JP2000283225A - Elastic support device - Google Patents

Elastic support device

Info

Publication number
JP2000283225A
JP2000283225A JP9336099A JP9336099A JP2000283225A JP 2000283225 A JP2000283225 A JP 2000283225A JP 9336099 A JP9336099 A JP 9336099A JP 9336099 A JP9336099 A JP 9336099A JP 2000283225 A JP2000283225 A JP 2000283225A
Authority
JP
Japan
Prior art keywords
support body
hole
elastic
bearing device
particlelike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9336099A
Other languages
Japanese (ja)
Inventor
Yasuhisa Hishijima
康久 比志島
Sadafumi Uno
禎史 鵜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaguchi Metal Industries Co Ltd
Original Assignee
Kawaguchi Metal Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaguchi Metal Industries Co Ltd filed Critical Kawaguchi Metal Industries Co Ltd
Priority to JP9336099A priority Critical patent/JP2000283225A/en
Publication of JP2000283225A publication Critical patent/JP2000283225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure predetermined energy absorption characteristic for a long time by providing a hole extending in the vertical direction inside a support body constituted by laminating an elastic material layer and a rigid material layer alternately in the vertical direction and sealing many particlelike bodies for damping in this hole in a device provided with the support body. SOLUTION: In an elastic support device 1 which is provided with upper and lower part mounting plates 2, 3 and a support body 6 and is provided between an upper structure 4 and a lower structure 5 through the upper and lower part mounting plates 2, 3, the whole support body 6 is formed like a circular column, and a hole 8 is formed in its central part. Moreover, the support body 6 is constituted by laminating a rubber layer 9 which is an annular elastic material layer, reinforcing plates which are rigid material layers for constraining the swollenout of laminated rubber, so-called thick-walled upper and lower part reinforcing plates 10, 11 and a thin-walled intermediate reinforcing plate 12 alternately. Many particlelike bodies 7 and a filler made of silicon putty for filling up a clearance between each particlelike body 7 are filled in the hole 8, and a bottom part and an upper part of the hole 8 are closed by steel lids 22, 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は弾性支承装置に関
し、さらに詳細には、支承体内部に減衰部材を組み込
み、地震等の振動エネルギーを吸収するようにした支承
装置の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elastic bearing device, and more particularly to a structure of a bearing device in which a damping member is incorporated in a bearing body to absorb vibration energy such as an earthquake.

【0002】[0002]

【従来の技術】従来、ゴム層と補強板とが鉛直方向に交
互に積層されてなる積層ゴムの内部に、鉛プラグを封入
してなる積層ゴム支承は、地震時の振動エネルギーを吸
収し、減衰させる免震支承装置として広く知られてい
る。この積層ゴム支承に用いられる鉛プラグは、地震時
に上部構造物と下部構造物とが相対変位を起こすと、積
層ゴムの水平変形に伴ってせん断変形することにより、
エネルギー吸収特性を発揮するものである。
2. Description of the Related Art Conventionally, a laminated rubber bearing in which a lead plug is sealed in a laminated rubber in which a rubber layer and a reinforcing plate are alternately laminated in the vertical direction absorbs vibration energy during an earthquake, It is widely known as a damping seismic isolation bearing device. The lead plug used in this laminated rubber bearing is shear-deformed with the horizontal deformation of the laminated rubber when the upper structure and the lower structure cause relative displacement during an earthquake,
It exhibits energy absorption characteristics.

【0003】しかしながら、上記従来の鉛プラグ入り積
層ゴム支承は、以下に記載するような問題点がある。 (1)せん断変形時に鉛がゴム層内に食い込んで、耐久
性に影響を及ぼす有害な損傷を与えたり、鉛プラグの異
常変形のために所期の減衰が得られない場合がある。 (2)鉛プラグは積層ゴムに形成された穴に圧入される
が、圧入に難しさがあり、そのため性能にばらつきが出
やすい。 (3)鉛プラグは繰り返しせん断変形を受けた後、常温
での回復・再結晶を期待するため、純度が99.99%
の純鉛を必要とする。
[0003] However, the above-described conventional laminated rubber bearing containing lead plugs has the following problems. (1) Lead may bite into the rubber layer during shear deformation, causing harmful damage that affects durability, or the expected attenuation may not be obtained due to abnormal deformation of the lead plug. (2) The lead plug is press-fitted into a hole formed in the laminated rubber. However, there is difficulty in press-fitting, and therefore, the performance tends to vary. (3) Since the lead plug is expected to recover and recrystallize at room temperature after repeatedly undergoing shear deformation, its purity is 99.99%.
Requires pure lead.

【0004】(4)実体ゴム支承を用いた大きなせん断
変形試験を行った後、ゴム支承を鉛プラグの軸線方向に
カットしてみたところ、鉛プラグは複数箇所で半径方向
に分断されて、そろばん玉を積み重ねたような形状を呈
していた。このことにより、鉛プラグは、塑性曲げ変形
ではなく、そろばん玉状の鉛塊間に働く摩擦で減衰を引
き出しているものと考えられる。 (5)鉛プラグの常温での回復・再結晶が期待できるの
は、せん断変形が少なく、塑性的に曲げ変形できる範囲
である。したがって、鉛プラグがそろばん玉状になる
と、摩擦面が酸化して所期の回復・再結晶は期待できな
い。 (6)何回も大きなせん断変形を経験すると、鉛がぼろ
ぼろになり、減衰性能が極端に低下する。
(4) After performing a large shear deformation test using a real rubber bearing, when the rubber bearing is cut in the axial direction of the lead plug, the lead plug is divided at a plurality of locations in the radial direction, and the abacus It had a shape like stacked balls. Thus, it is considered that the lead plug draws out the attenuation not by plastic bending deformation but by friction acting between the abacus ball-shaped lead blocks. (5) The recovery and recrystallization of the lead plug at room temperature can be expected as long as the shear deformation is small and the lead plug can be flexibly deformed. Therefore, when the lead plug is in the shape of an abacus, the friction surface is oxidized, and expected recovery and recrystallization cannot be expected. (6) If a large number of shear deformations are experienced, lead becomes ragged and the damping performance is extremely reduced.

【0005】[0005]

【発明が解決しようとする課題】この発明は上記のよう
な技術的背景に基づいてなされたものであって、次の目
的を達成するものである。
SUMMARY OF THE INVENTION The present invention has been made on the basis of the above technical background, and has the following objects.

【0006】この発明の目的は、鉛プラグとは異なる減
衰部材を組み込むことにより、鉛プラグを用いた場合の
問題点を解消し、長期に亘って所期のエネルギー吸収特
性を得ることができる弾性支承装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of using a lead plug by incorporating a damping member different from that of a lead plug, and to obtain an elasticity capable of obtaining desired energy absorption characteristics over a long period of time. It is to provide a bearing device.

【0007】[0007]

【課題を解決するための手段】この発明の発明者は、上
記せん断試験の結果から、次のことを着想するに至っ
た。 (1)鉛プラグは、大きなせん断変形ではそろばん玉状
になってしまうので、必ずしもプラグとする必要はな
い。 (2)常温での回復・再結晶を期待できない以上、純度
の高い鉛を使う必要がなく、また鉛そのものを使わなく
ともよい。 (3)そろばん玉状の鉛塊間に働くと同様の摩擦力を発
生させれば、プラグと同様の減衰を引き出すことが可能
である。
The inventors of the present invention have come up with the following idea based on the results of the above-mentioned shear test. (1) Since lead plugs become abacus balls when subjected to large shear deformation, they need not necessarily be plugs. (2) Since recovery and recrystallization at normal temperature cannot be expected, it is not necessary to use high-purity lead, and it is not necessary to use lead itself. (3) If the same frictional force is generated when acting between the abacus ball-shaped lead blocks, the same damping as the plug can be obtained.

【0008】この発明は上記着想に基いて完成するに至
ったものであり、次のような手段を採用している。
The present invention has been completed based on the above idea, and employs the following means.

【0009】すなわちこの発明は、弾性材料層と剛性材
料層とが鉛直方向に交互に積層されてなる支承体を備え
た弾性支承装置において、前記支承体の内部に鉛直方向
に延びる穴を設け、この穴に減衰用の多数の粒状体を封
入したことを特徴とする弾性支承装置にある。
That is, according to the present invention, in a resilient bearing device provided with a support body in which elastic material layers and rigid material layers are alternately laminated in a vertical direction, a hole extending in a vertical direction is provided inside the support body. The elastic bearing device is characterized in that a number of damping particles are sealed in the holes.

【0010】弾性支承装置は上部構造物と下部構造物と
の間に設置され、上部構造物の荷重は支承体を介して下
部構造物に伝達される。地震時において下部構造物に振
動力が入力すると、上下部構造物が水平方向に相対変位
し、これに伴って支承体が弾性せん断変形をするが、支
承体はその弾性特性により入力周期を長周期化して上部
構造物に伝達し、免震作用をなす。一方、積層体がせん
断変形すると、その内部に封入された粒状体群も追従し
てせん断変形する。このせん断変形により、各粒状体は
回転移動して粒状体間に摩擦が発生し、摩擦による減衰
作用が得られる。すなわち、この発明による装置の減衰
作用は、鉛プラグのように塑性変形によるものではな
く、主として摩擦によるものである。
The elastic bearing device is installed between the upper structure and the lower structure, and the load of the upper structure is transmitted to the lower structure via the support. When an oscillating force is input to the lower structure during an earthquake, the upper and lower structures are relatively displaced in the horizontal direction, and the bearing undergoes elastic shear deformation in accordance with this. Periodically transmits to the superstructure, and performs seismic isolation. On the other hand, when the laminate is subjected to shear deformation, the group of granular materials enclosed therein also undergoes shear deformation. Due to this shearing deformation, each granular material rotates and generates friction between the granular materials, and a damping action by the friction is obtained. That is, the damping effect of the device according to the present invention is not due to plastic deformation as in the lead plug, but mainly to friction.

【0011】摩擦を発生させる粒状体としては、鉛、
鋼、ステンレス鋼、銅、アルミニウム、亜鉛等の金属又
は合金を使用することができ、さらにプラスチック、ベ
ークライト、セラミックス等の合成物質を使用すること
もできる。鉛を使用する場合は、鉛プラグのように常温
での回復・再結晶を期待しないので、鉛合金としてもよ
い。粒状体の大きさは、好ましくは直径0.1mmから
20mm程度である。粒状体を鉛や、鉛合金とした場
合、摩擦熱で溶融し、溶融面が酸化することが考えられ
るが、その溶融面がせん断変形により剥離して摩擦を起
こすので、減衰力が低下することはない。
[0011] The particulates that generate friction include lead,
Metals or alloys such as steel, stainless steel, copper, aluminum, and zinc can be used, and synthetic materials such as plastics, bakelite, and ceramics can also be used. When lead is used, lead alloy is not required since recovery and recrystallization at room temperature are not expected unlike lead plugs. The size of the granular material is preferably about 0.1 mm to 20 mm in diameter. If the granular material is made of lead or a lead alloy, it can be melted by frictional heat and the molten surface can be oxidized.However, the molten surface peels off due to shear deformation and causes friction, so the damping force decreases. There is no.

【0012】穴に封入されるのが粒状体のみだと、粒状
体間に空隙が生じる。このため、せん断変形時の挙動に
より粒状体群が圧密されて、かさ体積が減少する結果、
鉛直荷重に基づく摩擦力が減少し、所期の減衰力が得ら
れないことも考えられる。したがって、空隙を埋めるべ
く、穴には充填材を充填するとよい。
If only the particles are sealed in the holes, voids are generated between the particles. For this reason, the granular material group is compacted by the behavior at the time of shear deformation, and as a result, the bulk volume is reduced,
It is also conceivable that the frictional force based on the vertical load decreases and the desired damping force cannot be obtained. Therefore, the holes are preferably filled with a filler to fill the voids.

【0013】この充填材としては、鉛粉等の金属粉、あ
るいはシリコン・パテ(メチル系シリコンゴムに硼素を
添加してなる変性体)のようなダイラント流体を使用す
ることができる。後者のダイラント流体とは、非ニュー
トン流体の一種で、純粘性流体の中で見掛けの粘度がせ
ん断速度の増加とともに増加する流体のことである。し
たがって、この流体は緩慢な運動に対してはせん断速度
が小さく流動性を示し、衝撃力による運動の場合は、せ
ん断速度が大きく流動することなく剛体として作動す
る。
As the filler, a metal powder such as a lead powder, or a diant fluid such as silicon putty (modified body obtained by adding boron to a methyl silicon rubber) can be used. The latter diluent fluid is a type of non-Newtonian fluid in which the apparent viscosity increases with increasing shear rate among pure viscous fluids. Therefore, this fluid has a small shear rate for slow motion and exhibits fluidity, and in the case of motion due to an impact force, the fluid acts as a rigid body without flowing at a large shear rate.

【0014】粒状体群を拘束することにより粒状体が弾
性材料層の中に拡散することを防止することができ、そ
のための拘束部材は粒状体群の外周の弾性材料部分に、
粒状体群を取り囲むように埋設される。この拘束部材
は、支承体のせん断変形に伴って水平方向に変形可能な
部材であり、例えばコイルスプリングで構成することが
できる。
The particles can be prevented from diffusing into the elastic material layer by constraining the group of particles, and a constraining member for that purpose is provided on the elastic material portion on the outer periphery of the group of particles.
It is buried so as to surround the group of granular materials. The restraining member is a member that can be deformed in the horizontal direction in accordance with the shear deformation of the support body, and can be configured by, for example, a coil spring.

【0015】[0015]

【発明の実施の形態】この発明の実施の形態を図面を参
照しながら以下に説明する。図1は、この発明による弾
性支承装置を示す縦断面図、図2は図1のA−A線断面
図である。弾性支承装置1は上下部取付板2,3と支承
体6とを備え、上下部取付板2,3を介して上部構造物
4及び下部構造物5間に設置される。ここに、下部構造
物5は例えば地盤に構築されるコンクリート基礎であ
り、上部構造物4は中高層の建築物である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an elastic bearing device according to the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. The elastic bearing device 1 includes upper and lower mounting plates 2 and 3 and a support body 6, and is installed between the upper structure 4 and the lower structure 5 via the upper and lower mounting plates 2 and 3. Here, the lower structure 5 is, for example, a concrete foundation constructed on the ground, and the upper structure 4 is a middle-to-high-rise building.

【0016】支承体6は、この実施の形態では全体に円
柱状となっていて、その中心部には穴8が形成されてい
る。支承体6は、いずれも環状の弾性材料層であるゴム
層9と、剛性材料層である補強板すなわち厚肉の上下部
補強板10,11及び薄肉の中間補強板12とを交互に
積層してなり、これらのゴム層9と補強板10,11,
12とは加硫接着により一体化される。補強板10,1
1,12は上部構造物4の荷重を受けたとき積層ゴムの
膨出を拘束して、弾性支承装置1が圧縮変形するのを防
止するための部材である。
In the present embodiment, the support body 6 has a columnar shape as a whole, and a hole 8 is formed at the center thereof. The support body 6 is formed by alternately laminating a rubber layer 9 which is an annular elastic material layer, and reinforcing plates which are rigid material layers, that is, thick upper and lower reinforcing plates 10 and 11 and a thin intermediate reinforcing plate 12. These rubber layers 9 and reinforcing plates 10, 11,
12 is integrated by vulcanization adhesion. Reinforcement plates 10, 1
Reference numerals 1 and 12 denote members for restricting the swelling of the laminated rubber when the load of the upper structure 4 is received, thereby preventing the elastic bearing device 1 from being compressed and deformed.

【0017】ゴム層9の材料としては、天然ゴム、シリ
コンゴム、高減衰ゴム、ウレタンゴム、クロロプレンゴ
ム等を用いることができる。また、補強板10,11,
12の材料としては、鋼板、セラミックス、プラスチッ
クス、FRP、炭素繊維等を用いることができる。
As a material of the rubber layer 9, natural rubber, silicone rubber, high attenuation rubber, urethane rubber, chloroprene rubber, or the like can be used. Also, the reinforcing plates 10, 11,
As the material of No. 12, a steel plate, ceramics, plastics, FRP, carbon fiber or the like can be used.

【0018】穴8には、この発明にしたがい、多数の粒
状体7が封入されている。さらに、穴8には各粒状体間
の空隙を埋めるために、鉛粉等の金属粉、あるいはシリ
コン・パテ等からなる充填材26(図3参照)が充填さ
れている。穴8の底部及び上部には、鋼製の蓋22,2
3が設けられている。粒状体7及び充填材26を充填し
た後、穴8の上部が蓋22により閉鎖される。
According to the present invention, a large number of granular materials 7 are sealed in the holes 8. Further, the holes 8 are filled with a metal powder such as lead powder or a filler 26 (see FIG. 3) made of silicon putty or the like to fill gaps between the granular materials. At the bottom and top of the hole 8 are steel lids 22,2.
3 are provided. After filling the granular material 7 and the filler 26, the upper part of the hole 8 is closed by the lid 22.

【0019】筒状部24には、粒状体7群を取り囲むよ
うに拘束部材であるコイルスプリング13が埋め込まれ
ている。このコイルスプリング13は、引張及び圧縮方
向に無荷重状態で設置される。コイルスプリング13
は、耐久性のあるステンレス鋼又はバネ鋼で形成される
が、強化繊維で形成してもよい。
A coil spring 13 as a restraining member is embedded in the cylindrical portion 24 so as to surround the group of granular materials 7. The coil spring 13 is installed with no load in the tension and compression directions. Coil spring 13
Is made of durable stainless steel or spring steel, but may be made of reinforcing fibers.

【0020】上下部取付板2,3は円盤状の鋼板からな
り、中心に有底のボス孔15が形成されている。支承体
6の上下部補強板10,11の中心にも有底のボス孔1
6が形成され、これらのボス孔15,16にはせん断キ
ー17が嵌合される。上下部補強板10,11には複数
のボルト孔18が設けられ、これらのボルト孔18に螺
着される取付ボルト19により支承体6と上下部取付板
2,3とが一体的に結合される。上下部取付板2,3に
は複数のボルト孔20が形成され、これらのボルト孔2
0に螺着されるアンカーボルト21を介して、上下部取
付板2が上下部構造物4,5に取付けられる。
The upper and lower mounting plates 2 and 3 are made of a disk-shaped steel plate, and have a boss hole 15 with a bottom at the center. The bottomed boss hole 1 is also provided at the center of the upper and lower reinforcing plates 10 and 11 of the support body 6.
The shear key 17 is fitted into these boss holes 15 and 16. The upper and lower reinforcing plates 10 and 11 are provided with a plurality of bolt holes 18, and the support body 6 and the upper and lower mounting plates 2 and 3 are integrally connected by mounting bolts 19 screwed into the bolt holes 18. You. A plurality of bolt holes 20 are formed in the upper and lower mounting plates 2 and 3.
The upper and lower mounting plates 2 are mounted to the upper and lower structures 4 and 5 via the anchor bolts 21 screwed to the upper and lower structures.

【0021】上記弾性支承装置1は、概ね次のようにし
て製造される。穴8を規定する筒状部24は、ゴム層9
と同一材料からなるゴム体であり、この筒状部24を別
途未加硫又は半加硫にて成形しておく。その際、筒状部
24の内部にコイルスプリング13を埋め込む。成形型
内において、それぞれ環状のゴム層9及び補強板10,
11,12を積層する。その結果、積層体の中心に穴1
4が形成される。この穴14に筒状部24を挿入し、こ
れらゴム層9、補強板10,11,12及び筒状部24
を加硫接着すして支承体6を得る。ゴム層9及び補強板
10,11,12の外周には、耐候性のよいゴム材料か
らなる被覆部25を設けてもよい。
The elastic bearing device 1 is manufactured generally as follows. The cylindrical portion 24 that defines the hole 8 is
The cylindrical part 24 is formed by unvulcanized or semi-vulcanized separately. At this time, the coil spring 13 is embedded in the tubular portion 24. In the molding die, an annular rubber layer 9 and a reinforcing plate 10,
11 and 12 are laminated. As a result, the hole 1 was placed at the center of the laminate.
4 are formed. The cylindrical portion 24 is inserted into the hole 14, and the rubber layer 9, the reinforcing plates 10, 11, 12 and the cylindrical portion 24 are inserted.
Is vulcanized and adhered to obtain a support body 6. A coating 25 made of a rubber material having good weather resistance may be provided on the outer periphery of the rubber layer 9 and the reinforcing plates 10, 11, 12.

【0022】穴8に底蓋23を取り付け、粒状体7及び
充填材26を充填し、上蓋22で閉鎖する。ボス孔1
5,16にせん断キー17を取り付け、上下部取付板
2,3を補強板10,11に固定する。穴8の容積と粒
状体7及び充填材26からなる体積との比は1/1であ
り、穴8は完全に満たされる。したがって、粒状体7群
には上部構造物4の荷重が作用する。
The bottom lid 23 is attached to the hole 8, the granular material 7 and the filler 26 are filled, and the bottom lid 23 is closed with the upper lid 22. Boss hole 1
The shearing key 17 is attached to 5, 5 and the upper and lower mounting plates 2 and 3 are fixed to the reinforcing plates 10 and 11. The ratio of the volume of the hole 8 to the volume of the granular material 7 and the filler 26 is 1/1, and the hole 8 is completely filled. Therefore, the load of the upper structure 4 acts on the group of granular materials 7.

【0023】次に、上述の弾性支承装置1の作用を図4
を参照して説明する。上部構造物4の荷重は支承体6を
介して下部構造物5に伝達される。地震時において下部
構造物5に振動力Fが入力すると、上下部構造物4,5
が水平方向に相対変位し、これに伴って支承体6が弾性
せん断変形をするが、支承体6はその弾性特性により入
力周期を長周期化して上部構造物4に伝達し、免震作用
をなす。一方、支承体6のせん断変形に伴って粒状体7
群も全体としてせん断変形し、このせん断変形により、
各粒状体は回転移動して粒状体間に摩擦が発生し、摩擦
による減衰作用が得られる。
Next, the operation of the elastic bearing device 1 will be described with reference to FIG.
This will be described with reference to FIG. The load of the upper structure 4 is transmitted to the lower structure 5 via the bearing 6. When the vibration force F is input to the lower structure 5 during the earthquake, the upper and lower structures 4, 5
Are relatively displaced in the horizontal direction, and the bearing body 6 undergoes elastic shear deformation in accordance with the horizontal displacement. Eggplant On the other hand, the granular material 7
The group also undergoes shear deformation as a whole, and due to this shear deformation,
Each granular material rotates and generates friction between the granular materials, and a damping action due to the friction is obtained.

【0024】上記のような支承体6のせん断変形時にお
いて、コイルスプリング13も追従して水平方向に変形
する。この時、コイルスプリング13は、支承体6の水
平方向への伸びに同調して伸長し、その結果コイルスプ
リング13は常に粒状体7群をその長さ方向全体に亘っ
て取り囲んでいることになる。すなわち、粒状体7群は
コイルスプリング13によって常時拘束され、したがっ
て繰り返しせん断変形を受けても、補強板10,11,
12が粒状体7群へ食い込むことはなく、粒状体7群の
ゴム層内への拡散が防止される。
At the time of the above-mentioned shear deformation of the support body 6, the coil spring 13 also follows and deforms in the horizontal direction. At this time, the coil spring 13 extends in synchronism with the horizontal extension of the support 6, so that the coil spring 13 always surrounds the group of granules 7 over the entire length thereof. . That is, the group of granular materials 7 is constantly constrained by the coil spring 13, and therefore, even when subjected to repeated shear deformation, the reinforcing plates 10, 11,
The particles 12 do not bite into the granular material 7 group, and the diffusion of the granular material 7 group into the rubber layer is prevented.

【0025】上記実施の形態では、円柱状の支承装置を
示したが、支承装置の形状は角柱状であってもよい。こ
の場合、支承体に適宜間隔をおいて複数の穴を設け、こ
れらの穴のそれぞれに粒状体を封入するようにしてもよ
い。
In the above embodiment, the columnar bearing device is shown, but the shape of the bearing device may be a prismatic shape. In this case, a plurality of holes may be provided in the support at appropriate intervals, and a granular material may be sealed in each of these holes.

【0026】[0026]

【発明の効果】以上のようにこの発明によれば、従来の
鉛プラグのように塑性変形による減衰作用を期待するの
ではなく、主に粒状体の摩擦により減衰を得るので、支
承体が繰り返しせん断変形を受けても、長期に亘って所
期のエネルギー吸収特性を得ることができる。
As described above, according to the present invention, the damping effect is obtained mainly by friction of the granular material, instead of expecting the damping action due to plastic deformation unlike the conventional lead plug. Even when subjected to shear deformation, the desired energy absorption characteristics can be obtained over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の実施の形態を示す縦断面図
である。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.

【図2】図2は、図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】図3は、粒状体を拡大して示す図である。FIG. 3 is an enlarged view of a granular material.

【図4】図4は、作用説明図である。FIG. 4 is an operation explanatory view.

【符号の説明】[Explanation of symbols]

1:弾性支承装置 2:上部取付版 3:下部取付版 4:上部構造物 5:下部構造物 6:支承体 7:粒状体 8:穴 9:ゴム層 10:上部補強板 11:下部補強板 12:中間補強板 13:コイルスプリング 17:せん断キー 26:充填材 1: Elastic bearing device 2: Upper mounting plate 3: Lower mounting plate 4: Upper structure 5: Lower structure 6: Bearing 7: Granular material 8: Hole 9: Rubber layer 10: Upper reinforcing plate 11: Lower reinforcing plate 12: Intermediate reinforcing plate 13: Coil spring 17: Shear key 26: Filler

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J048 AA02 AC02 AD05 BA08 BE14 BF04 DA01 EA38 3J059 BA01 BA43 BB09 BD01 BD05 GA42  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J048 AA02 AC02 AD05 BA08 BE14 BF04 DA01 EA38 3J059 BA01 BA43 BB09 BD01 BD05 GA42

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】弾性材料層と剛性材料層とが鉛直方向に交
互に積層されてなる支承体を備えた弾性支承装置におい
て、 前記支承体の内部に鉛直方向に延びる穴を設け、この穴
に減衰用の多数の粒状体を封入したことを特徴とする弾
性支承装置。
1. An elastic bearing device comprising a support body in which elastic material layers and rigid material layers are alternately laminated in a vertical direction, wherein a hole extending in a vertical direction is provided inside the support body. An elastic bearing device in which a number of granular materials for damping are enclosed.
【請求項2】前記粒状体間の空隙が、充填材で充填され
ていることを特徴とする請求項1記載の弾性支承装置。
2. The elastic bearing device according to claim 1, wherein the gaps between said granular bodies are filled with a filler.
【請求項3】前記粒状体群の外周の弾性材料部分に、粒
状体群を取り囲む水平方向に変形可能な筒状の拘束部材
を埋設したことを特徴とする請求項1又は2記載の弾性
支承装置。
3. The elastic bearing according to claim 1, wherein a cylindrically deformable cylindrical restraining member surrounding the group of granular bodies is embedded in the elastic material portion on the outer periphery of the group of granular bodies. apparatus.
【請求項4】前記拘束部材はコイルスプリングであるこ
とを特徴とする請求項3記載の弾性支承装置。
4. The elastic bearing device according to claim 3, wherein said restraining member is a coil spring.
JP9336099A 1999-03-31 1999-03-31 Elastic support device Pending JP2000283225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336099A JP2000283225A (en) 1999-03-31 1999-03-31 Elastic support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336099A JP2000283225A (en) 1999-03-31 1999-03-31 Elastic support device

Publications (1)

Publication Number Publication Date
JP2000283225A true JP2000283225A (en) 2000-10-13

Family

ID=14080129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336099A Pending JP2000283225A (en) 1999-03-31 1999-03-31 Elastic support device

Country Status (1)

Country Link
JP (1) JP2000283225A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242212A (en) * 2005-02-28 2006-09-14 Meiji Univ Layered base isolation device
JP2013108558A (en) * 2011-11-21 2013-06-06 Toyo Tire & Rubber Co Ltd Air spring
KR101758620B1 (en) * 2017-05-08 2017-07-18 박종성 Method for controlling semiconductor fabrication equipment using control system
KR101758619B1 (en) * 2017-05-08 2017-07-18 박종성 Method for controlling semiconductor fabrication equipment using control system for cloud enviroment
KR101756082B1 (en) 2017-05-08 2017-07-26 박종성 Method for controlling semiconductor fabrication equipment
JP6178029B1 (en) * 2017-02-24 2017-08-09 株式会社ビービーエム Seismic isolation device for structures
IT201700107082A1 (en) * 2017-09-25 2019-03-25 Italgum S R L ISOLATOR DEVICE, AS A SEISMIC ISOLATOR OR A SUPPORTING ELEMENT FOR CONSTRUCTIONS

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242212A (en) * 2005-02-28 2006-09-14 Meiji Univ Layered base isolation device
JP2013108558A (en) * 2011-11-21 2013-06-06 Toyo Tire & Rubber Co Ltd Air spring
JP6178029B1 (en) * 2017-02-24 2017-08-09 株式会社ビービーエム Seismic isolation device for structures
KR101758620B1 (en) * 2017-05-08 2017-07-18 박종성 Method for controlling semiconductor fabrication equipment using control system
KR101758619B1 (en) * 2017-05-08 2017-07-18 박종성 Method for controlling semiconductor fabrication equipment using control system for cloud enviroment
KR101756082B1 (en) 2017-05-08 2017-07-26 박종성 Method for controlling semiconductor fabrication equipment
IT201700107082A1 (en) * 2017-09-25 2019-03-25 Italgum S R L ISOLATOR DEVICE, AS A SEISMIC ISOLATOR OR A SUPPORTING ELEMENT FOR CONSTRUCTIONS
EP3460283A1 (en) * 2017-09-25 2019-03-27 Italgum S.r.l. Isolator device and method for making said isolator device

Similar Documents

Publication Publication Date Title
JP3360828B2 (en) Energy absorber and manufacturing method
KR100384591B1 (en) Energy absorber
EP3412929B1 (en) Seismic isolation device
US5862638A (en) Seismic isolation bearing having a tension damping device
JPH06101740A (en) Lamination rubber support
US10619700B2 (en) Seismic isolation apparatus
JP2000283225A (en) Elastic support device
JP2021532294A (en) Friction seismic isolation device that opens immediately due to shaking or impact
CN1472412A (en) Shock-absorbing seat
JP6178029B1 (en) Seismic isolation device for structures
JP3124502B2 (en) Structure of leaded rubber bearing
JP5279356B2 (en) Plastic hinge structure of concrete member and concrete member
JP4622663B2 (en) Seismic isolation support
JP2010190409A (en) Seismic isolation device and building
EP3614017A1 (en) Seismic isolation support device
CN109072574B (en) Shock-proof support device for bridge and bridge using same
JP4023696B2 (en) Lead filled laminated rubber bearing
JP2009002124A (en) Multi-shell structure material and its unconfined compression test method
JP3410172B2 (en) Lead encapsulated laminated rubber bearing
JPH10195821A (en) Bridge falling prevention device
JP3503712B2 (en) Lead encapsulated laminated rubber
JPH08296342A (en) Structural body of vibration isolation
JP3717287B2 (en) Seismic isolation device
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
CN109779369B (en) Three-direction six-degree-of-freedom shock isolation and absorption device and working method thereof