JP5661512B2 - Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil - Google Patents

Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil Download PDF

Info

Publication number
JP5661512B2
JP5661512B2 JP2011045950A JP2011045950A JP5661512B2 JP 5661512 B2 JP5661512 B2 JP 5661512B2 JP 2011045950 A JP2011045950 A JP 2011045950A JP 2011045950 A JP2011045950 A JP 2011045950A JP 5661512 B2 JP5661512 B2 JP 5661512B2
Authority
JP
Japan
Prior art keywords
threshold value
oil
rolling device
lubrication type
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011045950A
Other languages
Japanese (ja)
Other versions
JP2012180921A (en
Inventor
幸生 松原
幸生 松原
則暁 坂中
則暁 坂中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2011045950A priority Critical patent/JP5661512B2/en
Priority to PCT/JP2012/054592 priority patent/WO2012117970A1/en
Priority to US14/002,878 priority patent/US9335317B2/en
Priority to EP12751866.0A priority patent/EP2682732B1/en
Priority to ES12751866.0T priority patent/ES2657592T3/en
Priority to CN201280011533.9A priority patent/CN103460009B/en
Publication of JP2012180921A publication Critical patent/JP2012180921A/en
Application granted granted Critical
Publication of JP5661512B2 publication Critical patent/JP5661512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、油潤滑方式の転動装置に関し、特にその潤滑油中の混入水分濃度の監視機能を備えた転動装置、および混入水分濃度の異常監視のしきい値設定方法に関する。   The present invention relates to an oil-lubricated rolling device, and more particularly, to a rolling device having a monitoring function of a mixed water concentration in the lubricating oil, and a threshold setting method for monitoring an abnormal mixed water concentration.

転がり軸受や歯車などの転動部品は、水が混入する条件下(非特許文献1〜5)、すべりを伴う条件下(非特許文献6)で使用されると、水や潤滑剤が分解して水素が発生し、それが鋼中に侵入することで早期損傷が起きることがある。接触要素間の接触面で金属接触が起き、金属新生面が露出すると、水や潤滑剤の分解による水素の発生、鋼中への侵入が促進される。このことは,水や潤滑油を滴下しながらエメリー紙で転動部品用鋼をアブレシブ摩耗させた後に昇温脱離水素分析を行った結果、鋼中から拡散性水素が明瞭に検出された実験事実によって証明されている(非特許文献7)。それによると、潤滑油よりも水を滴下した方が多くの拡散性水素が検出されている。したがって、すべりが生じる条件で用いられる転動部品の潤滑剤に水が混入すると、さらに水素が発生し,鋼中に侵入しやすくなるといえる。水素は鋼の疲労強度を著しく低下させるため(非特許文献8)、さほど大きくない最大接触面圧でも、水素が侵入すれば早期損傷が起きる。   When rolling parts such as rolling bearings and gears are used under conditions where water is mixed (Non-Patent Documents 1 to 5) and conditions involving slipping (Non-Patent Document 6), water and lubricant are decomposed. As hydrogen is generated, it can penetrate into the steel and cause premature damage. When metal contact occurs at the contact surface between the contact elements and the new metal surface is exposed, generation of hydrogen due to decomposition of water and lubricant, and penetration into the steel are promoted. This is an experiment in which diffusible hydrogen was clearly detected in steel as a result of thermal desorption hydrogen analysis after abrasive wear of rolling parts steel with emery paper while dripping water and lubricant. This is proved by the facts (Non-patent Document 7). According to this, more diffusible hydrogen is detected when water is dropped than lubricating oil. Therefore, it can be said that when water is mixed in the lubricant of the rolling parts used under the condition that slip occurs, hydrogen is further generated and easily enters the steel. Since hydrogen significantly reduces the fatigue strength of steel (Non-Patent Document 8), even if the maximum contact surface pressure is not so large, early hydrogen damage occurs.

特開2006−138376号公報JP 2006-138376 A

エル.グランベルグ( L. Grunberg)著, Proc. Phys. Soc. (London), B66 (1953) 153-161.El. By L. Grunberg, Proc. Phys. Soc. (London), B66 (1953) 153-161. エル.グランベルグ、ディ.スコット( L. Grunberg and D. Scott)著, J. Inst. Petrol., 44 (1958) 406-410.El. Granberg, Di. Scott (L. Grunberg and D. Scott), J. Inst. Petrol., 44 (1958) 406-410. エル.グランベルグ( L. Grunberg), ディ. ティ. ジャミソン、ディ.スコット(D. T. Jamieson and D. Scott)著, Philosophical magazine, 8 (1963) 1553-1568.El. L. Grunberg, Di Tee Jamison, Di. Scott (D. T. Jamieson and D. Scott), Philosophical magazine, 8 (1963) 1553-1568. ピー.シャッツベルグ、アイ.エム.フェルセン( P. Schatzberg and I. M. Felsen)著, Wear, 12 (1968) 331-342.Pee. Schatzberg, Ai. M. By P. Schatzberg and I. M. Felsen, Wear, 12 (1968) 331-342. ピー.シャッツベルグ( P. Schatzberg)著, J. Lub. Tech., 231 (1971) 231-235.Pee. By P. Schatzberg, J. Lub. Tech., 231 (1971) 231-235. ケイ.タマダ、エッチ.タナカ( K. Tamada and H. Tanaka)著, Wear, 199 (1996) 245-252.Kay. Tamada, etch. Tanaka (K. Tamada and H. Tanaka), Wear, 199 (1996) 245-252. 谷本啓, 田中宏昌, 杉村丈一, トライボロジー会議予稿集, (2010-5 東京), 203-204.Kei Tanimoto, Hiromasa Tanaka, Shoichi Sugimura, Tribology Conference Proceedings, (2010-5 Tokyo), 203-204. ワイ.マツバラ、エッチ.ハマダ( Y. Matsubara and H. Hamada)著, Bearing Steel Technology, ASTM STP1465, J. M. Beswick Ed., (2007), 153-166.Wy. Matsubara, etch. Hamada (Y. Matsubara and H. Hamada), Bearing Steel Technology, ASTM STP1465, J. M. Beswick Ed., (2007), 153-166. エッチ.ミカミ、ティ.カワムラ( H. Mikami and T. Kawamura) 著, SAE Paper, (2007), No. 2007-01-0113.Etch. Micami, tee. Kawamura (H. Mikami and T. Kawamura), SAE Paper, (2007), No. 2007-01-0113. 牧野智昭,学位論文(京都大学),(2000),134p.Tomoaki Makino, dissertation (Kyoto University), (2000), 134p.

上記のように、すべりが生じる条件で用いられる転動部品の潤滑剤に水が混入すると、さらに水素が発生し,鋼中に侵入し易くなるといえる。転動部品は今後ますます水素が発生し易い条件で使用される傾向にある。したがって、潤滑油中の混入水分濃度を監視し、混入水分濃度過多を診断することで、水素脆性起因の早期損傷を抑制する必要がある。
特許文献1において、監視・診断システムの1 機能として、後述の静電容量と比例関係にある誘電率を監視し、潤滑剤の酸化度合いを監視・診断するとある。しかしながら、概念のみが記されているだけであり、具体的なデータなどの記載はない。また転がり軸受の異常診断に限定されている。潤滑油中の混入水分濃度は静電容量だけでは求まらず,温度依存性も測定しなければならない。
As described above, it can be said that when water is mixed in the lubricant of the rolling part used under the condition that slip occurs, hydrogen is further generated and easily penetrates into the steel. Rolling parts will tend to be used in conditions where hydrogen is more likely to be generated. Therefore, it is necessary to monitor early contamination due to hydrogen embrittlement by monitoring the mixed water concentration in the lubricating oil and diagnosing excessive mixed water concentration.
In Patent Document 1, as one function of the monitoring / diagnosis system, a dielectric constant proportional to a capacitance described later is monitored, and the oxidation degree of the lubricant is monitored / diagnosed. However, only the concept is described, and no specific data is described. Moreover, it is limited to the abnormality diagnosis of a rolling bearing. The moisture content in the lubricating oil must be measured not only by capacitance but also by temperature dependence.

油潤滑方式の転動装置の潤滑油に水分が混入する理由を説明する。油潤滑方式の転動装置の潤滑油中の混入水分濃度は、特に屋外で用いられるものは、日々の寒暖、乾湿の変動により、マクロ的には閉鎖されていても呼吸すると考えられる。転動装置の潤滑油中に水分が混入する場合として、例えば図20(油浴給油) や図21(循環給油) のような機構が考えられる。両図の上側のように、作動中は転動装置内の温度が外気温よりも高くなるため,転動装置内は正圧になり、内気の一部が外部に放出される。一方、両図の下側のように,停止して転動装置内の温度が外気温よりも低下すると,転動装置内は負圧になるため、転動装置内に外気が入り込む。入り込んだ外気が高湿の場合、転動装置内に結露が生じ、潤滑油中に水分が混入する。このように、通常の使用でも潤滑油中への水分混入が考えられる。転動装置が豪雨や強い風雨にさらされる場合には、さらに多くの水分が混入すると考えられる。   The reason why water is mixed in the lubricating oil of the oil lubricated rolling device will be described. It is considered that the moisture concentration in the lubricating oil of the oil-lubricated rolling device is breathing even when it is closed macroscopically due to fluctuations in daily warmth and dryness, especially when used outdoors. As a case where water is mixed in the lubricating oil of the rolling device, for example, a mechanism as shown in FIG. 20 (oil bath oil supply) or FIG. 21 (circulation oil supply) can be considered. As shown in the upper side of both figures, during operation, the temperature inside the rolling device becomes higher than the outside air temperature, so that the inside of the rolling device becomes a positive pressure, and a part of the inside air is discharged to the outside. On the other hand, as shown in the lower side of both drawings, when the temperature in the rolling device stops and the temperature in the rolling device falls below the outside air temperature, the inside of the rolling device becomes negative pressure, so that outside air enters the rolling device. When the outside air that has entered is humid, dew condensation occurs in the rolling device, and moisture is mixed into the lubricating oil. In this way, even in normal use, water can be mixed into the lubricating oil. When the rolling device is exposed to heavy rain or heavy wind and rain, it is considered that more water is mixed.

この発明の目的は、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視して精度良く求めることができる機能を備え、転動部品の水素脆性起因の早期損傷を抑制することのできる油潤滑方式転動装置を提供することである。
この発明の他の目的は、混入水分濃度がしきい値を超えた場合に異常診断することによって、転動部品の水素脆性起因の早期損傷をより確実に抑制可能とすることである。
この発明のさらに他の目的は、上記異常診断を適切に行えるしきい値を求めて設定することができる油潤滑方式転動装置の異常診断しきい値設定方法を提供することである。
An object of the present invention is to provide an oil lubrication type rolling device having a function capable of accurately determining the concentration of moisture contained in lubricating oil and suppressing early damage caused by hydrogen embrittlement of rolling parts. It is to provide an oil lubrication type rolling device that can be used.
Another object of the present invention is to make it possible to more reliably suppress early damage caused by hydrogen embrittlement of rolling parts by performing an abnormality diagnosis when the mixed water concentration exceeds a threshold value.
Still another object of the present invention is to provide an abnormality diagnosis threshold value setting method for an oil lubrication type rolling device capable of obtaining and setting a threshold value for appropriately performing the abnormality diagnosis.

この発明の油潤滑方式転動装置は、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視する混入水分濃度監視装置を設け、この混入水分濃度監視装置は、前記潤滑油中の静電容量および油温をそれぞれ検出する静電容量検出手段および油温測定手段と、これら静電容量検出手段および油温測定手段で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段とを有し、前記静電容量検出手段および前記油温測定手段が設置された静電容量および油温の測定室を、この転動装置のハウジングの内部または外部に設け、前記測定室の中の潤滑油を攪拌する攪拌手段を設け、前記水分濃度計算手段は、前記攪拌手段で攪拌した潤滑油中の混入水分濃度を検出するものとしたことを特徴とする。 The oil lubrication type rolling device according to the present invention is provided with a mixed water concentration monitoring device that monitors the mixed water concentration in the lubricating oil in the oil lubrication type rolling device, and the mixed water concentration monitoring device is provided in the lubricating oil. Capacitance detection means and oil temperature measurement means for detecting the electrostatic capacity and oil temperature of the oil, respectively, and a predetermined rule based on the capacitance and oil temperature detected by these capacitance detection means and oil temperature measurement means A moisture concentration calculating means for detecting the mixed moisture concentration in accordance with the capacitance and oil temperature measurement chamber in which the capacitance detecting means and the oil temperature measuring means are installed. provided inside or outside, a stirring means for stirring the lubricating oil in the measuring chamber is provided, wherein the moisture concentration calculating means, and a lower subsidiary to detect contamination water concentration in the lubricant was stirred at the stirring means Features .

この構成によると、潤滑油中の静電容量および油温を検出する静電容量検出手段および油温測定手段と、その検出された静電容量および油温から混入水分濃度を検出する水分濃度計算手段とを設け、静電容量と油温とから混入水分濃度を求めるようにしたため、精度良く混入水分濃度を求めることができる。このため、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視して精度良く求めることができ、転動部品の水素脆性起因の早期損傷を抑制することができる。   According to this configuration, the capacitance detecting means and the oil temperature measuring means for detecting the capacitance and oil temperature in the lubricating oil, and the moisture concentration calculation for detecting the mixed moisture concentration from the detected capacitance and oil temperature. And the mixed water concentration is obtained from the capacitance and the oil temperature, so that the mixed water concentration can be obtained with high accuracy. For this reason, in the oil lubrication type rolling device, it is possible to monitor the mixed water concentration in the lubricating oil with high accuracy, and to suppress early damage due to hydrogen embrittlement of the rolling parts.

この発明において、水分濃度計算手段で算出された混入水分濃度をしきい値と比較し、しきい値を超える場合に異常と診断する異常診断手段を設けるのが良い。異常診断手段を設けた場合は、混入水分濃度がしきい値を超えた場合に異常診断することによって、転動部品の水素脆性起因の早期損傷をより確実に抑制することができる。   In the present invention, it is preferable to provide an abnormality diagnosing means for comparing the mixed water concentration calculated by the water concentration calculating means with a threshold and diagnosing an abnormality when the threshold is exceeded. When the abnormality diagnosis means is provided, early damage due to hydrogen embrittlement of the rolling parts can be more reliably suppressed by performing abnormality diagnosis when the mixed water concentration exceeds the threshold value.

なお、この明細書において「転動装置」とは、転がり軸受やギヤなど転がりすべりする要素を含む部品から成る装置を言う。
油潤滑方式の転動装置としては、例えば、以下のものが挙げられる。油潤滑は、細分化すれば油浴潤滑、ジェット給油、循環給油、オイルミスト潤滑、エアオイル潤滑、はねかけ給油、油圧作動油浸漬などがあるが、大別すると油浴潤滑か循環給油である。
・ガスタービン( ジェット給油)
・油圧ポンプ( 油圧作動油浸漬)
・印刷機( 循環給油)
・撚線機( ジェット給油または循環給油)
・製紙機械( 循環給油)
・産業機械用減速機( 循環給油)
・ロボット減速機(油浴潤滑)
・航空機エンジン( ジェット給油)
・建設機械各部( 油浴潤滑)
・鉄鋼圧延機ロールネック( オイルミスト潤滑)
・圧延機用減速機( 循環給油)
・工作機( エアオイル潤滑)
・鉄道車輌車軸( はねかけ給油)
・鉄道車輌駆動装置( 油浴潤滑)
・鉱山機械竪型ミルタイヤローラ( 循環給油または油浴潤滑)
・ミル用減速機( 循環給油または油浴潤滑)
・風車増速機(循環給油) (油浴潤滑)
・自動車変速機( はねかけ給油)
In this specification, the “rolling device” refers to a device composed of parts including elements that roll and slide, such as rolling bearings and gears.
Examples of the oil lubrication type rolling device include the following. Oil lubrication can be subdivided into oil bath lubrication, jet lubrication, circulation lubrication, oil mist lubrication, air oil lubrication, splash lubrication, hydraulic fluid immersion, etc. .
・ Gas turbine (jet fueling)
・ Hydraulic pump (hydraulic oil immersion)
・ Printer (circulation lubrication)
-Twisted wire machine (jet or circulating oiling)
・ Paper making machine (circulation lubrication)
・ Reduction gear for industrial machinery (circulation lubrication)
・ Robot reducer (oil bath lubrication)
・ Aircraft engine (jet refueling)
・ Construction machine parts (oil bath lubrication)
・ Steel rolling mill roll neck (oil mist lubrication)
・ Reducer for rolling mill (circulation lubrication)
・ Machine tools (air-oil lubrication)
・ Railway car axle (splash refueling)
・ Railway vehicle drive system (oil bath lubrication)
・ Mine machine vertical mill tire roller (circulating lubrication or oil bath lubrication)
・ Reduction gear for mill (circulation lubrication or oil bath lubrication)
・ Wind wheel speed increaser (circulation lubrication) (oil bath lubrication)
・ Automotive transmission (splash refueling)

この発明の転動装置は、油浴潤滑を行う潤滑油貯留槽を有するものであっても良い。この場合に、転動装置のハウジングの内部に、前記静電容量検出手段および油温測定手段が設置された静電容量および油温の測定室を設けても良い。転動装置の内部に静電容量および油温の測定室を設けると、ハウジングの空き空間等を利用して測定室が配置でき、測定室の設置によって転動装置が大型化することが回避できる。
また、油浴潤滑を行う潤滑油貯留槽を有する場合に、転動装置のハウジングの外部に、前記静電容量検出手段および油温測定手段が設置された静電容量および油温の測定室を設けても良い。転動装置の外部に静電容量および油温の測定室を設けると、転動装置のハウジング内に測定室を設置する余裕がない場合にも適用でき、また既存の転動装置に対する設計変更箇所が少なくて済む。
上記測定室を設けた場合に、前記静電容量と油温の測定室の中の潤滑油を攪拌する攪拌手段を設けても良い。潤滑油を攪拌することで、潤滑油と水の混合状態が良くなり、より一層精度良く、混入水分濃度の検出が行える。
The rolling device of this invention may have a lubricating oil storage tank that performs oil bath lubrication. In this case, a capacitance and oil temperature measurement chamber in which the capacitance detection means and the oil temperature measurement means are installed may be provided inside the housing of the rolling device. If a measurement chamber for capacitance and oil temperature is provided inside the rolling device, the measurement chamber can be arranged by utilizing the empty space of the housing, and the enlargement of the rolling device due to the installation of the measurement chamber can be avoided. .
Further, in the case of having a lubricating oil reservoir for oil bath lubrication, a capacitance and oil temperature measurement chamber in which the capacitance detection means and the oil temperature measurement means are installed outside the rolling device housing. It may be provided. If a capacitance and oil temperature measurement chamber is provided outside the rolling device, it can be applied even when there is no room to install the measurement chamber in the rolling device housing. Is less.
When the measurement chamber is provided, a stirring means for stirring the lubricating oil in the capacitance and oil temperature measurement chamber may be provided. By stirring the lubricating oil, the mixed state of the lubricating oil and water is improved, and the mixed water concentration can be detected with higher accuracy.

この発明の転動装置は、循環給油を行う循環給油手段を有するものであっても良い。この場合に、転動装置のハウジングの内部に、前記静電容量検出手段および油温測定手段が設置された静電容量および油温の測定室を設けても良い。
また、転動装置のハウジングの外部に、前記静電容量検出手段および油温測定手段が設置された静電容量および油温の測定室を設けても良い。
前記測定室を設けた場合に、この測定室の中の潤滑油を攪拌する攪拌手段を設けても良い。
The rolling device according to the present invention may have a circulating oil supply means for performing circulating oil supply. In this case, a capacitance and oil temperature measurement chamber in which the capacitance detection means and the oil temperature measurement means are installed may be provided inside the housing of the rolling device.
In addition, a capacitance and oil temperature measurement chamber in which the capacitance detection means and the oil temperature measurement means are installed may be provided outside the rolling device housing.
When the measurement chamber is provided, a stirring means for stirring the lubricating oil in the measurement chamber may be provided.

この発明において、前記測定室を設け、かつ前記攪拌手段を設けた場合に、静電容量と油温の測定室中に溜める潤滑油量を100mL以下とし、かつ変動量を±5mL以下とするのが良い。   In this invention, when the measurement chamber is provided and the stirring means is provided, the amount of lubricating oil accumulated in the measurement chamber for capacitance and oil temperature is 100 mL or less, and the variation is ± 5 mL or less. Is good.

また、転動装置、並びに静電容量および油温の測定室から、潤滑油よりも比重が大きい水や添加物を排出され易くする手段を設けるのが良い。この手段は、例えば潤滑油貯留槽の底面の傾斜溝等によって構成される。傾斜溝の底面の最も低い部分から測定室内に潤滑油が流れるようにする。   Further, it is preferable to provide means for facilitating discharge of water and additives having a specific gravity greater than that of the lubricating oil from the rolling device and the capacitance and oil temperature measurement chambers. This means is constituted by, for example, an inclined groove on the bottom surface of the lubricating oil reservoir. The lubricating oil is allowed to flow into the measurement chamber from the lowest part of the bottom surface of the inclined groove.

この発明の上記いずれかの構成の転動装置において、前述のように、水分濃度計算手段で算出された混入水分濃度をしきい値と比較し、しきい値を超える場合に異常と診断する異常診断手段を設けることが好ましい。前記しきい値は、次のいずれかの方法で求めて設定するのが良い。   In the rolling device according to any one of the above configurations of the present invention, as described above, the mixed moisture concentration calculated by the moisture concentration calculating means is compared with a threshold value, and an abnormality is diagnosed when the threshold value is exceeded. It is preferable to provide a diagnostic means. The threshold value may be obtained and set by any one of the following methods.

例えば、潤滑油中に水を注入し、静電容量と油温を測定して混入水分濃度を監視し、それをフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する転がりすべり疲労寿命試験によって求めた混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。なお、この試験で求めるしきい値は、判断に適切であるとして任意に定めた混入水分濃度となる値とすれば良い。以下、各試験の場合も同様である。   For example, water is injected into the lubricating oil, the capacitance and oil temperature are measured to monitor the mixed water concentration, and feedback is made to control the water injection amount so that the mixed water concentration is kept within a certain range. A threshold value of the mixed water concentration obtained by the rolling and sliding fatigue life test may be obtained, and the obtained threshold value may be set as a threshold value in the abnormality diagnosis means. In addition, what is necessary is just to let the threshold value calculated | required by this test be a value used as the mixing | mixing water density | concentration arbitrarily defined as appropriate for judgment. The same applies to each test.

また、接触する要素間の運動機構によって接触面にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   In addition, a threshold value of the mixed moisture concentration is obtained by a rolling-slip fatigue life test in which a contact surface is caused to slip by a movement mechanism between contacting elements, and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. May be.

接触する要素間の接触面に強制的にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   Even if the threshold value of the mixed moisture concentration is obtained by a rolling-slip fatigue life test for forcibly causing a slip on the contact surface between the contacting elements, and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. good.

損傷が起きるまで一定回転速度、一方向回転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   A threshold value of the mixed water concentration may be obtained by a rolling and sliding fatigue life test that is rotated in one direction at a constant rotational speed until damage occurs, and the obtained threshold value may be set as a threshold value in the abnormality diagnosis means.

損傷が起きるまで加減速運転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   A threshold value of the mixed moisture concentration may be obtained by a rolling / sliding fatigue life test in which acceleration / deceleration operation is performed until damage occurs, and the obtained threshold value may be set as a threshold value in the abnormality diagnosis unit.

損傷が起きるまで揺動運動させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   A threshold value of the mixed water concentration may be obtained by a rolling / sliding fatigue life test in which rocking motion is performed until damage occurs, and the obtained threshold value may be set as a threshold value in the abnormality diagnosis means.

揺動運動で損傷を振動で精度よく検出できるよう、重畳する振動成分をなるべく排除するため、サーボモータの主軸と試験部のスピンドルを直結させる機構の転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   In order to eliminate the superposed vibration component as much as possible so that damage can be accurately detected by vibration, the rolling moisture fatigue threshold test of the mechanism that directly connects the main shaft of the servo motor and the spindle of the test unit is used. A value may be obtained and the obtained threshold value may be set as a threshold value in the abnormality diagnosis means.

損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗を促進するため、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルを絶縁する転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   Rolling-slip fatigue life test that uses ceramic rolling elements for the spindle support bearing and insulates the motor from the spindle of the test unit, in order to promote wear of the damaged object by passing current between the contact elements with the damaged object as the positive electrode side. It is also possible to obtain a threshold value of the mixed water concentration by the above and set the obtained threshold value as a threshold value in the abnormality diagnosis means.

一定回転速度、一方向回転に加え、加減速運転、揺動運動が可能な転がりすべり疲労寿命試験装置によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。   A threshold value of the moisture content is determined by a rolling and sliding fatigue life tester that can perform acceleration / deceleration operation and swing motion in addition to a constant rotational speed and one-way rotation. It may be set as a value.

この発明の油潤滑方式転動装置は、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視する混入水分濃度監視装置を設け、この混入水分濃度監視装置は、前記潤滑油中の静電容量および油温をそれぞれ検出する静電容量検出手段および油温測定手段と、これら静電容量検出手段および油温測定手段で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段とを有し、前記静電容量検出手段および前記油温測定手段が設置された静電容量および油温の測定室を、この転動装置のハウジングの内部または外部に設け、前記測定室の中の潤滑油を攪拌する攪拌手段を設け、前記水分濃度計算手段は、前記攪拌手段で攪拌した潤滑油中の混入水分濃度を検出するものとしたため、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視して精度良く求めることができる機能を備えたものとなり、転動部品の水素脆性起因の早期損傷を抑制することができる。
水分濃度計算手段で算出された混入水分濃度をしきい値と比較し、しきい値を超える場合に異常と診断する異常診断手段を設けた場合は、混入水分濃度がしきい値を超えた場合に異常診断することによって、転動部品の水素脆性起因の早期損傷をより確実に抑制することができる。
この発明における上記いずれかの油潤滑方式転動装置の異常診断しきい値設定方法によると、上記異常診断を適切に行えるしきい値を求めて設定することができる。
The oil lubrication type rolling device according to the present invention is provided with a mixed water concentration monitoring device that monitors the mixed water concentration in the lubricating oil in the oil lubrication type rolling device, and the mixed water concentration monitoring device is provided in the lubricating oil. Capacitance detection means and oil temperature measurement means for detecting the electrostatic capacity and oil temperature of the oil, respectively, and a predetermined rule based on the capacitance and oil temperature detected by these capacitance detection means and oil temperature measurement means A moisture concentration calculating means for detecting the mixed moisture concentration in accordance with the capacitance and oil temperature measurement chamber in which the capacitance detecting means and the oil temperature measuring means are installed. provided inside or outside, a stirring means for stirring the lubricating oil in the measuring chamber is provided, because the water concentration calculating means, which was assumed to detect the contamination concentration of water stirred lubricating oil in said stirring means Oil lubrication method In the rolling device monitors the contamination water content in the lubricant becomes that a function can be obtained with high accuracy, it is possible to suppress premature damage to hydrogen embrittlement due to the rolling part.
When the contamination moisture concentration calculated by the moisture concentration calculation means is compared with a threshold value and an abnormality diagnosis means for diagnosing an abnormality when the threshold value is exceeded is provided, the contamination moisture concentration exceeds the threshold value By making an abnormal diagnosis, early damage due to hydrogen embrittlement of the rolling parts can be more reliably suppressed.
According to the abnormality diagnosis threshold value setting method for any of the oil lubrication type rolling devices of the present invention, it is possible to obtain and set a threshold value for appropriately performing the abnormality diagnosis.

この発明の第1の実施形態にかかる油潤滑方式転動装置の概念構成を示すブロック図である。1 is a block diagram showing a conceptual configuration of an oil lubrication type rolling device according to a first embodiment of the present invention. この発明の他の実施形態にかかる油潤滑方式転動装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the oil lubrication type | formula rolling device concerning other embodiment of this invention. この発明のさらに他の実施形態にかかる油潤滑方式転動装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the oil lubrication type | mold rolling device concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる油潤滑方式転動装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the oil lubrication type | mold rolling device concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる油潤滑方式転動装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the oil lubrication type | mold rolling device concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる油潤滑方式転動装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the oil lubrication type | mold rolling device concerning further another embodiment of this invention. 転動装置の具体例となる一例を示す断面図である。It is sectional drawing which shows an example used as the specific example of a rolling device. この発明の油潤滑方式転動装置の異常診断しきい値設定方法で定める適切なしきい値を求めるための、転がりすべり疲労寿命試験方法に用いる試験装置の一例の概念図である。It is a conceptual diagram of an example of the test apparatus used for the rolling sliding fatigue life test method for calculating | requiring the suitable threshold value determined with the abnormality diagnostic threshold value setting method of the oil lubrication type rolling device of this invention. 同試験方法における加減速運転の最小パターン設定の例を示すパターン図である。It is a pattern diagram which shows the example of the minimum pattern setting of the acceleration / deceleration driving | operation in the test method. 試験装置の他の例の概念図である。It is a conceptual diagram of the other example of a test apparatus. 試験装置のさらに他の例の概念図である。It is a conceptual diagram of the further another example of a test apparatus. (A)は同試験方法に用いる転動部品模擬体を構成する試験片の一例の正面図、(B)は同試験片を組み込んだ転動部品模擬体の断面図である。(A) is a front view of an example of the test piece which comprises the rolling component simulation body used for the test method, (B) is sectional drawing of the rolling component simulation body incorporating the test piece. 図12の転動部品模擬体の試験片の試験に用いる試験装置の断面図である。It is sectional drawing of the test apparatus used for the test of the test piece of the rolling component simulation body of FIG. 同試験で測定した混入水分量の変化を示すグラフである。It is a graph which shows the change of the amount of mixed water measured by the same test. 潤滑油の飽和水分濃度測定に用いる試験装置の模式図である。It is a schematic diagram of the test apparatus used for the saturated water concentration measurement of lubricating oil. 図15の試験装置で測定した混入水分濃度と静電容量の関係を示すグラフである。It is a graph which shows the relationship between the mixing water density | concentration measured with the test apparatus of FIG. 15, and an electrostatic capacitance. 水混入油の静電容量測定に用いる試験装置の模式図である。It is a schematic diagram of the test apparatus used for the capacitance measurement of water-mixed oil. 図17の試験装置で測定した混入水分濃度と静電容量の関係を示すグラフである。It is a graph which shows the relationship between the mixing water density | concentration measured with the testing apparatus of FIG. 17, and an electrostatic capacitance. 同試験で測定した油温と静電容量の関係を示すグラフである。It is a graph which shows the relationship between the oil temperature measured by the same test, and an electrostatic capacitance. 油浴潤滑形式の転動装置における潤滑油中への水分混入の形態を示す模式図である。It is a schematic diagram which shows the form of the water | moisture content mixing in the lubricating oil in the rolling device of an oil bath lubrication type. 循環給油形式の転動装置における潤滑油中への水分混入の形態を示す模式図である。It is a schematic diagram which shows the form of the water | moisture content mixing in the lubricating oil in the rolling device of a circulating oil supply type.

この発明の第1の実施形態を図1と共に説明する。図1は、この油潤滑方式転動装置の概念構成を示す。この油潤滑方式転動装置は、転動装置本体1と、この転動装置本体1を制御する制御装置2とで構成される。転動装置本体1は、転動装置のうち、制御装置2を除く部分を言う。転動装置は、転がり軸受やギヤ等のような転がりすべりする接触要素を含む部品を有する装置のことであって、減速機、増速機、その他の各種の機器のいずれであってもよく、例えば〔課題を解決するための手段〕で列挙した各装置のうちのいずれかで構成される。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a conceptual configuration of this oil lubrication type rolling device. The oil lubrication type rolling device includes a rolling device main body 1 and a control device 2 that controls the rolling device main body 1. The rolling device main body 1 refers to a portion of the rolling device excluding the control device 2. The rolling device is a device having a part including a rolling and sliding contact element such as a rolling bearing or a gear, and may be any of a reduction gear, a speed increaser, and other various devices, For example, it is configured by any one of the devices listed in [Means for Solving the Problems].

この実施形態では、転動装置本体1のハウジング4内に、転がり軸受やギヤからなる複数の転動部品3を有している。なお、この明細書において、「転動部品」とは、転がりすべりする接触要素を含む部品このことを言う。潤滑方式は、油潤滑方式のうち、油浴潤滑方式であって、ハウジング4の一部が、前記転動部品3のうちの全て、またはいずれかの転動部品3が浸漬されるように潤滑油5を溜める潤滑油貯留槽4aとされている。   In this embodiment, the rolling device main body 1 has a plurality of rolling parts 3 including rolling bearings and gears in the housing 4. In this specification, “rolling part” means a part including a contact element that rolls and slides. The lubrication method is an oil bath lubrication method among the oil lubrication methods, and a part of the housing 4 is lubricated so that all of the rolling parts 3 or any one of the rolling parts 3 is immersed. A lubricating oil storage tank 4a for storing oil 5 is provided.

上記構成の転動装置において、潤滑油貯留槽4a内の潤滑油5の混入水分濃度を監視する混入水分濃度監視装置6を設けている。この混入水分濃度監視装置6は、潤滑油5中の静電容量および油温をそれぞれ検出する静電容量検出手段7および油温測定手段8と、混入水分濃度検出手段11とでなる。混入水分濃度検出手段11は、前記静電容量検出手段7および油温測定手段8で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段9と、この水分濃度計算手段9で算出された混入水分濃度をしきい値Sと比較し、しきい値Sを超える場合に異常と診断する異常診断手段10とでなる。なお、異常診断手段10は必ずしも設けなくても良い。静電容量検出手段7は、液体中に浸漬されてその液体の静電容量の検出が可能なものであれば良く、各種の形式の静電容量計を用いることができる。油温測定手段8には、熱電対等が用いられる。   In the rolling device having the above configuration, a mixed water concentration monitoring device 6 for monitoring the mixed water concentration of the lubricating oil 5 in the lubricating oil storage tank 4a is provided. The mixed water concentration monitoring device 6 includes a capacitance detecting means 7 and an oil temperature measuring means 8 for detecting a capacitance and an oil temperature in the lubricating oil 5, respectively, and a mixed water concentration detecting means 11. The mixed water concentration detecting means 11 includes a water concentration calculating means 9 for detecting the mixed water concentration from the electrostatic capacity and the oil temperature detected by the electrostatic capacity detecting means 7 and the oil temperature measuring means 8 according to a predetermined rule. The mixed moisture concentration calculated by the moisture concentration calculating means 9 is compared with a threshold value S, and the abnormality diagnosing means 10 for diagnosing an abnormality when the threshold value S is exceeded. The abnormality diagnosis unit 10 is not necessarily provided. The capacitance detection means 7 may be any device that is immersed in a liquid and capable of detecting the capacitance of the liquid, and various types of capacitance meters can be used. For the oil temperature measuring means 8, a thermocouple or the like is used.

水分濃度計算手段9および異常診断手段10、すなわち混入水分濃度検出手段11は、マイクロコンピュータやパーソナルコンピュータ等のコンピュータとそのプログラムとで構成され、または専用の電子回路により構成される。例えば、転動装置本体1を制御するコンピュータ式の制御装置2の一部として設けられ、または制御装置2とは独立した装置として設けられる。   The water concentration calculating means 9 and the abnormality diagnosing means 10, that is, the mixed water concentration detecting means 11 are constituted by a computer such as a microcomputer or a personal computer and a program thereof, or by a dedicated electronic circuit. For example, it is provided as a part of a computer-type control device 2 that controls the rolling device main body 1 or as a device independent of the control device 2.

水分濃度計算手段9は、静電容量と油温と混入水分濃度との関係を、計算式やテーブルで設定した関係設定手段9aを有していて、入力された静電容量と油温とから、関係設定手段9aに記憶された関係、すなわち上記の定められた規則を用いて混入水分濃度を計算する。   The moisture concentration calculating means 9 has a relationship setting means 9a in which the relationship between the capacitance, the oil temperature, and the mixed moisture concentration is set by a calculation formula or a table. From the input capacitance and oil temperature, The mixed water concentration is calculated using the relationship stored in the relationship setting means 9a, that is, the above-defined rule.

この構成の油潤滑方式転動装置によると、潤滑油5中の静電容量および油温を静電容量検出手段7および油温測定手段8により検出し、その検出された静電容量および油温から、水分濃度計算手段9により混入水分濃度を検出する。このように、静電容量と油温とから混入水分濃度を求めるようにしたため、精度良く混入水分濃度を求めることができる。したがって、油潤滑方式の転動装置において、潤滑油5中の混入水分濃度を監視して精度良く求めることができ、転動部品の水素脆性起因の早期損傷を抑制することができる。また、異常診断手段10を有し、混入水分濃度がしきい値Sを超えた場合に異常の判定を行うようにしたため、転動部品3の水素脆性起因の早期損傷をより確実に抑制することができる。静電容量と油温とから混入水分濃度を精度良く検出できる理由については、後に、しきい値Sの設定方法の説明欄で説明する。   According to the oil lubrication type rolling device of this configuration, the capacitance and oil temperature in the lubricating oil 5 are detected by the capacitance detection means 7 and the oil temperature measurement means 8, and the detected capacitance and oil temperature are detected. From the above, the water concentration calculation means 9 detects the mixed water concentration. In this way, since the mixed water concentration is obtained from the capacitance and the oil temperature, the mixed water concentration can be obtained with high accuracy. Therefore, in the oil lubrication type rolling device, the water concentration in the lubricating oil 5 can be monitored and accurately obtained, and early damage due to hydrogen embrittlement of the rolling parts can be suppressed. Further, since the abnormality diagnosis means 10 is provided and the abnormality is determined when the mixed water concentration exceeds the threshold value S, early damage due to hydrogen embrittlement of the rolling component 3 can be more reliably suppressed. Can do. The reason why the mixed water concentration can be accurately detected from the capacitance and the oil temperature will be described later in the explanation section of the threshold value S setting method.

上記実施形態では、ハウジング4における潤滑油貯留槽4a内の潤滑油5の静電容量および油温を測定するようにしたが、図2に示すように、ハウジング4内の一部に、潤滑油貯留槽4a内と連通した測定室12を設け、静電容量検出手段7および油温測定手段8は、測定室12内の静電容量および油温をそれぞれ測定するように設置しても良い。この場合に、測定室12の中の潤滑油5を攪拌する攪拌手段13を設けても良い。測定室12は、例えば潤滑油貯留槽4a内の一部を仕切った仕切室とされる。測定室12がハウジング4内であると、測定室12を設けることによる転動装置の大型化が回避できる。攪拌手段13は、例えば攪拌用の回転翼と、この回転翼を回転させるモータとでなる。測定室12を設け、攪拌手段13を設けた場合、測定室中12に溜める潤滑油量を100mL以下とし、かつ変動量を±5mL以下とするのが良い。
図2の実施形態におけるその他の構成は、図1に示す第1の実施形態と同様である。
In the above embodiment, the capacitance and the oil temperature of the lubricating oil 5 in the lubricating oil reservoir 4a in the housing 4 are measured. However, as shown in FIG. The measurement chamber 12 communicated with the inside of the storage tank 4a may be provided, and the capacitance detection means 7 and the oil temperature measurement means 8 may be installed so as to measure the capacitance and the oil temperature in the measurement chamber 12, respectively. In this case, a stirring means 13 for stirring the lubricating oil 5 in the measurement chamber 12 may be provided. The measurement chamber 12 is, for example, a partition chamber that partitions a part of the lubricating oil storage tank 4a. If the measurement chamber 12 is in the housing 4, an increase in size of the rolling device due to the provision of the measurement chamber 12 can be avoided. The stirring means 13 includes, for example, a stirring blade and a motor that rotates the rotating blade. When the measurement chamber 12 is provided and the stirring means 13 is provided, it is preferable that the amount of lubricating oil accumulated in the measurement chamber 12 is 100 mL or less and the fluctuation amount is ± 5 mL or less.
Other configurations in the embodiment of FIG. 2 are the same as those of the first embodiment shown in FIG.

測定室12を設けることで、安定した静電容量および油温の測定が行える。また、攪拌手段13を設けることで、潤滑油と水の混合状態が良くなり、より安定した静電容量および油温の測定が行える。   By providing the measurement chamber 12, stable capacitance and oil temperature can be measured. In addition, by providing the stirring means 13, the mixed state of the lubricating oil and water is improved, and more stable capacitance and oil temperature can be measured.

後に、転がりすべり疲労寿命試験と共に説明するが、潤滑油と水の混合状態が良好でない場合、混入水分濃度が高くなるにつれて、静電容量の値が不安定になる。このことは、油浴循環方式や油潤滑方式の転動装置の潤滑油中の混入水分濃度を監視する場合についても言えることである。故意に潤滑油と水の混合状態をよくする転がりすべり疲労寿命試験に対し、転動装置は停止中の場合もあるため、潤滑油と水の混合状態がよくないことは容易に想像できる。潤滑油と水が分離している場合もある。そのため、転動装置においても、なるべく潤滑油と水をよく混合させる機構を設け、なるべく正確に静電容量を測定することが望ましい。そのため、攪拌手段13を設けて攪拌することが好ましい。   Later, it will be described together with a rolling and sliding fatigue life test. When the mixed state of the lubricating oil and water is not good, the capacitance value becomes unstable as the mixed water concentration increases. This is also true for the case of monitoring the moisture concentration in the lubricating oil of the oil bath circulation type or oil lubrication type rolling device. In contrast to the rolling and sliding fatigue life test that intentionally improves the mixing state of the lubricating oil and water, it can be easily imagined that the mixing state of the lubricating oil and water is not good because the rolling device may be stopped. Lubricating oil and water may be separated. For this reason, it is desirable to provide a mechanism for mixing lubricating oil and water as much as possible in the rolling device, and to measure the capacitance as accurately as possible. Therefore, it is preferable to stir by providing the stirring means 13.

なお、測定室12を設けずに、攪拌手段13を潤滑油貯留槽4a内の隅部等に設けても良い。しかし、潤滑油と水との混合状態をなるべく良好にするために、間仕切りをして測定室12を設けるのが良い。間仕切りしなければ、潤滑油と水との混合状態を良好にするのは困難と考えられる。しかし、潤滑油と水の混合状態がよくない場合、高めの静電容量値が測定されるため、混入水分濃度を高め、すなわち安全目に監視することができる。ただし、潤滑油と水が分離している場合、さらに高めの静電容量値が測定されると考えられる。その場合、安全目過ぎる監視となり、メンテナンスの回数や費用が過剰になる可能性があるため,留意が必要である.   In addition, you may provide the stirring means 13 in the corner | angular part etc. in the lubricating oil storage tank 4a, without providing the measurement chamber 12. FIG. However, in order to make the mixed state of the lubricating oil and water as good as possible, it is preferable to partition and provide the measurement chamber 12. Without partitioning, it is considered difficult to improve the mixing state of the lubricating oil and water. However, when the mixed state of the lubricating oil and water is not good, a higher capacitance value is measured, so that the mixed water concentration can be increased, that is, can be monitored for safety. However, when the lubricating oil and water are separated, it is considered that a higher capacitance value is measured. In such a case, it is necessary to be careful because monitoring is too safe and the number of maintenance and costs may be excessive.

測定室12は、図3に示すようにハウジング4の外部に設置しても良い。この場合に、測定室12は、ハウジング4に接して設けても、ハウジング4から離して設けても良い。離した場合は、測定室12とハウジング4の潤滑油貯留槽4aとは、連通管(図示せず)等で連通させる。測定室12をハウジング4外に設けると、ハウジング4に測定室12や静電容量検出手段7および油温測定手段8を設ける適切な場所がなくても、静電容量検出手段7および油温測定手段8による測定が行える。なお、図3の実施形態におけるその他の構成,効果は、図1に示す第1の実施形態と同様である。   The measurement chamber 12 may be installed outside the housing 4 as shown in FIG. In this case, the measurement chamber 12 may be provided in contact with the housing 4 or separated from the housing 4. When separated, the measurement chamber 12 and the lubricating oil reservoir 4a of the housing 4 are communicated with each other through a communication pipe (not shown). If the measurement chamber 12 is provided outside the housing 4, the capacitance detection means 7 and the oil temperature measurement can be provided even if the housing 4 does not have an appropriate place for providing the measurement chamber 12, the capacitance detection means 7 and the oil temperature measurement means 8. Measurement by means 8 can be performed. Other configurations and effects in the embodiment of FIG. 3 are the same as those of the first embodiment shown in FIG.

図4は、循環給油方式とした例、つまりハウジング4の潤滑油貯留槽4aに対して循環給油を行う循環給油手段14を設けた例である。循環給油手段14は、潤滑油貯留槽4aに両端が連通したパイプ等による油循環路15と、この油循環路15を介して潤滑油5を循環させるポンプ16とでなる。油循環路15は、潤滑油貯留槽4aの底部の排出口15aと、潤滑油貯留槽4aの中間高さ位置または上部の給油口15bとに連通する。その他の構成,効果は、図1に示す第1の実施形態と同様である。   FIG. 4 is an example in which a circulating oil supply system is used, that is, an example in which a circulating oil supply means 14 that performs the circulating oil supply to the lubricating oil reservoir 4 a of the housing 4 is provided. The circulating oil supply means 14 includes an oil circulation path 15 such as a pipe having both ends communicating with the lubricating oil storage tank 4 a and a pump 16 that circulates the lubricating oil 5 through the oil circulation path 15. The oil circulation path 15 communicates with the discharge port 15a at the bottom of the lubricating oil storage tank 4a and the middle height position or the upper oil supply port 15b of the lubricating oil storage tank 4a. Other configurations and effects are the same as those of the first embodiment shown in FIG.

図5は、循環給油方式において、ハウジング4内の一部に、潤滑油貯留槽4a内と連通した測定室12を設け、静電容量検出手段7および油温測定手段8は、測定室12内の静電容量および油温をそれぞれ測定するように設置した例である。この場合にも、測定室12の中の潤滑油5を攪拌する攪拌手段13を設けても良い。その他の構成は、図4に示す実施形態と同様である。   FIG. 5 shows that in the circulating oil supply system, a measurement chamber 12 communicating with the inside of the lubricating oil storage tank 4a is provided in a part of the housing 4, and the capacitance detecting means 7 and the oil temperature measuring means 8 are provided in the measurement chamber 12. It is the example installed so that the electrostatic capacitance and oil temperature of each may be measured. Also in this case, a stirring means 13 for stirring the lubricating oil 5 in the measurement chamber 12 may be provided. Other configurations are the same as those of the embodiment shown in FIG.

図6は、循環給油方式において、ハウジング4外に測定室12を設けた例である。測定室12は、油循環路15の途中に設けている。この測定室12に、内部の潤滑油の静電容量および油温を測定する静電容量検出手段7および油温測定手段8を設け、かつ測定室12内の潤滑油5を攪拌する攪拌手段13を設けている。このように攪拌手段13を設けることで、安定して正確に静電容量を測定し、混入水分濃度を正確に求めることができる。   FIG. 6 is an example in which a measurement chamber 12 is provided outside the housing 4 in the circulating oil supply system. The measurement chamber 12 is provided in the middle of the oil circulation path 15. The measurement chamber 12 is provided with capacitance detection means 7 and oil temperature measurement means 8 for measuring the capacitance and oil temperature of the internal lubricating oil, and stirring means 13 for stirring the lubricating oil 5 in the measurement chamber 12. Is provided. By providing the stirring means 13 in this manner, the capacitance can be measured stably and accurately, and the mixed water concentration can be accurately obtained.

また、この実施形態では、潤滑油貯留槽4aの底部に傾斜溝17を設けている。傾斜溝17の底面の低い側の端部を潤滑油の排出口15aとし、定期的に、攪拌手段13を備えたリザーブタンクとなる測定室12中に潤滑油5をポンプ16で引き込んで溜め、そこで静電容量と油温を測定して混入水分濃度を監視すればよい。それにより、潤滑油よりも比重が大きい水が分離していても、水を測定室12中に取り込むことができ、高めの混入水分濃度が測定される。すなわち安全目の監視ができる。この実施形態において、特に説明した事項の他は、図1に示す第1の実施形態と同様である。 In this embodiment, the inclined groove 17 is provided at the bottom of the lubricating oil reservoir 4a. The lower end portion of the bottom surface of the inclined groove 17 is used as a lubricating oil discharge port 15a, and the lubricating oil 5 is periodically drawn into the measuring chamber 12 serving as a reserve tank equipped with the stirring means 13 by the pump 16 and stored. Therefore, the mixed water concentration may be monitored by measuring the capacitance and the oil temperature. As a result, even if water having a specific gravity greater than that of the lubricating oil is separated, the water can be taken into the measurement chamber 12 and a higher mixed water concentration is measured. In other words, safety eyes can be monitored. This embodiment is the same as the first embodiment shown in FIG. 1 except for the matters specifically described.

図7は、転動装置の一具体例を示す。同図の転動装置は風力発電装置における増速機である。この転動装置の転動装置本体1は、入力軸21と出力軸22との間に、一次増速機となる遊星歯車機構23と、2次増速機24とを設けたものである。遊星歯車機構23は、入力軸21と一体のキャリア25に遊星歯車26を設置し、遊星歯車26を内歯のリングギヤ27と、太陽歯車28に噛み合わせ、太陽歯車28と一体の軸を中間出力軸29とするものである。2次増速機24は、中間出力軸29の回転を出力軸22に複数の歯車31〜34を介して伝達する歯車列からなる。上記遊星歯車26や、この遊星歯車26を支持する軸受35、リングギヤ27、2次増速機24の歯車31となる各転動部品が、ハウジング4内の潤滑油貯留槽4aの潤滑油5内に浸漬される。潤滑油貯留槽4aは、ポンプおよび配管からなる循環給油手段(図示せず)によって循環させられる。なお、循環給油手段は必ずしも設けなくても良く、油浴潤滑形式としても良い。   FIG. 7 shows a specific example of the rolling device. The rolling device in the figure is a speed increaser in a wind power generator. The rolling device main body 1 of this rolling device is provided with a planetary gear mechanism 23 serving as a primary speed increasing device and a secondary speed increasing device 24 between an input shaft 21 and an output shaft 22. The planetary gear mechanism 23 has a planetary gear 26 installed on a carrier 25 integral with the input shaft 21, meshes the planetary gear 26 with an internal ring gear 27 and a sun gear 28, and intermediately outputs a shaft integral with the sun gear 28. The axis 29 is used. The secondary speed increaser 24 includes a gear train that transmits the rotation of the intermediate output shaft 29 to the output shaft 22 via a plurality of gears 31 to 34. The rolling gears that constitute the planetary gear 26, the bearing 35 that supports the planetary gear 26, the ring gear 27, and the gear 31 of the secondary speed increaser 24 are included in the lubricating oil 5 of the lubricating oil storage tank 4a in the housing 4. Soaked in. The lubricating oil storage tank 4a is circulated by circulating oil supply means (not shown) including a pump and piping. The circulating oil supply means is not necessarily provided, and may be an oil bath lubrication type.

次に、上記各実施形態の油潤滑方式転動装置において、異常診断手段10に設定する適切なしきい値Sを求めるための試験方法について説明する。
図8にこの試験方法に用いる試験装置の一例を概念図で示す。この転がりすべり疲労寿命試験装置は、試験装置本体140と、この試験装置本体140を制御する試験装置本体制御装置141と、水分濃度計算手段142とで構成される。試験装置本体140は、被試験体である転動部品模擬体3を浸漬させた状態に潤滑油5Aを入れる試験油槽101と、この試験油槽101内で転動部品模擬体3を動作させる転動部品模擬体駆動装置120と、試験油槽101の潤滑油中に水を注入する水注入手段であるシリンジポンプ104と、試験油槽101の潤滑油5Aの静電容量を測定する静電容量測定手段である静電容量計105と、試験油槽101の潤滑油5Aの油温を測定する油温測定手段である熱電対106とを有する。
転動部品模擬体3は、鋼製材料からなる転動部品用材料の被試験体を構成要素に含めて転動部品を試験用に模した部品である。図示の例では、転動部品模擬体3は、転動部品の一種であるスラスト玉軸受を模したものであり、内輪3aと外輪3bとの間にボールからなる転動体3cを設けて構成され、外輪3bが被試験体となる。この転動部品模擬体における被試験体である外輪3bは、円筒形状で端面が転走面となる。また、この転動部品模擬体3は、実際の転動部品であるスラスト軸受に比べて、転動体3cのサイズを大きくしてある。模擬の対象となる実際のスラスト軸受では、転動体が小さすぎ、わずかな荷重を与えるだけで接触面の最大面圧がかなり大きくなるため、転動部品模擬体3では転動体3cを大きくした。内輪3aは、そのように大きな転動体3cが転動できる溝を有するものを特別に製作して用いる。
Next, a test method for obtaining an appropriate threshold value S set in the abnormality diagnosis means 10 in the oil lubrication type rolling device of each of the above embodiments will be described.
FIG. 8 is a conceptual diagram showing an example of a test apparatus used in this test method. The rolling / sliding fatigue life test apparatus includes a test apparatus main body 140, a test apparatus main body control device 141 for controlling the test apparatus main body 140, and a moisture concentration calculating means 142. The test apparatus main body 140 includes a test oil tank 101 in which the lubricating oil 5A is put in a state in which the rolling part simulation body 3 as a test object is immersed, and rolling that operates the rolling part simulation body 3 in the test oil tank 101. The component simulated body drive device 120, the syringe pump 104 that is a water injection means for injecting water into the lubricating oil in the test oil tank 101, and the capacitance measuring means that measures the capacitance of the lubricating oil 5A in the test oil tank 101. It has a certain capacitance meter 105 and a thermocouple 106 which is an oil temperature measuring means for measuring the oil temperature of the lubricating oil 5A in the test oil tank 101.
The rolling part simulation body 3 is a part that imitates a rolling part for testing by including a test piece of a rolling part material made of a steel material as a component. In the illustrated example, the rolling part simulated body 3 is a model of a thrust ball bearing which is a kind of rolling part, and is configured by providing a rolling element 3c composed of a ball between an inner ring 3a and an outer ring 3b. The outer ring 3b is a device under test. The outer ring 3b, which is a test object in the rolling component simulated body, has a cylindrical shape and an end surface thereof becomes a rolling surface. In addition, the rolling element simulated body 3 has a larger size of the rolling element 3c than a thrust bearing which is an actual rolling part. In the actual thrust bearing to be simulated, the rolling element is too small, and the maximum surface pressure of the contact surface is considerably increased by applying a slight load. Therefore, in the rolling component simulated body 3, the rolling element 3c is enlarged. The inner ring 3a is specially manufactured and used having a groove in which such a large rolling element 3c can roll.

水分濃度計算手段142は、静電容量計105で測定した静電容量と熱電対106で測定した油温から、定められた関係に従って前記潤滑油中の混入水分濃度を計算する手段である。水分濃度計算手段142は、静電容量と油温と混入水分濃度との関係を、計算式やテーブル等で定めた関係設定手段143を有し、入力された静電容量と油温とから、関係設定手段143に定められた関係を用いて混入水分濃度を計算する。   The moisture concentration calculating means 142 is a means for calculating the concentration of mixed water in the lubricating oil from the capacitance measured by the capacitance meter 105 and the oil temperature measured by the thermocouple 106 according to a predetermined relationship. The moisture concentration calculating means 142 has a relationship setting means 143 that defines the relationship between the capacitance, the oil temperature, and the mixed moisture concentration by a calculation formula, a table, etc., and from the inputted capacitance and the oil temperature, The mixed water concentration is calculated using the relationship set in the relationship setting means 143.

試験装置本体制御装置141は、転動部品模擬体駆動装置120を制御する転動部品模擬体制御部144と、シリンジポンプ104を制御するポンプ制御部145と、試験装置本体140およびその他の駆動部分を制御する制御部(図示せず)とを備える。試験装置本体制御装置141は、コンピュータ式のシーケンサまたは数値制御装置であり、パーソナルコンピュータ等のコンピュータとこれに実行されるプログラムとで構成される。
水分濃度計算手段142は、パーソナルコンピュータ等のコンピュータとこれに実行されるプログラムとで構成される。水分濃度計算手段142は、試験装置本体制御装置141を構成するコンピュータを用いたものであっても、試験装置本体制御装置141とは独立したコンピュータを用いたものであっても良い。
The test device main body control device 141 includes a rolling component simulated body control unit 144 that controls the rolling component simulated body drive device 120, a pump control unit 145 that controls the syringe pump 104, the test device main body 140, and other drive parts. And a control unit (not shown) for controlling. The test apparatus main body control apparatus 141 is a computer-type sequencer or numerical control apparatus, and includes a computer such as a personal computer and a program executed on the computer.
The moisture concentration calculating means 142 is composed of a computer such as a personal computer and a program executed on the computer. The moisture concentration calculating means 142 may be one using a computer constituting the test apparatus main body control apparatus 141 or one using a computer independent of the test apparatus main body control apparatus 141.

この転がりすべり疲労寿命試験方法は、上記構成の試験装置を用いて、次のように行う。試験油槽101に入れた潤滑油5Aに、被試験体である転動部品模擬体3を浸漬して動作させ、転動部品模擬体3を構成する被試験体である外輪3bの転がりすべり疲労寿命の試験を行う。ここでは、シリンジポンプ104を用いて、前記潤滑油5A中に水素源としての水を注入し、静電容量計105で計測した潤滑油5Aの静電容量と、熱電対106で計測した油温とによって、水分濃度計算手段142を用いて、潤滑油5A中の混入水分濃度を測定する。   This rolling / sliding fatigue life test method is performed as follows using the test apparatus having the above-described configuration. The rolling part simulated body 3 which is the test object is immersed in the lubricating oil 5A put in the test oil tank 101 and operated, and the rolling and sliding fatigue life of the outer ring 3b which is the test object constituting the rolling part simulated body 3 is operated. Perform the test. Here, the syringe pump 104 is used to inject water as a hydrogen source into the lubricating oil 5A, and the electrostatic capacity of the lubricating oil 5A measured by the capacitance meter 105 and the oil temperature measured by the thermocouple 106. The moisture concentration calculation means 142 is used to measure the mixed moisture concentration in the lubricating oil 5A.

同図の試験装置では、試験油槽101に潤滑油5Aを入れる機構として、油浴潤滑機構を用いており、試験油槽101内の潤滑油5A中の混入水分濃度を測定する。上記「油浴潤滑機構」は、試験油槽101に潤滑油を溜めておき、その溜められた潤滑油で転動部品模擬体を潤滑する機構を言う。測定した混入水分濃度はシリンジポンプ104にフィードバックし、水注入量を変化させて混入水分濃度を制御する。すなわち、ポンプ制御部145は、水分濃度計算手段により出力された混入水分濃度に応じて、定められた規則に従い、混入水分濃度が定められた範囲に納まるように、シリンジポンプ104による注入量を変化させる。また、転動部品模擬体3の接触要素間(具体的には一対の軌道輪3a,3b間)に、通電手段147によって電流を流して金属接触率を測定する。転動部品模擬体駆動装置120における、サーボモータ107Aの主軸107と、転動部品模擬体3の構成要素となる内輪3aに結合されて転動部品模擬体3を動作させるスピンドル108とを直結して揺動運動させる。スピンドル108は転動部品模擬体3を構成要素の一つとして持つものであっても良い。サーボモータの主軸107とスピンドル108とは絶縁カップリング132で連結する。スピンドル108の支持軸受には、セラミック転動体軸受133を用いている。
転動部品模擬体3は、前述のように、この実施形態ではスラスト玉軸受を模した部品とされ、被試験体となる外輪3bは、設置台(図示せず)等に固定設置され、内輪3aがスピンドル108に固定されている。
In the test apparatus shown in the figure, an oil bath lubrication mechanism is used as a mechanism for putting the lubricating oil 5A into the test oil tank 101, and the mixed water concentration in the lubricating oil 5A in the test oil tank 101 is measured. The “oil bath lubrication mechanism” refers to a mechanism in which lubricating oil is stored in the test oil tank 101 and the rolling component simulated body is lubricated with the stored lubricating oil. The measured mixed water concentration is fed back to the syringe pump 104, and the mixed water concentration is controlled by changing the water injection amount. That is, the pump control unit 145 changes the amount of injection by the syringe pump 104 according to a predetermined rule according to the mixed water concentration output by the water concentration calculation means so that the mixed water concentration falls within a predetermined range. Let Further, a current is passed between the contact elements of the rolling component simulated body 3 (specifically, between the pair of race rings 3a and 3b) by the energizing means 147 to measure the metal contact rate. In the rolling part simulated body drive device 120, the main shaft 107 of the servo motor 107A is directly connected to the spindle 108 that is connected to the inner ring 3a that is a component of the rolling part simulated body 3 and operates the rolling part simulated body 3. To swing. The spindle 108 may have the rolling part simulated body 3 as one of the components. The main shaft 107 and the spindle 108 of the servo motor are connected by an insulating coupling 132. A ceramic rolling element bearing 133 is used as a support bearing for the spindle 108.
As described above, the rolling part simulation body 3 is a part simulating a thrust ball bearing in this embodiment, and the outer ring 3b serving as a test body is fixedly installed on an installation base (not shown) or the like, and the inner ring 3 a is fixed to the spindle 108.

上記スピンドル108およびセラミック転動体軸受133により、転動部品模擬体駆動装置120のヘッド部146が構成される。ヘッド部146は、転動部品模擬体駆動装置120における、それぞれが1個または1組の転動部品模擬体3を動作させる機構部を言う。この実施形態ではヘッド部146を1台のみ設けたが、複数のヘッド部146を設け、複数の転動部品模擬体3を同時に試験するようにしても良い。   The spindle 108 and the ceramic rolling element bearing 133 constitute a head portion 146 of the rolling component simulated body driving device 120. The head unit 146 is a mechanism unit that operates one or one set of the rolling component simulated body 3 in the rolling component simulated body driving device 120. In this embodiment, only one head portion 146 is provided. However, a plurality of head portions 146 may be provided, and a plurality of rolling component simulated bodies 3 may be tested simultaneously.

ところで、転がりすべり疲労寿命試験による耐水素脆性評価では、鋼中への拡散性水素の侵入濃度は制御できない。また、厳しい条件での加速試験であり、実機条件を模擬するものではない。鋼材質の耐水素脆性評価については、拡散性水素の侵入濃度を制御しての評価がある。それに対し、潤滑油の種類,潤滑油への添加物,接触要素の接触面への表面処理などの耐水素脆性評価は、この実施形態のように拡散性水素の侵入濃度が制御できない転がりすべり疲労寿命試験で評価する必要がある。したがって、なるべく外乱が少なく、なるべく実機を忠実に模擬した転がりすべり疲労寿命試験によって、水素脆性起因の早期損傷を効率よく起こさせ、使用条件に応じた対策要素を見極めるのに、この実施形態の転がりすべり疲労寿命試験方法は有効である。なお、ユーザーからの理解を得るという点からは、鋼材質についても、転がりすべり疲労寿命試験による耐水素脆性評価を実施することが望ましい。   By the way, in the hydrogen brittleness resistance evaluation by the rolling and sliding fatigue life test, the penetration concentration of diffusible hydrogen into the steel cannot be controlled. It is an accelerated test under severe conditions and does not simulate actual machine conditions. Regarding the evaluation of hydrogen embrittlement resistance of steel materials, there is an evaluation by controlling the penetration concentration of diffusible hydrogen. In contrast, hydrogen embrittlement resistance evaluations such as the type of lubricating oil, additives to the lubricating oil, and surface treatment of the contact surface of the contact element are based on rolling slip fatigue where the intrusion concentration of diffusible hydrogen cannot be controlled as in this embodiment. It is necessary to evaluate with a life test. Therefore, the rolling slip fatigue life test simulating the actual machine as closely as possible effectively causes early damage due to hydrogen embrittlement, and the rolling element of this embodiment is ascertained according to the use conditions. The sliding fatigue life test method is effective. From the viewpoint of obtaining understanding from the user, it is desirable to carry out hydrogen embrittlement evaluation by a rolling sliding fatigue life test for steel materials.

水素脆性起因の早期損傷が起きる様々な転動部品の使用条件を鑑みると、以下の(1)〜(5)の機能を有する転がりすべり疲労寿命試験が望ましい。なお、試験装置における各ヘッド部146間で互いに影響が及ばないように、図8では各ヘッド部に油浴潤滑機構を用いているが、循環給油機構を用いても良い。油浴潤滑機構であっても、また循環給油機構であっても、各ヘッド部に設けるのであれば、各ヘッドで異なる条件の試験ができる。
(1)潤滑油5A中に水素源としての水を注入する。
(2)潤滑油5A中の混入水分濃度を静電容量と油温で監視する。
(3)(2)で監視した混入水分濃度をフィードバックし、水注入量を変化させて混入水分濃度を制御する
(4)一定回転速度,一方向回転だけでなく、加減速運転,揺動運動ができる。
(5)通電ができる。
In view of the usage conditions of various rolling parts that cause early damage due to hydrogen embrittlement, a rolling sliding fatigue life test having the following functions (1) to (5) is desirable. In addition, although the oil bath lubrication mechanism is used for each head portion in FIG. 8 so that the head portions 146 in the test apparatus do not affect each other, a circulating oil supply mechanism may be used. Even if it is an oil bath lubrication mechanism or a circulating oil supply mechanism, different heads can be tested under different conditions if they are provided in each head portion.
(1) Water as a hydrogen source is injected into the lubricating oil 5A.
(2) Monitor the mixed water concentration in the lubricating oil 5A with the capacitance and the oil temperature.
(3) The mixed water concentration monitored in (2) is fed back, and the mixed water concentration is controlled by changing the water injection amount. (4) Not only constant rotation speed and one-way rotation, but also acceleration / deceleration operation, rocking motion Can do.
(5) Energization is possible.

(1)の機能については、水を混入した潤滑油を定期的に交換する方法もあるが、工数がかかるとか、休日は交換できないなど、効率が悪い。そのため、この実施形態のように、水をシリンジポンプ104で注入したり、チューブポンプで注入するのが望ましい。シリンジポンプ104は微量注入に向いている。ヘッド部146に油浴潤滑機構を用いている図8の試験装置では、水の注入箇所は試験油槽101であるが、ヘッド部146に循環給油機構を用いる場合は試験油槽101または循環給油機構の循環給油部とする。   As for the function (1), there is a method of periodically replacing the lubricating oil mixed with water, but it is inefficient because it takes time and cannot be replaced on holidays. Therefore, as in this embodiment, it is desirable to inject water with the syringe pump 104 or with a tube pump. The syringe pump 104 is suitable for microinjection. In the test apparatus of FIG. 8 in which the oil bath lubrication mechanism is used for the head portion 146, the water injection point is the test oil tank 101. However, when the circulation oil supply mechanism is used for the head portion 146, the test oil tank 101 or the circulation oil supply mechanism is used. Use a circulating oiling section.

(2)の機能を持たせる場合に、鉱油系で無添加の潤滑油の飽和水分濃度は高々200重量ppm であることに留意する必要がある。混入水分濃度は静電容量と油温によって測定できるが、静電容量を計測する静電容量計105は次の2タイプに大別される。1つは飽和水分濃度以下までしか測れないものであり、もう1つは飽和水分濃度を超えて白濁状態になっても測れるものである。前者のタイプの方が多いが、後者のものの中には混入水分濃度が10%以上でも測定できるものもある。上述したように、鉱油系の潤滑油の飽和水分濃度は高々200重量ppm である。200重量ppm の濃度の水混入油を定期交換した転がりすべり疲労寿命試験では、水の悪影響は見られないという結果が得られている。鉱油系で無添加の潤滑油の飽和水分濃度は微量だが、合成油系の潤滑油や鉱油系でも添加剤の種類によっては、飽和水分濃度はかなり高くなる。飽和水分濃度以下しか混入水分濃度が測れない静電容量計は、潤滑油5Aの飽和水分濃度を測るのに用いることができる。混入水分濃度と転がりすべり疲労寿命の関係を求めれば、潤滑油固有の飽和水分濃度が耐水素脆性の1つの指標になり得る可能性がある。   When providing the function (2), it should be noted that the saturated water concentration of mineral oil-based lubricant oil is at most 200 ppm by weight. The mixed water concentration can be measured by the capacitance and the oil temperature, but the capacitance meter 105 for measuring the capacitance is roughly classified into the following two types. One can be measured only up to a saturated water concentration or less, and the other can be measured even if the saturated water concentration is exceeded and a cloudy state occurs. The former type is more common, but some of the latter types can be measured even when the concentration of mixed water is 10% or more. As described above, the saturated water concentration of the mineral oil-based lubricating oil is at most 200 ppm by weight. In a rolling and sliding fatigue life test in which water-containing oil having a concentration of 200 ppm by weight is periodically replaced, no adverse effect on water is observed. Mineral oil based additive-free lubricating oil has a very small saturated water concentration, but synthetic oil-based lubricating oil and mineral oil also have a very high saturated water concentration depending on the type of additive. A capacitance meter that can measure the mixed water concentration below the saturated water concentration can be used to measure the saturated water concentration of the lubricating oil 5A. If the relationship between the mixed water concentration and the rolling and sliding fatigue life is obtained, the saturated water concentration inherent to the lubricating oil may be an index of hydrogen embrittlement resistance.

(3)の機能については、潤滑油5A中に一定濃度の水を混入し、マクロ的に閉鎖系として転がりすべり寿命試験をしても、混入水分濃度は約3h経過したあたりから大幅に減少する。潤滑油5A中に水を一定流量で連続注入した場合も、混入水分濃度が変化することは容易に想像できる。(1)の機能のために水は水素源として注入するが、そのためには、(2)の機能において静電容量と油温によって監視した混入水分濃度をフィードバックし、水注入量を変化させて混入水分濃度を所定の範囲内に保つことが望ましい。 Regarding the function of (3), even when water of a certain concentration is mixed in the lubricating oil 5A and the rolling sliding life test is performed as a macroscopically closed system, the mixed water concentration is greatly reduced after about 3 hours. . Even when water is continuously injected into the lubricating oil 5A at a constant flow rate, it can be easily imagined that the mixed water concentration changes. For the function (1), water is injected as a hydrogen source. For this purpose, the water concentration monitored by the capacitance and oil temperature in the function (2) is fed back to change the water injection amount. It is desirable to keep the mixed water concentration within a predetermined range.

(4)の機能について言えば、実際の転動部品3は一定回転速度,一方向回転で用いられることはない。そのため、一定回転速度,一方向回転の他に、加減速運転,揺動運動もできることが望ましい。加減速運転については、少なくとも図9のようなパターン設定ができる必要がある。すなわち、加速度(rmax-rmin)/ta,高速回転数rmax,高速回転数での保持時間tmax,減速度(rmax-rmin)/td,低速回転数r min ,低速回転数での保持時間tminの6パラメータをそれぞれ任意に設定でき、それを1パターンとして加減速を繰り返すことである。揺動運動では、回転の場合とは異なり、損傷が起きても振動が大きく変化しない。クランク機構による揺動運動では、その振動が重畳するため、損傷が起きても振動で検出することが難しい。振動で損傷を精度よく検出できるようにするには、図8のようにサーボモータの主軸107と、転動部品模擬体3を構成部品の1つとして持つ試験機構のスピンドル108とを直結して揺動運動させることで、重畳する振動成分をなるべく排除する必要がある。さらに、できる限り試験機構のスピンドル108などの剛性を高くする必要がある。揺動運動条件としては、揺動の角度と周波数を任意に設定できることが望ましい。なお、サーボモータの主軸107と試験機構のスピンドル108を直結すると、クランク機構のような三角関数波形の速度変化を与えることは難しい。それを可能にするためには、シーケンサのプログラムによってサーボモータのアンプを制御すれば良い。 Speaking of the function (4), the actual rolling component 3 is not used at a constant rotational speed and in one-way rotation. Therefore, it is desirable that acceleration / deceleration operation and swing motion can be performed in addition to constant rotation speed and one-way rotation. For acceleration / deceleration operation, it is necessary to be able to set at least a pattern as shown in FIG. Acceleration (r max -r min ) / t a , high speed r max , holding time t max at high speed, deceleration (r max -r min ) / t d , low speed r min , low speed Six parameters of the holding time t min in the number of revolutions can be arbitrarily set, and this is used as one pattern to repeat acceleration / deceleration. In the oscillating motion, unlike the case of rotation, the vibration does not change greatly even if damage occurs. In the swing motion by the crank mechanism, the vibration is superimposed, so that even if damage occurs, it is difficult to detect by vibration. In order to be able to detect damage accurately by vibration, the main shaft 107 of the servo motor and the spindle 108 of the test mechanism having the rolling component simulated body 3 as one of the components are directly connected as shown in FIG. It is necessary to eliminate the superimposed vibration component as much as possible by performing the swing motion. Furthermore, it is necessary to increase the rigidity of the spindle 108 of the test mechanism as much as possible. As the swing motion condition, it is desirable that the swing angle and frequency can be set arbitrarily. When the servo motor main shaft 107 and the test mechanism spindle 108 are directly connected, it is difficult to give a speed change of a trigonometric function waveform like a crank mechanism. In order to make this possible, the servo motor amplifier may be controlled by a sequencer program.

(5)の機能を持たせる目的は次の2点である。
1つは微弱電流を転動部品模擬体3の接触要素間に流して接触面の金属接触率を測定することである。もう1つは1A程度の大電流を接触要素間に流して正極側を摩耗させることである。この現象を利用し、試験片を正極側にすることで、試験片の接触部に金属新生面を積極的に露出させ、水素の発生,侵入を促進することができる。このことは、非特許文献9にも開示されている。
The purpose of providing the function (5) is as follows.
One is to pass a weak current between the contact elements of the rolling element simulator 3 to measure the metal contact rate of the contact surface. The other is to apply a large current of about 1 A between the contact elements to wear the positive electrode side. By utilizing this phenomenon and making the test piece the positive electrode side, the newly formed metal surface can be positively exposed at the contact portion of the test piece, and the generation and penetration of hydrogen can be promoted. This is also disclosed in Non-Patent Document 9.

図8の試験装置を用いた転がりすべり疲労寿命試験方法では、(1)〜(5)の全ての機能を満たしており、転動部品模擬体3が揺動運転することを前提とし、サーボモータ107Aの主軸107と試験機構のスピンドル108を直結した機構になっている。なお、揺動運転が不要な場合、高価で定格回転数が高々3000rpm のサーボモータよりも、安価なインダクションモータなどで試験機構のスピンドル108をベルト駆動するのが良い。この場合、サーボモータ107Aの駆動をスピンドル108に伝達する駆動伝達径にプーリ機構を設け、プーリ比を変えれば、試験機構のスピンドル108の回転速度を高めることができ、加減速運転の速度差を大きくするのにも有効である。なお、ヘッド部146に循環給油機構を用いる場合は、比較的給油速度が速いチューブポンプなどを用いるのが良い。この場合、試験油槽101の潤滑油量をなるべく一定に保つように、潤滑油の出入り量を等しくすることが望ましい。   In the rolling / sliding fatigue life test method using the test apparatus of FIG. 8, the servo motor is assumed on the assumption that all the functions (1) to (5) are satisfied and the rolling component simulated body 3 is oscillated. The main shaft 107 of 107A and the spindle 108 of the test mechanism are directly connected. When the swing operation is not required, it is preferable to drive the spindle 108 of the test mechanism with a belt with an inexpensive induction motor or the like rather than an expensive servo motor with a rated rotational speed of at most 3000 rpm. In this case, if a pulley mechanism is provided in the drive transmission diameter for transmitting the drive of the servo motor 107A to the spindle 108 and the pulley ratio is changed, the rotational speed of the spindle 108 of the test mechanism can be increased, and the speed difference of the acceleration / deceleration operation can be reduced. It is also effective to enlarge. In addition, when using a circulating oil supply mechanism for the head part 146, it is good to use a tube pump etc. with a comparatively quick oil supply speed. In this case, it is desirable to equalize the amount of lubricating oil so that the amount of lubricating oil in the test oil tank 101 is kept as constant as possible.

図8に示した試験装置の概念図では、転動部品模擬体3がスラスト軸受型である場合を示したが、スラスト軸受型の場合も鋼球の自転方向と公転方向が異なるため、転動部品模擬体3における試験片と鋼球の接触面ですべりが生じる。さらに積極的に接触面にすべりを与えるには、接触要素の運動機構を工夫すればよい。転動部品模擬体3として歯車材を評価する場合、歯車ではさらに大きなすべりが作用するため、試験片とそれに接触する物体の周速差を強制的に変えるなどし、接触面に大きなすべりを作用させる工夫が必要である。   The conceptual diagram of the test apparatus shown in FIG. 8 shows a case where the rolling component simulated body 3 is a thrust bearing type. However, since the rotation direction and the revolution direction of the steel ball are different also in the case of the thrust bearing type, Slip occurs at the contact surface between the test piece and the steel ball in the simulated part 3. Furthermore, in order to positively give a slip to the contact surface, the motion mechanism of the contact element may be devised. When the gear material is evaluated as the rolling part simulation body 3, since a larger slip acts on the gear, for example, the difference in the peripheral speed between the test piece and the object in contact with it is forcibly changed, and a large slip acts on the contact surface. It is necessary to devise it.

図10および図11は、この転がりすべり疲労寿命試験方法に用いる試験装置の他の例を概念図として示している。図10の試験装置では、試験油槽101に潤滑油5Aを入れる機構として、循環給油機構109を用いている。ここでの循環給油機構109は、循環路110の途中に循環ポンプ111、静電容量計105、および熱電対106を設けて構成される。この場合でも、静電容量計105および熱電対106は図8のように試験油槽101に設けても良い。   10 and 11 show, as a conceptual diagram, another example of a test apparatus used in this rolling / sliding fatigue life test method. In the test apparatus of FIG. 10, a circulating oil supply mechanism 109 is used as a mechanism for putting the lubricating oil 5 </ b> A into the test oil tank 101. The circulation oil supply mechanism 109 here is configured by providing a circulation pump 111, a capacitance meter 105, and a thermocouple 106 in the middle of the circulation path 110. Even in this case, the capacitance meter 105 and the thermocouple 106 may be provided in the test oil tank 101 as shown in FIG.

ここで、潤滑油5Aへの水の混合状態が良好でない場合、混入水分濃度が高くなるにつれて、静電容量の値が不安定になる。そのため、潤滑油5Aと水がよく混合した状態で静電容量を測定することが望ましい。そこで、図11の試験装置では、図10の試験装置において、試験油槽101の潤滑油5Aの排出口と循環ポンプ111との間にリザーブタンク112を設け、そこに潤滑油5Aを溜めて磁気式攪拌機113などで攪拌し、静電容量と温度を測定するようにしている。熱電対106はリザーブタンク112に設ける。潤滑油5Aと水を十分に混合させるためには、リザーブタンク112の容積を小さくして攪拌効果を大きくする方が良い。目安として、潤滑油量は100mL以下とすることが望ましい。さらに望ましいことは、潤滑油5Aよりも比重が大きい水が、試験油槽101やリザーブタンク112から排出されやすくすることである。そのために、図11の試験装置では、試験油槽101およびリザーブタンク112のそれぞれの潤滑油5Aの排出口を底角部101a,112a(同図中に○を付して示す)としている。さらに、試験油槽101およびリザーブタンク112のそれぞれ内部を円柱状とし、底角部101a,112aの全周に連続して、いわゆるヌスミとなる外角側に凹む溝状の凹部101aa,112aaを設けることが望ましい。これらの工夫をすることにより、水よりも比重の大きな添加物質も循環しやすくなる。   Here, when the mixed state of water into the lubricating oil 5A is not good, the capacitance value becomes unstable as the mixed water concentration increases. Therefore, it is desirable to measure the capacitance in a state where the lubricating oil 5A and water are well mixed. Therefore, in the test apparatus of FIG. 11, a reserve tank 112 is provided between the discharge port of the lubricating oil 5A of the test oil tank 101 and the circulation pump 111 in the test apparatus of FIG. Stirring is performed with a stirrer 113 or the like, and the capacitance and temperature are measured. The thermocouple 106 is provided in the reserve tank 112. In order to sufficiently mix the lubricating oil 5A and water, it is better to reduce the volume of the reserve tank 112 to increase the stirring effect. As a guide, the amount of lubricating oil is desirably 100 mL or less. It is further desirable that water having a specific gravity greater than that of the lubricating oil 5A is easily discharged from the test oil tank 101 and the reserve tank 112. Therefore, in the test apparatus of FIG. 11, the discharge ports for the lubricating oil 5A of the test oil tank 101 and the reserve tank 112 are the bottom corner portions 101a and 112a (shown with a circle in the figure). Further, the inside of each of the test oil tank 101 and the reserve tank 112 may be formed in a columnar shape, and groove-shaped recesses 101aa and 112aa that are recessed on the outer corner side that becomes so-called nuisance are provided continuously over the entire circumference of the bottom corners 101a and 112a. desirable. By these measures, it becomes easy to circulate an additive substance having a specific gravity larger than that of water.

図8,図10,図11の試験装置を用いた試験方法では、シリンジポンプ104を用いて試験油槽101に水を注入するが、以下には、試験油槽101中の水混入油を定期交換して行った転がりすべり疲労寿命試験方法の具体例を示す。
軸受鋼SUJ2を用い、図12(A)に示すテーパ形状外輪試験片(熱処理後は研削仕上げ、内径軌道面は面粗さRq ≒0.03μm)114を製作した。熱処理は850℃のRXガス雰囲気中で50min加熱してずぶ焼入を施した後、180℃で120minの焼戻しを施した。試験は、図12(B)に示すように、テーパ形状外輪試験片114にアンギュラ玉軸受7306Bの内輪(SUJ2標準焼入焼戻品)115、鋼球(SUJ2標準焼入焼戻品,13個)116、保持器117を組み合わせて転動部品模擬体3として行った。外輪試験片114をテーパ形状にしたのは、鋼球116と接触角をもって回転することにより、鋼球116がスピンして外輪試験片114との接触面にすべりが生じるためである。すべりが生じる場合、水素脆性起因の早期損傷が起きる頻度が高くなる。
In the test method using the test apparatus of FIGS. 8, 10, and 11, water is injected into the test oil tank 101 using the syringe pump 104. In the following, water-mixed oil in the test oil tank 101 is periodically replaced. A specific example of the rolling and sliding fatigue life test method performed in the above is shown.
Using a bearing steel SUJ2, a tapered outer ring test piece (ground finish after heat treatment, surface roughness Rq ≈ 0.03 μm on the inner raceway surface) 114 shown in FIG. The heat treatment was performed by heating in an RX gas atmosphere at 850 ° C. for 50 minutes, followed by tempering at 180 ° C. for 120 minutes. In the test, as shown in FIG. 12B, a tapered outer ring test piece 114, an inner ring (SUJ2 standard quenching and tempering product) 115 of an angular ball bearing 7306B, a steel ball (SUJ2 standard quenching and tempering product, 13 pieces). ) 116 and the cage 117 were combined to perform the rolling part simulation body 3. The reason why the outer ring test piece 114 is tapered is that when the steel ball 116 rotates with the contact angle, the steel ball 116 spins and slips on the contact surface with the outer ring test piece 114. When slipping occurs, the frequency of early damage due to hydrogen embrittlement increases.

図13には、この具体的試験方法で用いる試験装置の模式図を示す。同図における左側の機構部が評価側部120a、右側の機構部がダミー側部120bである。同図中において、損傷対象のテーパ形状外輪試験片114はハッチングして示している。アキシャル荷重Fa =2.94kNのみを作用させ、2733min-1で内輪115を回転させた。潤滑油にはVG100の無添加タービン油(密度0.887g/cm3 ,動粘度100.9mm /s@40℃,11.68mm2 /s@100℃)を用い、それに200重量ppm ,5重量%の純水を混入した。評価側に60mLの水混入油を入れ、潤滑油の入口(下側)と出口(上側)をチューブ118でつないで閉鎖系とした。図12(B)に矢印で示す方向にポンプ作用によって潤滑油の流れが生じるため、水混入油は循環して攪拌される。試験は20h行い、その間に損傷が起きなければ、新たに作成した水混入油に交換した。損傷が生じるまで20hの試験と水混入油の交換を繰り返した。損傷検出は振動計で行った。なお、図13に示す試験装置における中央の円筒ころ軸受119はラジアル荷重を作用させるためのもので、今回の試験には無関係である。 FIG. 13 shows a schematic diagram of a test apparatus used in this specific test method. In the figure, the left side mechanism is the evaluation side 120a, and the right side is the dummy side 120b. In the figure, the tapered outer ring test piece 114 to be damaged is hatched. Only the axial load Fa = 2.94 kN was applied, and the inner ring 115 was rotated at 2733 min −1 . The lubricating oil used additive-free turbine oil VG100 (density 0.887 g / cm 3, kinematic viscosity 100.9mm 2 /s@40℃,11.68mm 2 / s @ 100 ℃), it 200 wt ppm, 5 Weight percent pure water was mixed. 60 mL of water-mixed oil was added to the evaluation side, and the inlet (lower side) and outlet (upper side) of the lubricating oil were connected by a tube 118 to form a closed system. Since the flow of the lubricating oil is generated by the pump action in the direction indicated by the arrow in FIG. 12B, the water-containing oil is circulated and stirred. The test was conducted for 20 hours, and if no damage occurred during that time, it was replaced with a newly prepared water-mixed oil. The test for 20 h and the exchange of water-containing oil were repeated until damage occurred. Damage detection was performed with a vibrometer. The central cylindrical roller bearing 119 in the test apparatus shown in FIG. 13 is for applying a radial load, and is not related to this test.

アキシャル荷重Fa =2.94kNのみを作用させた場合の弾性ヘルツ接触計算での外輪試験片114と鋼球116の間の最大接触面圧は3GPaである。なお、弾性ヘルツ接触計算では、ヤング率Eとポアソン比νはSUJ2標準焼入焼戻品の実測値であるE=204GPa,ν=0.3とした。水混入を無視した弾性流体潤滑計算でのテーパ形状外輪試験片114と鋼球116の間の油膜パラメータは約3である。ただし、鋼球116の面粗さは実測値Rq =0.0178μmで一定とした。テーパ外輪形状試験片114の単体の計算寿命L10h は、2円筒モデルに変換して計算すると2611hである。L10h の求め方は非特許文献10に開示されている。ただし、すべりの影響は無視した。   The maximum contact surface pressure between the outer ring test piece 114 and the steel ball 116 in the elastic Hertz contact calculation when only the axial load Fa = 2.94 kN is applied is 3 GPa. In the elastic Hertz contact calculation, the Young's modulus E and Poisson's ratio ν were E = 204 GPa and ν = 0.3, which are actually measured values of the SUJ2 standard quenching and tempering product. The oil film parameter between the tapered outer ring specimen 114 and the steel ball 116 in the elastohydrodynamic lubrication calculation ignoring water contamination is about 3. However, the surface roughness of the steel ball 116 was constant at an actual measurement value Rq = 0.178 μm. The calculated calculation life L10h of the tapered outer ring shape test piece 114 is 2611h when calculated by converting into a two-cylinder model. A method for obtaining L10h is disclosed in Non-Patent Document 10. However, the effect of slip was ignored.

初期混入水分濃度が5重量%の試験中に、定期的に潤滑油を少量サンプリングし、混入水分濃度を電量滴定法で測定して経時変化を調べた。その結果、図14にグラフで示すように、混入水分濃度は約3h経過したあたりから大幅に減少した。上記のように閉鎖系とはいえ、それはマクロ的であって、完全に隙間をなくすことは不可能である。水分は目視ではわからない小さな隙間から蒸発したと考えられる。この転がりすべり疲労寿命試験の結果は、表1に示す通りである。   During the test with an initial mixed water concentration of 5% by weight, a small amount of lubricating oil was periodically sampled, and the mixed water concentration was measured by a coulometric titration method to examine the change with time. As a result, as shown in the graph of FIG. 14, the concentration of mixed water was significantly reduced after about 3 hours. Although it is a closed system as described above, it is macroscopic and it is impossible to completely eliminate the gap. It is thought that the water evaporated from a small gap that was not visually recognized. The results of this rolling and sliding fatigue life test are as shown in Table 1.

Figure 0005661512
Figure 0005661512

200重量ppm の水混入油では、試験片5個すべて1000hまで損傷は起きず、試験を打ち切った。一方、5重量%の水混入油では、試験片5個すべてに計算寿命の1/100のオーダーの早期損傷が生じた。損傷形態は、すべて表層を起点とする内部起点型はく離であった。なお、SUJ2製鋼球116にも3GPaの最大接触面圧が作用するが、はく離は生じなかった。鋼球116はテーパ形状外輪試験片114に比べて有効負荷体積が大きいためと考えられる。今回用いた潤滑油の飽和水分濃度の上限値程度の水混入では、寿命に及ばず水の影響はないといえる。一方、水が多量に混入する場合、水素が発生し、鋼中に侵入したために極めて早期に内部起点型はく離が起きたと考えられる。表1中には、5重量%の水混入油を定期交換した場合の寿命を、2母数ワイブル分布に当てはめて求めたL10,L50,およびe(ワイブルスロープ)を示した。   In the case of 200 ppm by weight of water-mixed oil, all five test pieces were not damaged until 1000 h, and the test was terminated. On the other hand, with 5 wt% water-mixed oil, early damage on the order of 1/100 of the calculated life occurred in all five test pieces. The damage form was an internal origin type peeling starting from the surface layer. Although the maximum contact surface pressure of 3 GPa also acts on the SUJ2 steel balls 116, no peeling occurred. It is considered that the steel ball 116 has a larger effective load volume than the tapered outer ring test piece 114. It can be said that there is no influence of water when it reaches the upper limit of the saturated moisture concentration of the lubricating oil used this time, not reaching the service life. On the other hand, when a large amount of water is mixed, hydrogen is generated and penetrates into the steel, so that it is considered that the internal origin type peeling occurred very early. Table 1 shows L10, L50, and e (Weibull slope) obtained by applying a 2-parameter Weibull distribution to the life when a 5% by weight water-mixed oil is periodically replaced.

次に、図8,図10,図11の試験装置のように、試験油槽101中の潤滑油5Aに水を一定流量で微量注入して行った転がりすべり疲労寿命試験方法の具体例を示す。
前記試験方法の場合と同じ図12に示す試験片114、および図13に示す試験装置を用い、荷重条件、回転速度も同じとし、同じ潤滑油(水混入なし)60mLを入れ、潤滑油の入口(下側)と出口(上側)をチューブ118でつないで閉鎖系とした。試験開始と同時に、シリンジポンプ104(図8)によってチューブ118の途中から純水の連続注入を開始した。純水の注入速度は0.5mL/hとした。この場合、混入水分濃度の経時変化は測定しなかったが、図14の結果から、この場合も混入水分濃度が変化することは容易に想像できる。この転がりすべり疲労寿命試験の結果は、表2に示す通りである。
Next, a specific example of a rolling and sliding fatigue life test method performed by injecting a small amount of water into the lubricating oil 5A in the test oil tank 101 at a constant flow rate as in the test apparatus of FIGS.
The test piece 114 shown in FIG. 12 and the test apparatus shown in FIG. 13 are used as in the case of the test method, the load conditions and the rotation speed are the same, and 60 mL of the same lubricating oil (without water mixing) is added. (Lower side) and outlet (upper side) were connected by a tube 118 to form a closed system. Simultaneously with the start of the test, continuous injection of pure water was started from the middle of the tube 118 by the syringe pump 104 (FIG. 8). The injection rate of pure water was 0.5 mL / h. In this case, the time-dependent change of the mixed water concentration was not measured, but it can be easily imagined from this result that the mixed water concentration also changes in this case. The results of this rolling and sliding fatigue life test are as shown in Table 2.

Figure 0005661512
Figure 0005661512

この場合も試験片6個のすべてに、先の試験方法である5重量%の水混入油を定期交換した場合と同程度の寿命の早期損傷が生じた。損傷形態は、この場合も、すべて表層を起点とする内部起点型はく離であった。また、この場合も、SUJ2製鋼球16にも3GPaの最大接触面圧が作用するが、はく離は生じなかった。表2中には、寿命を2母数ワイブル分布に当てはめて求めたL10,L50,およびe(ワイブルスロープ)を示した。   In this case as well, all of the six test pieces suffered early damage with the same life as when the 5 wt% water-mixed oil, which was the previous test method, was periodically replaced. In this case as well, the damage form was an internal origin type peeling starting from the surface layer. In this case, the maximum contact surface pressure of 3 GPa also acts on the SUJ2 steel balls 16, but no peeling occurred. Table 2 shows L10, L50, and e (Weibull slope) obtained by applying the lifetime to the 2-parameter Weibull distribution.

次に、静電容量計105による潤滑油の飽和水分濃度と混入水分濃度の測定の具体例を説明する。
先述したように、潤滑油中の混入水分濃度は静電容量と温度によって測定でき、これに用いる静電容量計105は次の2つのタイプに大別される。1つは飽和水分濃度以下までしか測定できないものであり、もう1つは飽和水分濃度を超えて白濁状態になっても測定できるものである。
先ず、飽和水分濃度以下までしか測定できない静電容量計105を用い、潤滑油の飽和水分濃度を測定した。潤滑油は、先の転がりすべり疲労寿命試験の具体例で用いたVG100の無添加タービン油である。図15(A)に模式図で示すように、静電容量計105を取付けた容器121(例えば図8の試験装置における試験油槽101に見立てたもの)に潤滑油を入れ、シリカゲル入れを設けた上蓋122をして、温度調整ができる磁気式攪拌機113で攪拌しながら110℃に熱して1h放置し、その間に油中に混入していた微量水分を蒸発させて、シリカゲルに吸着させた。その後、図15(B)に模式図で示すように、40℃に保持して純水をシリンジポンプ104を用いて一定速度0.05mL/hで注入した。図16には、そのときの静電容量の経時変化をグラフで示している。この静電容量計105は、水分活性として0〜1の値を出力する。「0」は混入水分濃度がゼロの場合、「1」は混入水分濃度が飽和水分濃度以上の場合である。図16のように、167重量ppm で測定値が1になったことから、その値が飽和水分濃度になる。混入水分濃度と転がりすべり疲労寿命の関係を調べれば、潤滑油固有の飽和水分濃度が耐水素脆性の1つの指標になり得る可能性がある。
Next, a specific example of the measurement of the saturated water concentration and the mixed water concentration of the lubricating oil by the capacitance meter 105 will be described.
As described above, the moisture concentration in the lubricating oil can be measured by the capacitance and temperature, and the capacitance meter 105 used therefor is roughly classified into the following two types. One is capable of measuring only up to a saturated water concentration or less, and the other is capable of measuring even when the saturated water concentration is exceeded and a cloudy state occurs.
First, the saturated moisture concentration of the lubricating oil was measured using a capacitance meter 105 that can measure only up to a saturated moisture concentration. Lubricating oil is VG100 additive-free turbine oil used in the specific example of the rolling and sliding fatigue life test. As schematically shown in FIG. 15 (A), lubricating oil was put into a container 121 (for example, the test oil tank 101 in the test apparatus of FIG. 8) to which a capacitance meter 105 was attached, and a silica gel container was provided. The top lid 122 was attached, heated to 110 ° C. while stirring with a magnetic stirrer 113 capable of adjusting the temperature, and left for 1 hour. During this time, a trace amount of water mixed in the oil was evaporated and adsorbed onto silica gel. Thereafter, as schematically shown in FIG. 15B, pure water was injected at a constant rate of 0.05 mL / h using the syringe pump 104 while being kept at 40 ° C. FIG. 16 is a graph showing the change over time of the capacitance at that time. The capacitance meter 105 outputs a value of 0 to 1 as the water activity. “0” is when the mixed water concentration is zero, and “1” is when the mixed water concentration is equal to or higher than the saturated water concentration. As shown in FIG. 16, since the measured value becomes 1 at 167 ppm by weight, the value becomes the saturated water concentration. If the relationship between the mixed water concentration and the rolling and sliding fatigue life is examined, the saturated water concentration inherent to the lubricating oil may be an index of hydrogen embrittlement resistance.

次に、飽和水分濃度を超えて白濁状態になっても測定できる静電容量計105を用い、潤滑油中の水分濃度を変えて静電容量を測定した。潤滑油は、先の転がりすべり疲労寿命試験の具体例で用いたVG100の無添加タービン油である。図17(A)に模式図で示すように、100mLのビーカー131(例えば図8の試験装置における試験油槽101に見立てたもの)に70〜80mLの潤滑油を入れ、純水を混入し、十分に混合するまで温度調整ができる磁気式攪拌機113で33℃に保持した状態で攪拌した。その後、図17(B)に模式図で示すように、静電容量計105を取付けて静電容量を測定した。その結果を、図18にグラフで示している。このグラフから、相関が良い混入水分濃度と静電容量の線形関係が得られたことが分かる。さらに、水混入なしの潤滑油について、約25℃(室温)から約115℃まで昇温しながら静電容量を測定した。その結果を、図19にグラフで示している。このグラフから、相関が良い油温と静電容量の線形関係が得られたことが分かる。図18,図19のグラフから分かるように、静電容量は混入水分濃度と油温に依存する。変化し得る混入水分濃度と温度の範囲において、図18,図19のような関係を複数求め、目的変数を混入水分濃度、従属変数を静電容量,油温として関数にすれば、静電容量と油温から混入水分濃度を求めることができる。
なお、図18,図19のような検量線を求めるに当たっては、新油のみだけでなく、使用状況が異なる使用後油についても測定することが望ましい。
Next, using a capacitance meter 105 that can be measured even when the saturated moisture concentration is exceeded and white turbidity is obtained, the capacitance is measured by changing the moisture concentration in the lubricating oil. Lubricating oil is VG100 additive-free turbine oil used in the specific example of the rolling and sliding fatigue life test. As schematically shown in FIG. 17A, 70 to 80 mL of lubricating oil is put into a 100 mL beaker 131 (for example, the test oil tank 101 in the test apparatus of FIG. 8), pure water is mixed, and It stirred in the state hold | maintained at 33 degreeC with the magnetic stirrer 113 which can adjust temperature until it mixes. Thereafter, as shown in a schematic diagram of FIG. 17B, a capacitance meter 105 was attached and the capacitance was measured. The results are shown graphically in FIG. From this graph, it can be seen that a linear relationship between the mixed water concentration and the capacitance with good correlation was obtained. Further, the capacitance of the lubricating oil without water mixing was measured while raising the temperature from about 25 ° C. (room temperature) to about 115 ° C. The results are shown graphically in FIG. From this graph, it can be seen that a linear relationship between oil temperature and capacitance with good correlation was obtained. As can be seen from the graphs of FIGS. 18 and 19, the capacitance depends on the mixed water concentration and the oil temperature. In the range of the mixed moisture concentration and temperature that can change, if a plurality of relationships as shown in FIGS. 18 and 19 are obtained and the objective variable is a function of the mixed moisture concentration, the dependent variable is the capacitance, and the oil temperature, the capacitance And the moisture concentration can be determined from the oil temperature.
In obtaining the calibration curves as shown in FIG. 18 and FIG. 19, it is desirable to measure not only the new oil but also the used oil with different usage conditions.

このように、この実施形態の転がりすべり疲労寿命試験方法によると、試験油槽101に溜めた潤滑油5Aに被試験体を構成部品として含む転動部品模擬体3を浸漬して動作させ、潤滑油5A中に水を注入し、潤滑油5A中の混入水分濃度を静電容量と油温によって測定するようにしているので、なるべく外乱が少なく、なるべく実機を忠実に模擬して、水素脆性起因の早期損傷を効率よく起こさせ、転動部品模擬体3の使用条件に応じた対策要素が見極められるようになる。   As described above, according to the rolling and sliding fatigue life test method of this embodiment, the rolling component simulated body 3 including the test object as a component is immersed in the lubricating oil 5A stored in the test oil tank 101 and operated. Since water is injected into 5A and the mixed water concentration in lubricating oil 5A is measured by electrostatic capacity and oil temperature, the disturbance is as small as possible, and the actual machine is faithfully simulated as much as possible. Early damage is caused efficiently, and the countermeasure elements according to the use conditions of the rolling part simulated body 3 can be identified.

1…転動装置本体
2…制御装置
3…転動部品模擬体
4…ハウジング
4a…潤滑油貯留槽
5…潤滑油
6…混入水分濃度監視装置
7…静電容量検出手段
8…油温測定手段
9…水分濃度計算手段
10…異常診断手段
11…混入水分濃度検出手段
12…測定室
13…攪拌手段
16…傾斜溝(比重が重い添加物を排出させ易くする手段)
101…試験油槽
104…シリンジポンプ
105…静電容量計
106…熱電対
111…循環ポンプ
112…リザーブタンク
113…攪拌機
142…水分濃度計算手段
141…試験装置本体制御装置
146…ヘッド部
S…しきい値
DESCRIPTION OF SYMBOLS 1 ... Rolling device main body 2 ... Control device 3 ... Rolling component simulation body 4 ... Housing 4a ... Lubricating oil storage tank 5 ... Lubricating oil 6 ... Contaminated water concentration monitoring device 7 ... Capacitance detection means 8 ... Oil temperature measuring means 9 ... moisture concentration calculating means 10 ... abnormality diagnosing means 11 ... mixed water concentration detecting means 12 ... measuring chamber 13 ... stirring means 16 ... inclined groove (means for facilitating discharge of an additive having a high specific gravity)
DESCRIPTION OF SYMBOLS 101 ... Test oil tank 104 ... Syringe pump 105 ... Capacitance meter 106 ... Thermocouple 111 ... Circulation pump 112 ... Reserve tank 113 ... Stirrer 142 ... Water concentration calculation means 141 ... Test apparatus main body control apparatus 146 ... Head part S ... Threshold value

Claims (15)

油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視する混入水分濃度監視装置を設け、この混入水分濃度監視装置は、前記潤滑油中の静電容量および油温をそれぞれ検出する静電容量検出手段および油温測定手段と、これら静電容量検出手段および油温測定手段で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段とを有し、前記静電容量検出手段および前記油温測定手段が設置された静電容量および油温の測定室を、この転動装置のハウジングの内部または外部に設け、前記測定室の中の潤滑油を攪拌する攪拌手段を設け、前記水分濃度計算手段は、前記攪拌手段で攪拌した潤滑油中の混入水分濃度を検出するものとしたことを特徴とする油潤滑方式転動装置。 In the oil lubrication type rolling device, a mixed water concentration monitoring device for monitoring the mixed water concentration in the lubricating oil is provided, and the mixed water concentration monitoring device detects the capacitance and the oil temperature in the lubricating oil, respectively. Capacitance detecting means and oil temperature measuring means, and a moisture concentration calculating means for detecting the mixed water concentration from the capacitance and oil temperature detected by these capacitance detecting means and oil temperature measuring means according to a predetermined rule And a capacitance and oil temperature measurement chamber in which the capacitance detection means and the oil temperature measurement means are installed is provided inside or outside the housing of the rolling device. the lubricant provide a stirring means for stirring, said moisture concentration calculating means, an oil lubrication system rolling device according to claim stirred and to detect contamination water concentration in the lubricant and lower child with the stirring means. 請求項1において、油浴潤滑を行う潤滑油貯留槽を有する油潤滑方式転動装置。   2. The oil lubrication type rolling device according to claim 1, further comprising a lubricating oil storage tank that performs oil bath lubrication. 請求項1において、循環給油を行う循環給油手段を有する油潤滑方式転動装置。   2. The oil lubrication type rolling device according to claim 1, further comprising circulating oil supply means for performing circulating oil supply. 請求項1ないし請求項3のいずれか1項において、静電容量と油温の測定室中に溜める潤滑油量を100mL以下とし、かつ変動量を±5mL以下とする油潤滑方式転動装置。 4. The oil lubrication type rolling device according to any one of claims 1 to 3, wherein the amount of lubricating oil accumulated in the capacitance and oil temperature measurement chamber is 100 mL or less and the variation is ± 5 mL or less. 請求項1ないし請求項4のいずれか1項において、転動装置、並びに静電容量および油温の測定室から、潤滑油よりも比重が大きい水や添加物を排出され易くする手段を設けた油潤滑方式転動装置。 5. The apparatus according to claim 1, further comprising means for facilitating discharge of water and additives having a specific gravity greater than that of the lubricating oil from the rolling device and the capacitance and oil temperature measurement chambers. Oil lubrication type rolling device. 請求項1ないし請求項のいずれか1項において、水分濃度計算手段で算出された混入水分濃度をしきい値と比較し、しきい値を超える場合に異常と診断する異常診断手段を設けた油潤滑方式転動装置。 In any one of claims 1 to 5, the mixed water concentration calculated in moisture concentration calculating means is compared with the threshold value, it provided the abnormality diagnosis means for diagnosing an abnormal if exceeding a threshold Oil lubrication type rolling device. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、潤滑油中に水を注入し、静電容量と油温を測定して混入水分濃度を監視し、それをフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する転がりすべり疲労寿命試験によって求めた混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined by injecting water into the lubricating oil, measuring capacitance and oil temperature, and mixing. Monitor the moisture concentration, feed it back, and determine the threshold value of the contaminated moisture concentration determined by the rolling-slip fatigue life test that controls the amount of water injected to keep the contaminated moisture concentration within a certain range. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein a threshold value is set as a threshold value in the abnormality diagnosis means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、接触する要素間の運動機構によって接触面にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined, and a rolling-slip fatigue life test in which a slip occurs on a contact surface by a motion mechanism between contacting elements. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein the threshold value of the mixed water concentration is obtained by the method and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、接触する要素間の接触面に強制的にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined, and a rolling sliding fatigue life test forcibly causing a slip on a contact surface between contacting elements. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein the threshold value of the mixed water concentration is obtained by the method and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、損傷が起きるまで一定回転速度,一方向回転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 7. The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined by the rolling sliding fatigue life test in which the threshold value is rotated at a constant rotational speed in one direction until damage occurs. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein a concentration threshold value is obtained and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、損傷が起きるまで加減速運転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 7. The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined by a rolling-slip fatigue life test in which acceleration / deceleration operation is performed until damage occurs. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein a value is obtained and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、損傷が起きるまで揺動運動させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 7. The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined by a rolling-slip fatigue life test in which rocking motion is performed until damage occurs. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein a value is obtained and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、揺動運動で損傷を振動で精度よく検出できるよう,重畳する振動成分をなるべく排除するため,サーボモータの主軸と試験部のスピンドルを直結させる機構の転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 7. The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined, and an overlapping vibration component is preferably used so that damage can be accurately detected by vibration by a swing motion. In order to eliminate this, the threshold value of the mixed moisture concentration is determined by a rolling and sliding fatigue life test of a mechanism that directly connects the spindle of the servo motor and the spindle of the test section, and this threshold value is set as a threshold value in the abnormality diagnosis means. Abnormality threshold setting method for oil lubricated rolling device. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗を促進するため、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルを絶縁する転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined, and current is passed between contact elements with the damage target as the positive electrode side to promote wear of the damage target. Therefore, a ceramic rolling element is used for the spindle support bearing, and a threshold value of the mixed moisture concentration is obtained by a rolling sliding fatigue life test that insulates the motor and the spindle of the test section. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device that is set as a threshold value in a diagnostic means. 請求項に記載の油潤滑方式転動装置において、前記異常診断手段の前記しきい値を定める方法であって、一定回転速度、一方向回転に加え、加減速運転、揺動運動が可能な転がりすべり疲労寿命試験装置によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。 7. The oil lubrication type rolling device according to claim 6 , wherein the threshold value of the abnormality diagnosing means is determined, and in addition to constant rotation speed and one-way rotation, acceleration / deceleration operation and swing motion are possible. An abnormality diagnosis threshold value setting method for an oil lubrication type rolling device, wherein a threshold value of mixed water concentration is obtained by a rolling / sliding fatigue life test device, and the obtained threshold value is set as a threshold value in the abnormality diagnosis means.
JP2011045950A 2011-03-03 2011-03-03 Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil Expired - Fee Related JP5661512B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011045950A JP5661512B2 (en) 2011-03-03 2011-03-03 Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil
PCT/JP2012/054592 WO2012117970A1 (en) 2011-03-03 2012-02-24 Status monitoring system for rolling device and status monitoring method
US14/002,878 US9335317B2 (en) 2011-03-03 2012-02-24 Status monitoring system and status monitoring method for rolling device
EP12751866.0A EP2682732B1 (en) 2011-03-03 2012-02-24 Status monitoring system for rolling device and threshold setting method for the status monitoring system
ES12751866.0T ES2657592T3 (en) 2011-03-03 2012-02-24 Status monitoring system for rolling device and threshold adjustment procedure for status monitoring system
CN201280011533.9A CN103460009B (en) 2011-03-03 2012-02-24 The condition monitoring system of tourelle and state monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045950A JP5661512B2 (en) 2011-03-03 2011-03-03 Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil

Publications (2)

Publication Number Publication Date
JP2012180921A JP2012180921A (en) 2012-09-20
JP5661512B2 true JP5661512B2 (en) 2015-01-28

Family

ID=47012280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045950A Expired - Fee Related JP5661512B2 (en) 2011-03-03 2011-03-03 Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil

Country Status (1)

Country Link
JP (1) JP5661512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489172B2 (en) 2019-05-14 2024-05-23 三浦工業株式会社 Burner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086578B2 (en) * 2017-11-22 2022-06-20 ナブテスコ株式会社 Sensor
KR102533572B1 (en) 2018-03-30 2023-05-18 닛뽕 유센 가부시키가이샤 Water contamination detection device, moisture contamination detection program, moisture contamination detection method, and moisture contamination detection system
US20190390655A1 (en) * 2018-06-20 2019-12-26 General Electric Company System and Method for Determining Water Contamination in Oil of a Wind Turbine Gearbox
KR102315083B1 (en) * 2020-01-09 2021-10-20 동국대학교 경주캠퍼스 산학협력단 Oil analysis test system with oil sensors
WO2022270248A1 (en) * 2021-06-24 2022-12-29 日本精工株式会社 Method for evaluating probability of white material flaking, and measuring device used in said evaluation method
CN117501098A (en) * 2021-06-24 2024-02-02 日本精工株式会社 Method for evaluating possibility of white tissue peeling and measuring device used for the evaluation method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127142A (en) * 1982-01-26 1983-07-28 Nippon Seiko Kk Detector for bearing defect
JPS6172667U (en) * 1984-10-18 1986-05-17
JPS62137493A (en) * 1985-12-11 1987-06-20 Kobe Steel Ltd Circulation oiling device
JPH0752119B2 (en) * 1986-12-24 1995-06-05 株式会社小野測器 Roughness estimation method for rolling element surface of rolling bearing
JPH0752479Y2 (en) * 1990-03-19 1995-11-29 石川島播磨重工業株式会社 Roll bearing lubricator for papermaking machines
JP2634495B2 (en) * 1991-02-21 1997-07-23 エヌティエヌ 株式会社 Bearings for automatic transmission
JP2000009597A (en) * 1998-06-19 2000-01-14 Nippon Seiko Kk Method of evaluating cleanness of bearing steel
JP2002181666A (en) * 2000-12-18 2002-06-26 Nsk Ltd Evaluation test method of bearing for rolling stock
JP2004044635A (en) * 2002-07-09 2004-02-12 Nsk Ltd Bearing apparatus with sensor and its manufacturing method
JP2007010643A (en) * 2005-05-30 2007-01-18 Nsk Ltd Load loading device
JP2008286662A (en) * 2007-05-18 2008-11-27 Ntn Corp Device and method for testing bearing
JP2010005688A (en) * 2008-06-30 2010-01-14 Jfe Steel Corp Method of determining condition of bearing of table roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489172B2 (en) 2019-05-14 2024-05-23 三浦工業株式会社 Burner

Also Published As

Publication number Publication date
JP2012180921A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
WO2012117970A1 (en) Status monitoring system for rolling device and status monitoring method
JP5661512B2 (en) Oil lubrication type rolling device and threshold setting method for monitoring abnormalities of moisture concentration in the lubricating oil
JP2012181169A (en) Apparatus and method for monitoring state of rolling component
JP2012181168A (en) Apparatus and method for monitoring condition of rolling device
CN104165768B (en) Bearing integrated dynamic performance test device and method
CN202189050U (en) Lubrication simulated experimental device for rolling bearing
CN100374846C (en) Work condition analogue rolling contact fatigue tester
CN106092576A (en) Multifunction bearing pilot system
Cousseau et al. Experimental measuring procedure for the friction torque in rolling bearings
KR20160012077A (en) Rolling bearing apparatus and lubrication unit
CN110107591B (en) Bearing arrangement, device and method for determining grease usage and/or remaining time
JP6072504B2 (en) Life evaluation method and life evaluation device for rolling parts
JP5653795B2 (en) Rolling and sliding fatigue life test method for steel materials
CN101393096A (en) Coatings rolling contact fatigue tester
CN110108488B (en) Rolling bearing retainer slip research experiment system
Pasaribu et al. The composition of reaction layers on rolling bearings lubricated with gear oils and its correlation with rolling bearing performance
JP2005351363A (en) Lubricant feeder
JP2016023781A (en) Rolling bearing device and oil supply unit
Mosleh et al. Role of component configuration in evaluation of accelerated rolling contact fatigue of ball bearings
CN107063687A (en) Bearing is lubricated under a kind of ring and receives oil test machine
CN206671333U (en) A kind of automotive hub lubricating grease combination property determines device
AG Rolling bearing lubrication
Wang et al. Prediction of the friction torque in grease lubricated angular contact ball bearings using grey system theory
CN114526437B (en) Rolling bearing lubrication failure judging method
Nahm et al. Rolling contact fatigue life of AISI M-50 as a function of specific film thickness ratio using a high speed RC rig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees