JP5658908B2 - Method for producing purified water - Google Patents

Method for producing purified water Download PDF

Info

Publication number
JP5658908B2
JP5658908B2 JP2010115112A JP2010115112A JP5658908B2 JP 5658908 B2 JP5658908 B2 JP 5658908B2 JP 2010115112 A JP2010115112 A JP 2010115112A JP 2010115112 A JP2010115112 A JP 2010115112A JP 5658908 B2 JP5658908 B2 JP 5658908B2
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
chamber
ion exchange
edi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010115112A
Other languages
Japanese (ja)
Other versions
JP2011240264A (en
Inventor
利夫 佐藤
利夫 佐藤
智暢 阿瀬
智暢 阿瀬
武志 野口
武志 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Original Assignee
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd filed Critical Daicen Membrane Systems Ltd
Priority to JP2010115112A priority Critical patent/JP5658908B2/en
Publication of JP2011240264A publication Critical patent/JP2011240264A/en
Application granted granted Critical
Publication of JP5658908B2 publication Critical patent/JP5658908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、医療用及び工業用として適した精製水の製造方法に関する。   The present invention relates to a method for producing purified water suitable for medical use and industrial use.

人工透析液や注射液に使用される精製水は、微生物、エンドトキシンで汚染されていないものを用いる必要がある。   It is necessary to use purified water used for artificial dialysate and injection solution that is not contaminated with microorganisms and endotoxin.

特許文献1、2には、RO処理装置とEDI装置を組み合わせて、人工透析用水を製造するための装置と製造方法が記載されている。特許文献1には、EDI処理水を逆浸透膜装置の入口に返送して循環させることが記載されている(段落0039と図1参照)。   Patent Documents 1 and 2 describe a device and a manufacturing method for manufacturing artificial dialysis water by combining an RO treatment device and an EDI device. Patent Document 1 describes that EDI-treated water is returned to the inlet of the reverse osmosis membrane device and circulated (see paragraph 0039 and FIG. 1).

その他、半導体の製造工程のような産業用の製造ラインにおいて使用する洗浄水等に対しても、できるだけエンドトキシンや生菌等で汚染されていない清浄な精製水への需要が非常に大きい。   In addition, there is a great demand for clean purified water that is not contaminated with endotoxin, viable bacteria, and the like as much as possible for washing water used in industrial production lines such as semiconductor manufacturing processes.

特開2007−252396号公報JP 2007-252396 A 特開2007−237062号公報JP 2007-237062 A

本発明は、脱塩室に特定の陰イオン交換樹脂を備えた電気再生式脱イオン装置(EDI装置)を用いることで、微生物やエンドトキシンの除去効果が向上された、医療用及び工業用精製水として適した精製水の製造方法を提供することを課題とする。   The present invention is a medical and industrial purified water having an improved effect of removing microorganisms and endotoxin by using an electric regeneration type deionization apparatus (EDI apparatus) having a specific anion exchange resin in a desalination chamber. It is an object of the present invention to provide a method for producing purified water suitable as the above.

本願発明は、課題の解決手段として、
電気再生式脱イオン装置(EDI装置)を用いた精製水の製造方法であり、
前記EDI装置が、イオン交換樹脂を備えたイオン交換室(脱塩室)、濃縮室、電極室(正及び負の電極室)を有するものであり、
前記イオン交換室内に充填されたイオン交換樹脂として少なくとも1種以上のMR型の陰イオン交換樹脂を含む陰イオン交換樹脂を用いる、精製水の製造方法を提供する。
The present invention is a means for solving the problems,
A method for producing purified water using an electric regenerative deionization device (EDI device),
The EDI apparatus has an ion exchange chamber (desalting chamber) provided with an ion exchange resin, a concentration chamber, and electrode chambers (positive and negative electrode chambers).
Provided is a method for producing purified water using an anion exchange resin containing at least one MR type anion exchange resin as the ion exchange resin filled in the ion exchange chamber.

本発明の製造方法によれば、脱塩室にゲル形の陰イオン交換樹脂を充填した従来のEDI装置を用いた場合に比べて、除菌効果やエンドトキシン(ET)の除去効果を高めることができる。   According to the production method of the present invention, the sterilization effect and the endotoxin (ET) removal effect can be enhanced as compared with the case where a conventional EDI apparatus in which a desalination chamber is filled with a gel-type anion exchange resin is used. it can.

実施例1、比較例1の除菌効果を示すグラフ。The graph which shows the disinfection effect of Example 1 and Comparative Example 1. 実施例2、比較例2のETの除去効果を示すグラフ。The graph which shows the removal effect of Example 2 and the comparative example 2 of ET. 実施例3、比較例3のイオン交換樹脂から脱離されたものの生菌数を示すグラフ。The graph which shows the number of viable bacteria of what was desorbed from the ion exchange resin of Example 3 and Comparative Example 3. 実施例4、比較例4のイオン交換樹脂から脱離されたもののET活性を示すグラフ。The graph which shows ET activity of what was desorbed from the ion exchange resin of Example 4 and Comparative Example 4. 実施例5、比較例5の処理水の電気伝導度を示すグラフ。The graph which shows the electrical conductivity of the treated water of Example 5 and Comparative Example 5. 実施例6、比較例6の処理水のpHを示すグラフ。The graph which shows pH of the treated water of Example 6 and Comparative Example 6. 参考例1の除菌効果を示すグラフ。The graph which shows the microbe elimination effect of the reference example 1. FIG. 参考例2のETの除去効果を示すグラフ。The graph which shows the removal effect of ET of the reference example 2. 参考例3の除菌効果を示すグラフ。The graph which shows the microbe elimination effect of the reference example 3. 参考例4のETの除去効果を示すグラフ。The graph which shows the removal effect of ET of the reference example 4.

<EDI装置>
本発明の製造方法で用いるEDI装置は、イオン交換樹脂を備えたイオン交換室(脱塩室)内に充填された陰イオン交換樹脂として少なくとも1種以上のMR(macro−reticular)型の陰イオン交換樹脂を含む陰イオン交換樹脂を用いることが従来技術と異なるものである。
<EDI device>
The EDI apparatus used in the production method of the present invention includes at least one MR (macro-reticular) type anion as an anion exchange resin filled in an ion exchange chamber (desalting chamber) provided with an ion exchange resin. The use of an anion exchange resin including an exchange resin is different from the prior art.

EDI装置自体は汎用されているものであり、例えば、特許文献1、2に記載のもの、特開平11−244853号公報、特開2001−239270号公報、特開2001−353498号公報、特開2004−74109号公報に記載のもののほか、市販のEDI装置である、EDIシステムシリーズ,商品名MOLSEP(登録商標)(ダイセン・メンブレン・システムズ(株)販売)等を用いることができる。
本発明を実施する際には、市販のEDI装置のイオン交換室(脱塩室)内に充填された陰イオン交換樹脂を少なくとも1種以上のMR型の強塩基性陰イオン交換樹脂を含む陰イオン交換樹脂に替えることで対応できる。
The EDI apparatus itself is widely used. For example, those disclosed in Patent Documents 1 and 2, JP-A-11-244853, JP-A-2001-239270, JP-A-2001-353498, JP-A-2001-353498, In addition to what is described in Japanese Patent Application Publication No. 2004-74109, a commercially available EDI apparatus such as EDI system series, trade name MOLSEP (registered trademark) (sold by Daisen Membrane Systems Co., Ltd.) and the like can be used.
In carrying out the present invention, an anion exchange resin filled in an ion exchange chamber (desalting chamber) of a commercially available EDI apparatus is an anion containing at least one MR type strongly basic anion exchange resin. This can be done by switching to ion exchange resin.

EDI装置で用いるMR型の陰イオン交換樹脂は公知のものであり、ゲル形の陰イオン交換樹脂とは異なり、表面に細孔を有するものである。
MR型の陰イオン交換樹脂は市販されており、例えば、ダイヤイオン(登録商標)PKシリーズ(三菱化成社製)、アンバーライト(登録商標)200シリーズ(ローム&ハース社製)、アンバーライト(登録商標)IRA900J、IRA904(オルガノ製)、アンバーリスト(登録商標)XNシリーズ(ローム&ハース社製)、ダウエックス(登録商標)MSC−1(ダウケミカル社製)、レバチット(登録商標)SPシリーズ(バイエル社製)が知られている。
MR-type anion exchange resins used in the EDI apparatus are known and have pores on the surface unlike gel-type anion exchange resins.
MR type anion exchange resins are commercially available. For example, Diaion (registered trademark) PK series (manufactured by Mitsubishi Kasei), Amberlite (registered trademark) 200 series (produced by Rohm & Haas), Amberlite (registered) Trademarks: IRA900J, IRA904 (manufactured by Organo), Amberlyst (registered trademark) XN series (manufactured by Rohm & Haas), Dowex (registered trademark) MSC-1 (manufactured by Dow Chemical Company), Lebatit (registered trademark) SP series ( Bayer) is known.

EDI装置で用いるMR型の陰イオン交換樹脂としては、マクロ孔とミクロ孔を有する強塩基性のものであり、前記マクロ孔が直径2〜20μmの範囲の孔であり、ミクロ孔が直径20〜300nmの範囲の孔であるものを有しているものが好ましい。前記マクロ孔の孔径測定およびミクロ孔の孔径測定は、それぞれ水銀圧入法による測定法と気体吸着法による測定法が用いられる。   The MR type anion exchange resin used in the EDI apparatus is a strongly basic resin having macropores and micropores. The macropores are pores having a diameter of 2 to 20 μm, and the micropores have a diameter of 20 to 20 mm. Those having pores in the range of 300 nm are preferred. For the measurement of the pore size of the macropores and the measurement of the pore size of the micropores, a measurement method using a mercury intrusion method and a measurement method using a gas adsorption method are used, respectively.

さらに本発明では、上記数値範囲内に含まれるものの内、下記の(I)及び(II)のMR型の陰イオン交換樹脂がより好ましい。
(I)マクロ孔とミクロ孔を有する強塩基性のものであり、マクロ孔が直径2〜20μmの範囲の孔であり、ミクロ孔が直径20〜60nm(好ましくは直径28〜44nm)(但し、全細孔容積の5.0〜95.0%の範囲にある孔径である)の範囲の孔であるものを有しており、イオン交換容量は、0.8〜1.5meq/ml湿潤樹脂)の範囲のもの。
Further, in the present invention, among those included in the above numerical range, the following (I) and (II) MR type anion exchange resins are more preferable.
(I) Strongly basic having macropores and micropores, macropores having a diameter of 2 to 20 μm, and micropores having a diameter of 20 to 60 nm (preferably a diameter of 28 to 44 nm) (provided that The pore diameter is in the range of 5.0 to 95.0% of the total pore volume), and the ion exchange capacity is in the range of 0.8 to 1.5 meq / ml wet resin) thing.

(II)マクロ孔とミクロ孔を有する強塩基性のものであり、マクロ孔が直径2〜20μmの範囲の孔であり、ミクロ孔が直径30〜300nm(好ましくは直径42〜240nm)(但し、全細孔容積の5.0〜95.0%の範囲にある孔径である)の範囲の孔であるものを有しており、イオン交換容量は、0.5〜1.0meq/ml湿潤樹脂)の範囲のもの。   (II) Strongly basic having macropores and micropores, macropores having a diameter of 2 to 20 μm, and micropores having a diameter of 30 to 300 nm (preferably a diameter of 42 to 240 nm) (provided that The pore diameter is in the range of 5.0 to 95.0% of the total pore volume), and the ion exchange capacity is in the range of 0.5 to 1.0 meq / ml wet resin) thing.

<EDI装置を用いた精製水の製造方法>
EDI装置の運転方法には特別なものはなく、通常の運転方法をそのまま適用できる。次に、EDI装置の運転条件の好ましい例を挙げる。
供給水量:25〜4500L/hr
EDI水量(脱塩水量):20〜4000L/hr
濃縮水流量:供給液量の5%〜50%の流量
印加電圧:30〜1000V
印加電流密度:0.1〜1.5A/dm2
<Method for producing purified water using EDI device>
There is no special operation method for the EDI apparatus, and a normal operation method can be applied as it is. Next, the preferable example of the operating condition of an EDI apparatus is given.
Supply water volume: 25-4500L / hr
EDI water amount (desalted water amount): 20 to 4000 L / hr
Concentrated water flow rate: Flow rate of 5% to 50% of supply liquid Applied voltage: 30 to 1000V
Applied current density: 0.1 to 1.5 A / dm 2

なお、EDI装置で処理する原水となる水道水や地下水は、必要に応じて、軟水装置、活性炭、ミクロフィルター等で前処理することもできる。   In addition, the tap water and groundwater used as the raw water processed with an EDI apparatus can also be pre-processed with a soft water apparatus, activated carbon, a micro filter, etc. as needed.

<RO膜装置とEDI装置を組み合わせた2段階処理による精製水の製造方法>
本発明の精製水の製造方法では、前記の前処理水を用いてRO膜装置とEDI装置を組み合わせた2段階処理による精製水の製造方法も適用できる。RO膜処理との2段階処理により、EDIで除去対象となるイオン類の負荷を下げ、EDIの長寿命化とEDI処理水の高純度化が可能となる。
<Method for producing purified water by two-stage treatment combining RO membrane device and EDI device>
In the method for producing purified water according to the present invention, a method for producing purified water by a two-stage treatment in which the RO membrane device and the EDI device are combined using the pretreated water can also be applied. By the two-stage treatment with the RO membrane treatment, the load of ions to be removed by EDI can be reduced, and the life of EDI can be extended and the purity of EDI treated water can be increased.

1段目の処理では、RO膜装置を用いてRO処理水を得る。
RO膜装置は、公知のものを用いることができ、例えば、ダイセン・メンブレン・システムズ株式会社より販売されている、SV08−DRA981、−DRA991シリーズ、SV04−DRA981、−DRA991シリーズ等を用いることができる。
In the first stage treatment, RO treated water is obtained using the RO membrane device.
As the RO membrane device, a known device can be used. For example, SV08-DRA981, -DRA991 series, SV04-DRA981, -DRA991 series and the like sold by Daisen Membrane Systems Co., Ltd. can be used. .

RO膜装置は、処理能力(処理水の製造能力)が30〜5000L/hrのものを用いることができるが、前記範囲に限定されるものではなく、EDI装置への供給量に応じて、適宜選択することができる。   As the RO membrane device, one having a treatment capacity (treatment water production capacity) of 30 to 5000 L / hr can be used, but is not limited to the above range, and is appropriately selected according to the supply amount to the EDI apparatus. You can choose.

次の2段目の処理では、上記した(I)又は(II)のEDI装置により、1段目の処理で得たRO処理水を処理する。   In the next second stage treatment, the RO treated water obtained in the first stage treatment is treated by the EDI apparatus of (I) or (II) described above.

また、RO処理前の前処理水の水質によっては、RO膜装置処理を2段階として2段RO膜処理水をEDI装置に供給することもできる。   Further, depending on the quality of the pretreatment water before the RO treatment, the RO membrane device treatment can be performed in two stages and the two-stage RO membrane treatment water can be supplied to the EDI device.

更に、RO処理水中の炭酸イオンや硬度分の残存状況に応じて、RO処理水をEDI装置に供給する前に、脱気膜処理や軟水化処理を行っても良い。   Furthermore, a deaeration film treatment or a water softening treatment may be performed before supplying the RO treated water to the EDI device according to the remaining state of carbonate ions or hardness in the RO treated water.

なお、RO膜装置とEDI装置との間には、RO処理水を貯水するための貯水タンクを設け、貯水タンクの水をEDI装置に供給するようにしてもよい。
貯水タンクには、水位計、外部雰囲気からの雑菌等の混入を防ぐためのエアフィルター付きの通気孔を取り付けることができ、タンク内には、殺菌を目的として紫外線ランプを取り付けることもできる。
A water storage tank for storing the RO treated water may be provided between the RO membrane device and the EDI device, and the water in the water storage tank may be supplied to the EDI device.
The water storage tank can be provided with a water level gauge and a vent hole with an air filter for preventing contamination by germs from the outside atmosphere, and an ultraviolet lamp can be attached in the tank for the purpose of sterilization.

<MR型の陰イオン交換樹脂を用いた精製水の製造方法>
本発明の精製水の製造方法では、EDI装置の脱塩室内に少なくとも1種以上のMR型の強塩基性陰イオン交換樹脂を含む陰イオン交換樹脂を用いることにより、エンドトキシンや生菌の少ない精製水を得ることができる。
<Method for Producing Purified Water Using MR Type Anion Exchange Resin>
In the method for producing purified water according to the present invention, by using an anion exchange resin containing at least one MR type strongly basic anion exchange resin in the desalination chamber of the EDI apparatus, purification with less endotoxin and viable bacteria is achieved. You can get water.

EDI装置の脱塩室内に充填される陽イオン交換樹脂との混床で用いられる陰イオン交換樹脂は、MR型の陰イオン交換樹脂単独でもよいし、2種以上のMR型陰イオン交換樹脂を組合わせて使用することもできる。
また、MR型の陰イオン交換樹脂とゲル型の陰イオン交換樹脂を混合して充填することもできる。
The anion exchange resin used in the mixed bed with the cation exchange resin filled in the demineralization chamber of the EDI apparatus may be an MR type anion exchange resin alone, or two or more types of MR type anion exchange resins. It can also be used in combination.
Further, the MR type anion exchange resin and the gel type anion exchange resin may be mixed and filled.

前記のMR型の陰イオン交換樹脂は、ミクロ孔が大きいものは、ゲル型の陰イオン交換樹脂よりも生菌やエンドトキシンの除去能に優れるが、イオン交換容量が小さくなる場合が多い。そのため、ミクロ孔が大きいMR型陰イオン交換樹脂で、生菌とエンドトキシンを効率よく除去し、水中に含まれる無機イオン類はイオン交換容量の大きなゲル型の陰イオン交換樹脂で除去することにより、EDI処理水中に残存する生菌とエンドトキシンを大きく減少させるとともに、比抵抗値の大きな超純水を得ることが可能となる。 The MR type anion exchange resin having a large micropore is superior to the gel type anion exchange resin in removing viable bacteria and endotoxin, but often has a small ion exchange capacity. Therefore, with MR type anion exchange resin with large micropores, viable bacteria and endotoxin are efficiently removed, and inorganic ions contained in water are removed with gel type anion exchange resin with a large ion exchange capacity, It is possible to greatly reduce viable bacteria and endotoxin remaining in the EDI-treated water and obtain ultrapure water having a large specific resistance value.

(1)EDI装置
EDI装置は、中央が脱塩室で、脱塩室の外方向両側が濃縮室、濃縮室の外方向両側が電極室から構成される5室系の装置(脱塩室の膜間距離は0.4cm,有効膜面積は297cm2)を用いた。
陽極側の脱塩室と濃縮室の間には陰イオン交換膜(陰イオン交換膜AHA;(株)アストム製)が配置され、濃縮室と電極室の間には陽イオン交換膜(陽イオン交換膜CMB;(株)アストム製)が配置されている。
陰極側の脱塩室と濃縮室の間には前記の陽イオン交換膜が配置され、濃縮室と電極室の間には前記の陰イオン交換膜が配置されている。濃縮室の膜間距離は二室とも0.4cmであり、電極室の電極とイオン交換膜との距離は両電極室とも0.4cmであった。また、濃縮室と電極間に配置されたイオン交換膜の有効膜面積は297cm2であった。
なお、陰イオン交換膜と陽イオン交換膜は、超純水約10Lに約15分間浸漬する浸漬洗浄を3回行ったものを用いた。
脱塩室には、下記の陰イオン交換樹脂と陽イオン交換樹脂が体積比1:1(60mlずつ)で充填されている。
(1) EDI device The EDI device is a five-chamber system consisting of a desalination chamber at the center, a concentrating chamber on both sides of the desalting chamber, and electrode chambers on both sides of the concentrating chamber. The distance between membranes was 0.4 cm and the effective membrane area was 297 cm 2 ).
An anion exchange membrane (anion exchange membrane AHA; manufactured by Astom Co., Ltd.) is disposed between the desalting chamber and the concentration chamber on the anode side, and a cation exchange membrane (cation) is disposed between the concentration chamber and the electrode chamber. Exchange membrane CMB (made by Astom Co., Ltd.) is arranged.
The cation exchange membrane is disposed between the desalting chamber and the concentration chamber on the cathode side, and the anion exchange membrane is disposed between the concentration chamber and the electrode chamber. The distance between the membranes in the concentrating chamber was 0.4 cm in both chambers, and the distance between the electrode in the electrode chamber and the ion exchange membrane was 0.4 cm in both electrode chambers. The effective membrane area of the ion exchange membrane disposed between the concentration chamber and the electrode was 297 cm 2 .
In addition, the anion exchange membrane and the cation exchange membrane used what performed immersion washing | cleaning 3 times immersed in about 10L of ultrapure water for about 15 minutes.
The desalting chamber is filled with the following anion exchange resin and cation exchange resin at a volume ratio of 1: 1 (each 60 ml).

(陰イオン交換樹脂)
表1に示す4種を用いた。アンバーライトIRA−900J(マクロ孔が直径2〜20μm、ミクロ孔が直径28〜44nm)とアンバーライトIRA−904(マクロ孔が直径2〜20μm、ミクロ孔が半径42〜240nm)が実施例、アンバーライトIRA−400J、アンバーライトIRA−404Jが比較例の陰イオン交換樹脂となる。いずれの樹脂もオルガノ(株)製である。
(陽イオン交換樹脂)
アンバーライトIR−120B(強酸性,イオン交換容量:2.0meq/ml,オルガノ(株)製)
(Anion exchange resin)
Four types shown in Table 1 were used. Amberlite IRA-900J (macropore diameter 2-20 μm, micropore diameter 28-44 nm) and Amberlite IRA-904 (macropore diameter 2-20 μm, micropore radius 42-240 nm) are examples, amber Light IRA-400J and Amberlite IRA-404J are comparative anion exchange resins. Both resins are manufactured by Organo Corporation.
(Cation exchange resin)
Amberlite IR-120B (strongly acidic, ion exchange capacity: 2.0 meq / ml, manufactured by Organo Corporation)

アンバーライトIRA−900JとアンバーライトIRA−904の細孔径は「イオン交換樹脂とその技術と応用(基礎編)」(改訂第2版1997年3月31日発行,編集発行者 オルガノ株式会社 IER部)のp37の「表1.9 MR形のイオン交換樹脂の細孔構造」に記載のものである。

Figure 0005658908
The pore size of Amberlite IRA-900J and Amberlite IRA-904 is “Ion-exchange resin and its technology and application (basic edition)” (Revised 2nd edition, published on March 31, 1997, Organizer IER Department) P37 of "Table 1.9 Pore structure of ion-exchange resin of MR type".
Figure 0005658908

(EDIの運転条件)
EDI装置の脱塩室、濃縮室、電極室のそれぞれに対して、試料水を417ml/min、200ml/min、167ml/minで通水しつつ、電流密度0.11A/dm2で通電した。なお、前記流速条件は、前記EDI装置を脱塩目的に使用する場合の実用通水速度である。
(EDI operating conditions)
The sample water was passed through the desalination chamber, concentration chamber, and electrode chamber of the EDI apparatus at 417 ml / min, 200 ml / min, and 167 ml / min while energizing at a current density of 0.11 A / dm 2 . The flow rate condition is a practical water flow rate when the EDI device is used for desalting purposes.

(2)測定方法
(2-1)試料水の調製方法
普通寒天培地にて毎月1回継代保存した緑膿菌(Pseudmonas aeruginosa GNB-139)を用いた。
普通ブイヨン10mlを分注したL字管にて37℃で20±2時間振とう培養後、さらに同培地(普通ブイヨン)30mlを分注した三角フラスコに移植し、37℃で18時間振とう培養した。
培養終了後、遠心集菌(4℃,6000r/m,11min)した菌体を滅菌生理食塩水で2回遠心洗浄した。
この洗浄菌体を滅菌生理食塩水30mlに再度懸濁し(菌濃度109CFC/ml)、その0.5mlをRO膜装置の処理水50Lに添加し、菌濃度が103−104CFU/mlとなるように調整したものを試料水とした。なお、この試料水のET活性は1.5±0.6EU/mlであった。
(2) Measurement method (2-1) Sample water preparation method Pseudomonas aeruginosa GNB-139, which was stored once a month in a normal agar medium, was used.
After shaking culture for 20 ± 2 hours at 37 ° C in an L-shaped tube dispensed with 10 ml of normal broth, it was further transplanted to an Erlenmeyer flask dispensed with 30 ml of the same medium (normal broth) and cultured for 18 hours at 37 ° C. did.
After completion of the culture, the cells collected by centrifugation (4 ° C., 6000 r / m, 11 min) were washed twice by centrifugation with sterile physiological saline.
This washed cell is resuspended in 30 ml of sterile physiological saline (bacterial concentration 10 9 CFC / ml), 0.5 ml of this is added to 50 L of treated water in the RO membrane device, and the bacterial concentration is 10 3 -10 4 CFU / ml. The sample water was adjusted to be ml. The ET activity of this sample water was 1.5 ± 0.6 EU / ml.

(2-2)除菌効果の評価
除菌効果の評価は、次の方法で行った。
通電開始前を0分として、通電開始後5、15、30、60、120、180分後に脱塩室流出水(EDI処理水)を採水し、それぞれ滅菌生理食塩水で適当段階希釈したものを用い、R2A寒天培地を用いた平板塗抹法により、20〜25℃で4〜7日間培養後の生菌数を測定した。
試料水(0分のもの)中の生菌数に対する各時間のEDI処理水中の生菌数の割合を算出し、生存率として評価した。100%−生菌の生残率(%)が除菌率(%)を示すことになる。
(2-2) Evaluation of sterilization effect The sterilization effect was evaluated by the following method.
0 minutes before the start of energization, 5, 15, 30, 60, 120, 180 minutes after the start of energization, sampled desalination chamber effluent (EDI-treated water), and each diluted in appropriate stages with sterile physiological saline The viable cell count after culturing at 20 to 25 ° C. for 4 to 7 days was measured by a plate smearing method using an R2A agar medium.
The ratio of the number of viable bacteria in the EDI-treated water at each time to the number of viable bacteria in the sample water (0 minute) was calculated and evaluated as a survival rate. 100%-The survival rate (%) of viable bacteria indicates the eradication rate (%).

(2-3)ETの除去効果の評価
上記の除菌効果の評価と同様にして採水したEDI処理水のET活性を、トキシノメーターミニ(和光純薬工業(株)製)を用いたリムルス(LAL)テスト比濁時間法により測定し、試料水(0分のもの)と各時間のEDI処理水のET活性を比較した。試料水(0分のもの)のET活性は、1.5±0.6EU/mlである。ET活性の低下が大きいものほど、ET除去効果が高いことを示す。
(2-3) Evaluation of ET removal effect Toxinometer mini (manufactured by Wako Pure Chemical Industries, Ltd.) was used for the ET activity of EDI-treated water collected in the same manner as the evaluation of the sterilization effect. Measured by the Limulus (LAL) test turbidimetric time method, the ET activity of the sample water (0 minute) and the EDI-treated water at each time was compared. The ET activity of sample water (0 min) is 1.5 ± 0.6 EU / ml. It shows that ET removal effect is so high that the fall of ET activity is large.

(2-4)イオン交換樹脂から脱離されたもの(イオン交換樹脂に吸着されていたもの)の細菌数の評価/ET活性の評価
運転終了後にEDI装置を解体し、脱塩室内のイオン交換樹脂を、液の流入口側(i)から流出口側(v)にかけて5区画(i〜v)に分け、各区画からイオン交換樹脂を約20mlずつ採取した。
(2-4) Evaluation of the number of bacteria / Et activity evaluation of those desorbed from the ion exchange resin (adsorbed on the ion exchange resin) After the operation was completed, the EDI device was disassembled and ion exchange in the desalination chamber The resin was divided into five compartments (i to v) from the liquid inlet side (i) to the outlet side (v), and about 20 ml of ion exchange resin was collected from each compartment.

次に、1mol/Lになるよう塩化ナトリウムを添加したリン酸緩衝液(pH8.0)200ml中に、各区画から採取した約20mlのイオン交換樹脂を入れ、その後、約20分間振とう撹拌して、イオン交換樹脂に吸着されている細菌及びETをリン酸緩衝液(pH8.0)中に脱離させた。
このリン酸緩衝液を用いて、「(2-2)除菌効果の評価」及び「(2-3)ETの除去効果の評価」と同様にして細菌数とET活性を測定した。
脱離したサンプル中の生菌数が多いほど、除菌効果が高いことを示し、脱離したサンプル中のET活性が高いほど、ET除去効果が高いことを示す。
Next, about 20 ml of ion exchange resin collected from each compartment is placed in 200 ml of phosphate buffer (pH 8.0) to which sodium chloride has been added so as to be 1 mol / L, and then shaken and stirred for about 20 minutes. Thus, bacteria and ET adsorbed on the ion exchange resin were desorbed in a phosphate buffer (pH 8.0).
Using this phosphate buffer, the number of bacteria and ET activity were measured in the same manner as in “(2-2) Evaluation of sterilization effect” and “(2-3) Evaluation of ET removal effect”.
The greater the number of viable bacteria in the detached sample, the higher the sterilization effect, and the higher the ET activity in the detached sample, the higher the ET removal effect.

(2-5)その他の評価
上記の除菌効果の評価と同様にして採水したEDI処理水の電気伝導度とpHを測定した。
電気伝導度は、電気伝導度計200CR(Thorntonl社製)で測定し、pHは、pHメーター(堀場製作所製)にて測定した。
(2-5) Other evaluations The electrical conductivity and pH of EDI-treated water collected in the same manner as in the above evaluation of the sterilization effect were measured.
The electric conductivity was measured with an electric conductivity meter 200CR (manufactured by Thorntonl), and the pH was measured with a pH meter (manufactured by Horiba).

実施例1、比較例1
陰イオン交換樹脂として、表1に示す4種の陰イオン交換樹脂を充填したEDI装置を用いて、所定の運転条件にて試料水を処理した。処理水について「(2-2)除菌効果の評価(生菌の生残率(%)の変化)」を行った。結果を図1に示す。
Example 1 and Comparative Example 1
Using an EDI apparatus filled with four types of anion exchange resins shown in Table 1 as an anion exchange resin, sample water was treated under predetermined operating conditions. The treated water was subjected to “(2-2) Evaluation of sterilization effect (change in survival rate (%) of viable bacteria)”. The results are shown in FIG.

MR形の2つの陰イオン交換樹脂(実施例1)とゲル形の2つの陰イオン交換樹脂(比較例1)を用いた場合を比べると、MR形の2つの陰イオン交換樹脂の方が、除菌効果が高かった。
MR形の2つの陰イオン交換樹脂を比べると、イオン交換容量が小さい方(IRA−904)が、除菌効果が高かった。
Comparing the case where two MR type anion exchange resins (Example 1) and two gel type anion exchange resins (Comparative Example 1) were used, the two MR type anion exchange resins were The sterilization effect was high.
Comparing two MR type anion exchange resins, the smaller the ion exchange capacity (IRA-904), the higher the sterilization effect.

実施例2、比較例2
陰イオン交換樹脂として、表1に示す4種の陰イオン交換樹脂を充填したEDI装置を用いて、所定の運転条件にて試料水を処理した。処理水について「(2-3)ETの除去効果の評価」を行った。結果を図2に示す。
Example 2 and Comparative Example 2
Using an EDI apparatus filled with four types of anion exchange resins shown in Table 1 as an anion exchange resin, sample water was treated under predetermined operating conditions. The treated water was subjected to “(2-3) Evaluation of ET removal effect”. The results are shown in FIG.

図2から明らかなとおり、IRA900J(MR形)、IRA904(MR形)(実施例2)、IRA400J(ゲル形)(比較例2)のET効果は同程度であった。なお、実用上の人工透析用水のET基準値は、0.05EU/mlである、   As is apparent from FIG. 2, the ET effects of IRA900J (MR type), IRA904 (MR type) (Example 2), and IRA400J (gel type) (Comparative Example 2) were comparable. In addition, the ET standard value of water for artificial dialysis practical use is 0.05 EU / ml.

実施例3、比較例3
陰イオン交換樹脂として、表1に示す4種の陰イオン交換樹脂を充填したEDI装置を用いて、所定の運転条件にて試料水を処理した。処理水について「(2-4)イオン交換樹脂から脱離されたものの生菌数の評価」を行った。結果を図3に示す。
Example 3 and Comparative Example 3
Using an EDI apparatus filled with four types of anion exchange resins shown in Table 1 as an anion exchange resin, sample water was treated under predetermined operating conditions. The treated water was subjected to “(2-4) Evaluation of the number of viable bacteria that were detached from the ion exchange resin”. The results are shown in FIG.

いずれの陰イオン交換樹脂の場合も、入り口側(i)側の脱離量(生菌数)が多く、流出口側(v)に向かうほど少なくなった。
MR形とゲル形では、MR形の陰イオン交換樹脂(実施例3)の方がより多くの生菌を吸着保持していた(除菌効果が高かった)。
IRA900J(MR形)とIRA904(MR形)では、IRA900J(MR形)の方がより多くの生菌を吸着保持していた(除菌効果が高かった)。
In any anion exchange resin, the amount of detachment (viable cell count) on the inlet side (i) side was large, and decreased toward the outlet side (v).
In the MR type and the gel type, the MR type anion exchange resin (Example 3) adsorbed and retained more viable bacteria (higher sterilization effect).
In IRA900J (MR type) and IRA904 (MR type), IRA900J (MR type) adsorbed and retained more viable bacteria (higher sterilization effect).

実施例4、比較例4
陰イオン交換樹脂として、表1に示す4種の陰イオン交換樹脂を充填したEDI装置を用いて、所定の運転条件にて試料水を処理した。処理水について「(2-4)イオン交換樹脂から脱離されたもののET活性の評価」を行った。結果を図4に示す。
Example 4 and Comparative Example 4
Using an EDI apparatus filled with four types of anion exchange resins shown in Table 1 as an anion exchange resin, sample water was treated under predetermined operating conditions. The treated water was subjected to “(2-4) Evaluation of ET activity of those desorbed from the ion exchange resin”. The results are shown in FIG.

いずれの陰イオン交換樹脂の場合も、入り口側(i)側の脱離サンプル中のET活性が高く、流出口側(v)に向かうほど小さくなった。
IRA900J(MR形)とIRA904(MR形)では、IRA900J(MR形)の脱離サンプル中の方が、ET活性が高かった(ET除去効果が高かった)。
In any of the anion exchange resins, the ET activity in the desorbed sample on the inlet side (i) side was high and became smaller toward the outlet side (v).
In IRA900J (MR type) and IRA904 (MR type), ET activity was higher in the desorbed sample of IRA900J (MR type) (ET removal effect was higher).

実施例5、比較例5
陰イオン交換樹脂として、表1に示す4種の陰イオン交換樹脂を充填したEDI装置を用いて、所定の運転条件にて試料水を処理した。処理水について「(2-5)その他の評価」により電気伝導度を測定した。結果を図5に示す。
Example 5, Comparative Example 5
Using an EDI apparatus filled with four types of anion exchange resins shown in Table 1 as an anion exchange resin, sample water was treated under predetermined operating conditions. The electrical conductivity of the treated water was measured by “(2-5) Other evaluations”. The results are shown in FIG.

実施例6、比較例6
陰イオン交換樹脂として、表1に示す4種の陰イオン交換樹脂を充填したEDI装置を用いて、所定の運転条件にて試料水を処理した。処理水について「(2-5)その他の評価」によりpHを測定した。結果を図6に示す。
Example 6 and Comparative Example 6
Using an EDI apparatus filled with four types of anion exchange resins shown in Table 1 as an anion exchange resin, sample water was treated under predetermined operating conditions. The pH of the treated water was measured by “(2-5) Other evaluations”. The results are shown in FIG.

参考例1〜4
参考例1(図7)は、ゲル形の陰イオン交換樹脂を使用し、EDI装置を通電運転したときと、非通電で運転したときの生残率(%)の変化を測定した。
参考例2(図8)は、MR形の陰イオン交換樹脂を使用し、EDI装置を通電運転したときと、非通電で運転したときの生残率(%)の変化を測定した。
参考例3(図9)は、ゲル形の陰イオン交換樹脂を使用し、EDI装置を通電運転したときと、非通電で運転したときのET活性の変化を測定した。
参考例4(図10)は、MR形の陰イオン交換樹脂を使用し、EDI装置を通電運転したときと、非通電で運転したときのET活性の変化を測定した。
Reference Examples 1-4
In Reference Example 1 (FIG. 7), a gel-type anion exchange resin was used, and the change in the survival rate (%) when the EDI device was energized and deenergized was measured.
In Reference Example 2 (FIG. 8), an MR type anion exchange resin was used, and the change in the survival rate (%) was measured when the EDI device was operated with current and when it was not operated.
In Reference Example 3 (FIG. 9), a gel-type anion exchange resin was used, and the change in ET activity was measured when the EDI device was operated with current and when it was not operated.
In Reference Example 4 (FIG. 10), an anion exchange resin of MR type was used, and a change in ET activity was measured when the EDI apparatus was operated with current and when it was operated without current.

本発明の製造方法で得られる精製水は、人工透析用水や注射液等で使用する医療用の精製水、半導体の製造工程のような産業用の製造ラインにおいて使用する洗浄水等として適している。   The purified water obtained by the production method of the present invention is suitable as medical purified water used for artificial dialysis water, injection solution, etc., washing water used in industrial production lines such as semiconductor production processes, etc. .

Claims (5)

電気再生式脱イオン装置(EDI装置)を用いた精製水の除菌およびエンドトキシンの除去方法であり、
前記EDI装置が、イオン交換樹脂を備えたイオン交換室(脱塩室)、濃縮室、電極室(正及び負の電極室)を有するもので、印加電圧が30〜1000V、印加電流密度が0.1〜1.5A/dm 2 で運転するものであり、
前記イオン交換室内に充填された陰イオン交換樹脂として少なくとも1種以上のMR型の陰イオン交換樹脂を含む陰イオン交換樹脂を用いており、
前記MR型の陰イオン交換樹脂が、マクロ孔とミクロ孔を有する強塩基性のものであり、前記マクロ孔が直径2〜20μmの範囲の孔であり、前記ミクロ孔が直径20〜300nmの範囲の孔のものである、精製水の除菌およびエンドトキシンの除去方法
A method for sterilizing purified water and removing endotoxin using an electric regeneration deionization device (EDI device),
The EDI apparatus has an ion exchange chamber (desalting chamber), an enrichment chamber, and electrode chambers (positive and negative electrode chambers) provided with an ion exchange resin . The applied voltage is 30 to 1000 V and the applied current density is 0. is intended to operate at .1~1.5A / dm 2,
An anion exchange resin containing at least one MR type anion exchange resin is used as the anion exchange resin filled in the ion exchange chamber,
The MR type anion exchange resin is strongly basic having macropores and micropores, the macropores are pores having a diameter of 2 to 20 μm, and the micropores are having a diameter of 20 to 300 nm. Of purified water and endotoxin , which are of the pores of
電気再生式脱イオン装置(EDI装置)を用いた精製水の除菌およびエンドトキシンの除去方法であり、
前記EDI装置が、イオン交換樹脂を備えたイオン交換室(脱塩室)、濃縮室、電極室(正及び負の電極室)を有するもので、印加電圧が30〜1000V、印加電流密度が0.1〜1.5A/dm 2 で運転するものであり、
前記イオン交換室内に充填された陰イオン交換樹脂として少なくとも1種以上のMR型の陰イオン交換樹脂を含む陰イオン交換樹脂を用いており、
前記MR型の陰イオン交換樹脂が、マクロ孔とミクロ孔を有する強塩基性のものであり、前記マクロ孔が直径2〜20μmの範囲の孔で、前記ミクロ孔が直径20〜60nmの範囲の孔であり、イオン交換容量が0.8〜1.5meq/ml(湿潤樹脂)のものである、精製水の除菌およびエンドトキシンの除去方法
A method for sterilizing purified water and removing endotoxin using an electric regeneration deionization device (EDI device),
The EDI apparatus has an ion exchange chamber (desalting chamber), an enrichment chamber, and electrode chambers (positive and negative electrode chambers) provided with an ion exchange resin . The applied voltage is 30 to 1000 V and the applied current density is 0. is intended to run at .1~1.5A / dm 2,
An anion exchange resin containing at least one MR type anion exchange resin is used as the anion exchange resin filled in the ion exchange chamber,
The MR type anion exchange resin is strongly basic having macropores and micropores, the macropores are pores having a diameter of 2 to 20 μm, and the micropores are having a diameter of 20 to 60 nm. A method for disinfecting purified water and removing endotoxin, which is a pore and has an ion exchange capacity of 0.8 to 1.5 meq / ml (wet resin).
電気再生式脱イオン装置(EDI装置)を用いた精製水の除菌およびエンドトキシンの除去方法であり、
前記EDI装置が、イオン交換樹脂を備えたイオン交換室(脱塩室)、濃縮室、電極室(正及び負の電極室)を有するもので、印加電圧が30〜1000V、印加電流密度が0.1〜1.5A/dm 2 で運転するものであり、
前記イオン交換室内に充填された陰イオン交換樹脂として少なくとも1種以上のMR型の陰イオン交換樹脂を含む陰イオン交換樹脂を用いており、
前記MR型の陰イオン交換樹脂が、マクロ孔とミクロ孔を有する強塩基性のものであり、前記マクロ孔が直径2〜20μmの範囲の孔で、前記ミクロ孔が直径30〜300nmの範囲の孔であり、イオン交換容量が0.5〜1.0meq/ml(湿潤樹脂)のものである、精製水の除菌およびエンドトキシンの除去方法
A method for sterilizing purified water and removing endotoxin using an electric regeneration deionization device (EDI device),
The EDI apparatus has an ion exchange chamber (desalting chamber), an enrichment chamber, and electrode chambers (positive and negative electrode chambers) provided with an ion exchange resin . The applied voltage is 30 to 1000 V and the applied current density is 0. is intended to operate at .1~1.5A / dm 2,
An anion exchange resin containing at least one MR type anion exchange resin is used as the anion exchange resin filled in the ion exchange chamber,
The MR type anion exchange resin is strongly basic having macropores and micropores, the macropores having a diameter in the range of 2 to 20 μm, and the micropores having a diameter in the range of 30 to 300 nm. A method for sterilizing purified water and removing endotoxin, which is a pore and has an ion exchange capacity of 0.5 to 1.0 meq / ml (wet resin).
逆浸透膜装置(RO膜装置)で処理した水をさらにEDI装置で処理する、請求項1〜3のいずれか1項に記載の精製水の除菌およびエンドトキシンの除去方法The method of disinfecting purified water and removing endotoxin according to any one of claims 1 to 3, wherein the water treated with a reverse osmosis membrane device (RO membrane device) is further treated with an EDI device. 精製水が人工透析用水である、請求項1〜4のいずれか1項記載の精製水の除菌およびエンドトキシンの除去方法The method for sterilizing purified water and removing endotoxin according to any one of claims 1 to 4, wherein the purified water is artificial dialysis water.
JP2010115112A 2010-05-19 2010-05-19 Method for producing purified water Expired - Fee Related JP5658908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115112A JP5658908B2 (en) 2010-05-19 2010-05-19 Method for producing purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115112A JP5658908B2 (en) 2010-05-19 2010-05-19 Method for producing purified water

Publications (2)

Publication Number Publication Date
JP2011240264A JP2011240264A (en) 2011-12-01
JP5658908B2 true JP5658908B2 (en) 2015-01-28

Family

ID=45407486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115112A Expired - Fee Related JP5658908B2 (en) 2010-05-19 2010-05-19 Method for producing purified water

Country Status (1)

Country Link
JP (1) JP5658908B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305139B2 (en) * 1994-11-29 2002-07-22 オルガノ株式会社 Method for producing deionized water by electrodeionization method
US6284124B1 (en) * 1999-01-29 2001-09-04 United States Filter Corporation Electrodeionization apparatus and method
JP3957179B2 (en) * 2001-09-18 2007-08-15 オルガノ株式会社 Organic porous ion exchanger
JP2007237062A (en) * 2006-03-07 2007-09-20 Osumo:Kk Artificial dialysis water manufacturing method and its manufacturing apparatus
JP2007252396A (en) * 2006-03-20 2007-10-04 Kitasato Gakuen Manufacturing device and manufacturing method of medical purpose dialysis fluid
JP5290603B2 (en) * 2007-05-28 2013-09-18 オルガノ株式会社 Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter

Also Published As

Publication number Publication date
JP2011240264A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Kalfa et al. Capacitive deionization for wastewater treatment: Opportunities and challenges
JP4972049B2 (en) Desalination method
JPH10151463A (en) Water treatment method
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP2007252396A (en) Manufacturing device and manufacturing method of medical purpose dialysis fluid
JP2007237062A (en) Artificial dialysis water manufacturing method and its manufacturing apparatus
JP5584321B1 (en) Operation method of medical purified water production equipment
CN112591964A (en) Hospital emergency water supply system
WO2011044782A1 (en) Super advanced sewage treatment method and device
JP3565098B2 (en) Ultrapure water production method and apparatus
CN112321063A (en) Functional water treatment device
JP5658908B2 (en) Method for producing purified water
JP4480251B2 (en) Disinfection of electric regenerative deionized water purifier
CN106315870A (en) Industrial circulating cooling water sterilization hardness-removal device and treatment method
CN214422434U (en) Hospital&#39;s central dual water supply system
CN209923109U (en) Purified water treatment equipment
JP5931493B2 (en) Method for producing medical purified water
JP3965001B2 (en) Deionized water production equipment
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JP4428633B2 (en) Method of virus inactivation of treated water
CN105692974B (en) A kind of water purification machine
CN215855269U (en) Water purification system
CN109502845A (en) A kind of ultrapure water preparation method
CN214422435U (en) Hospital terminal purification and monitoring system
CN214497671U (en) Hospital priority water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5658908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees