JP5659170B2 - Air-cooled absorption refrigerator - Google Patents

Air-cooled absorption refrigerator Download PDF

Info

Publication number
JP5659170B2
JP5659170B2 JP2012032355A JP2012032355A JP5659170B2 JP 5659170 B2 JP5659170 B2 JP 5659170B2 JP 2012032355 A JP2012032355 A JP 2012032355A JP 2012032355 A JP2012032355 A JP 2012032355A JP 5659170 B2 JP5659170 B2 JP 5659170B2
Authority
JP
Japan
Prior art keywords
air
cooled
absorber
temperature
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012032355A
Other languages
Japanese (ja)
Other versions
JP2013167430A (en
Inventor
浩伸 川村
浩伸 川村
藤居 達郎
達郎 藤居
西口 章
章 西口
武田 伸之
伸之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012032355A priority Critical patent/JP5659170B2/en
Publication of JP2013167430A publication Critical patent/JP2013167430A/en
Application granted granted Critical
Publication of JP5659170B2 publication Critical patent/JP5659170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸収器及び凝縮器の冷却を空冷で行う空冷吸収式冷凍機に関する。   The present invention relates to an air-cooled absorption refrigerator that cools an absorber and a condenser by air cooling.

吸収式冷凍機には、従来、吸収器及び凝縮器の冷却を冷却水で行う水冷式がある。水冷式の吸収式冷凍機の場合、ほぼ同じ圧力となる再生器及び凝縮器においては伝熱管の外表面で蒸発及び凝縮が行われ、ほぼ同じ圧力になる蒸発器及び吸収器においては伝熱管の外表面で蒸発及び吸収が行われる構造である。このため、冷媒蒸気流路の確保の容易さから、再生器及び凝縮器、蒸発器及び吸収器は、それぞれ並列に一体的に構成することが一般的である。   Conventionally, there is a water cooling type in which the absorber and the condenser are cooled with cooling water. In the case of a water-cooled absorption refrigerator, evaporation and condensation are performed on the outer surface of the heat transfer tube in a regenerator and condenser that have substantially the same pressure, and heat transfer tubes in an evaporator and absorber that have approximately the same pressure. It is a structure where evaporation and absorption are performed on the outer surface. For this reason, it is general that the regenerator, the condenser, the evaporator, and the absorber are integrally configured in parallel in order to ensure the refrigerant vapor flow path.

一方、吸収器及び凝縮器を空冷式とした空冷式吸収式冷凍機も提案されている。   On the other hand, an air-cooled absorption refrigerator having an air-cooled absorber and condenser has also been proposed.

特許文献1には、蒸発器及び吸収器を近接して配置した空冷吸収式冷凍装置が開示されている。   Patent Document 1 discloses an air-cooled absorption refrigeration apparatus in which an evaporator and an absorber are arranged close to each other.

特開2004−108746号公報JP 2004-108746 A

一般に、水冷式の吸収式冷凍機の場合は、冷却水を任意の温度に保つためにクーリングタワーと冷却水とを循環するポンプが別途必要になる。さらに、水質管理や性能維持のための洗浄を行う定期的なメンテナンスが必要となる。水冷式の部分を空冷化すれば、冷却水に関係する定期的なメンテナンスを低減することができる。   In general, in the case of a water-cooled absorption refrigerator, a separate pump for circulating the cooling tower and the cooling water is required to keep the cooling water at an arbitrary temperature. Furthermore, regular maintenance is required to perform cleaning for water quality management and performance maintenance. If the water-cooled portion is air-cooled, regular maintenance related to the cooling water can be reduced.

特許文献1の技術においては、小型化のために蒸発器が空気の流路内に配置されているため、蒸発器が空気の流れを遮る遮蔽体となってしまう。また、図面には記載されていないが、蒸発器と空冷吸収器とを接続する冷媒蒸気配管が空気の流路内に配置することになるため、冷媒蒸気配管も空気を遮る遮蔽体となってしまう。   In the technique of Patent Document 1, since the evaporator is disposed in the air flow path for miniaturization, the evaporator becomes a shield that blocks the air flow. Although not shown in the drawings, since the refrigerant vapor pipe connecting the evaporator and the air-cooled absorber is disposed in the air flow path, the refrigerant vapor pipe also serves as a shield that blocks air. End up.

空気が遮られた場合、空気流路の圧力損失が大きくなり、風量が小さくなり、空冷凝縮器及び空冷吸収器の熱交換効率が低下する。そのため、任意の風量を確保するには、ファン回転数を上げて電気入力を大きくせざるを得ない場合も考えられる。この場合、ファン回転数の上昇による振動や、ファンの風切り音等の騒音が問題になることも考えられる。   When the air is blocked, the pressure loss in the air flow path increases, the air volume decreases, and the heat exchange efficiency of the air-cooled condenser and air-cooled absorber decreases. For this reason, in order to secure an arbitrary air volume, it is conceivable that the fan input speed must be increased to increase the electrical input. In this case, vibrations due to an increase in the number of rotations of the fan and noise such as wind noise from the fan may be a problem.

また、空冷化に当たって水冷式と同様に配置すると、空気側の流路に蒸発器、配管等を配置することになり、これらが空冷用の空気の流れを遮って気流が乱れ、騒音の原因となる。騒音を低減するためには、空気の流速を低くする必要があるが、これに伴って熱交換効率が低下してしまう問題が生じる。   In addition, if air cooling is used in the same way as the water cooling type, evaporators, piping, etc. will be placed in the air-side flow path, which disrupts the flow of air for air cooling and disturbs the air flow, causing noise. Become. In order to reduce the noise, it is necessary to reduce the air flow velocity, but this causes a problem that the heat exchange efficiency is lowered.

そこで、本発明は、空冷吸収式冷凍機の空冷凝縮器及び空冷吸収器の周辺における気流の乱れを抑制して騒音を低減し、空冷凝縮器及び空冷吸収器における熱交換効率を向上することを目的とする。   Therefore, the present invention is to reduce noise by suppressing turbulence of airflow around the air-cooled condenser and air-cooled absorber of the air-cooled absorption refrigerator, and to improve the heat exchange efficiency in the air-cooled condenser and air-cooled absorber. Objective.

本発明は、再生器と、空冷凝縮器と、蒸発器と、空冷吸収器とを備えた空冷吸収式冷凍機において、空冷吸収器及び空冷凝縮器は、空冷ファンを設けた筺体の内部に配置し、再生器及び蒸発器は、該筺体の外部に配置したことを特徴とする。   The present invention relates to an air-cooled absorption refrigerator having a regenerator, an air-cooled condenser, an evaporator, and an air-cooled absorber, wherein the air-cooled absorber and the air-cooled condenser are disposed inside a housing provided with an air-cooling fan. However, the regenerator and the evaporator are arranged outside the casing.

本発明によれば、空冷熱交換器である空冷凝縮器及び空冷吸収器が再生器及び蒸発器と異なる区画に配置されるため、空冷凝縮器及び空冷吸収器の周辺の気流が再生器及び蒸発器並びにこれらと空冷凝縮器及び空冷吸収器と結ぶ配管等によって阻害されることなく、当該気流が乱れることによって生じる騒音を低減することができる。また、これにより、気流の流速を高くすることができるため、空冷凝縮器及び空冷吸収器における熱交換効率を向上することができる。   According to the present invention, since the air-cooled condenser and the air-cooled absorber, which are air-cooled heat exchangers, are arranged in different sections from the regenerator and the evaporator, the airflow around the air-cooled condenser and the air-cooled absorber is regenerated and evaporated. The noise generated by the turbulence of the airflow can be reduced without being hindered by the pipes connecting these to the air-cooled condenser and the air-cooled absorber. Moreover, since the flow velocity of an airflow can be made high by this, the heat exchange efficiency in an air cooling condenser and an air cooling absorber can be improved.

実施例1の空冷単効用吸収式冷凍機を示す全体構成図である。1 is an overall configuration diagram showing an air-cooled single-effect absorption refrigerator of Example 1. FIG. 実施例1の空冷単効用吸収式冷凍機を示す概略斜視図である。1 is a schematic perspective view showing an air-cooled single-effect absorption refrigerator of Example 1. FIG. 実施例1の空冷単効用吸収式冷凍機の空気熱交換ユニットを示す要部縦断面図である。1 is a longitudinal sectional view of a main part showing an air heat exchange unit of an air-cooled single-effect absorption refrigerator in Example 1. 実施例2の空冷単効用吸収式冷凍機を示す全体構成図である。1 is an overall configuration diagram showing an air-cooled single-effect absorption refrigerator of Example 2. FIG. 実施例2の空冷単効用吸収式冷凍機を示す概略斜視図である。3 is a schematic perspective view showing an air-cooled single effect absorption refrigerator of Example 2. FIG. 実施例3の空冷単効用吸収式冷凍機を示す全体構成図である。FIG. 3 is an overall configuration diagram showing an air-cooled single-effect absorption refrigerator according to a third embodiment. 実施例3の空冷単効用吸収式冷凍機を示す概略斜視図である。6 is a schematic perspective view showing an air-cooled single-effect absorption refrigerator of Example 3. FIG. 実施例4の空冷単効用吸収式冷凍機を示す全体構成図である。It is a whole block diagram which shows the air-cooling single effect absorption refrigerator of Example 4. 実施例4の空冷単効用吸収式冷凍機を示す概略斜視図である。6 is a schematic perspective view showing an air-cooled single-effect absorption refrigerator of Example 4. FIG.

本発明は、吸収器を空冷化した空冷吸収器と、凝縮器を空冷化した空冷凝縮器とを蒸発器及び再生器とは別の区画に配した空冷吸収式冷凍機に関する。   The present invention relates to an air-cooled absorption refrigerator in which an air-cooled absorber in which an absorber is air-cooled and an air-cooled condenser in which a condenser is air-cooled are arranged in a separate section from an evaporator and a regenerator.

以下、本発明の具体的実施例について図面を用いて説明する。なお、各図において同一符号を付した部分は、同一或いは相当する部分を示している。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. In addition, the part which attached | subjected the same code | symbol in each figure has shown the part which is the same or it corresponds.

図1は、空冷単効用吸収式冷凍機のサイクル系統の例を示したものである。   FIG. 1 shows an example of a cycle system of an air-cooled single-effect absorption refrigerator.

空冷単効用吸収式冷凍機は、再生器1、空冷凝縮器3、蒸発器4、空冷吸収器6、溶液熱交換器7、冷媒ポンプ、溶液ポンプ9、10などを備えている。点線Aと点線A’との間に配置された部品群は、冷温水ユニットBを構成する。   The air-cooled single-effect absorption refrigerator includes a regenerator 1, an air-cooled condenser 3, an evaporator 4, an air-cooled absorber 6, a solution heat exchanger 7, a refrigerant pump, solution pumps 9, 10, and the like. A group of components arranged between the dotted line A and the dotted line A ′ constitutes a cold / hot water unit B.

再生器1は、散布装置1a(液散布部)及び伝熱管1bを内蔵したものである。再生器1と空冷凝縮器3とは、冷媒蒸気配管2(高温冷媒蒸気配管)で接続されている。蒸発器4は、散布装置4a(液散布部)と伝熱管4bとを内蔵したものである。蒸発器4と空冷吸収器6とは、冷媒蒸気配管5(低温冷媒蒸気配管)で接続されている。   The regenerator 1 includes a spraying device 1a (liquid spraying unit) and a heat transfer tube 1b. The regenerator 1 and the air-cooled condenser 3 are connected by a refrigerant vapor pipe 2 (high-temperature refrigerant vapor pipe). The evaporator 4 includes a spraying device 4a (liquid spraying unit) and a heat transfer tube 4b. The evaporator 4 and the air-cooled absorber 6 are connected by a refrigerant vapor pipe 5 (low temperature refrigerant vapor pipe).

伝熱管1b内を加熱源となる温水が流れ、溶液(吸収液)が散布装置1aから伝熱管1bに向かって散布される。散布された溶液は、伝熱管1bの外面を流下し、温水により加熱されて一部が蒸発するため、冷媒蒸気が発生する。これにより、濃度の薄い溶液を濃度の濃い溶液に濃縮して再生する。   Hot water as a heating source flows through the heat transfer tube 1b, and the solution (absorbing liquid) is sprayed from the spraying device 1a toward the heat transfer tube 1b. The sprayed solution flows down the outer surface of the heat transfer tube 1b and is heated by warm water to partially evaporate, so that refrigerant vapor is generated. As a result, the solution having a low concentration is concentrated and regenerated to a solution having a high concentration.

再生器1には、例えば90℃の温水が供給され、伝熱管1bの外面を流れる溶液を加熱することで、温水は85℃まで冷却される。一方、溶液を加熱濃縮することで発生する冷媒蒸気は、冷媒蒸気配管2を介して空冷凝縮器3に流入する。   For example, warm water of 90 ° C. is supplied to the regenerator 1, and the hot water is cooled to 85 ° C. by heating the solution flowing on the outer surface of the heat transfer tube 1 b. On the other hand, the refrigerant vapor generated by heating and concentrating the solution flows into the air-cooled condenser 3 through the refrigerant vapor pipe 2.

空冷凝縮器3は、上部ヘッダ3a(凝縮器上部ヘッダ)と、伝熱管及び空冷用フィンを有する空冷熱交換器3bと、下部ヘッダ3c(凝縮器下部ヘッダ)とで構成されている。再生器1からの冷媒蒸気は、冷媒蒸気配管2を介して上部ヘッダ3aに導かれる。空冷熱交換器3bでは、伝熱管内の冷媒蒸気が伝熱管外を流れる冷却空気で冷やされて凝縮液化し、液冷媒(水)となる。   The air-cooled condenser 3 includes an upper header 3a (condenser upper header), an air-cooling heat exchanger 3b having heat transfer tubes and air-cooling fins, and a lower header 3c (condenser lower header). The refrigerant vapor from the regenerator 1 is guided to the upper header 3a through the refrigerant vapor pipe 2. In the air-cooling heat exchanger 3b, the refrigerant vapor in the heat transfer tube is cooled by the cooling air flowing outside the heat transfer tube, and is condensed and liquefied to become liquid refrigerant (water).

空冷凝縮器3で凝縮液化した液冷媒は、溶液配管11を介して蒸発器4に導かれる。   The liquid refrigerant condensed and liquefied by the air-cooled condenser 3 is guided to the evaporator 4 through the solution pipe 11.

蒸発器4に導かれた液冷媒は、一旦、蒸発器4の下部に溜められ、溶液配管14及び冷媒ポンプ8を介して散布装置4aに導かれ、伝熱管4bの外表面に散布される。伝熱管4bの外表面を流下する液冷媒は、伝熱管4bの内部を流れる冷水によって加熱されて一部が蒸発するため、冷媒蒸気が発生する。冷媒蒸気は、冷媒蒸気配管5を介して空冷吸収器6に流入する。   The liquid refrigerant led to the evaporator 4 is once stored in the lower part of the evaporator 4, led to the spraying device 4a via the solution pipe 14 and the refrigerant pump 8, and sprayed on the outer surface of the heat transfer tube 4b. The liquid refrigerant flowing down the outer surface of the heat transfer tube 4b is heated by the cold water flowing inside the heat transfer tube 4b and partly evaporates, so that refrigerant vapor is generated. The refrigerant vapor flows into the air-cooled absorber 6 through the refrigerant vapor pipe 5.

一方、伝熱管4bの内部を流れる冷水は、冷媒蒸気が発生する際の蒸発潜熱により冷却される。例えば、蒸発器4内の圧力が約800Paで液冷媒(水)の飽和温度約4℃のときに、蒸発器4の伝熱管4bに12℃で流入した冷水は、蒸発潜熱で7℃まで冷やされ、冷熱として供給される。   On the other hand, the cold water flowing inside the heat transfer tube 4b is cooled by latent heat of vaporization when the refrigerant vapor is generated. For example, when the pressure in the evaporator 4 is about 800 Pa and the saturation temperature of the liquid refrigerant (water) is about 4 ° C., the cold water flowing into the heat transfer tube 4b of the evaporator 4 at 12 ° C. is cooled to 7 ° C. by the latent heat of evaporation. And supplied as cold heat.

再生器1で濃縮された溶液は、溶液配管13及び溶液ポンプ9を介して空冷吸収器6に導かれる。   The solution concentrated in the regenerator 1 is guided to the air-cooled absorber 6 through the solution pipe 13 and the solution pump 9.

空冷吸収器6は、上部ヘッダ6a(吸収器上部ヘッダ)と、伝熱管及び空冷用フィンを有する空冷熱交換器6bと、下部ヘッダ6c(吸収器下部ヘッダ)とで構成されている。再生器1からの溶液は、空冷吸収器6の上部ヘッダ6aに導かれ、空冷熱交換器6bの伝熱管内を蒸発器4からの冷媒蒸気を吸収しながら流下する。溶液が冷媒蒸気を吸収する際に発生する吸収熱は、空気熱交換器6bの外表面を流れる冷却空気と熱交換して外気へ放出される。   The air-cooled absorber 6 includes an upper header 6a (absorber upper header), an air-cooled heat exchanger 6b having heat transfer tubes and air-cooling fins, and a lower header 6c (absorber lower header). The solution from the regenerator 1 is led to the upper header 6a of the air-cooled absorber 6 and flows down while absorbing the refrigerant vapor from the evaporator 4 in the heat transfer tube of the air-cooled heat exchanger 6b. The absorption heat generated when the solution absorbs the refrigerant vapor is exchanged with the cooling air flowing on the outer surface of the air heat exchanger 6b and released to the outside air.

冷媒蒸気を吸収して濃度の薄くなった溶液は、下部ヘッダ6cから溶液配管12及び溶液ポンプ10を介して再生器1に流入する。溶液配管12と溶液配管13とは、溶液熱交換器7において熱交換するようになっている。これにより、再生器1で加熱濃縮された高温度の溶液の顕熱を回収し、空冷吸収器6からの比較的低温度の溶液を予熱することができる。   The solution having a reduced concentration by absorbing the refrigerant vapor flows into the regenerator 1 from the lower header 6 c through the solution pipe 12 and the solution pump 10. The solution pipe 12 and the solution pipe 13 exchange heat in the solution heat exchanger 7. Thereby, the sensible heat of the high temperature solution heated and concentrated in the regenerator 1 can be recovered, and the relatively low temperature solution from the air-cooled absorber 6 can be preheated.

なお、この実施例において、溶液(吸収液)に含まれる吸収剤は臭化リチウムであり、冷媒は水である。しかし、吸収剤に関しては、臭化リチウムに必ずしも限定されるものではなく、塩化リチウム等の他の塩を用いても本発明は適用可能である。   In this embodiment, the absorbent contained in the solution (absorbing liquid) is lithium bromide, and the refrigerant is water. However, the absorbent is not necessarily limited to lithium bromide, and the present invention can also be applied using other salts such as lithium chloride.

図2Aは、本実施例の空冷単効用吸収式冷凍機を示す概略斜視図である。   FIG. 2A is a schematic perspective view showing the air-cooled single-effect absorption refrigerator of the present embodiment.

本図に示す空冷単効用吸収式冷凍機は、再生器1及び蒸発器4を含む冷温水ユニットBと、空冷凝縮器3及び空冷吸収器6を1つの区画にまとめた空気熱交換ユニットCとを分けて配置したものである。   The air-cooled single-effect absorption refrigerator shown in the figure includes a cold / hot water unit B including a regenerator 1 and an evaporator 4, and an air heat exchange unit C in which the air-cooled condenser 3 and the air-cooled absorber 6 are combined into one section. Are arranged separately.

冷温水ユニットBは、このほか、再生器1及び蒸発器4の下方の破線部分16に収納した溶液熱交換7、冷媒ポンプ8及び溶液ポンプ9、10を含む。   In addition, the cold / hot water unit B includes a solution heat exchange 7, a refrigerant pump 8, and solution pumps 9 and 10 housed in a broken line portion 16 below the regenerator 1 and the evaporator 4.

空気熱交換ユニットCは、このほか、空冷ファン15を有し、空冷凝縮器3及び空冷吸収器6の下方の破線部分17に収納した溶液配管11及び溶液配管12を含む。空冷ファン15は、空冷熱交換ユニットCの上部に配置してあり、空冷凝縮器3と空冷吸収器6との間に設けた空間を負圧にして、空冷凝縮器3及び空冷吸収器6に空冷用の気流を供給する。   In addition, the air heat exchange unit C includes an air cooling fan 15 and includes a solution pipe 11 and a solution pipe 12 housed in a broken line portion 17 below the air cooling condenser 3 and the air cooling absorber 6. The air-cooling fan 15 is disposed at the upper part of the air-cooling heat exchange unit C, and the space provided between the air-cooling condenser 3 and the air-cooling absorber 6 is set to a negative pressure so that the air-cooling condenser 3 and the air-cooling absorber 6 are provided. Supply airflow for air cooling.

異なる区画に配置した冷温水ユニットBと空気熱交換ユニットCとは、冷媒蒸気配管2、5並びに図1の溶液配管11、12、13で接続してあり、これにより、吸収式冷凍機のサイクルを成り立たせている。特に、冷媒蒸気配管2、5は、冷媒蒸気の圧力損失が性能低下の要因となるため、図2Aのように直管で接続してある。   The cold / hot water unit B and the air heat exchange unit C arranged in different compartments are connected by the refrigerant vapor pipes 2 and 5 and the solution pipes 11, 12, and 13 in FIG. Is established. In particular, the refrigerant vapor pipes 2 and 5 are connected by straight pipes as shown in FIG. 2A because the pressure loss of the refrigerant vapor causes a decrease in performance.

また、図1の溶液配管11は、空冷凝縮器3の下部ヘッダ3cと蒸発器4を接続するものであり、破線部分16、17を通るように配置することができる。図1に示すように、溶液配管12は、溶液ポンプ10と空冷吸収器6の下部ヘッダ6cとを接続するものであり、破線部分16、17を通るように配置することができる。図1に示すように、溶液配管13は、溶液ポンプ9と空冷吸収器6の上部ヘッダ6aとを接続するものであり、溶液ポンプ9が配置される破線部分16から溶液配管13を立上げる必要があるが、冷温水ユニットBの区画内で立上げて空冷吸収器6の上部ヘッダ6aに接続される。   1 connects the lower header 3c of the air-cooled condenser 3 and the evaporator 4, and can be disposed so as to pass through the broken line portions 16 and 17. As shown in FIG. 1, the solution pipe 12 connects the solution pump 10 and the lower header 6 c of the air-cooled absorber 6 and can be disposed so as to pass through the broken line portions 16 and 17. As shown in FIG. 1, the solution pipe 13 connects the solution pump 9 and the upper header 6 a of the air-cooled absorber 6, and it is necessary to start the solution pipe 13 from the broken line portion 16 where the solution pump 9 is disposed. However, it is raised in the compartment of the cold / hot water unit B and connected to the upper header 6 a of the air-cooled absorber 6.

また、図2Aにおいては、空気熱交換ユニットCの冷温水ユニットB側とその反対側は開放されているようになっているが、実際には閉鎖されている。また、空冷凝縮器3と空冷吸収器6の下部の破線部分17の周囲も閉鎖され、冷却空気のほぼ全量が空気熱交換ユニットCの空冷熱交部分を流れるようになっている。   Moreover, in FIG. 2A, although the cold / hot water unit B side and the opposite side of the air heat exchange unit C are open, they are actually closed. Further, the periphery of the broken line portion 17 below the air-cooled condenser 3 and the air-cooled absorber 6 is also closed, so that almost the entire amount of cooling air flows through the air-cooled heat exchanger portion of the air heat exchange unit C.

図2Bは、実施例1の空冷単効用吸収式冷凍機の空気熱交換ユニットを示す要部縦断面図である。   FIG. 2B is a longitudinal sectional view of a main part showing an air heat exchange unit of the air-cooled single effect absorption refrigerator of the first embodiment.

本図において、空気熱交換ユニット100は、空冷凝縮器3と、空冷吸収器6と、筺体101と、空冷ファン15とを含む構成である。図2Aに示す空気熱交換ユニットCの破線部分17は省略してある。   In the figure, the air heat exchange unit 100 includes an air-cooled condenser 3, an air-cooled absorber 6, a housing 101, and an air-cooling fan 15. The broken line portion 17 of the air heat exchange unit C shown in FIG. 2A is omitted.

筺体101の内部には、空冷凝縮器3と、空冷吸収器6とが収納してある。   An air-cooled condenser 3 and an air-cooled absorber 6 are accommodated in the housing 101.

空冷凝縮器3は、上部ヘッダ3a、下部ヘッダ3c、伝熱管131(凝縮器伝熱管)及び空冷用フィン132で構成してある。再生器から送られた冷媒蒸気は、上部ヘッダ3aから流入し、伝熱管131を通って下部ヘッダ3cに至る過程で凝縮して液体となる。空冷用フィン132は、伝熱管131の外表面の伝熱面積を拡大するものである。   The air-cooled condenser 3 includes an upper header 3a, a lower header 3c, a heat transfer tube 131 (condenser heat transfer tube), and air-cooling fins 132. The refrigerant vapor sent from the regenerator flows in from the upper header 3a, condenses into a liquid in the process of reaching the lower header 3c through the heat transfer tube 131. The air cooling fins 132 are for expanding the heat transfer area of the outer surface of the heat transfer tube 131.

空冷吸収器6は、上部ヘッダ6a、下部ヘッダ6c、伝熱管161(吸収器伝熱管)及び空冷用フィン162で構成してある。蒸発器から送られた冷媒蒸気は、上部ヘッダ6aから流入し、伝熱管161を通って下部ヘッダ6cに至る過程で、上部ヘッダ6aから供給される吸収液に吸収される。空冷用フィン162は、伝熱管161の外表面の伝熱面積を拡大するものである。   The air-cooled absorber 6 includes an upper header 6a, a lower header 6c, a heat transfer tube 161 (absorber heat transfer tube), and air-cooling fins 162. The refrigerant vapor sent from the evaporator flows in from the upper header 6a and is absorbed by the absorbing liquid supplied from the upper header 6a in the process of reaching the lower header 6c through the heat transfer pipe 161. The air cooling fin 162 expands the heat transfer area of the outer surface of the heat transfer tube 161.

筺体101の上部には、空冷ファン15が設けてある。そして、筺体101の側面部には、空冷凝縮器3及び空冷吸収器6に空冷用の吸い込み空気を供給するためのグリル133、163が設けてある。白抜きの矢印は、空冷ファン15によって発生する気流の向きを表している。   An air cooling fan 15 is provided on the top of the housing 101. Further, grills 133 and 163 for supplying air-cooled suction air to the air-cooled condenser 3 and the air-cooled absorber 6 are provided on the side surface of the housing 101. The white arrow represents the direction of the airflow generated by the air cooling fan 15.

この構成により、グリル133及び空冷凝縮器3を通過した気流、並びに、グリル163及び空冷吸収器6を通過した気流は、空冷ファン15によって筺体101の上部から送り出されるようになっている。   With this configuration, the airflow that has passed through the grill 133 and the air-cooled condenser 3 and the airflow that has passed through the grill 163 and the air-cooled absorber 6 are sent out from the upper portion of the housing 101 by the air-cooling fan 15.

本図に示すように、筺体101の内部には、再生器1も蒸発器4もなく、冷媒溶液配管14は、筺体101の側面部に設けてあるため、空冷ファン15によって発生する気流が妨害されることもなく、当該気流の流路面積が十分に確保され、当該気流の乱れも低減され、この乱れによる騒音も低減することができる。   As shown in this figure, since the regenerator 1 and the evaporator 4 are not provided inside the housing 101 and the refrigerant solution pipe 14 is provided on the side surface of the housing 101, the air flow generated by the air cooling fan 15 is obstructed. Accordingly, the flow area of the airflow is sufficiently secured, the turbulence of the airflow is reduced, and the noise due to the turbulence can be reduced.

また、本実施例の空冷単効用吸収式冷凍機においては、冷温水ユニットBと空気熱交換ユニットCとを異なる区画に配置してあるため、空気熱交換ユニットCの空冷熱交換器の部位から空冷ファン15までの流路に、冷却空気の流れを遮る部品等が少なくて済む。このため、空気熱交換ユニットCを構成する空冷凝縮器3及び空冷吸収器6の熱交換効率の向上を図ることができる。   Further, in the air-cooled single effect absorption refrigerator of the present embodiment, since the cold / hot water unit B and the air heat exchange unit C are arranged in different sections, the air-cooled heat exchanger part of the air heat exchange unit C is used. The flow path to the air cooling fan 15 requires fewer parts and the like that block the flow of cooling air. For this reason, the heat exchange efficiency of the air cooling condenser 3 and the air cooling absorber 6 which comprises the air heat exchange unit C can be aimed at.

図3は、空冷単効用吸収式冷凍機のサイクル系統の他の例を示したものである。図4は、図3の空冷単効用吸収式冷凍機の構成部品の配置を示したものである。   FIG. 3 shows another example of a cycle system of an air-cooled single-effect absorption refrigerator. FIG. 4 shows the arrangement of the components of the air-cooled single-effect absorption refrigerator shown in FIG.

以下、実施例1と異なっている構成及び作用について説明する。   Hereinafter, configurations and operations different from those of the first embodiment will be described.

本実施例は、複数個の空気熱交換ユニットを備えたものである。   In this embodiment, a plurality of air heat exchange units are provided.

先ず、図3を用いてサイクル系統について説明する。   First, the cycle system will be described with reference to FIG.

本図に示す空冷単効用吸収式冷凍機においては、空冷凝縮器3に増設空冷凝縮器20を接続してある。また、空冷吸収器6に増設空冷吸収器21を接続してある。増設空冷凝縮器20は、上部ヘッダ20aと空冷熱交換器20bと下部ヘッダ20cとを含む。増設空冷吸収器21は、上部ヘッダ21aと空冷熱交換器21bと下部ヘッダ21cとを含む。   In the air-cooled single effect absorption refrigerator shown in the figure, an additional air-cooled condenser 20 is connected to the air-cooled condenser 3. Further, an additional air-cooled absorber 21 is connected to the air-cooled absorber 6. The additional air-cooled condenser 20 includes an upper header 20a, an air-cooled heat exchanger 20b, and a lower header 20c. The additional air-cooled absorber 21 includes an upper header 21a, an air-cooled heat exchanger 21b, and a lower header 21c.

具体的には、空冷凝縮器3側については、冷媒蒸気配管2を接続した上部ヘッダ3aの反対側に冷媒蒸気配管22(高温冷媒蒸気配管)を設け、増設空冷凝縮器20の上部ヘッダ20aに接続してある。また、溶液配管11の途中に合流点Xを設け、合流点Xと増設空冷凝縮器20の下部ヘッダ20cとを溶液配管23で接続してある。   Specifically, on the air-cooled condenser 3 side, a refrigerant vapor pipe 22 (high-temperature refrigerant vapor pipe) is provided on the opposite side of the upper header 3a to which the refrigerant vapor pipe 2 is connected, and the upper header 20a of the additional air-cooled condenser 20 is provided. Connected. A junction point X is provided in the middle of the solution pipe 11, and the junction point X and the lower header 20 c of the additional air-cooled condenser 20 are connected by a solution pipe 23.

空冷吸収器6側については、冷媒蒸気配管5を接続した上部ヘッダ6aの反対側に冷媒蒸気配管25(低温冷媒蒸気配管)を設け、増設空冷吸収器21の上部ヘッダ21aに接続してある。また、溶液配管12の途中に合流点Zを設け、合流点Zと増設空冷吸収器21の下部ヘッダ21cとを溶液配管27で接続してある。また、溶液配管13の途中に分岐点Yを設け、分岐点Yと増設空冷吸収器21の上部ヘッダ21aとを溶液配管24で接続してある。   On the air-cooled absorber 6 side, a refrigerant vapor pipe 25 (low-temperature refrigerant vapor pipe) is provided on the opposite side of the upper header 6 a to which the refrigerant vapor pipe 5 is connected, and is connected to the upper header 21 a of the additional air-cooled absorber 21. A junction point Z is provided in the middle of the solution pipe 12, and the junction point Z and the lower header 21 c of the additional air-cooled absorber 21 are connected by a solution pipe 27. A branch point Y is provided in the middle of the solution pipe 13, and the branch point Y and the upper header 21 a of the additional air-cooled absorber 21 are connected by a solution pipe 24.

次に、動作について説明する。   Next, the operation will be described.

空冷凝縮器3側では、再生器1からの冷媒蒸気が空冷凝縮器3の上部ヘッダ3aに導かれるとともに、冷媒蒸気配管22で増設空冷凝縮器20の上部ヘッダ20aに導かれ、それぞれの空冷熱交換器3b、20bで冷却空気と熱交換して凝縮液化し、増設空冷凝縮器20の液冷媒は溶液配管23を通り、合流点Xで空冷凝縮器3の液冷媒と合流して蒸発器4に導かれる。空冷吸収器6側では、蒸発器4からの冷媒蒸気は、空冷吸収器6の上部ヘッダ6aに導かれるとともに、冷媒蒸気配管25で増設空冷吸収器21の上部ヘッダ21aに導かれ、再生器1からの溶液によって吸収され、それぞれの空冷熱交換器6b、21bの伝熱管内を流下し、冷却空気と熱交換して吸収熱を外気へ放出する。増設空冷吸収器21の溶液は、溶液配管27を通り、合流点Zで空冷吸収器6の溶液と合流して溶液ポンプ10に導かれる。また、再生器1からの溶液は、溶液配管13の途中に設けた分岐点Yで二分され、一方が空冷吸収器6の上部ヘッダ6aに導かれ、もう一方が溶液配管24で増設空冷吸収器21の上部ヘッダ21aに導かれる。   On the air-cooled condenser 3 side, the refrigerant vapor from the regenerator 1 is led to the upper header 3a of the air-cooled condenser 3, and is also led to the upper header 20a of the additional air-cooled condenser 20 through the refrigerant vapor pipe 22, and each air-cooled heat is supplied. Heat exchange with cooling air is performed in the exchangers 3b and 20b to condense and liquefy, and the liquid refrigerant in the additional air-cooled condenser 20 passes through the solution pipe 23 and merges with the liquid refrigerant in the air-cooled condenser 3 at the junction X. Led to. On the air-cooled absorber 6 side, the refrigerant vapor from the evaporator 4 is guided to the upper header 6a of the air-cooled absorber 6, and is also led to the upper header 21a of the additional air-cooled absorber 21 by the refrigerant vapor pipe 25. Is absorbed by the solution from the air and flows down in the heat transfer tubes of the air-cooling heat exchangers 6b and 21b, and exchanges heat with the cooling air to release the absorbed heat to the outside air. The solution in the additional air-cooled absorber 21 passes through the solution pipe 27, joins the solution in the air-cooled absorber 6 at the junction Z, and is guided to the solution pump 10. Further, the solution from the regenerator 1 is divided into two at a branch point Y provided in the middle of the solution pipe 13, one is led to the upper header 6 a of the air-cooled absorber 6, and the other is an additional air-cooled absorber via the solution pipe 24. 21 to the upper header 21a.

次に、図4を用いて説明する。   Next, it demonstrates using FIG.

本図に示す符号Dは、図3の増設空冷凝縮器20と増設空冷吸収器21とを1つの区画にまとめた空気熱交換ユニットを示したものである。   Reference numeral D shown in the figure indicates an air heat exchange unit in which the additional air-cooled condenser 20 and the additional air-cooled absorber 21 shown in FIG. 3 are combined into one section.

本実施例の空冷単効用吸収式冷凍機は、実施例1の空冷単効用吸収式冷凍機に主に増設空冷凝縮器20及び増設空冷吸収器21を追加したものであり、図4に示すように、冷温水ユニットBと空気熱交換ユニットCと空気熱交換ユニットDとが異なる区画に配置してある。   The air-cooled single-effect absorption refrigerator of this embodiment is obtained by adding an additional air-cooled condenser 20 and an additional air-cooled absorber 21 to the air-cooled single-effect absorption refrigerator of Example 1 as shown in FIG. Further, the cold / hot water unit B, the air heat exchange unit C, and the air heat exchange unit D are arranged in different sections.

空冷熱交換ユニットDは、空気熱交換ユニットCと同様に、その上部に空冷ファン15を配置し、増設空冷凝縮器20と増設空冷吸収器21との間に空冷ファン15を挟むように配置したものである。破線部分26には、増設空冷凝縮器20の下部ヘッダ20cと接続する溶液配管23、及び、増設空冷吸収器21の下部ヘッダ21cと接続する溶液配管27が配置してある。冷媒蒸気配管22及び冷媒蒸気配管25は、冷媒蒸気の圧力損失が性能低下の要因となるため、図4に示すように直管で接続してある。また、溶液配管23は、増設空冷凝縮器20の下部ヘッダ20cと合流点Xとを接続するものであり、破線部分17、26を通るように配置することができる。溶液配管27は、合流点Zと増設空冷吸収器21の下部ヘッダ21cと接続するものであり、破線部分17、26を通るように配置することができる。溶液配管24は、例えば、空冷吸収器3の上部ヘッダ3aの上面部を通って増設空冷吸収器21の上部ヘッダ21aに接続することができる。   As with the air heat exchange unit C, the air cooling heat exchange unit D has the air cooling fan 15 disposed on the upper part thereof, and the air cooling fan 15 is disposed between the additional air cooling condenser 20 and the additional air cooling absorber 21. Is. In the broken line portion 26, a solution pipe 23 connected to the lower header 20 c of the additional air-cooled condenser 20 and a solution pipe 27 connected to the lower header 21 c of the additional air-cooled absorber 21 are arranged. The refrigerant vapor pipe 22 and the refrigerant vapor pipe 25 are connected by a straight pipe as shown in FIG. 4 because the pressure loss of the refrigerant vapor causes a decrease in performance. The solution pipe 23 connects the lower header 20c of the additional air-cooled condenser 20 and the junction X, and can be arranged so as to pass through the broken line portions 17 and 26. The solution pipe 27 is connected to the junction Z and the lower header 21c of the additional air-cooled absorber 21, and can be arranged so as to pass through the broken line portions 17 and 26. The solution pipe 24 can be connected to the upper header 21 a of the additional air-cooled absorber 21 through the upper surface portion of the upper header 3 a of the air-cooled absorber 3, for example.

また、図4においては、空気熱交換ユニットDの空気熱交換ユニットC側とその反対側は開放されているようになっているが、実際には閉鎖されている。この点は、図2Bに示す筺体101を2つ並べた構成であるということができる。   In FIG. 4, the air heat exchange unit D side of the air heat exchange unit C and the opposite side are open, but are actually closed. In this respect, it can be said that the two casings 101 shown in FIG. 2B are arranged side by side.

また、増設空冷凝縮器20及び増設空冷吸収器21の下方の破線部分26の周囲も閉鎖され、空冷熱交換ユニットDを流れる冷却空気のほぼ全量が空気熱交換ユニットDの空冷熱交換器の部分を流れるようになっている。   Further, the periphery of the broken line portion 26 below the additional air-cooled condenser 20 and the additional air-cooled absorber 21 is also closed, and almost all of the cooling air flowing through the air-cooled heat exchange unit D is part of the air-cooled heat exchanger of the air heat exchange unit D. It is supposed to flow through.

以上にように、構成し、配置することにより、本実施例の空冷単効用吸収式冷凍機は、次に述べる効果を有する。   By configuring and arranging as described above, the air-cooled single-effect absorption refrigerator of this embodiment has the following effects.

再生器1の加熱源となる温水の温度が一定の場合、空冷凝縮器3及び空冷吸収器6を流れる冷却空気の温度が高くなると、溶液側と冷却空気との温度差が小さくなり、同じ交換熱量を得ようとすると温度差が小さくなった分の伝熱面積が不足する。このため、蒸発器4から供給できる冷熱の量(冷凍能力)が減少する。この場合、一般には、冷凍能力が不足する分は、空冷単効用吸収式冷凍機の台数を増やす、あるいは、冷凍能力の大きいものを選定することが考えられる。   When the temperature of the hot water serving as the heating source of the regenerator 1 is constant, the temperature difference between the solution side and the cooling air becomes smaller and the same exchange occurs when the temperature of the cooling air flowing through the air-cooled condenser 3 and the air-cooled absorber 6 increases. When the amount of heat is obtained, the heat transfer area is insufficient as the temperature difference is reduced. For this reason, the quantity (refrigeration capacity) of the cold heat which can be supplied from the evaporator 4 decreases. In this case, in general, it is conceivable to increase the number of air-cooled single-effect absorption chillers or to select one having a large refrigerating capacity for the shortage of refrigerating capacity.

これに対して、本実施例においては、冷却空気が高くなる条件で、冷温水ユニットBは実施例1と同様とし、空冷吸収器3に増設空冷吸収器21を追加し、空冷凝縮器3に増設空冷凝縮器20を追加することにより、吸収器及び凝縮器の伝熱面積を容易に増加することができる。   On the other hand, in the present embodiment, under the condition that the cooling air becomes high, the cold / hot water unit B is the same as in the first embodiment, the additional air-cooled absorber 21 is added to the air-cooled absorber 3, and the air-cooled condenser 3 is added. By adding the additional air-cooled condenser 20, the heat transfer area of the absorber and the condenser can be easily increased.

本実施例の構成は、空気熱交換ユニットC、Dをパッケージ化しているため、増設空冷吸収器21及び増設空冷凝縮器20の追加が容易であることが特徴である。これにより、冷凍能力を容易に増強することができ、空冷単効用吸収式冷凍機のイニシャルコストを低減することができる。   The configuration of the present embodiment is characterized in that since the air heat exchange units C and D are packaged, it is easy to add the additional air-cooled absorber 21 and the additional air-cooled condenser 20. Thereby, the refrigerating capacity can be easily increased, and the initial cost of the air-cooled single-effect absorption refrigerator can be reduced.

また、本実施例においても、空気熱交換ユニットDの空冷熱交換器の部位から空冷ファン15までの流路に、冷却空気の流れを遮る部品等が少なくて済む。このため、空気熱交換ユニットDを構成する増設空冷凝縮器20及び増設空冷吸収器20の熱交換効率の向上を図ることができる。   Also in the present embodiment, the number of components that block the flow of cooling air in the flow path from the air cooling heat exchanger portion of the air heat exchange unit D to the air cooling fan 15 can be reduced. For this reason, it is possible to improve the heat exchange efficiency of the additional air-cooled condenser 20 and the additional air-cooled absorber 20 constituting the air heat exchange unit D.

図5は、空冷単効用吸収式冷凍機のサイクル系統の他の例を示したものである。図6は、図5の空冷単効用吸収式冷凍機の構成部品の配置を示したものである。   FIG. 5 shows another example of a cycle system of an air-cooled single-effect absorption refrigerator. FIG. 6 shows the arrangement of the components of the air-cooled single-effect absorption refrigerator shown in FIG.

以下、実施例1と異なっている構成及び作用について説明する。   Hereinafter, configurations and operations different from those of the first embodiment will be described.

先ず、図5を用いてサイクル系統について説明する。   First, the cycle system will be described with reference to FIG.

本図に示す空冷単効用吸収式冷凍機においては、蒸発器及び空冷吸収器が、それぞれ2つに分かれている。すなわち、内部の圧力の異なる低温蒸発器50及び高温蒸発器51並びに空冷低温吸収器52及び空冷高温吸収器53を組み合わせた構成である。   In the air-cooled single-effect absorption refrigerator shown in the figure, the evaporator and the air-cooled absorber are each divided into two. That is, this is a combination of the low-temperature evaporator 50 and the high-temperature evaporator 51, the air-cooled low-temperature absorber 52 and the air-cooled high-temperature absorber 53 having different internal pressures.

本図においては、低温蒸発器50の気相部と空冷低温吸収器52の上部ヘッダ52aとが冷媒蒸気配管56(第一の低温冷媒蒸気配管)で接続してあり、高温蒸発器51の気相部と空冷高温吸収器53の上部ヘッダ53aとが冷媒蒸気配管57(第二の低温冷媒蒸気配管)で接続してある。また、液冷媒は、冷媒ポンプ8で低温蒸発器50に導かれ、散布装置50aから伝熱管50bに散布される。蒸発せずに残った液冷媒は、一旦、低温蒸発器50の下部に溜められた後、液ヘッドを利用して高温蒸発器51の散布装置51aから伝熱管51bに散布される。伝熱管50b、51bの内部には、冷水が流れるようになっている。冷水は、冷媒の蒸発によって冷却される。   In this figure, the gas phase portion of the low-temperature evaporator 50 and the upper header 52a of the air-cooled low-temperature absorber 52 are connected by a refrigerant vapor pipe 56 (first low-temperature refrigerant vapor pipe). The phase part and the upper header 53a of the air-cooled high-temperature absorber 53 are connected by a refrigerant vapor pipe 57 (second low-temperature refrigerant vapor pipe). Further, the liquid refrigerant is guided to the low temperature evaporator 50 by the refrigerant pump 8, and is sprayed from the spraying device 50a to the heat transfer tube 50b. The liquid refrigerant remaining without being evaporated is once stored in the lower part of the low-temperature evaporator 50 and then sprayed from the spraying device 51a of the high-temperature evaporator 51 to the heat transfer tube 51b using the liquid head. Cold water flows through the heat transfer tubes 50b and 51b. The cold water is cooled by evaporation of the refrigerant.

一方、再生器1からの溶液は、溶液ポンプ9で空冷低温吸収器52の上部ヘッダ52aに導かれ、低温蒸発器50からの冷媒蒸気を吸収しながら空冷熱交換器52bの伝熱管内を流下し、下部ヘッダ52cで一旦溜められる。下部ヘッダ52cに溜められた溶液は、液ヘッドを利用して空冷高温吸収器53の上部ヘッダ53aに導かれ、高温蒸発器51からの冷媒蒸気を吸収しながら空冷熱交換器53bの伝熱管内を流下する。なお、蒸発器の冷水は、高温蒸発器51、低温蒸発器50の順で流すようになっている。   On the other hand, the solution from the regenerator 1 is guided to the upper header 52a of the air-cooled low-temperature absorber 52 by the solution pump 9, and flows down in the heat transfer tube of the air-cooled heat exchanger 52b while absorbing the refrigerant vapor from the low-temperature evaporator 50. Then, it is temporarily stored in the lower header 52c. The solution stored in the lower header 52c is guided to the upper header 53a of the air-cooled high-temperature absorber 53 by using the liquid head, and absorbs the refrigerant vapor from the high-temperature evaporator 51 while in the heat transfer tube of the air-cooled heat exchanger 53b. Flow down. Note that the cold water of the evaporator flows in the order of the high temperature evaporator 51 and the low temperature evaporator 50.

また、本図において、点線Aと点線A’との間に配置された部品群は、冷温水ユニットEを構成する。   In the drawing, a group of components arranged between a dotted line A and a dotted line A ′ constitutes a cold / hot water unit E.

次に、図6を用いて説明する。   Next, a description will be given with reference to FIG.

本図に示す符号Eは、図5の再生器1と低温蒸発器50と高温蒸発器51とを1つの区画にまとめた冷温水ユニットである。また、図6に示す符号Fは、図5の空冷凝縮器3と空冷低温吸収器52と空冷低温吸収器53とを1つの区画にまとめた空気熱交換ユニットである。   The symbol E shown in the figure is a cold / hot water unit in which the regenerator 1, the low temperature evaporator 50, and the high temperature evaporator 51 of FIG. 5 are combined into one section. Moreover, the code | symbol F shown in FIG. 6 is the air heat exchange unit which put together the air-cooled condenser 3, the air-cooled low temperature absorber 52, and the air-cooled low temperature absorber 53 of FIG.

冷温水ユニットEにおいては、低温蒸発器50と高温蒸発器51とが上下に配置されている。空気熱交換ユニットFにおいては、空冷低温吸収器52と空冷高温吸収器53とが上下に配置されている。低温蒸発器50と空冷低温吸収器52とは冷媒蒸気配管56で接続され、高温蒸発器51と空冷高温吸収器53とは冷媒蒸気配管57で接続されている。冷媒蒸気配管56、57は、冷媒蒸気の圧力損失が性能低下の要因となるため、図6に示すように直管で接続されている。他の要素の構成や配置は、実施例1と同様であるため、省略する。   In the cold / hot water unit E, a low-temperature evaporator 50 and a high-temperature evaporator 51 are arranged above and below. In the air heat exchange unit F, an air-cooled low-temperature absorber 52 and an air-cooled high-temperature absorber 53 are arranged above and below. The low-temperature evaporator 50 and the air-cooled low-temperature absorber 52 are connected by a refrigerant vapor pipe 56, and the high-temperature evaporator 51 and the air-cooled high-temperature absorber 53 are connected by a refrigerant vapor pipe 57. The refrigerant vapor pipes 56 and 57 are connected by a straight pipe as shown in FIG. 6 because the pressure loss of the refrigerant vapor causes a decrease in performance. Since the configuration and arrangement of other elements are the same as those in the first embodiment, a description thereof will be omitted.

本実施例の空冷単効用吸収式冷凍機においては、低温蒸発器50及び空冷低温吸収器52の器内圧力と、高温蒸発器51及び空冷高温吸収器53の器内圧力とに差圧を付けることができる。これにより、空冷低温吸収器52及び空冷高温吸収器53において冷却空気側との温度差を大きくとることができ、熱交換効率の向上を図ることができる。   In the air-cooled single-effect absorption refrigerator of this embodiment, a differential pressure is applied to the internal pressures of the low-temperature evaporator 50 and the air-cooled low-temperature absorber 52 and the internal pressures of the high-temperature evaporator 51 and the air-cooled high-temperature absorber 53. be able to. Thereby, in the air-cooled low-temperature absorber 52 and the air-cooled high-temperature absorber 53, the temperature difference from the cooling air side can be increased, and the heat exchange efficiency can be improved.

さらに、冷温水ユニットEと空気熱交換ユニットFを異なる区画に配置し、空気熱交換ユニットFの空冷熱交換器の部位から空冷ファン15までの流路に、冷却空気の流れを遮る部品等が少なくて済む。このため、空気熱交換ユニットFを構成する空冷凝縮器3、空冷低温吸収器52及び空冷高温吸収器53の熱交換効率の向上を図ることができる。   Further, the cold / hot water unit E and the air heat exchange unit F are arranged in different sections, and there are parts that block the flow of the cooling air in the flow path from the air cooling heat exchanger portion of the air heat exchange unit F to the air cooling fan 15. Less is enough. For this reason, the heat exchange efficiency of the air-cooled condenser 3, the air-cooled low-temperature absorber 52, and the air-cooled high-temperature absorber 53 which comprise the air heat exchange unit F can be aimed at.

図7は、空冷単効用吸収式冷凍機のサイクル系統の他の例を示したものである。図8は、図7の空冷単効用吸収式冷凍機の構成部品の配置を示したものである。   FIG. 7 shows another example of a cycle system of an air-cooled single-effect absorption refrigerator. FIG. 8 shows the arrangement of the components of the air-cooled single-effect absorption refrigerator shown in FIG.

以下、実施例3と異なっている構成及び作用について説明する。   Hereinafter, the configuration and operation different from those of the third embodiment will be described.

先ず、図7を用いて説明する。   First, it demonstrates using FIG.

本図に示す空冷単効用吸収式冷凍機においては、蒸発器を再生器の両側に分けて配置するとともに、空冷熱交換器における冷却空気の圧力損失を同等にするために、空冷凝縮器も分割して配置する構成とした。   In the air-cooled single-effect absorption refrigerator shown in this figure, the evaporator is divided on both sides of the regenerator, and the air-cooled condenser is also divided to equalize the cooling air pressure loss in the air-cooled heat exchanger. And arranged.

具体的には、低温蒸発器50と高温蒸発器51とは、分割して配置してある。器内の圧力差を保持するため、低温蒸発器50の底部に接続した溶液配管62には、Uシールを設けてあり、溶液配管62は、冷媒タンク60に接続してある。同様に、高温蒸発器51の底部に接続した溶液配管63には、Uシールを設けてあり、溶液配管63は、冷媒タンク60に接続してある。   Specifically, the low temperature evaporator 50 and the high temperature evaporator 51 are arranged separately. In order to maintain the pressure difference in the chamber, the solution pipe 62 connected to the bottom of the low-temperature evaporator 50 is provided with a U seal, and the solution pipe 62 is connected to the refrigerant tank 60. Similarly, the solution pipe 63 connected to the bottom of the high-temperature evaporator 51 is provided with a U seal, and the solution pipe 63 is connected to the refrigerant tank 60.

また、空冷低温吸収器52は、冷媒蒸気配管56で低温蒸発器50に接続してある。空冷高温吸収器53は、冷媒蒸気配管57で高温蒸発器51に接続してある。再生器1の出口部に接続される溶液配管13は、溶液熱交換器7及び溶液ポンプ9を介して空冷低温吸収器52の上部ヘッダ52aに接続してある。下部ヘッダ52cに接続する溶液配管64は、溶液ポンプ61を介して空冷高温吸収器53の上部ヘッダ53aに接続してある。下部ヘッダ53bに接続する溶液配管12は、溶液ポンプ12及び溶液熱交換器7を介して再生器1に接続してある。   The air-cooled low-temperature absorber 52 is connected to the low-temperature evaporator 50 through a refrigerant vapor pipe 56. The air-cooled high-temperature absorber 53 is connected to the high-temperature evaporator 51 through a refrigerant vapor pipe 57. The solution pipe 13 connected to the outlet of the regenerator 1 is connected to the upper header 52 a of the air-cooled low-temperature absorber 52 via the solution heat exchanger 7 and the solution pump 9. The solution pipe 64 connected to the lower header 52 c is connected to the upper header 53 a of the air-cooled high-temperature absorber 53 via the solution pump 61. The solution pipe 12 connected to the lower header 53 b is connected to the regenerator 1 via the solution pump 12 and the solution heat exchanger 7.

また、再生器1に接続した冷媒蒸気配管2は、途中で分岐し、冷媒蒸気配管58、59に分かれる。一方の冷媒蒸気配管58は、第1空冷凝縮器54の上部ヘッダ54aに接続してあり、分岐したもう一方の冷媒蒸気配管59は、第2空冷凝縮器55の上部ヘッダ55aに接続してある。第1空冷凝縮器54の下部ヘッダ54cに接続した溶液配管65、及び、第2空冷凝縮器55の下部ヘッダ55cに接続した溶液配管66は、冷媒タンク60に接続してある。   Further, the refrigerant vapor pipe 2 connected to the regenerator 1 branches in the middle and is divided into refrigerant vapor pipes 58 and 59. One refrigerant vapor pipe 58 is connected to the upper header 54 a of the first air-cooled condenser 54, and the other branched refrigerant vapor pipe 59 is connected to the upper header 55 a of the second air-cooled condenser 55. . The solution pipe 65 connected to the lower header 54 c of the first air-cooled condenser 54 and the solution pipe 66 connected to the lower header 55 c of the second air-cooled condenser 55 are connected to the refrigerant tank 60.

これらの構成により、再生器1で発生した冷媒蒸気は、第1空冷凝縮器54及び第2空冷凝縮器55で冷却空気と熱交換して液冷媒となり、冷媒タンク60に導かれる。冷媒タンク60に溜められた液冷媒は、冷媒ポンプ8で低温蒸発器50及び高温蒸発器51に導かれる。未蒸発の液冷媒は、溶液配管62、63でUシールを形成しつつ冷媒タンク60に導かれる。また、冷媒タンク60及び低温蒸発器50の気相部は、連通管(図示せず)で接続されている。これにより、低温蒸発器50の器内圧力を基準にUシール62、63内に液面を形成して、低温蒸発器50と高温蒸発器51との器内圧力差を維持することができる。   With these configurations, the refrigerant vapor generated in the regenerator 1 exchanges heat with the cooling air in the first air-cooled condenser 54 and the second air-cooled condenser 55, becomes liquid refrigerant, and is led to the refrigerant tank 60. The liquid refrigerant stored in the refrigerant tank 60 is guided to the low temperature evaporator 50 and the high temperature evaporator 51 by the refrigerant pump 8. The non-evaporated liquid refrigerant is guided to the refrigerant tank 60 while forming a U seal with the solution pipes 62 and 63. Moreover, the gas phase part of the refrigerant tank 60 and the low temperature evaporator 50 is connected by a communication pipe (not shown). Thereby, the liquid level can be formed in the U seals 62 and 63 based on the internal pressure of the low temperature evaporator 50, and the internal pressure difference between the low temperature evaporator 50 and the high temperature evaporator 51 can be maintained.

一方、再生器1で濃度が濃くなった溶液は、溶液配管13、溶液熱交換器7及び溶液ポンプ9を介して空冷低温吸収器52の上部ヘッダ52aに導かれる。溶液は、空冷低温吸収器52の空冷熱交換器52bの伝熱管内を低温蒸発器50からの冷媒蒸気を吸収しながら流下し、下部ヘッダ52cに一旦溜められ、溶液配管64で溶液ポンプ61を介して空冷高温吸収器53の上部ヘッダ53に導かれる。さらに溶液は、空冷高温吸収器53の空冷熱交換器53bの伝熱管内を高温蒸発器51からの冷媒蒸気を吸収しながら流下し、一旦溜められ、溶液配管12、溶液ポンプ10及び溶液熱交換器7を介して再生器1に導かれる。   On the other hand, the solution having a high concentration in the regenerator 1 is guided to the upper header 52 a of the air-cooled low-temperature absorber 52 through the solution pipe 13, the solution heat exchanger 7 and the solution pump 9. The solution flows down in the heat transfer pipe of the air-cooled heat exchanger 52b of the air-cooled low-temperature absorber 52 while absorbing the refrigerant vapor from the low-temperature evaporator 50, and is temporarily stored in the lower header 52c. To the upper header 53 of the air-cooled high-temperature absorber 53. Further, the solution flows down in the heat transfer tube of the air-cooled heat exchanger 53b of the air-cooled high-temperature absorber 53 while absorbing the refrigerant vapor from the high-temperature evaporator 51, and is temporarily stored, and the solution pipe 12, the solution pump 10, and the solution heat exchange. It is led to the regenerator 1 via the unit 7.

また、本図において、点線Aと点線A’との間に配置された部品群は、冷温水ユニットGを構成する。   In the drawing, a group of components arranged between a dotted line A and a dotted line A ′ constitutes a cold / hot water unit G.

次に、図8を用いて説明する。   Next, a description will be given with reference to FIG.

本図に示す符号Gは、図7の主に再生器1と、低温蒸発器50と高温蒸発器51とを1つの区画にまとめた冷温水ユニットである。また、図8に示す符号Hは、図7の主に第1空冷凝縮器54と第2空冷凝縮器55と空冷低温吸収器52と空冷低温吸収器53とを1つの区画にまとめた空気熱交換ユニットである。   The code | symbol G shown in this figure is the cold / hot water unit which put together the regenerator 1 of FIG. 7, the low temperature evaporator 50, and the high temperature evaporator 51 into one division. In addition, the symbol H shown in FIG. 8 is the air heat in which the first air-cooled condenser 54, the second air-cooled condenser 55, the air-cooled low-temperature absorber 52, and the air-cooled low-temperature absorber 53 in FIG. It is an exchange unit.

冷温水ユニットGは、再生器1、低温蒸発器50及び高温蒸発器51の他に破線部分67を含む。破線部分67には、溶液熱交換器7、溶液ポンプ9、10、61、冷媒タンク60及び冷媒ポンプ8が配置されている。   The cold / hot water unit G includes a broken line portion 67 in addition to the regenerator 1, the low temperature evaporator 50 and the high temperature evaporator 51. In the broken line portion 67, the solution heat exchanger 7, the solution pumps 9, 10, 61, the refrigerant tank 60, and the refrigerant pump 8 are arranged.

また、空気熱交換ユニットHは、空冷低温吸収器52と第1空冷凝縮器54とをこの順に気流の上流側から隣接するように配置し、空冷高温吸収器53と第2空冷凝縮器55とをこの順に気流の上流側から隣接するように配置してある。本図においては、空冷低温吸収器52及び第1空冷凝縮器54の組と、空冷高温吸収器53及び第2空冷凝縮器55の組とが、上部に配置する空冷ファン15を挟むように配置してある。破線部分68には、第1空冷凝縮器54の下部ヘッダ54cに接続した溶液配管65と、第2空冷凝縮器55の下部ヘッダ55cに接続した溶液配管66と、空冷低温吸収器52の下部ヘッダ52cに接続した溶液配管64と、空冷高温吸収器53の下部ヘッダ53cに接続した溶液配管12が配置してある。   In addition, the air heat exchange unit H arranges the air-cooled low-temperature absorber 52 and the first air-cooled condenser 54 so as to be adjacent in this order from the upstream side of the air flow, and the air-cooled high-temperature absorber 53 and the second air-cooled condenser 55 Are arranged so as to be adjacent in this order from the upstream side of the airflow. In this figure, a set of the air-cooled low-temperature absorber 52 and the first air-cooled condenser 54 and a set of the air-cooled high-temperature absorber 53 and the second air-cooled condenser 55 are arranged so as to sandwich the air-cooling fan 15 arranged at the upper part. It is. The broken line portion 68 includes a solution pipe 65 connected to the lower header 54 c of the first air-cooled condenser 54, a solution pipe 66 connected to the lower header 55 c of the second air-cooled condenser 55, and a lower header of the air-cooled low-temperature absorber 52. A solution pipe 64 connected to 52c and a solution pipe 12 connected to the lower header 53c of the air-cooled high-temperature absorber 53 are arranged.

また、溶液配管13は、溶液ポンプ9と空冷低温吸収器52の上部ヘッダ52aとを接続するものであり、溶液ポンプ9を配置した破線部分67から溶液配管13を立上げる必要があるが、冷温水ユニットGの区画内で立上げて空冷低温吸収器52の上部ヘッダ52aに接続してある。同様に、溶液配管64は、溶液ポンプ61と空冷高温吸収器53の上部ヘッダ53aと接続するものであり、溶液ポンプ61を配置した破線部分67から溶液配管64を立上げる必要があるが、冷温水ユニットGの区画内で立上げて空冷低温吸収器53の上部ヘッダ53aに接続してある。   The solution pipe 13 connects the solution pump 9 and the upper header 52a of the air-cooled low-temperature absorber 52. The solution pipe 13 needs to be raised from the broken line portion 67 where the solution pump 9 is disposed. The water unit G is started up in the compartment and connected to the upper header 52 a of the air-cooled low-temperature absorber 52. Similarly, the solution pipe 64 is connected to the solution pump 61 and the upper header 53a of the air-cooled high-temperature absorber 53. The solution pipe 64 needs to be raised from the broken line portion 67 where the solution pump 61 is arranged. It is set up in the compartment of the water unit G and connected to the upper header 53 a of the air-cooled low-temperature absorber 53.

また、図8においては、空気熱交換ユニットHの冷温水ユニットG側とその反対側は開放されているようになっているが、実際には閉鎖されている。また、破線部分68の周囲も閉鎖され、冷却空気のほぼ全量が空気熱交換ユニットHの空冷熱交部分を流れるようになっている。   Moreover, in FIG. 8, although the cold / hot water unit G side and the opposite side of the air heat exchange unit H are open, they are actually closed. Further, the periphery of the broken line portion 68 is also closed so that almost the entire amount of the cooling air flows through the air-cooling heat exchange portion of the air heat exchange unit H.

以上のように、本実施例の空冷単効用吸収式冷凍機においては、空冷吸収器を空冷低温吸収器52と空冷高温吸収器53とに分割するとともに、空冷凝縮器を第1空冷凝縮器54と第2空冷凝縮器55とに分割した場合でも、冷温水ユニットGと空気熱交換ユニットHに分けて異なる区画に配置することができる。よって、空気熱交換ユニットHの空冷熱交部分から空冷ファン15までの流路に、冷却空気の流れを遮る部品等が少なくて済む。このため、空気熱交換ユニットHを構成する第1空冷凝縮器54、第2空冷凝縮器55、空冷低温吸収器52及び空冷高温吸収器53の熱交換効率の向上を図ることができる。また、蒸発器、空冷凝縮器、空冷吸収器を分割して配置する構成としているため、実施例3に比べて高さを低く抑えられる効果がある。   As described above, in the air-cooled single effect absorption refrigerator of the present embodiment, the air-cooled absorber is divided into the air-cooled low-temperature absorber 52 and the air-cooled high-temperature absorber 53, and the air-cooled condenser is divided into the first air-cooled condenser 54. And the second air-cooled condenser 55 can be divided into the cold / hot water unit G and the air heat exchange unit H and arranged in different compartments. Therefore, the number of parts that block the flow of the cooling air in the flow path from the air-cooling heat exchange portion of the air heat exchange unit H to the air-cooling fan 15 is small. For this reason, the heat exchange efficiency of the first air-cooled condenser 54, the second air-cooled condenser 55, the air-cooled low-temperature absorber 52, and the air-cooled high-temperature absorber 53 constituting the air heat exchange unit H can be improved. In addition, since the evaporator, the air-cooled condenser, and the air-cooled absorber are arranged separately, the height can be suppressed lower than that in the third embodiment.

なお、以上の実施例においては、空気熱交換ユニットを1個だけ増設した場合については述べたが、これに限定されるものではなく、空気熱交換ユニットを2個以上増設してもよい。すなわち、空気熱交換ユニットを3個以上併設してもよい。   In addition, although the case where only one air heat exchange unit was added was described in the above embodiment, it is not limited to this, and two or more air heat exchange units may be added. That is, three or more air heat exchange units may be provided.

また、以上の実施例においては、空冷単効用吸収式冷凍機について説明したが、必ずしも単効用でなくてもよく、以上の構成は二重効用又は三重効用の場合にも適用可能である。さらに、本発明は、冷凍機だけでなく、ヒートポンプにも適用可能である。   In the above embodiments, the air-cooled single effect absorption refrigerator has been described. However, the single-effect absorption refrigerator is not necessarily required, and the above configuration can be applied to the case of double effect or triple effect. Furthermore, the present invention is applicable not only to refrigerators but also to heat pumps.

1:再生器、2、5、22、24、56、57、58、59:冷媒蒸気配管、3:空冷凝縮器、3a:上部ヘッダ、3c:下部ヘッダ、4:蒸発器、6:空冷吸収器、6a:上部ヘッダ、6c:下部ヘッダ、7:溶液熱交換器、8:冷媒ポンプ、9、10、61:溶液ポンプ、11、12、13、14:溶液配管、15:空冷ファン、20:増設空冷凝縮器、21:増設空冷吸収器、50:低温蒸発器、51:高温蒸発器、52:空冷低温吸収器、53:空冷高温吸収器、54:第1空冷凝縮器、55:第2空冷凝縮器、60:冷媒タンク、100:空気熱交換ユニット、101:筺体、B、E、G:冷温水ユニット、D:増設空気熱交換ユニット、C、F、H:空気熱交換ユニット。   1: Regenerator, 2, 5, 22, 24, 56, 57, 58, 59: Refrigerant steam piping, 3: Air cooling condenser, 3a: Upper header, 3c: Lower header, 4: Evaporator, 6: Air cooling absorption 6a: upper header, 6c: lower header, 7: solution heat exchanger, 8: refrigerant pump, 9, 10, 61: solution pump, 11, 12, 13, 14: solution piping, 15: air cooling fan, 20 : Extended air-cooled condenser, 21: Extended air-cooled absorber, 50: Low-temperature evaporator, 51: High-temperature evaporator, 52: Air-cooled low-temperature absorber, 53: Air-cooled high-temperature absorber, 54: First air-cooled condenser, 55: First 2 air-cooled condenser, 60: refrigerant tank, 100: air heat exchange unit, 101: housing, B, E, G: cold / hot water unit, D: additional air heat exchange unit, C, F, H: air heat exchange unit.

Claims (4)

再生器と、空冷凝縮器と、蒸発器と、空冷吸収器と、空冷ファンを設けた筺体とを備え、前記再生器と前記空冷凝縮器とは高温冷媒蒸気配管で接続し、前記蒸発器と前記空冷吸収器とは低温冷媒蒸気配管で接続した空冷吸収式冷凍機であって、前記空冷吸収器及び前記空冷凝縮器は、前記筺体の内部に配置し、かつ、前記空冷ファンによる気流の上流側からこの順に配置し、前記再生器及び前記蒸発器は、前記筺体の外部に配置し、前記蒸発器は、冷媒蒸気の圧力が異なる低温蒸発器と高温蒸発器とで構成され、前記空冷吸収器は、前記冷媒蒸気の圧力が異なる空冷低温吸収器と空冷高温吸収器とで構成され、前記低温蒸発器と前記空冷低温吸収器とは第一の低温冷媒蒸気配管で接続し、前記高温蒸発器と前記空冷高温吸収器とは第二の低温冷媒蒸気配管で接続したことを特徴とする空冷吸収式冷凍機。 A regenerator, an air-cooled condenser, an evaporator, an air-cooled absorber, and a housing provided with an air-cooling fan, wherein the regenerator and the air-cooled condenser are connected by a high-temperature refrigerant vapor pipe, The air-cooled absorber is an air-cooled absorption type refrigerator connected by a low-temperature refrigerant vapor pipe, and the air-cooled absorber and the air-cooled condenser are arranged inside the housing and upstream of the air flow by the air-cooled fan. The regenerator and the evaporator are arranged in this order from the side , and the evaporator is composed of a low-temperature evaporator and a high-temperature evaporator having different refrigerant vapor pressures. The air cooler is composed of an air-cooled low-temperature absorber and an air-cooled high-temperature absorber having different refrigerant vapor pressures, and the low-temperature evaporator and the air-cooled low-temperature absorber are connected by a first low-temperature refrigerant vapor pipe, And the air-cooled high-temperature absorber are the second low temperature Air-cooled absorption type refrigerating machine, characterized in that connected in medium steam pipe. 前記再生器と前記蒸発器とは隣接して配置し、前記空冷凝縮器と前記空冷吸収器との間には空気の流路を設けたことを特徴とする請求項1記載の空冷吸収式冷凍機。   2. The air-cooled absorption refrigeration according to claim 1, wherein the regenerator and the evaporator are disposed adjacent to each other, and an air flow path is provided between the air-cooled condenser and the air-cooled absorber. Machine. 前記空冷凝縮器は、凝縮器上部ヘッダと、凝縮器下部ヘッダと、これらの間に配置された複数本の凝縮器伝熱管と、該凝縮器伝熱管の外面に設けた凝縮器空冷用フィンとを含み、前記高温冷媒蒸気配管は、前記再生器と前記凝縮器上部ヘッダとを接続し、前記空冷吸収器は、吸収器上部ヘッダと、吸収器下部ヘッダと、これらの間に配置された複数本の吸収器伝熱管と、該吸収器伝熱管の外面に設けた吸収器空冷用フィンとを含み、前記低温冷媒蒸気配管は、前記蒸発器と前記吸収器上部ヘッダとを接続したことを特徴とする請求項1又は2に記載の空冷吸収式冷凍機。   The air-cooled condenser includes a condenser upper header, a condenser lower header, a plurality of condenser heat transfer tubes disposed therebetween, and a condenser air cooling fin provided on an outer surface of the condenser heat transfer tube. The high-temperature refrigerant vapor pipe connects the regenerator and the condenser upper header, and the air-cooled absorber includes an absorber upper header, an absorber lower header, and a plurality of them disposed therebetween. The absorber heat transfer tube of the present invention and an absorber air cooling fin provided on the outer surface of the absorber heat transfer tube, wherein the low-temperature refrigerant vapor pipe connects the evaporator and the absorber upper header. The air-cooled absorption refrigerator according to claim 1 or 2. 前記空冷吸収器及び前記空冷凝縮器を前記筺体の内部に配置して構成した空気熱交換ユニットを複数個備え、これらを隣り合うように配置し、隣り合うそれぞれの前記空気熱交換ユニットの前記空冷凝縮器同士は、前記高温冷媒蒸気配管で接続し、隣り合うそれぞれの前記空気熱交換ユニットの前記空冷吸収器同士は、前記低温冷媒蒸気配管で接続したことを特徴とする請求項1〜3のいずれか一項に記載の空冷吸収式冷凍機。   The air-cooled absorber and the air-cooled condenser are provided with a plurality of air heat exchange units arranged inside the housing, and are arranged so as to be adjacent to each other, and the air cooling of each of the adjacent air heat exchange units is provided. The condensers are connected by the high-temperature refrigerant vapor piping, and the air-cooling absorbers of the adjacent air heat exchange units are connected by the low-temperature refrigerant vapor piping. The air-cooled absorption refrigerator as described in any one of Claims.
JP2012032355A 2012-02-17 2012-02-17 Air-cooled absorption refrigerator Active JP5659170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032355A JP5659170B2 (en) 2012-02-17 2012-02-17 Air-cooled absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032355A JP5659170B2 (en) 2012-02-17 2012-02-17 Air-cooled absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2013167430A JP2013167430A (en) 2013-08-29
JP5659170B2 true JP5659170B2 (en) 2015-01-28

Family

ID=49177961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032355A Active JP5659170B2 (en) 2012-02-17 2012-02-17 Air-cooled absorption refrigerator

Country Status (1)

Country Link
JP (1) JP5659170B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104862U (en) * 1982-01-12 1983-07-16 ダイキン工業株式会社 absorption refrigerator
JP2527595B2 (en) * 1988-04-25 1996-08-28 三洋電機株式会社 Absorption refrigerator
JPH03105168A (en) * 1989-09-18 1991-05-01 Hitachi Ltd Air-cooled absorption cold/hot water device
JPH09145192A (en) * 1995-11-21 1997-06-06 Naoji Isshiki Small-sized cooling device and small-sized cooling or heating device
JPH10288418A (en) * 1997-04-16 1998-10-27 Ebara Corp Air-cooled absorption refrigerating machine
JPH10339514A (en) * 1997-06-03 1998-12-22 Ebara Corp Air-cooled absorptive cold calorifier
JP3171142B2 (en) * 1997-06-13 2001-05-28 ダイキン工業株式会社 Air-cooled absorption refrigeration system
JPH11190564A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Air-conditioning unit
JP4162458B2 (en) * 2002-09-20 2008-10-08 大阪瓦斯株式会社 Air-cooled absorption refrigeration system
JP2006275354A (en) * 2005-03-29 2006-10-12 Hachinohe Institute Of Technology Absorption refrigerating machine

Also Published As

Publication number Publication date
JP2013167430A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5944057B2 (en) Refrigeration system defrost system and cooling unit
JP4701147B2 (en) 2-stage absorption refrigerator
JP2007278572A (en) Absorption type refrigerating device
JP6292834B2 (en) Air conditioning equipment in information processing room
JP5402186B2 (en) Refrigeration equipment
JP5659170B2 (en) Air-cooled absorption refrigerator
JP2007248024A (en) Absorption-type refrigerating device
CN107702383A (en) A kind of direct-expansion type evaporator of all-fresh air unit
CN207214529U (en) A kind of direct-expansion type evaporator of all-fresh air unit
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP2006038306A (en) Freezer
KR20150007131A (en) Absoption chiller
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
JPS6273053A (en) Air-cooled absorption refrigerator
JP4572860B2 (en) Absorption refrigeration system
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
CN207214528U (en) A kind of direct-expansion type evaporator assemblies of all-fresh air unit
JP6613404B2 (en) Refrigeration system
KR101071938B1 (en) Generation and absorption refrigerating machine usihg the same
KR100554061B1 (en) Absorption type refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2014173810A (en) Air-cooling absorption type refrigerator
JP2009068816A (en) Absorption refrigerating machine
WO2016067509A1 (en) Heat exchange device and heat generation body-receiving device using same
JP4720558B2 (en) Absorption refrigerator generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5659170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250