側金属32よりも縦弾性係数が高く、且つ降伏強度の高い材料を配置することにより、同一平断面寸法の内側金属32単独で構成した金属コアに対して、複合金属コアのせん断剛性上昇率よりも曲げ剛性上昇率を大きく高めることができる。その結果、金属コアの曲げ変形が小さくなり、変形モードとしてせん断変形を卓越させることが可能となり、せん断塑性変を安定させ、塑性変形によるエネルギー吸収性能をより安定化させている。
FIG. 2 shows Example 1 of Configuration 1 and Configuration 2 of the present invention. 2 (1) is a longitudinal sectional view, and FIG. 2 (2) is a horizontal sectional view.
The seismic isolation device of Example 1 includes at least one plastic in the laminated rubber body 1 in which thin flat rubber layers 11 (elastic material) and internal steel plates 2 (rigid material) are alternately laminated in the vertical direction. This is a damper built-in laminated rubber seismic isolation device including a plastic metal core 30 as a damper mechanism that bears an energy absorbing function accompanying deformation.
The plastic metal core 30 is configured by concentrically arranging an inner metal 32 and an outer metal 31 each having two types of plastic deformation capacities having different yield strength and elastic modulus in a horizontal section. Further, as a combination condition of both, an outer metal 31 having an elastic modulus and a yield strength higher than that of the inner metal 32 is arranged outside the inner metal 32, and the both are brought into close contact with each other to form a composite metal core 30. As shown in FIG. 2 (2), the composite metal core 30 is formed in a substantially square planar shape.
By arranging a material having a higher longitudinal elastic modulus and higher yield strength than the inner metal 32 on the outer metal 31, the shear of the composite metal core can be reduced with respect to the metal core constituted by the inner metal 32 alone having the same plane cross-sectional dimension. It is possible to greatly increase the bending rigidity increasing rate than the rigidity increasing rate. As a result, the bending deformation of the metal core is reduced, and the shear deformation can be made excellent as a deformation mode, the shear plastic deformation is stabilized, and the energy absorption performance by the plastic deformation is further stabilized.

複合金属コア30の上下端部付近に厚さの厚い端部鋼板25を有し、その外側にフランジ鋼板4を有している。
外側金属31および内側金属32の材質の具体的組合せとして、次の4つの組合せがある。すなわち、組合せ1は外側金属31を錫、内側金属32を鉛とする。組合せ2は外側金属31をアルミニウム、内側金属32を鉛もしくは錫とする。組合せ3は外側金属31を亜鉛、内側金属32を鉛、錫、アルミニウムのいずれかとする。組合せ4は外側金属31を銅、内側金属32を鉛、錫、アルミニウム、亜鉛のいずれかとする。
これらの組合せのいずれか(但し、各材料はそれぞれの合金を含む)を採用できるが、代表的な例としては、外側金属31を錫とし、内側金属32を鉛とする(それぞれの合金も含む)組合せである。
以上の構成により、本発明では、塑性金属コア(複合金属コア)30の水平せん断抵抗力を同一断面積で比較した場合、外側金属31単独で全断面を構成した金属コアAの水平せん断抵抗力QAと内側金属32単独で全断面を構成した金属コアBの水平せん断抵抗力QB(QB<QA)に対して、複合金属コアCの水平せん断抵抗力QCは、金属コアAの水平せん断抵抗力QAと金属コアBの水平せん断抵抗力QBの間の任意の強さの水平せん断抵抗力、QB≦QC<QAに設定可能となっている。
A thick end steel plate 25 is provided near the upper and lower ends of the composite metal core 30, and the flange steel plate 4 is provided on the outside thereof.
As specific combinations of the materials of the outer metal 31 and the inner metal 32, there are the following four combinations. That is, in the combination 1, the outer metal 31 is tin and the inner metal 32 is lead. In the combination 2, the outer metal 31 is aluminum and the inner metal 32 is lead or tin. In the combination 3, the outer metal 31 is zinc, and the inner metal 32 is any one of lead, tin, and aluminum. In the combination 4, the outer metal 31 is copper, and the inner metal 32 is any one of lead, tin, aluminum, and zinc.
Any of these combinations (however, each material includes an alloy thereof) can be adopted. However, as a typical example, the outer metal 31 is tin and the inner metal 32 is lead (including each alloy). ) Combination.
With the above configuration, in the present invention, when the horizontal shear resistance force of the plastic metal core (composite metal core) 30 is compared with the same cross-sectional area, the horizontal shear resistance force of the metal core A having the entire cross section composed of the outer metal 31 alone. The horizontal shear resistance QC of the composite metal core C is equal to the horizontal shear resistance QC of the metal core A with respect to the horizontal shear resistance QB (QB <QA) of the metal core B that is configured by QA and the inner metal 32 alone. It is possible to set the horizontal shear resistance of any strength between QA and the horizontal shear resistance QB of the metal core B, that is, QB ≦ QC <QA.

図3は、本発明の構成3の実施例を示すもので、内蔵する複合金属コアの具体的形状を示している。図3(1A)〜(3A)は、複合金属コアの平面形状を円形とする場合で、図3(1A)は複合金属コア30の水平断面図である。図3(2A)は複合金属コア0の立面図であり、外周部にある縦リブ33が見えている。図3(3A)は複合金属コア0の縦断面図の例である。
複合金属コア30の縦断面形状は、上端部から下端部にかけての平面寸法がほぼ同一か、僅かに異なるテーパー付き柱状体である。外側金属31および内側金属32の水平断面形状は、円形、概正方形もしくは八角形以下の概正多角形のいずれかとしている。さらに、平面形状が円形の場合には、外側金属31の外側面に4つ(2以上)の縦リブ33を設けており、外側金属31と内側金属32の境界部には4つの縦溝(縦方向凹凸形状)34が嵌合して一体化されている。
また、図3(3A)には、コアの上下端部に積層ゴム製造時における吊り下げ作業等に用いるコア定着用蓋部材36が示されている。この蓋部材36は、コア金属の地震時変形に伴うコア金属の上部への流出を封入する「閉じ込め機能」を有すると共に、この蓋部材を銅もしくは銅合金で構成することにより、残留変形が生じた後の通電によりコア金属を加熱・昇温して、残留変形を解除しやすくする「残留変形解除機能」、またその昇温・冷却により塑性変形に伴って生じた金属結晶の再結晶化を促し、それにより塑性歪みを解消して金属コアの組織を回復させる「金属組織再生機能」等を有している。
FIG. 3 shows an embodiment of the configuration 3 of the present invention, and shows a specific shape of a built-in composite metal core. 3 (1A) to (3A) are cases where the planar shape of the composite metal core is circular, and FIG. 3 (1A) is a horizontal sectional view of the composite metal core 30. FIG. FIG. 3 (2A) is an elevational view of the composite metal core 0, and the vertical ribs 33 on the outer peripheral portion can be seen. FIG. 3 (3 </ b> A) is an example of a longitudinal sectional view of the composite metal core 0.
The vertical cross-sectional shape of the composite metal core 30 is a columnar body with a taper having slightly the same or slightly different planar dimensions from the upper end to the lower end. The horizontal cross-sectional shape of the outer metal 31 and the inner metal 32 is any one of a circular shape, a substantially square shape, or an approximately regular polygon shape having an octagon or less. Further, when the planar shape is circular, four (two or more) vertical ribs 33 are provided on the outer surface of the outer metal 31, and four vertical grooves ( (Vertical unevenness shape) 34 is fitted and integrated.
FIG. 3 (3A) also shows a core fixing lid member 36 used for hanging work or the like at the time of manufacturing laminated rubber at the upper and lower ends of the core. The lid member 36 has a “confinement function” that encloses the outflow of the core metal to the upper part due to the deformation of the core metal at the time of earthquake, and residual deformation occurs by configuring the lid member with copper or a copper alloy. "Residual deformation release function" that makes it easy to release the residual deformation by heating and raising the temperature of the core metal after energization, and recrystallizing the metal crystals caused by plastic deformation by the temperature rise and cooling It has a “metal structure regenerating function” for urging and thereby recovering the structure of the metal core by eliminating plastic strain.

図3(1B)〜(3B)は、複合金属コアの平面形状を概正方形とした場合で、図3(1B)は複合金属コア30の水平断面図、図3(2B)は立面図、図3(3B)は縦断面図である。平面形状が正方形もしくは多角形の場合には、金属コア外形と積層ゴムの内部鋼板2、端部鋼板25、収まり形状によってはフランジ4が互いに噛み合い鉛直軸周りに回転ズレを起こす恐れはないので、外周部の縦リブは不要である。また外側金属31と内側金属32も互いに噛み合い、鉛直軸周りの回転ズレを生じる恐れがないので、両金属境界部の縦方向凹凸形状溝も不要である。   3 (1B) to (3B) are cases where the planar shape of the composite metal core is an approximate square, FIG. 3 (1B) is a horizontal sectional view of the composite metal core 30, and FIG. 3 (2B) is an elevation view. FIG. 3 (3B) is a longitudinal sectional view. When the planar shape is square or polygonal, there is no possibility that the flange 4 meshes with each other depending on the outer shape of the metal core outer shape and the inner steel plate 2 and end steel plate 25 of the laminated rubber, and causes a rotational deviation around the vertical axis. Vertical ribs on the outer periphery are not required. Further, since the outer metal 31 and the inner metal 32 mesh with each other and there is no possibility of causing a rotational shift around the vertical axis, the vertical concave and convex grooves at the boundary between the two metals are unnecessary.

図3(3B)のコアの上下端部にあるコア定着用蓋部材の役割は、図3(3A)の説明に記したとおりである。
また図3(3A)および図3(3B)には、外側金属31と内側金属32の境界部に周溝(水平方向の凹凸形状)35が示されている。これは、複合金属コアが水平方向の変形を強制された時に、両金属間で縦方向のすべりが生じるのを防止するための両金属の鉛直方向ズレ止めである。2種類の金属が複合された金属コアが一体として歪みを生じることで、塑性変形が均一になり、安定したエネルギー吸収性能を発揮できるように構成されている。
The role of the core fixing lid members at the upper and lower ends of the core in FIG. 3 (3B) is as described in the description of FIG. 3 (3A).
3 (3A) and FIG. 3 (3B) show a circumferential groove (horizontal uneven shape) 35 at the boundary between the outer metal 31 and the inner metal 32. FIG. This is a vertical misalignment prevention between both metals to prevent vertical slip between the two metals when the composite metal core is forced to deform in the horizontal direction. The metal core in which two kinds of metals are combined generates strain as a whole, so that plastic deformation becomes uniform and stable energy absorption performance can be exhibited.

図3に示す複合金属コア30を、外側金属31および内側金属32に使用されている金属材料の融点の相違を利用して製造する方法を規定したものが構成6である。即ち、外側金属31の融点が内側金属32の融点より高い場合は、予め所定の寸法・形状に整形された外側金属31の内部空洞に、外側金属31の融点以下の温度で溶融状態にした内側金属32を注入することにより複合金属コア30を製造することができる。
また逆に、外側金属31の融点が内側金属32の融点より低い場合は、外側金属31の外面形状に等しい内面形状を有する金型を作成し、その内部に予め整形した内側金属32を配置して、両者の隙間に内側金属32の融点以下の温度で溶融状態にした外側金属31を注入することによって複合金属コア30を製造することができる。
The configuration 6 defines a method for manufacturing the composite metal core 30 shown in FIG. 3 by utilizing the difference in melting points of the metal materials used for the outer metal 31 and the inner metal 32. That is, when the melting point of the outer metal 31 is higher than the melting point of the inner metal 32, the inner side of the outer metal 31 shaped into a predetermined size and shape is melted at a temperature lower than the melting point of the outer metal 31. The composite metal core 30 can be manufactured by injecting the metal 32.
Conversely, if the melting point of the outer metal 31 is lower than the melting point of the inner metal 32, a mold having an inner surface shape equal to the outer surface shape of the outer metal 31 is created, and the preshaped inner metal 32 is placed inside the mold. Thus, the composite metal core 30 can be manufactured by injecting the outer metal 31 in a molten state at a temperature lower than the melting point of the inner metal 32 into the gap between them.

図4は、本発明の構成7の実施例を示すもので、図4(1A)〜(2A)は、複合金属コアの平面形状を円形とする場合、図4(1B)〜(2B)は、複合金属コアの平面形状を概正方形とする場合である。
図4(1A)、(1B)は複合金属コア30の水平断面図であり、図4(2A)、(2B)は複合金属コア30の立面図である。
本実施例の免震装置においては、予め内側金属32を所定の寸法、形状に整形しておき、外側金属を溶融した槽内に浸漬して、内側金属32の外表面に外側金属31の表面メッキ層を形成することによって複合金属コア30を製造するか、もしくは、予め所定の寸法、形状に整形された内側金属32の少なくとも側面表面上に外側金属31を溶射により吹き付けて外側金属の薄膜を形成することによって複合金属コア30を製造する。
外側金属31をメッキもしくは溶射によって薄膜として構成しているため、図面上は外形線311として表示されているのみで、コアの殆どは内側金属32が占めている。この時、内側金属32を鉛とし、外側金属31(311)を錫、もしくはアルミニウム、その他の毒性のない金属で構成し被覆・コーティングすることにより、金属コアの機械的性能は鉛の特性を発揮させながら、取扱上も衛生・環境等の問題のない免震装置を実現している。本実施例により、鉛プラグ入り積層ゴムの毒性の問題が解消・解決されたことになる。
本実施例においては、外側金属は薄膜として構成されているので、外側金属による抵抗力は極めて小さくなり、複合金属コアCの抵抗力QCは概ね内側金属Bの抵抗力QBに近い値(QC≒QB)になる。
FIG. 4 shows an embodiment of the configuration 7 of the present invention. FIGS. 4 (1A) to (2A) show that when the planar shape of the composite metal core is circular, FIGS. 4 (1B) to (2B) This is a case where the planar shape of the composite metal core is approximately square.
4 (1A) and (1B) are horizontal sectional views of the composite metal core 30, and FIGS. 4 (2A) and (2B) are elevation views of the composite metal core 30. FIG.
In the seismic isolation device of the present embodiment, the inner metal 32 is shaped in advance to have a predetermined size and shape, and the outer metal is immersed in a molten tank so that the outer metal 31 surface is placed on the outer surface of the inner metal 32. The composite metal core 30 is manufactured by forming a plating layer, or the outer metal 31 is sprayed on at least the side surface of the inner metal 32 shaped in advance to a predetermined size and shape to form a thin film of the outer metal. The composite metal core 30 is manufactured by forming.
Since the outer metal 31 is formed as a thin film by plating or spraying, it is only displayed as an outline 311 in the drawing, and the inner metal 32 occupies most of the core. At this time, the inner metal 32 is made of lead, and the outer metal 31 (311) is made of tin, aluminum, or other non-toxic metal and is coated and coated, so that the mechanical performance of the metal core exhibits the characteristics of lead. In addition, the seismic isolation device has been realized that is free from sanitary and environmental problems. By this example, the problem of toxicity of the laminated rubber containing lead plugs was solved and solved.
In the present embodiment, since the outer metal is configured as a thin film, the resistance force by the outer metal is extremely small, and the resistance force QC of the composite metal core C is a value that is substantially close to the resistance force QB of the inner metal B (QC≈ QB).

図5は、本発明の構成1および構成2による2種類の金属の複合効果を具体的に示したものである。複合金属コア30の外側金属31を錫、内側金属32を鉛として組み合わせた場合の複合金属コア30の平均せん断応力度τが、複合金属コア30直径dpと外側金属31の厚さt1の比率2t1/dpに応じてどう変化するかを示している。
即ち、横軸2t1/dp=0の場合の水平せん断抵抗力(平均せん断応力度)τは、内側金属32の鉛のせん断降伏応力度τ=8(N/mm2)に一致している。実施例3の外側金属31をメッキもしくは溶射により薄膜として構成した場合は、ほぼこの状態に対応する。
図5が示すとおり、外側金属31の厚さが厚くなるに従って、複合金属コア30の水平せん断抵抗力は上昇し、横軸が2t1/dp=1になると、複合金属コア30の水平せん断抵抗力(平均せん断応力度)τは、外側金属31、即ち全断面を錫で構成した場合のせん断降伏応力度τ≒15(N/mm2)に一致する。本図が示すとおり、本発明では、2種類の金属の組合せ方により、両金属の水平せん断抵抗力の間であれば、任意の強さに平均せん断応力度を調整することができるのである。尚、このグラフは、錫と鉛の組合せにおいて、複合金属コア30の平面形状が円形でも正方形でも同じ曲線であり、更に多角形の場合でも外側金属31と内側金属32が同形状で外側金属31の厚さt1が均一であればこの曲線に一致する。
FIG. 5 specifically shows the combined effect of two kinds of metals according to configurations 1 and 2 of the present invention. The average shear stress τ of the composite metal core 30 when the outer metal 31 of the composite metal core 30 is combined with tin and the inner metal 32 is lead is the ratio 2t1 of the composite metal core 30 diameter dp and the thickness t1 of the outer metal 31. It shows how it changes according to / dp.
That is, when the horizontal axis 2t1 / dp = 0, the horizontal shear resistance (average shear stress) τ matches the shear yield stress τ of lead of the inner metal 32 = 8 (N / mm 2). When the outer metal 31 of Example 3 is formed as a thin film by plating or thermal spraying, it substantially corresponds to this state.
As shown in FIG. 5, as the thickness of the outer metal 31 increases, the horizontal shear resistance of the composite metal core 30 increases. When the horizontal axis becomes 2t1 / dp = 1, the horizontal shear resistance of the composite metal core 30 increases. (Average shear stress degree) τ corresponds to the outer metal 31, that is, the shear yield stress degree ττ15 (N / mm 2) when the entire cross section is made of tin. As shown in the figure, in the present invention, the average shear stress can be adjusted to an arbitrary strength as long as it is between the horizontal shear resistances of the two metals by combining the two kinds of metals. This graph shows the same curve whether the planar shape of the composite metal core 30 is circular or square in the combination of tin and lead, and the outer metal 31 and the inner metal 32 have the same shape even in the case of a polygon. If the thickness t1 is uniform, it agrees with this curve.

図6は、図5で示した外側金属31を錫、内側金属32を鉛とした場合の複合金属コア30の実際の寸法(複合金属コア(プラグ)直径dp)と水平せん断抵抗力Qdの関係を示したものである。金属コアの平面形状は円形の場合である。
プラグ直径dpは、φ100mm〜φ300mmの範囲としており、複数の曲線の内、最下段の線が全断面を鉛で構成した場合、最上段の線が全断面を錫で構成した場合の水平せん断抵抗力である。外側金属31の錫の厚さを僅かt1=10mmから直径300mmφの場合でも50mm程度とすることで、極めて効率的に水平せん断抵抗力Qdを上昇させることができることがわかる。
FIG. 6 shows the relationship between the actual dimension (composite metal core (plug) diameter dp) of the composite metal core 30 and the horizontal shear resistance Qd when the outer metal 31 shown in FIG. 5 is tin and the inner metal 32 is lead. Is shown. The planar shape of the metal core is a circular shape.
The plug diameter dp is in the range of φ100 mm to φ300 mm, and among the plurality of curves, the horizontal shear resistance in the case where the lowermost line is made of lead in all cross sections and the uppermost line is made of tin in all cross sections It is power. It can be seen that the horizontal shear resistance Qd can be increased very efficiently by setting the thickness of the tin of the outer metal 31 to about 50 mm even when the thickness of the tin is only from t1 = 10 mm to 300 mmφ.

図7は、図6と同じく外側金属31を錫、内側金属32を鉛として組み合わせた複合金属コア30の平面形状を正方形にした場合の複合金属コア30(プラグ)の辺長dpと水平せん断抵抗力Qdの関係を示したものである。
正方形プラグの寸法は辺長dpを100mm〜300mmの範囲としており、最下段の線が全断面を鉛で構成した場合、最上段の線が全断面を錫で構成した場合の水平せん断抵抗力である。図6と同様に、外側金属31の錫の厚さを僅かt1=10mm〜50mmとすることで、極めて効率的に水平せん断抵抗力Qdを上昇させることができ、また同じ外形寸法でも正方形とすることにより、円形平面よりも水平せん断抵抗力Qdがかなり大きくなることが示されている。
FIG. 7 shows the side length dp and horizontal shear resistance of the composite metal core 30 (plug) when the planar shape of the composite metal core 30 in which the outer metal 31 is tin and the inner metal 32 is lead is square, as in FIG. The relationship of force Qd is shown.
The dimension of the square plug is that the side length dp is in the range of 100 mm to 300 mm. When the lowermost line is composed of lead in all cross sections, the uppermost line is the horizontal shear resistance when the entire cross section is composed of tin. is there. Similar to FIG. 6, the horizontal shear resistance Qd can be raised very efficiently by making the thickness of the tin of the outer metal 31 as small as t1 = 10 mm to 50 mm. This shows that the horizontal shear resistance Qd is considerably larger than that of a circular plane.

図8は、金属コアを複合化することによって金属コアの曲げ剛性EIとせん断剛性GAが上昇する程度を示したものである。複合する金属は、前例と同じく外側金属31を錫、内側金属32を鉛として組み合わせた場合で、全断面を鉛で構成した場合に対する剛性の比率として示している。
複合金属コア30の平面形状は円形とし、複合金属コア30(プラグ)の直径dpをφ100mm〜φ300mmの範囲としているが、このグラフはコア寸法には依存せず、どの寸法でも同じである。
複数の線の内、最下段の線(A1/A0=0)が全断面を鉛で構成した場合で、この剛性を基準値=1としている。最上段の線(A1/A0=1)が全断面を錫で構成した場合の剛性で、曲げ剛性EIの上昇率は錫と鉛の縦弾性係数の比率に、せん断剛性GAの上昇率は錫と鉛のせん断弾性係数の比率に一致している。中間の複数の線は、コアの全断面積A0に対する外側金属31(錫)の面積A1の比率A1/A0の値をパラメータとして示している。
両図の比較からわかるとおり、外側金属31の面積比が同一の場合、曲げ剛性の上昇率がせん断剛性の上昇率よりも大きくなっていることがよく分かる。この曲げ剛性の上昇率がせん断剛性上昇率よりも高くなることが本発明の重要ポイントの一つである。
FIG. 8 shows the extent to which the bending rigidity EI and shear rigidity GA of the metal core are increased by compounding the metal core. The composite metal is shown as the ratio of rigidity to the case where the outer metal 31 is combined with tin and the inner metal 32 is lead as in the previous example, and the entire cross section is made of lead.
The planar shape of the composite metal core 30 is circular, and the diameter dp of the composite metal core 30 (plug) is in the range of φ100 mm to φ300 mm, but this graph does not depend on the core dimensions, and is the same for all dimensions.
Among the plurality of lines, the lowermost line (A1 / A0 = 0) is a case where the entire cross section is made of lead, and this rigidity is set to a reference value = 1. The uppermost line (A1 / A0 = 1) is the rigidity when the entire cross section is made of tin. The rate of increase in bending rigidity EI is the ratio of the longitudinal elastic modulus of tin and lead, and the rate of increase in shear rigidity GA is tin. And the ratio of shear modulus of lead. The plurality of intermediate lines indicate the value of the ratio A1 / A0 of the area A1 of the outer metal 31 (tin) with respect to the total cross-sectional area A0 of the core as a parameter.
As can be seen from the comparison of both figures, it can be clearly seen that when the area ratio of the outer metal 31 is the same, the increase rate of the bending stiffness is larger than the increase rate of the shear stiffness. It is one of the important points of the present invention that the rate of increase in bending stiffness is higher than the rate of increase in shear stiffness.

図9は、複合金属コア30における曲げ剛性EIとせん断剛性GAの上昇率を、横軸を円形コアの直径dpに対する外側金属31の厚さt1の比率2t1/dpとして示したものである。複合する金属は、前例と同じく外側金属31を錫、内側金属32を鉛として組み合わせた場合で、全断面を鉛で構成した場合の剛性(基準値=1)に対する剛性の上昇率として示している。
このグラフから判るとおり、複合金属コア30の剛性上昇率は2t1/dp=0〜0.7の範囲で曲げ剛性の上昇率がせん断剛性の上昇率を上回っており、2t1/dp≒0.7において逆転する。即ち、複合金属コア30を外側金属31を錫、内側金属32を鉛として構成する場合には、外側金属31(錫)の厚さはt1/dp=0〜0.35の範囲とすべきである。
この条件の範囲内において、本発明の複合金属コア30はせん断変形が卓越しやすい変形モードの金属コアとなり、安定したエネルギー吸収性能を発揮することが期待できる。
尚、このグラフは、錫と鉛の組合せにおいて、複合金属コア30の平面形状が円形でも正方形でも同じ曲線であり、更に多角形の場合でも外側金属31と内側金属32が同形状で外側金属31の厚さt1が均一で、断面中心軸(中立軸)に対して対称形状であればこの曲線に一致する。
FIG. 9 shows the rate of increase of the bending rigidity EI and shear rigidity GA in the composite metal core 30 as the ratio 2t1 / dp of the thickness t1 of the outer metal 31 to the diameter dp of the circular core on the horizontal axis. The composite metal is shown as the rate of increase in rigidity with respect to the rigidity (reference value = 1) when the outer metal 31 is combined with tin and the inner metal 32 is combined with lead as in the previous example, and the entire cross section is composed of lead. .
As can be seen from this graph, the rate of increase in stiffness of the composite metal core 30 is in the range of 2t1 / dp = 0 to 0.7, and the rate of increase in bending stiffness exceeds the rate of increase in shear stiffness. 2t1 / dp≈0.7 Reverses at That is, when the composite metal core 30 is composed of the outer metal 31 as tin and the inner metal 32 as lead, the thickness of the outer metal 31 (tin) should be in the range of t1 / dp = 0 to 0.35. is there.
Within the range of this condition, the composite metal core 30 of the present invention becomes a metal core in a deformation mode in which shear deformation is easy to be excellent, and it can be expected to exhibit stable energy absorption performance.
This graph shows the same curve whether the planar shape of the composite metal core 30 is circular or square in the combination of tin and lead, and the outer metal 31 and the inner metal 32 have the same shape even in the case of a polygon. If the thickness t1 is uniform and symmetric with respect to the central axis (neutral axis) of the cross section, it coincides with this curve.

以上の図6、図7,図9を同時に考慮すると、本発明は以下の優れた効果を有していることが分かる。即ち、外側金属31を錫、内側金属32を鉛として複合金属コア30を構成した場合で説明すると、外側金属31の錫の厚さを僅か10〜20mm程度としただけで、コアの水平せん断抵抗力をかなり上昇させることができると同時に、コアの曲げ剛性が大きく上昇(平均的なコア寸法dp=200mmに対して2t1/dp≒0.1〜0.2となる)して、せん断変形卓越型の変形モードになり、安定したエネルギー吸収特性を発揮できるようになる。   Considering the above FIG. 6, FIG. 7, and FIG. 9 simultaneously, it can be seen that the present invention has the following excellent effects. That is, in the case where the composite metal core 30 is constituted by using the outer metal 31 as tin and the inner metal 32 as lead, the horizontal shear resistance of the core can be obtained only by setting the thickness of the tin of the outer metal 31 to about 10 to 20 mm. While the force can be increased considerably, the bending rigidity of the core is greatly increased (2 t1 / dp≈0.1 to 0.2 for the average core dimension dp = 200 mm), and the shear deformation is excellent. It becomes the deformation mode of the mold and can exhibit stable energy absorption characteristics.

この時、内側金属32の鉛(鉛の面積は全体の90〜81%)の効果によりコア全体としては大きな熱容量が確保されているので、錫部分で上昇した温度は速やかに鉛部分に伝達され、コア全体の温度上昇が抑制される。その結果、コア全体が錫で構成された錫プラグ入り積層ゴムでは、大きな変形が多数回繰り返される過酷な地震入力の場合、錫プラグの温度上昇により水平せん断抵抗力が急激に低下し、最悪の場合には溶融する可能性があるが、本発明の複合金属コア30ではこの温度上昇による水平せん断抵抗力の低下やコア自体の溶融の危険性が大幅に改善・解消されている。   At this time, a large heat capacity is secured for the entire core due to the effect of the lead of the inner metal 32 (the lead area is 90 to 81% of the whole), so that the temperature rising at the tin portion is quickly transmitted to the lead portion. The temperature rise of the entire core is suppressed. As a result, in the case of a laminated rubber with a tin plug in which the entire core is made of tin, in the case of a severe earthquake input in which a large deformation is repeated many times, the horizontal shear resistance is drastically reduced due to the temperature rise of the tin plug. In some cases, the composite metal core 30 of the present invention greatly improves and eliminates the risk of lowering the horizontal shear resistance due to the temperature rise and the risk of melting the core itself.

図10は、本発明の複合金属コア30を内蔵する積層ゴム免震装置が有する効果の一つを示す実施例である。
図10(1)は積層ゴム体1が矢印5の方向に水平せん断変形を受けた状態(変形1)を示す縦断面図である。積層ゴム体1の水平変形に応じて内蔵コア3は図のように変形し、コアの下端部37に対して、コアの上端部38は平面位置が積層ゴムの水平変形量と同じだけ水平にずれた位置になる。
この状態の後、積層ゴム上端38の変形が矢印5の方向(変形1)とは90°異なる直交方向6に進むことになると、図10(2)の矢印6の方向に作用する力(図中央の矢印)はコアの下端部37に対して、コア3を回転させるモーメント(ねじり力)となり、コア3は鉛直軸周りに矢印8のように回転しようとする。積層ゴム体の水平変形に対してコア3が鉛直軸周りの回転変形で追従すると、コア自体には塑性せん断変形が発生しないことになり、その結果コアのエネルギー吸収性能が発揮されないことになる。
FIG. 10 is an embodiment showing one of the effects of the laminated rubber seismic isolation device incorporating the composite metal core 30 of the present invention.
FIG. 10A is a longitudinal sectional view showing a state (deformation 1) in which the laminated rubber body 1 is subjected to horizontal shear deformation in the direction of arrow 5. The built-in core 3 is deformed as shown in the figure in accordance with the horizontal deformation of the laminated rubber body 1, and the upper end portion 38 of the core is parallel to the horizontal deformation amount of the laminated rubber with respect to the lower end portion 37 of the core. The position is shifted.
After this state, when the deformation of the laminated rubber upper end 38 proceeds in the orthogonal direction 6 different from the direction of the arrow 5 (deformation 1) by 90 °, the force acting in the direction of the arrow 6 in FIG. The center arrow) is a moment (torsional force) for rotating the core 3 with respect to the lower end portion 37 of the core, and the core 3 tends to rotate around the vertical axis as indicated by the arrow 8. When the core 3 follows the horizontal deformation of the laminated rubber body by the rotational deformation around the vertical axis, the plastic shear deformation does not occur in the core itself, and as a result, the energy absorption performance of the core is not exhibited.

本発明では、複合金属コア30の平面形状を正方形等の多角形、もしくは平面形状を円形にした場合は金属コアの外側側面および外部金属と内部金属の境界面に2以上の縦リブを設けることにしている。これにより、免震装置が水平2方向の変形を同時に強制された場合、特に装置底面に対して装置上面が平面的に回転する矢印7のような加振を受けた場合にも、積層ゴム内部において、金属コア30は鉛直軸周りの回転を起こすことが不可能であり、如何なる加振、特に円形加振に対しても安定した塑性変形によるエネルギー吸収性能を発揮することができるという優れた効果を備えている。   In the present invention, when the planar shape of the composite metal core 30 is a polygon such as a square, or the planar shape is a circle, two or more vertical ribs are provided on the outer side surface of the metal core and the boundary surface between the outer metal and the inner metal. I have to. As a result, even when the seismic isolation device is forced to deform in two horizontal directions at the same time, particularly when subjected to vibration such as arrow 7 in which the upper surface of the device rotates in a plane with respect to the lower surface of the device, In this case, the metal core 30 cannot rotate around the vertical axis, and can exhibit an energy absorbing performance by stable plastic deformation against any vibration, particularly circular vibration. It has.

以上のとおり、本発明による複合金属コア30を内蔵する積層ゴムでは、単一金属では達成できないコアの水平せん断抵抗力を適切なレベルに設定できると同時に、安定したエネルギー吸収性能を発揮できるようになり、これまでのダンパー内蔵型の積層ゴムの性能、信頼性を大きく改善することが可能となった。
特に2011年に東北地方太平洋沖地震(M9.0)を経験した現在、M9レベルの超巨大地震が我が国日本でも現実的なものとして認識されるようになり、長周期・長時間継続する過酷な地震動や水平2方向の過酷な入力地震動を想定した場合、本発明の免震装置が貢献する役割が大きいと期待される。
As described above, in the laminated rubber containing the composite metal core 30 according to the present invention, the horizontal shear resistance of the core that cannot be achieved by a single metal can be set to an appropriate level, and at the same time, stable energy absorption performance can be exhibited. As a result, it has become possible to greatly improve the performance and reliability of laminated rubber with built-in dampers so far.
In particular, after experiencing the 2011 Tohoku-Pacific Ocean Earthquake (M9.0) in 2011, the M9-level super-large earthquake has come to be recognized as a realistic thing in Japan, and it is a severe period that lasts for a long period and continues for a long time. When assuming strong ground motions in two horizontal directions, it is expected that the seismic isolation device of the present invention will play a significant role.

1 :積層ゴム体
11:ゴム層
2 :内部鋼板
21:内部鋼板の中央部孔
23:内部鋼板の中央部孔の端部凹型切り欠き部
25:積層ゴム体上下の端部鋼板
3 :内蔵金属コア
30:複合金属コア
31:外側金属
311:薄膜状の外側金属(めっきもしくは溶射による)
32:内側金属
33:複合金属コア外周部の凸形状縦リブ
34:縦溝(複合金属コアの金属境界部の縦方向凹凸形状)
35:周溝(複合金属コアの金属境界部の水平方向凹凸形状)
36:複合金属コア上下のコア定着用蓋部材
37:内蔵コアの下端部および下端面
38:内蔵コアの上端部および上端面
4 :積層ゴム体上下のフランジ鋼板
5 :免震装置の変形1の方向を示す矢印
6 :免震装置の変形2の方向(変形1の直交方向)を示す矢印
7 :免震装置の回転方向変形を示す矢印
8 :内蔵コアの鉛直軸周りの回転変形の方向を示す矢印
1: Laminated rubber body 11: Rubber layer 2: Internal steel plate
21: Central hole of the inner steel plate 23: Recessed notch at the end of the central hole of the inner steel plate 25: Upper and lower end steel plates of the laminated rubber body 3: Built-in metal core 30: Composite metal core 31: Outer metal 311: Thin film Outer metal (by plating or spraying)
32: Inner metal 33: Convex-shaped vertical rib on the outer periphery of the composite metal core 34: Vertical groove (vertical uneven shape of the metal boundary of the composite metal core)
35: Circumferential groove (horizontal uneven shape at the metal boundary of the composite metal core)
36: Core fixing lid members above and below the composite metal core 37: Lower end and lower end surface of the built-in core 38: Upper end and upper end surface of the built-in core 4: Flange steel plates above and below the laminated rubber body 5: Deformation 1 of the seismic isolation device Arrow indicating direction 6: Arrow indicating the direction of deformation 2 of the seismic isolation device (direction perpendicular to deformation 1) 7: Arrow indicating the rotational direction deformation of the seismic isolation device 8: Direction of rotational deformation around the vertical axis of the built-in core Showing arrow

Claims (6)

薄い平板形状の弾性材料と剛性材料を交互に上下方向に積層した積層ゴム体の内部に、少なくとも一つ以上の塑性変形に伴うエネルギー吸収機能を担うダンパー機構としての塑性金属コアを内蔵したダンパー内蔵型の積層ゴム免震装置であって、
前記塑性金属コアが、降伏強度および弾性係数の異なる2種類の塑性変形能力をそれぞれ備えた内側金属と外側金属とを水平断面において同心状に複合配置して構成されており、かつ、前記内側金属の外側に降伏強度および弾性係数が前記内側金属よりも高い外側金属を配置して両者を密着させ一体化した複合金属コアとしており、
同一平断面寸法の金属コアの全断面を前記内側金属単独で構成した金属コアに対して、複合金属コアのせん断剛性上昇率よりも曲げ剛性上昇率を大きく高めることにより、せん断変形が卓越する変形モードとして、塑性変形によるエネルギー吸収性能をより安定化させると共に、
前記塑性金属コアの水平せん断抵抗力を同一断面積で比較した場合、前記外側金属単独で全断面を構成した金属コアAの水平せん断抵抗力QAと前記内側金属単独で全断面を構成した金属コアBの水平せん断抵抗力QB(QB<QA)に対して、前記複合金属コアCの水平せん断抵抗力QCを、前記金属コアAの水平せん断抵抗力QAと前記金属コアBの水平せん断抵抗力QBの間の任意の強さの水平せん断抵抗力とし、QB≦QC<QAと設定している免震装置において、
前記複合金属コアを構成する前記外側金属および前記内側金属の材料の組み合わせとして、組合せ1(前記外側金属を錫、前記内側金属を鉛)、組合せ2(前記外側金属をアルミニウム、前記内側金属を鉛もしくは錫)、組合せ3(前記外側金属を亜鉛、前記内側金属を鉛、錫、アルミニウムのいずれか)、組合せ4(前記外側金属を銅、前記内側金属を鉛、錫、アルミニウム、亜鉛のいずれか)のいずれか(但し、各材料はそれぞれの合金を含む)としていることを特徴とする免震装置。
Built-in damper with built-in plastic metal core as a damper mechanism responsible for energy absorbing function accompanying at least one plastic deformation inside laminated rubber body with thin flat plate elastic material and rigid material alternately laminated in the vertical direction Type laminated rubber seismic isolation device ,
The plastic metal core is configured by concentrically arranging an inner metal and an outer metal each having two types of plastic deformation capacities having different yield strength and elastic modulus in a horizontal section, and the inner metal And a composite metal core in which an outer metal whose yield strength and elastic modulus are higher than those of the inner metal is arranged on the outside of the inner metal, and both are in close contact with each other.
Deformation in which shear deformation is excellent by increasing the bending rigidity increase rate to a larger degree than the composite metal core's shear rigidity increase rate for a metal core composed of the inner metal alone with the entire cross section of a metal core having the same plane cross-sectional dimension. As a mode, energy absorption performance by plastic deformation is further stabilized,
When the horizontal shear resistance of the plastic metal core is compared with the same cross-sectional area, the horizontal shear resistance QA of the metal core A having the entire cross section made of the outer metal alone and the metal core having the entire cross section made of the inner metal alone The horizontal shear resistance QC of the composite metal core C is compared to the horizontal shear resistance QB of the metal core A and the horizontal shear resistance QB of the metal core B with respect to the horizontal shear resistance QB of B (QB <QA). In the seismic isolation device set as horizontal shear resistance of arbitrary strength between QB ≦ QC <QA ,
As a combination of materials of the outer metal and the inner metal constituting the composite metal core, a combination 1 (the outer metal is tin and the inner metal is lead), a combination 2 (the outer metal is aluminum and the inner metal is lead) Or tin), combination 3 (the outer metal is zinc, the inner metal is any of lead, tin, and aluminum), and combination 4 (the outer metal is copper, and the inner metal is any of lead, tin, aluminum, and zinc) ) (Where each material includes its respective alloy) .
請求項1に記載した免震装置において、
前記複合金属コアの縦断面形状が、上端部から下端部にかけての平面寸法がほぼ同一か、僅かに異なるテーパー付き柱状体であり、
前記外側金属および前記内側金属の平断面形状を、円形、概正方形もしくは八角形以下の概正多角形のいずれかとしており、
且つ、平面形状が円形の場合には、前記外側金属の外側面および内外両金属の境界面に凹形状もしくは凸形状の2以上の縦リブを設けていることを特徴とする免震装置。
In the seismic isolation device according to claim 1,
The vertical cross-sectional shape of the composite metal core is a columnar body with a taper having a slightly different planar dimension from the upper end to the lower end, or slightly different,
The cross-sectional shape of the outer metal and the inner metal is either a circle, a square, or a regular regular polygon less than an octagon,
In addition, when the planar shape is circular, two or more vertical ribs having a concave shape or a convex shape are provided on the outer surface of the outer metal and the boundary surface between the inner and outer metals .
請求項1または請求項2に記載した免震装置において、
前記複合金属コアを構成する前記外側金属の材質を錫もしくはその合金とし、前記内側金属の材質を鉛もしくはその合金としており、
前記外側金属および前記内側金属の平断面形状を、円形、概正方形もしくは八角形以下の概正多角形のいずれかとしており、
前記外側金属の厚さt1を前記複合金属コアの外形寸法dpに対して0.35以下(t1/dp≦0.35)としていることを特徴とする免震装置。
In the seismic isolation device according to claim 1 or claim 2,
The material of the outer metal constituting the composite metal core is tin or an alloy thereof, and the material of the inner metal is lead or an alloy thereof,
The cross-sectional shape of the outer metal and the inner metal is either a circle, a square, or a regular regular polygon less than an octagon,
A seismic isolation device characterized in that the thickness t1 of the outer metal is 0.35 or less (t1 / dp ≦ 0.35) with respect to the outer dimension dp of the composite metal core .
請求項1乃至請求項3のいずれかに記載した免震装置において、
前記複合金属コアの上端部、もしくは下端部、あるいは上下両端部に、平面中央部にねじきりを行ったコア定着用蓋部材を埋設しており、
前記コア定着用蓋部材の材質を銅もしくは銅合金としていることを特徴とする免震装置。
In the seismic isolation apparatus according to any one of claims 1 to 3,
A core fixing lid member in which the center portion of the plane is twisted is embedded in the upper end portion or lower end portion of the composite metal core, or both upper and lower end portions,
A seismic isolation device, wherein the core fixing lid member is made of copper or a copper alloy .
請求項1乃至請求項4のいずれかに記載した複合金属コアを内蔵する免震装置の製造方法であって、
前記外側金属および前記内側金属に使用されている金属材料の融点の相違を利用して、
前記外側金属の融点が前記内側金属の融点より高い場合は、予め所定の寸法・形状に整形された前記外側金属の内部空洞に、前記外側金属の融点以下の温度で溶融状態にした内側金属を注入することにより前記複合金属コアを製造し、もしくは、
前記外側金属の融点が前記内側金属の融点より低い場合は、前記外側金属の外面形状に等しい内面形状を有する金型を作成し、その内部に予め整形した前記内側金属を配置して、両者の隙間に前記内側金属の融点以下の温度で溶融状態にした前記外側金属を注入することによって前記複合金属コアを製造することを特徴とする免震装置の製造方法。
A method of manufacturing a seismic isolation device incorporating the composite metal core according to any one of claims 1 to 4 ,
Utilizing the difference in melting point of the metal material used for the outer metal and the inner metal,
When the melting point of the outer metal is higher than the melting point of the inner metal, the inner metal that has been melted at a temperature equal to or lower than the melting point of the outer metal is inserted into the inner cavity of the outer metal that has been shaped to a predetermined size and shape in advance. Producing the composite metal core by pouring, or
When the melting point of the outer metal is lower than the melting point of the inner metal, a mold having an inner surface shape equal to the outer surface shape of the outer metal is created, and the inner metal shaped in advance is placed inside the mold, A method of manufacturing a seismic isolation device, wherein the composite metal core is manufactured by injecting the outer metal in a molten state at a temperature lower than the melting point of the inner metal into the gap.
請求項1乃至請求項4のいずれかに記載した複合金属コアを内蔵する免震装置の製造方法であって、
予め前記内側金属を所定の寸法、形状に整形しておき、前記外側金属を溶融した槽内に浸漬して、前記内側金属の外表面に前記外側金属の表面メッキ層を形成することによって前記複合金属コアを製造し、もしくは、
予め所定の寸法、形状に整形された前記内側金属の少なくとも側面表面上に前記外側金属を溶射により吹き付けて前記外側金属の薄膜を形成することによって前記複合金属コアを製造することを特徴とする複合金属コアを内蔵する免震装置の製造方法。
A method of manufacturing a seismic isolation device incorporating the composite metal core according to any one of claims 1 to 4 ,
The composite is obtained by shaping the inner metal into a predetermined size and shape in advance, immersing the outer metal in a molten bath, and forming a surface plating layer of the outer metal on the outer surface of the inner metal. Manufacture metal cores, or
The composite metal core is manufactured by spraying the outer metal on at least a side surface of the inner metal shaped in advance into a predetermined size and shape to form a thin film of the outer metal. A method of manufacturing a seismic isolation device incorporating a metal core.
JP2014122757A 2014-06-13 2014-06-13 Seismic isolation device and manufacturing method thereof Active JP5661964B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014122757A JP5661964B1 (en) 2014-06-13 2014-06-13 Seismic isolation device and manufacturing method thereof
TW105132215A TWI627336B (en) 2014-06-13 2015-04-23 Seismic isolation device
TW104113029A TW201600690A (en) 2014-06-13 2015-04-23 Seismic isolation device and manufacturing method of the same
US14/727,025 US20150361656A1 (en) 2014-06-13 2015-06-01 Seismic isolation device and manufacturing method of the same
US15/271,969 US20170044788A1 (en) 2014-06-13 2016-09-21 Seismic isolation device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122757A JP5661964B1 (en) 2014-06-13 2014-06-13 Seismic isolation device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP5661964B1 true JP5661964B1 (en) 2015-01-28
JP2016003671A JP2016003671A (en) 2016-01-12

Family

ID=52437566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122757A Active JP5661964B1 (en) 2014-06-13 2014-06-13 Seismic isolation device and manufacturing method thereof

Country Status (3)

Country Link
US (2) US20150361656A1 (en)
JP (1) JP5661964B1 (en)
TW (2) TW201600690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233079A (en) * 2021-12-06 2022-03-25 河南省建设工程施工图审查中心有限公司 Viscoelastic damper

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613930B2 (en) * 2016-02-01 2019-12-04 オイレス工業株式会社 Seismic isolation device
WO2018036519A1 (en) * 2016-08-24 2018-03-01 中铁二院工程集团有限责任公司 Method for improving anti-seismic performance of bridge by means of girder body, and energy-consumption and vibration-reduction bridge bearing
CN106639478B (en) * 2017-02-23 2018-09-28 商丘师范学院 A kind of civil engineering anti-seismic structure and its method
JP7008443B2 (en) * 2017-08-02 2022-01-25 日立Geニュークリア・エナジー株式会社 Anti-vibration support structure and anti-vibration system
CL2017003357A1 (en) * 2017-12-22 2019-10-11 Univ Pontificia Catolica Chile Seismic isolation device and system of the elastomeric-frictional type with self-centering and energy dissipation for light structures and industrial equipment, as well as slender structures, particularly structures and equipment supported on pillars, legs or the like on foundations.
IT201800004948A1 (en) * 2018-04-27 2019-10-27 INSULATION EQUIPMENT FOR SEISMIC PROTECTION AT THE BASE OF A STRUCTURE
TWI676749B (en) * 2018-08-20 2019-11-11 財團法人國家實驗研究院 Passive vibration isolator
CN109098289B (en) * 2018-08-27 2019-07-26 苏州海德新材料科技股份有限公司 Shock isolating pedestal core material, friction core shock isolating pedestal and its preparation method and application
CN109487914B (en) * 2019-01-08 2023-08-22 西南科技大学 Annular composite viscoelastic damping support
TWI817762B (en) * 2022-10-07 2023-10-01 崇興 蔡 Seismic isolation support pad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797828A (en) * 1993-09-29 1995-04-11 Oiles Ind Co Ltd Lead-sealed laminated rubber support
JPH08326840A (en) * 1995-05-26 1996-12-10 Bridgestone Corp Base isolation structure
JP2006275215A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Mining Co Ltd Vibrational energy absorbing device and its manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ201015A (en) * 1982-06-18 1986-05-09 New Zealand Dev Finance Building support:cyclic shear energy absorber
NZ208129A (en) * 1984-05-11 1988-10-28 New Zealand Dev Finance Shear energy absorber: confined granular material within deformable block
US4633628A (en) * 1985-10-31 1987-01-06 University Of Utah Device for base isolating structures from lateral and rotational support motion
JP2883219B2 (en) * 1990-10-17 1999-04-19 オイレス工業株式会社 Seismic isolation support device
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support
NZ245378A (en) * 1992-12-04 1997-04-24 Damping Systems Ltd Substitute Bearing with plastically deformable core and surround which hydrostatically pressures the material of the core at or beyond its shear yield stress and methods of making
KR100316196B1 (en) * 1995-08-04 2002-02-28 에구사 도시유키 Isolation Device and Isolation System
US5765322A (en) * 1995-09-29 1998-06-16 Bridgestone Corporation Seismic isolation apparatus
AU8248498A (en) * 1997-07-11 1999-02-08 Penguin Engineering Limited Energy absorber
WO2008004475A1 (en) * 2006-07-06 2008-01-10 Oiles Corporation Earthquake isolation device
JP5059225B1 (en) * 2011-11-21 2012-10-24 株式会社ダイナミックデザイン Manufacturing method of seismic isolation device
JP5541329B2 (en) * 2012-09-03 2014-07-09 オイレス工業株式会社 Seismic isolation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797828A (en) * 1993-09-29 1995-04-11 Oiles Ind Co Ltd Lead-sealed laminated rubber support
JPH08326840A (en) * 1995-05-26 1996-12-10 Bridgestone Corp Base isolation structure
JP2006275215A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Mining Co Ltd Vibrational energy absorbing device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233079A (en) * 2021-12-06 2022-03-25 河南省建设工程施工图审查中心有限公司 Viscoelastic damper

Also Published As

Publication number Publication date
JP2016003671A (en) 2016-01-12
TW201600690A (en) 2016-01-01
US20170044788A1 (en) 2017-02-16
TWI627336B (en) 2018-06-21
TW201704607A (en) 2017-02-01
US20150361656A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5661964B1 (en) Seismic isolation device and manufacturing method thereof
CN103867625B (en) Rope type self-reset shape memory alloy seismic isolation and seismic reduction support
CN203981946U (en) Lens driver
JP2011520689A5 (en)
CN108999455B (en) Easy-reset high-energy-consumption buckling restrained brace
CN104594504B (en) A kind of multidimensional shock mount
JP2010190409A (en) Seismic isolation device and building
JP6178029B1 (en) Seismic isolation device for structures
JP2009008181A (en) Manufacturing method for base isolation device embedded with plug
WO2017179525A1 (en) Seismic isolation support for bridges and bridge using same
JP3410172B2 (en) Lead encapsulated laminated rubber bearing
CN207172890U (en) A kind of soft and stackable high buffering sheet material used
JP2007024287A (en) Laminated support body
JP2016080051A (en) Base isolation support device
TWI439616B (en) The energy dissipation and vibration reduction device
JP2012172511A (en) Seismic isolator using flanged spherical surface roller
JP2017031723A (en) Base-isolating device
JP6064075B1 (en) Seismic isolation device for structure and manufacturing method of seismic isolation device for structure
JP2000283225A (en) Elastic support device
JP2013002509A (en) Laminated rubber bearing body
CN207660322U (en) A kind of safety anti-explosive shower house
JP3568586B2 (en) Lead encapsulated laminated rubber bearing
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP2015075134A (en) Seismic isolator
JP2009210064A (en) Laminated support

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250