JP2012172511A - Seismic isolator using flanged spherical surface roller - Google Patents

Seismic isolator using flanged spherical surface roller Download PDF

Info

Publication number
JP2012172511A
JP2012172511A JP2011053535A JP2011053535A JP2012172511A JP 2012172511 A JP2012172511 A JP 2012172511A JP 2011053535 A JP2011053535 A JP 2011053535A JP 2011053535 A JP2011053535 A JP 2011053535A JP 2012172511 A JP2012172511 A JP 2012172511A
Authority
JP
Japan
Prior art keywords
spherical
building
spherical surface
spherical roller
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011053535A
Other languages
Japanese (ja)
Inventor
Yutaka Abe
豐 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011053535A priority Critical patent/JP2012172511A/en
Publication of JP2012172511A publication Critical patent/JP2012172511A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To develop a seismic isolator constituted by integrating a bearing, a vibration control spring, a damper and the like which prevent or reduce mainly a lateral shake of a building etc., caused by an earthquake, and further a function of normally suppressing shaking due to wind pressure.SOLUTION: A spherical surface roller 1 itself supporting the building is made to have restoring force by utilizing the gravity of the building to be supported and springs. An annular flange 2 is provided to an intermediate side face of the spherical surface roller 1 whose upper and lower surfaces are spherical, and coiled strong springs 5, 6 are fitted symmetrically to the top and reverse sides thereof. A lower abutment 3 and an upper bearing 4 which support rolling of the spherical surface roller 1 are plane. While the springs bear the weight of the supported building at a certain rate, a vibration control function is operated as rotating force in the opposite direction during rolling. The spherical surface roller 1 has the upper and lower surfaces which are not the same spherical surface, but are made a little larger in diameter to have restoring force similar to that of a conventional combination of a steel sphere and a concave curved surface. A part of the top of the spherical surface roller 1 is made plane and the gravity of the building to be supported is utilized to prevent the building from shaking owing wind pressure at normal time.

Description

地震によって発生する建造物や屋内の設備等の主として横揺れを吸収し、揺れによる破損を防止または軽減する免震装置の技術に関する。  The present invention relates to a technology for a seismic isolation device that mainly absorbs rolling of buildings and indoor facilities generated by an earthquake and prevents or reduces damage caused by shaking.

地震に対する建造物等の免震装置としては、現在鋼板とゴムを交互に積層したもの、滑動による滑り支承、それに鋼球と凹曲鋼板や交差状のボールベアリングを利用した転がり支承、また空気圧によって建造物を浮かせて地震による揺れを遮断するアイソレーター等が実用化されている。  Seismic isolation devices such as buildings for earthquakes are currently made by alternately laminating steel plates and rubber, sliding bearings by sliding, rolling bearings using steel balls and concave steel plates and crossed ball bearings, and pneumatic pressure Isolators that float buildings and block earthquake-induced shaking have been put into practical use.

いずれの免震装置もコスト等に問題もあり、広範囲な普及に至っていないのが現状である。また支承のみでは揺れを軽減する制震力が弱く、その為制震目的のスプリングや各種ダンパー、また平常時強力な風圧によって生ずる建造物等の横揺れを防止する静止装置を別個に設置する必要もある。  None of the seismic isolation devices have a problem in cost or the like, and the current situation is that they have not spread widely. In addition, only the bearings have weak damping force to reduce shaking, so it is necessary to separately install springs for damping purposes, various dampers, and stationary devices that prevent rolling of buildings and the like caused by strong wind pressure during normal times. There is also.

現在実用化されている各種の免震装置のうち横揺れに対し比較的簡便で効率よく軽減できる転動支承による免震装置として、鋼球と凹曲鋼板間のコロの転動、交差状に配置したボールベアリング方式等によるものが利用されている。しかしこの装置のみでは制震力が働かない。本発明よる免震装置は転動を利用したものであるが、制震や復元力それに静止時の風圧による横揺れを防止する機能を一体化した免震装置の開発を課題とする。  Among various types of seismic isolation devices that are currently in practical use, as a seismic isolation device with rolling bearings that can be reduced relatively easily and efficiently against rolling, the rolling of rollers between steel balls and concave steel plates, The thing by the arranged ball bearing system etc. is used. However, the seismic control force does not work with this device alone. Although the seismic isolation device according to the present invention uses rolling, the object is to develop a seismic isolation device that integrates a function for preventing vibration and restoring force, and a function to prevent rolling due to wind pressure at rest.

本発明による免震装置は、球面コロ1の側面中央部に環状の鍔2を設け、その上下に強力なコイル状のスプリング5,6を図1に示したように対称的に取り付ける。球面コロ1は土台12側に固定された支台3と、建造物の基礎13側に固定された受台4との間に設置する。スプリング5,6は支架する建造物重量の相当部分を支え、その分球面コロ1に加わる重力を軽減させる。  In the seismic isolation device according to the present invention, an annular collar 2 is provided at the center of the side surface of the spherical roller 1, and strong coiled springs 5 and 6 are attached symmetrically as shown in FIG. The spherical roller 1 is installed between the abutment 3 fixed on the base 12 side and the cradle 4 fixed on the foundation 13 side of the building. The springs 5 and 6 support a considerable portion of the weight of the building to be supported, and reduce the gravity applied to the spherical roller 1 correspondingly.

地震の横揺れに際し球面コロ1は転動して傾き、鍔2は傾斜して上下のスプリング5,6を図2のように大きく変形して、球面コロ1に強力な反対方向の回転力を与えるようにする。転動角度は片側に最大で30〜40度程度、両側で60〜80度前後とする。その場合の対応できる土台12の最大移動量は球面コロ1の高さ(直径)より若干多い数値となる。例えば直径30cmの球面コロの場合は最大30cm強となり、20cmでは20cm強となる。直径に比例して変化するので必要な大きさのものを選定する。  In the event of an earthquake roll, the spherical roller 1 rolls and tilts, and the heel 2 tilts and the upper and lower springs 5 and 6 are greatly deformed as shown in FIG. To give. The rolling angle is about 30 to 40 degrees at the maximum on one side and around 60 to 80 degrees on both sides. In this case, the maximum amount of movement of the base 12 that can be handled is a numerical value slightly larger than the height (diameter) of the spherical roller 1. For example, in the case of a spherical roller with a diameter of 30 cm, the maximum is slightly over 30 cm, and at 20 cm, it is over 20 cm. Since it changes in proportion to the diameter, select the required size.

球面コロ1の球面を上下同一球面でなく半径を若干大きくして、鋼球と凹曲鋼板による従来の装置と同様の自動復元力を持たせる。また転動に伴い僅かな上下動を発生するが、それにより支架する建造物の重力や慣性力によってダンパー的効果を持たせる。  The spherical surface of the spherical roller 1 is not the same as the upper and lower spherical surfaces, but has a slightly larger radius so that it has an automatic restoring force similar to that of a conventional apparatus using steel balls and concave steel plates. In addition, a slight vertical movement occurs with the rolling, and this gives a damper effect by the gravity and inertial force of the building to be supported.

球面コロ1の頂点の一部分を平面状にして支架し、建造物の重力を利用して平常時風圧による建造物の横揺れを防止する。  A part of the apex of the spherical roller 1 is supported in a planar shape, and the building is prevented from rolling due to normal wind pressure by utilizing the gravity of the building.

本発明の転動による免震装置は、地震による横揺れを球面コロ1の転動によって大きく軽減させるだけでなく、支架する建造物の重量を利用して平常時の風圧による揺れを防止できる。  The rolling seismic isolation device of the present invention not only greatly reduces the rolling due to the earthquake by rolling the spherical roller 1, but can also prevent shaking due to wind pressure at normal times by using the weight of the building to be supported.

図2が示しているように、球面コロ1の転動による上下のスプリング5、6の変形によって球面コロ1に逆回転力として作用させ、従来別個の装置として必要である復元スプリングや、支架する建造物などの重量や慣性力を利用してダンパーのような制震力を持たせ装置全体の一体化が可能となる。  As shown in FIG. 2, the upper and lower springs 5, 6 are deformed by the rolling of the spherical roller 1 to act on the spherical roller 1 as a reverse rotational force, so that a restoring spring that is conventionally required as a separate device or a suspension is supported. By using the weight and inertial force of the building, etc., a damping force such as a damper is provided, and the entire device can be integrated.

この鍔付き球面コロ1による免震装置は、サイズや必要数量を平面状に分散して設置する。その際同一でなく支架する建造物等の部分負荷に応じて球面コロ1の大きさ、スプリング強度や設置数を自由に選択して対処できる。  The seismic isolation device using the spherical roller 1 with the flange is installed by distributing the size and necessary quantity in a flat shape. At that time, the size of the spherical roller 1, the strength of the spring, and the number of installations can be freely selected according to the partial load of the building that is not the same and is supported.

本発明による免震装置は転動による建造物を支承する球面コロと制震スプリングまたダンパー、さらに風圧による平常時の揺れ防止などの諸装置を一体化できるので、免震装置全体の小型化や量産化などが容易で低コスト化が計られる。  The seismic isolation device according to the present invention can integrate a spherical roller for supporting a building by rolling, a damping spring and a damper, and various devices such as normal vibration prevention due to wind pressure. Mass production is easy and cost reduction is achieved.

本発明による免震装置の側面図で、球面コロ1と鍔2以外は中心断面を示した図である。  It is the side view of the seismic isolation apparatus by this invention, and is the figure which showed center cross sections other than the spherical roller 1 and the collar 2. FIG. 図1の免震装置の下部の土台12側が左側に動いて球面コロ1が30度傾斜した状態を示した図。  The figure which showed the state in which the base 12 side of the lower part of the seismic isolation apparatus of FIG. 1 moved to the left side, and the spherical roller 1 inclined 30 degree | times. 球面コロ16と受台17,支台18との接触面に環状の突起と溝面を設け、転動時に滑りなどによるずれを発生しないようにした免震装置を示したも図で、球面コロ16と鍔2の上半部分は側面図それ以外は全て中心の断面図。  A seismic isolation device is shown in which a ring-shaped protrusion and a groove surface are provided on the contact surface between the spherical roller 16 and the cradle 17 and the abutment 18 to prevent slippage during rolling. 16 and the upper half of the heel 2 are side views, and all other sections are cross-sectional views of the center. 図3の支台17の平面図。  FIG. 4 is a plan view of the abutment 17 of FIG. 3. 球面コロの構造の他例二種類を線A−Bの左右に示した上半分の断面図。  Sectional drawing of the upper half which showed two types of other examples of the structure of the spherical roller on the right and left of line AB.

以下、本発明の実施例を図に基づいて説明する。  Embodiments of the present invention will be described below with reference to the drawings.

図1,2は本発明による免震装置の一例を示したもので、土台12と建造物の基礎13の間に必要数を分散して設置する。土台12上に下取付台7が固定されその上に平面状の支台3を設ける。基礎13側にも対称的に上取付台8と受台4が設置されその間に球面コロ1とスプリング5,6が取り付けられる。  1 and 2 show an example of a seismic isolation device according to the present invention, in which a necessary number is distributed between a base 12 and a foundation 13 of a building. A lower mounting base 7 is fixed on a base 12 and a planar abutment 3 is provided thereon. The upper mounting base 8 and the receiving base 4 are symmetrically installed also on the base 13 side, and the spherical roller 1 and the springs 5 and 6 are attached therebetween.

球面コロ1の中央部の側面に環状の鍔2を設け、これに円錐状に巻かれたスプリング5とスプリング6が対称的に取り付けられている。それぞれの他端は下取付台7と上取付台8に固定される。  An annular flange 2 is provided on the side surface of the central portion of the spherical roller 1, and a spring 5 and a spring 6 wound in a conical shape are attached symmetrically thereto. Each other end is fixed to the lower mounting base 7 and the upper mounting base 8.

地震によって土台12が左方向に移動して球体コロ1が30度転動した状態を図2が示している。球体コロ1中心の移動量は土台12の動きの2分の1になる。スプリング5とスプリング6は大きく変形して球体コロ1に逆方向の回転力として作用する。土台12が逆方向に移動した場合も反対方向に同様に作用する。球面と平面の接触であるのでどの方向にも同様に転動する。また土台12の揺れが収まり基礎13に揺れが残る場合も同様に働き制震力となる。  FIG. 2 shows a state in which the base 12 moves leftward due to the earthquake and the spherical roller 1 rolls 30 degrees. The amount of movement of the center of the spherical roller 1 is half of the movement of the base 12. The springs 5 and 6 are greatly deformed and act on the spherical roller 1 as a rotational force in the reverse direction. When the base 12 moves in the opposite direction, the same action is applied in the opposite direction. Since it is a contact between a spherical surface and a flat surface, it rolls in the same way in any direction. Further, when the shaking of the base 12 is settled and the shaking remains on the foundation 13, it works similarly and becomes a seismic control force.

球面コロ1の頂点付近の一部を平面状にして静止時に支架する建造物に係る風圧による横揺れを防止する機能を持たせている。一般に建造物の重量は非常に大きいので十分な静止力が得られる。また頂点に設けられた円状突起9と支台3と受台4側の円形凹面10は静止位置のずれの発生を防止して常時正確な位置に停止させるもので、設けなくても免震効果に変わりはない。  A part near the apex of the spherical roller 1 is formed in a planar shape to have a function of preventing a roll due to wind pressure related to a structure that is supported at rest. In general, the weight of a building is very large, so that a sufficient resting force can be obtained. Further, the circular protrusion 9 provided at the apex, the abutment 3 and the circular concave surface 10 on the cradle 4 side prevent the occurrence of a deviation of the stationary position and always stop at an accurate position. The effect remains the same.

この球面コロ1とスプリング5,6による免震装置は、設置する全てを同様のものとせず支える建造物の部分重量に応じて選択し配置できる。強度の異なるものを組み合わせて地震による共振作用を減少させられる。また上下のスプリングの片側または両側を弱くして球面コロ1の平面に掛かる圧力を変えて風圧による揺れの制止力を調整できる。  The seismic isolation device using the spherical roller 1 and the springs 5 and 6 can be selected and arranged according to the partial weight of the building to be supported without making all the installations similar. Resonance caused by earthquakes can be reduced by combining different strengths. Further, the one or both sides of the upper and lower springs can be weakened to change the pressure applied to the plane of the spherical roller 1 to adjust the restraining force of the sway caused by the wind pressure.

球面コロ1の上下の球面は同一球面としても良いが、図例では半径をそれより若干大きく設定し、鋼球と凹曲鋼板による転動支承の復元力と同様の効果を持たせている。また転動に伴って発生する上下方向の微振動を皿バネ11で吸収させる構造とした例を示している。  The upper and lower spherical surfaces of the spherical roller 1 may be the same spherical surface, but in the example shown in the figure, the radius is set slightly larger than that, and the same effect as the restoring force of the rolling bearing by the steel ball and the concave steel plate is given. In addition, an example is shown in which a fine spring in the vertical direction generated along with rolling is absorbed by the disc spring 11.

下取付台7と上取付台8の外側にチューブ状のゴム製のカバー14が固定具15によって取り付けられ、内部保護と同時に強力なものにして震度が大きくなった場合その張力を利用して制動力として働かせる事もできる。  A tube-shaped rubber cover 14 is attached to the outside of the lower mounting base 7 and the upper mounting base 8 by a fixture 15, and when the seismic intensity increases by making it strong at the same time as internal protection, the tension is used to control it. It can also be used as power.

図2のように球面コロ1が大きく傾斜すると上下のスプリング5,6の片側は圧縮されて強い反発力を生じ、反対側は伸びて反発力は減少する。それにより逆方向の強力な回転力が発生し支架する建造物を土台12と同方向に動かす力となるが、建造物の大きな慣性力と一般に地震の振動数と建造物の固有振動数は異なるので共振して大きく横揺れしないで、土台12の揺れに対しダンパー的効果で大きな減振効果を持たせられる。同一スプリング力の場合、鍔2部分のスプリング取り付け径が大きいほどその力は増加するが選択できる転動角度は少なくなる。  As shown in FIG. 2, when the spherical roller 1 is greatly inclined, one side of the upper and lower springs 5 and 6 is compressed to generate a strong repulsive force, and the opposite side is extended to reduce the repulsive force. As a result, a strong rotational force in the opposite direction is generated and the supporting building is moved in the same direction as the base 12, but the large inertial force of the building and generally the seismic frequency and the natural frequency of the building are different. Therefore, it does not resonate greatly due to resonance, and a great vibration reducing effect can be given to the shaking of the base 12 with a damper effect. In the case of the same spring force, the greater the spring mounting diameter of the heel 2 portion, the greater the force, but the smaller the rolling angle that can be selected.

コイル状のスプリングの形状は図例では円錐状としているが、円筒状や半楕円状なども選択できる。またより強力なスプリングが必要な場合、外側にもう一対のスプリングを設けても対処できる。またスプリングの断面は円形の他、長方形の厚い鋼帯を巻いたもの等も選択可能である。  The shape of the coiled spring is a conical shape in the illustrated example, but a cylindrical shape or a semi-elliptical shape can also be selected. If a stronger spring is required, it can be dealt with by providing another pair of springs on the outside. In addition to the circular cross-section of the spring, it is also possible to select a spring wound with a thick rectangular steel strip.

図3,4は図1,2例と同様に球面コロ16の転動を利用した免震装置であるが、凸球面20と凹球面21を持つ球面コロ16と、平面状の凹環面23と凸環面24を持つ支台17と受台18の噛み合わせによって転動時の滑りによるずれの発生を完全に防止して、常時正常な位置を保持できるようにした実施例である。  3 and 4 are seismic isolation devices using the rolling of the spherical roller 16 as in the examples of FIGS. 1 and 2, but a spherical roller 16 having a convex spherical surface 20 and a concave spherical surface 21 and a planar concave ring surface 23. In this embodiment, the abutment 17 having the convex ring surface 24 and the cradle 18 are meshed with each other to completely prevent the occurrence of displacement due to slipping during rolling, so that the normal position can be always maintained.

実施例1と同様に球面コロ16の側面に鍔2を設けスプリング5,6を取り付けるが、その取り付け部の径を小さくしている。またスプリング5,6の形状を円錐状ではなく、半楕円状と膨らんだ形状にして転動角度を片側に40度両側で80度程度まで可能にしている。  Similar to the first embodiment, the flange 2 is provided on the side surface of the spherical roller 16 and the springs 5 and 6 are attached, but the diameter of the attachment portion is reduced. The shape of the springs 5 and 6 is not conical, but a semi-elliptical and swollen shape so that the rolling angle is 40 degrees on one side and 80 degrees on both sides.

往復転動による接触面は先例の球面と平面によるものではなく、歯車とラックのような噛み合わせ状にして環状の球面と平面の凹凸面を組み合わせたもので何れの方向にも、ずれを発生させずに常時正確な転動位置を維持できる。図例では環状の凹凸の組み合わせは球面コロ16側では一条であるが二条またはそれ以上とした組み合わせも選択できる。  The contact surface due to the reciprocating rolling is not based on the previous spherical surface and flat surface, but is a meshed combination like a gear and a rack, and an annular spherical surface and a planar uneven surface are combined. It is possible to maintain a precise rolling position at all times. In the example shown in the figure, the combination of the annular irregularities is one on the spherical roller 16 side, but a combination of two or more can also be selected.

図3の断面図が示しているように支台17と受台18の中央の中心面22と凹環面23の深さは、溝付の球面コロ16の転動面の凸環部20の高さと同一で、図1例と同様に全方向に常時円滑に転動できる。中央部は両側とも平面状で静止時の建造物に係る風圧による揺れを、実施例1と同様に支架する建造物の重力を利用して防止する。  As shown in the cross-sectional view of FIG. 3, the depths of the central surface 22 and the concave ring surface 23 at the center of the abutment 17 and the cradle 18 are the same as those of the convex ring portion 20 of the rolling surface of the grooved spherical roller 16. It is the same as the height and can always roll smoothly in all directions as in the example of FIG. The center part is flat on both sides, and the shaking due to the wind pressure related to the building at rest is prevented using the gravity of the building to be supported in the same manner as in the first embodiment.

球面コロ16の頂点の円形の平面部19は支台17の中心面22と密着しているが、その外周部の一部を凸球面20と同一球面状にするか、外周部を同じ高さの平面として転動をより円滑にしている。  The circular flat surface portion 19 at the apex of the spherical roller 16 is in close contact with the center surface 22 of the abutment 17, but a part of the outer peripheral portion thereof is made the same spherical shape as the convex spherical surface 20, or the outer peripheral portion has the same height. As a flat surface, rolling is made smoother.

図5は実施例1と同様な免震装置の球面コロの上半分の断面を示すもので、線A−Bの右側は外形は図1例とほぼ同形状であるが内部はゴム等の弾力体で造られた積層ゴム25で中心の支持軸A27に取り付けられる。コロの球面部分は鋼製の球面カバー26よりなり転動により発生する微震動を吸収させる構造とした球面コロの例である。左側は積層皿バネ29を利用したもので負荷状態の形状を示している。球面体30が中央の支持軸B28に取り付けられ、何れも全鋼製のものより縦震動をより吸収できる。コイル状や巻鋼帯のスプリングと置き換えも可能である。  FIG. 5 shows a cross section of the upper half of a spherical roller of a seismic isolation device similar to that of Example 1. The right side of the line AB is substantially the same as the example in FIG. 1, but the inside is elastic such as rubber. A laminated rubber 25 made of a body is attached to the central support shaft A27. The spherical portion of the roller is an example of a spherical roller made of a steel spherical cover 26 and having a structure for absorbing fine vibration generated by rolling. The left side uses a laminated disc spring 29 and shows the shape of the loaded state. A spherical body 30 is attached to the central support shaft B28, and any of them can absorb longitudinal vibration more than that made of all steel. It can be replaced with a coiled or wound steel strip spring.

また内部を空洞としたものやその内部にコンクリート等を充填するなどして、大形化やコスト低減に対処する事もできる。  In addition, it is possible to cope with size increase and cost reduction by making the inside hollow or filling the inside with concrete or the like.

本発明による免震装置は建造物のみならず、屋内の各種装置や器具例えば防震が求められる実験施設や各種格納棚またベットなどの下部に小型化して取り付け、建物の免震装置と共働して一層の免震効果が得られる。  The seismic isolation device according to the present invention is not only a building, but also various indoor devices and equipment such as experimental facilities that require seismic protection, various storage shelves and beds, etc. A further seismic isolation effect can be obtained.

設置に際しては装置を上下より加圧して密着させ、外部に固定具を取り付けてから設置し、取り外し可能状に加重が得られてからその固定具を取り除く作業によって設置は容易にできる。  When installing, the apparatus can be easily installed by pressurizing the apparatus from above and below, attaching it to the outside and attaching it to the outside, and then removing it after the weight is obtained in a removable state.

1 球面コロ 2 鍔
3 支台 4 受台
5 スプリング 6 スプリング
7 下取付台 8 上取付台
9 円形突起 10 円形凹面
11 皿バネ 12 土台
13 基礎 14 カバー
15 固定具 16 球面コロ
17 支台 18 受台
19 平面部 20 凸球面
21 凹球面 22 中心面
23 凹環面 24 凸環面
25 積層ゴム 26 球面カバー
27 支持軸A 28 支持軸B
29 積層皿バネ 30 球面体
1 spherical roller 2 3 abutment 4 cradle 5 spring 6 spring 7 lower mounting base 8 upper mounting base 9 circular protrusion 10 circular concave surface 11 disc spring 12 base 13 foundation 14 cover 15 fixing tool 16 spherical roller 17 base 18 receiving base 19 Planar part 20 Convex spherical surface 21 Concave spherical surface 22 Central surface 23 Concave annular surface 24 Convex annular surface 25 Laminated rubber 26 Spherical cover 27 Support axis A 28 Support axis B
29 Laminated disc spring 30 Spherical body

Claims (3)

上下が球面の球面コロ1の側面の中央部に環状の鍔2を設け、これに各種コイル状のスプリングを上下に対称的に取り付ける。その球面コロ1とスプリング5,6を土台12に固定した平面状の転動面を持つ下取付台7側と、建造物の基礎13に固定した上取付台8側との間に設置して、建造物等を支承する球面コロの転動による免震装置。  An annular collar 2 is provided at the center of the side surface of the spherical roller 1 whose upper and lower surfaces are spherical, and various coiled springs are attached symmetrically to the upper and lower sides. The spherical roller 1 and the springs 5 and 6 are fixed to the base 12 and installed between the lower mounting base 7 having a flat rolling surface and the upper mounting base 8 fixed to the foundation 13 of the building. Seismic isolation devices by rolling spherical rollers that support buildings, etc. 球面コロ1の上下の球面の直径寸法は変えず半径をその2分の1より若干大きくし、また球面頂点部分の少範囲を平面状にして、地震によって転動する球面コロ1の復元力及び静止時に支架する建造物等の風圧による揺れを防止する免震装置。  The diameter of the upper and lower spherical surfaces of the spherical roller 1 is not changed, the radius is made slightly larger than one half of the spherical roller 1, and the restoring force of the spherical roller 1 that rolls due to an earthquake is reduced by making a small range of the spherical vertex part planar. A seismic isolation device that prevents shaking caused by wind pressure on structures that are suspended. 上項の免震装置において球面コロ1の転動面を中心断面が、歯車とラックの噛み合わせのように、球面コロ1側に環状の凸球面20と凹球面21を、また支架する上下面には平面状の凹環面23と凸環面24を同一の高さまたは深さで、一組または複数設けて噛み合わせ、何れの方向の転動でもずれの発生を防止する免震装置。  In the above-mentioned seismic isolation device, the rolling surface of the spherical roller 1 has a central cross section, and the upper and lower surfaces that support the annular convex spherical surface 20 and the concave spherical surface 21 on the spherical roller 1 side as the gears and the rack mesh. Is a seismic isolation device in which one set or a plurality of planar concave ring surfaces 23 and convex ring surfaces 24 are provided at the same height or depth and mesh with each other to prevent the occurrence of deviation in any direction of rolling.
JP2011053535A 2011-02-22 2011-02-22 Seismic isolator using flanged spherical surface roller Withdrawn JP2012172511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053535A JP2012172511A (en) 2011-02-22 2011-02-22 Seismic isolator using flanged spherical surface roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053535A JP2012172511A (en) 2011-02-22 2011-02-22 Seismic isolator using flanged spherical surface roller

Publications (1)

Publication Number Publication Date
JP2012172511A true JP2012172511A (en) 2012-09-10

Family

ID=46975673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053535A Withdrawn JP2012172511A (en) 2011-02-22 2011-02-22 Seismic isolator using flanged spherical surface roller

Country Status (1)

Country Link
JP (1) JP2012172511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002126A (en) * 2015-06-29 2017-01-06 인천대학교 산학협력단 Automatic restoring type seismic isolator
JP2018087581A (en) * 2016-11-28 2018-06-07 清水建設株式会社 Wind lock mechanism
JP2018168897A (en) * 2017-03-29 2018-11-01 清水建設株式会社 Wind lock mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170002126A (en) * 2015-06-29 2017-01-06 인천대학교 산학협력단 Automatic restoring type seismic isolator
KR101710612B1 (en) 2015-06-29 2017-02-27 인천대학교 산학협력단 Automatic restoring type seismic isolator
JP2018087581A (en) * 2016-11-28 2018-06-07 清水建設株式会社 Wind lock mechanism
JP2018168897A (en) * 2017-03-29 2018-11-01 清水建設株式会社 Wind lock mechanism

Similar Documents

Publication Publication Date Title
CN203741993U (en) Friction pendulum type seismic isolation support provided with anti-drawing devices
JP2010007859A (en) Isolation platform
JP5238855B2 (en) Building seismic isolation and seismic isolation system with instant isolation system
WO1999007966A1 (en) Energy absorber
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
JP2011117585A (en) Pendular movement type origin self-reset type three-dimensional base isolation apparatus
JP2012172511A (en) Seismic isolator using flanged spherical surface roller
JP5013295B2 (en) Seismic isolation slider box.
JP2000120776A (en) Floating preventing device in base isolating device for structure
JP2015081464A (en) Vibration control structure
JP2015148095A (en) seismic isolation structure
JP6430192B2 (en) Seismic isolation device
JP5363964B2 (en) Seismic isolation device
JP2014084970A (en) Seismic isolation member
JP6354133B2 (en) Seismic isolation support device
JP2012237434A (en) Base isolation device
JP2000266116A (en) Swinging bearing type base isolation device
JP2008240290A (en) Base-isolating device and its construction method
JP2001208130A (en) Base isolation support device with friction material storing tank
JP2009001345A (en) Base-isolation supporting device for crane
JP6405733B2 (en) Vibration control structure
JP3724987B2 (en) 3D seismic isolation device
JP5226894B1 (en) Seismic isolation device
JP6910691B1 (en) Support device
JP5033230B2 (en) Seismic isolation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513