JP5931493B2 - Method for producing medical purified water - Google Patents

Method for producing medical purified water Download PDF

Info

Publication number
JP5931493B2
JP5931493B2 JP2012032652A JP2012032652A JP5931493B2 JP 5931493 B2 JP5931493 B2 JP 5931493B2 JP 2012032652 A JP2012032652 A JP 2012032652A JP 2012032652 A JP2012032652 A JP 2012032652A JP 5931493 B2 JP5931493 B2 JP 5931493B2
Authority
JP
Japan
Prior art keywords
edi
treated water
water
treated
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012032652A
Other languages
Japanese (ja)
Other versions
JP2013166139A (en
Inventor
利夫 佐藤
利夫 佐藤
智暢 阿瀬
智暢 阿瀬
武志 野口
武志 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Original Assignee
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd filed Critical Daicen Membrane Systems Ltd
Priority to JP2012032652A priority Critical patent/JP5931493B2/en
Publication of JP2013166139A publication Critical patent/JP2013166139A/en
Application granted granted Critical
Publication of JP5931493B2 publication Critical patent/JP5931493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、人工透析用水等に使用する医療用精製水の製造方法に関する。   The present invention relates to a method for producing medical purified water used for artificial dialysis water and the like.

人工透析液は、精製水(人工透析用水)と透析液原液を混合して製造される。前記精製水は、微生物やエンドトキシンで汚染されていないものを用いる必要がある。   The artificial dialysate is produced by mixing purified water (artificial dialyzing water) and a dialysate stock solution. It is necessary to use purified water that is not contaminated with microorganisms or endotoxins.

人工透析は医療機関で行われるが、通常、夜間には人工透析は行われないため、精製水の製造装置の運転は停止され、翌朝に運転が再開されることになる。
このように夜間に運転停止しているとき、装置内部に存在する細菌が増殖繁殖するおそれがあり、翌朝に精製水の製造装置の運転が再開されたとき、人工透析用水として使用できるレベルの精製水が採水できるようになるまでに長い時間を要する場合が考えられる。また、細菌の増殖は、エンドトキシンやDNA断片などの生成と濃度増加を招き、透析液の生物学的汚染等による透析治療への重大な悪影響をもたらす危険もある。
よって、このような運転再開時においても、速やかに高い品質の医療用精製水を安定供給できることが重要となる。
Artificial dialysis is performed at a medical institution, but normally, artificial dialysis is not performed at night, so the operation of the purified water production apparatus is stopped and the operation is resumed the next morning.
In this way, when the operation is stopped at night, there is a possibility that bacteria existing inside the device may proliferate and propagate, and when the operation of the purified water production device is resumed the next morning, the purification level is such that it can be used as artificial dialysis water. There may be a case where it takes a long time before water can be collected. Bacterial growth also leads to the production and concentration of endotoxins and DNA fragments, and there is also a risk of causing serious adverse effects on dialysis treatment due to biological contamination of dialysate.
Therefore, it is important to be able to quickly and stably supply high-quality medical purified water even when such operation is resumed.

特許文献1には、電気式脱イオン水製造装置を長期間運転したとき(段落番号0020の第1の実施の形態では、3か月から半年と記載されている)において、前記製造装置のイオン交換体に蓄積された炭酸イオン、シリカ、カルシウムイオンを除去するため、通水工程と前記製造装置を通電しながら脱塩水を通水する電気回生工程を有する、電気式脱イオン水製造装置の通水処理方法が開示されている。
実施例1(段落番号0030)では、通水工程処理期間が3か月で、電気回生工程処理期間が3か月で実施されている。
In Patent Document 1, when the electric deionized water production apparatus is operated for a long period of time (in the first embodiment of paragraph 0020, it is described as three months to six months), the ion of the production apparatus In order to remove carbonate ions, silica, and calcium ions accumulated in the exchanger, the electric deionized water production apparatus has a water flow process and an electric regeneration process of passing demineralized water while energizing the production apparatus. A water treatment method is disclosed.
In Example 1 (paragraph number 0030), the water flow process period is 3 months, and the electrical regeneration process period is 3 months.

特許文献2には、原水をイオン交換体へ供給しながら通電して処理水を得る調製工程と、前記原水に替えて脱塩水を前記イオン交換体に供給しながら通電することで前記イオン交換体を再生する休止工程を繰り返す電気式脱塩装置の運転方法の発明が開示されている。
この発明は、特許文献1と同様にイオン交換体に蓄積された炭酸イオン、シリカ、カルシウムイオンを除去するための発明であるが、イオン交換体への炭酸イオン等の蓄積量を制御装置にて連続的に求め、それを積算することで調製工程から休止工程への移行時期を判断することが記載されている(段落番号0033〜0036)。
前記移行時期については明記されていないが、段落番号0006、0007の記載(特許文献1の発明の課題を解決することが記載されている)と特許文献1の発明から考えて、実質的に3〜6か月程度であるものと認められる。
Patent Document 2 includes a preparation step of obtaining treated water by supplying current while supplying raw water to the ion exchanger, and the ion exchanger by supplying current while supplying deionized water to the ion exchanger instead of the raw water. The invention of the operation method of the electric desalination apparatus which repeats the pause process which reproduces | regenerates is disclosed.
This invention is an invention for removing carbonate ions, silica, and calcium ions accumulated in the ion exchanger as in Patent Document 1, but the amount of accumulation of carbonate ions and the like in the ion exchanger is controlled by a control device. It is described that the transition time from the preparation step to the suspension step is determined by continuously obtaining and integrating the numbers (paragraph numbers 0033 to 0036).
The transition time is not specified, but in view of the description of paragraphs 0006 and 0007 (which describes solving the problems of the invention of Patent Document 1) and the invention of Patent Document 1, it is substantially 3 It is recognized that it is about ~ 6 months.

特許文献3、4は、医療用精製水の製造方法の発明であり、EDI装置とRO処理水が入った貯水タンクとの間で、EDI装置を運転しながら循環させることが記載されている。
しかし、特許文献3、4では、EDI装置で処理したEDI処理水はRO処理水の貯水タンクに入り、EDI処理水とRO処理水が混合された状態で循環されることになる。
循環運転を継続すれば貯水タンク中のRO処理水がEDI処理水に置換されることが考えられるが、それには貯水タンクの容量に応じた時間を要することになる。
Patent Documents 3 and 4 are inventions of a method for producing purified water for medical use, and describe that an EDI device is circulated between an EDI device and a water storage tank containing RO treated water.
However, in Patent Documents 3 and 4, the EDI treated water treated by the EDI device enters the RO treated water storage tank and is circulated in a state where the EDI treated water and the RO treated water are mixed.
If the circulation operation is continued, it is conceivable that the RO treated water in the water storage tank is replaced with the EDI treated water, but this requires time corresponding to the capacity of the water storage tank.

特許第3480661号公報Japanese Patent No. 3480661 特開2010−999594号公報JP 2010-999594 A 特開2010−131495号公報JP 2010-131495 A 特開2010−274031号公報JP 2010-274031 A

上記した特許文献1、2の発明は、いずれもイオン交換体に蓄積された炭酸イオン、シリカ、カルシウムイオンを除去するための方法に関する発明であり、実施時期は長期間(3〜6か月)の運転継続後である。
上記した特許文献3、4の発明は、貯水タンク内の処理水の全量がEDI処理水に置換されるまでの間は、RO処理水とEDI処理水の混合水を循環させることになる点で改善の余地がある。
The inventions of Patent Documents 1 and 2 described above are inventions related to a method for removing carbonate ions, silica, and calcium ions accumulated in an ion exchanger, and the implementation period is long (3 to 6 months). After the driving continues.
The inventions of Patent Documents 3 and 4 described above are such that the mixed water of RO treated water and EDI treated water is circulated until the entire amount of treated water in the water storage tank is replaced with EDI treated water. There is room for improvement.

本発明は、医療機関において日々実施される人工透析に使用する人工透析用水等の医療用精製水の製造方法として好適なものであり、夜間に医療用精製水の製造を停止し、翌朝製造運転を再開したときでも、速やかに高い品質の医療用精製水を安定供給できる、医療用精製水の製造方法を提供することを課題とする。   The present invention is suitable as a method for producing purified medical water such as artificial dialysis water used for daily dialysis in a medical institution, and stops production of purified medical water at night, It is an object of the present invention to provide a method for producing medical purified water that can stably supply high-quality medical purified water promptly even when restarting.

本発明者らは、電気再生式脱イオン装置(EDI装置)に供給する水に生菌を添加した生菌負荷試験において、EDI処理によって脱塩水中の生菌数が供給水の1/103〜1/104まで減少すると共に、EDI装置の入口付近には生菌が残存しているのに対して、EDI装置出口付近には生菌は存在していないことを見いだした。
EDI装置の入口、出口付近の生菌の前記挙動は、EDI装置内の入口付近では供給水中のイオンとイオン交換樹脂内の交換基とのイオン交換が支配的になされ、水解離によるH+イオン、OH-イオンは菌の完全な殺菌に必要な十分な濃度までには至らないのに対して、出口付近では水解離現象が活発になることで、H+イオン、OH-イオンが豊富に存在し、菌が生存し得ない環境となり菌が殺菌されるものと考えられる。
EDI装置の入口付近でも十分な水解離を生じさせ、EDI装置内に残存する細菌を死滅させるために、本発明者らは、EDI装置を通電運転しながら、EDI装置を含む閉鎖系にEDI処理水を循環させることにより、供給水中にイオン類を殆ど含まない水をEDI装置に供給してEDI装置内全体で水解離の発生を可能とした。
これにより、EDI装置内の細菌の殺菌もしくは、細菌繁殖を抑制乃至減少させることができ、同時にエンドトキシンも不活性化できることを見出し、さらに電気伝導度の小さな水を循環させることで前記作用効果がより高められることを見出し、本発明を完成した。
In the viable bacterial load test in which viable bacteria are added to the water supplied to the electric regeneration type deionization apparatus (EDI apparatus), the number of viable bacteria in the demineralized water is reduced to 1/10 3 by the EDI treatment. While decreasing to ˜1 / 10 4, it was found that viable bacteria remained near the inlet of the EDI apparatus, whereas no viable bacteria existed near the outlet of the EDI apparatus.
The behavior of viable bacteria in the vicinity of the inlet and outlet of the EDI apparatus is such that ion exchange between ions in the feed water and exchange groups in the ion exchange resin is dominant near the inlet in the EDI apparatus, and H + ions due to water dissociation. OH - ions do not reach a sufficient concentration necessary for complete sterilization of bacteria, but water dissociation phenomenon becomes active near the outlet, so that H + ions and OH - ions are abundant. However, it is considered that the environment where the bacteria cannot survive is sterilized.
In order to cause sufficient water dissociation even near the entrance of the EDI apparatus and kill bacteria remaining in the EDI apparatus, the present inventors performed EDI treatment on a closed system including the EDI apparatus while energizing the EDI apparatus. By circulating the water, water containing almost no ions in the supply water was supplied to the EDI apparatus, thereby enabling water dissociation throughout the EDI apparatus.
As a result, it has been found that sterilization or bacterial growth of bacteria in the EDI apparatus can be suppressed or reduced, and endotoxin can be inactivated at the same time. As a result, the present invention has been completed.

本発明は、課題の解決手段として、
逆浸透膜処理装置(以下「RO装置」という)、RO装置で処理された処理水(以下「RO処理水」という)を貯水するRO処理水タンク、電気再生式脱イオン装置(以下「EDI装置」という)、EDI装置で処理された処理水(以下「EDI処理水」という)を貯水するEDI処理水タンクを有する医療用精製水の製造装置を用いた医療用精製水の製造方法であって、
前記医療用精製水の製造装置が、
原水をRO装置に送る原水ラインと、
RO装置で処理したRO処理水をRO処理水タンクに送る第1RO処理水ラインと、
RO処理水タンク内のRO処理水をEDI装置に送る第2RO処理水ラインと、
EDI装置で処理したEDI処理水をEDI処理水タンクに送る第1EDI処理水ラインと、
EDI処理水タンクからEDI装置にEDI処理水を送る第2EDI処理水ラインと、
EDI処理水タンクからの採水ラインを有しており、
さらに前記EDI装置、前記第1EDI処理水ライン、前記EDI処理水タンク及び第2EDI処理水ラインからなる閉鎖系の循環ラインを有しており、
前記医療用精製水の製造装置を使用した医療用精製水の製造運転を停止した後、運転再開までの間において、前記EDI装置のみを運転しながら、前記閉鎖系の循環ラインに対してEDI処理水を循環させる、医療用精製水の製造方法を提供する。
As a means for solving the problems, the present invention
Reverse osmosis membrane treatment device (hereinafter referred to as “RO device”), RO treated water tank for storing treated water treated by RO device (hereinafter referred to as “RO treated water”), electric regenerative deionization device (hereinafter referred to as “EDI device”) ”), A method for producing purified medical water using an apparatus for producing purified medical water having an EDI treated water tank for storing treated water treated by an EDI apparatus (hereinafter referred to as“ EDI treated water ”). ,
The medical purified water production apparatus comprises:
A raw water line for sending raw water to the RO device;
A first RO treated water line for sending RO treated water treated by the RO device to the RO treated water tank;
A second RO treated water line for sending the RO treated water in the RO treated water tank to the EDI device;
A first EDI treated water line for sending EDI treated water treated by the EDI device to an EDI treated water tank;
A second EDI treated water line for sending EDI treated water from the EDI treated water tank to the EDI device;
Has a sampling line from the EDI treated water tank,
Furthermore, it has a closed circulation line consisting of the EDI device, the first EDI treated water line, the EDI treated water tank, and the second EDI treated water line,
The EDI treatment is performed on the closed circulation line while only the EDI device is operated until the operation is resumed after the production operation of the purified water for medical use is stopped. Provided is a method for producing purified water for medical use in which water is circulated.

本発明の医療用精製水の製造方法によれば、夜間に医療用精製水の製造を停止し、翌朝製造を再開したときでも、前記の停止時間中にEDI装置を通電運転しながら、EDI装置含む閉鎖系にEDI処理水を循環運転させることで、高い品質の医療用精製水を安定供給することができる。
また本発明の医療用精製水の製造方法によれば、前記循環運転中は、電気伝導度の低いEDI処理水を使用することから、RO処理水を使用した場合と比べると、EDI装置内の細菌の殺菌もしくは、細菌繁殖の抑制乃至減少効果をより高めることができる。
According to the method for producing purified medical water of the present invention, even when the production of purified medical water is stopped at night and the production is resumed the next morning, the EDI device is energized and operated during the stop time. By circulating the EDI-treated water in the closed system, the high quality medical purified water can be stably supplied.
In addition, according to the method for producing purified water for medical use of the present invention, during the circulation operation, EDI treated water having low electrical conductivity is used. Therefore, compared with the case where RO treated water is used, The effect of inhibiting or reducing the sterilization of bacteria or the propagation of bacteria can be further enhanced.

本発明の医療用精製水の製造方法を実施するための製造フロー(製造装置)の概略図。Schematic of the manufacturing flow (manufacturing apparatus) for enforcing the manufacturing method of the medical purified water of this invention. 本発明の医療用精製水の製造方法を実施するための別実施形態の製造フロー(製造装置)の概略図。The schematic of the manufacturing flow (manufacturing apparatus) of another embodiment for enforcing the manufacturing method of the medical purified water of this invention. 試験例1、2の試験結果を示す図。The figure which shows the test result of the test examples 1 and 2. FIG. (a)は試験例2における脱塩室入口のSEM写真(×5000)、(b)は試験例2における脱塩室出口のSEM写真(×5000)。(A) is a SEM photograph (× 5000) of the desalting chamber inlet in Test Example 2, and (b) is a SEM photograph (× 5000) of the desalting chamber outlet in Test Example 2.

図1により、本発明の医療用精製水の製造方法を説明する。
ROポンプ5を作動させ、電磁弁等の開閉弁21を開放した状態で、原水供給ライン11から水道水(又は地下水)をRO装置1に送って処理して、RO処理水を得る。
その後、得られたRO処理水を第1RO処理水ライン12からRO処理水タンク2に送って貯水する。なお、原水となる水道水又は地下水は、必要に応じて、軟水装置、活性炭、ミクロフィルター等で前処理することもできる。
With reference to FIG. 1, a method for producing purified water for medical use according to the present invention will be described.
In a state where the RO pump 5 is operated and the on-off valve 21 such as a solenoid valve is opened, tap water (or groundwater) is sent from the raw water supply line 11 to the RO device 1 and processed to obtain RO treated water.
Thereafter, the obtained RO treated water is sent from the first RO treated water line 12 to the RO treated water tank 2 to be stored. In addition, the tap water used as raw | natural water or groundwater can also be pre-processed with a soft water apparatus, activated carbon, a micro filter etc. as needed.

RO装置1は、公知のものを用いることができ、例えば、ダイセン・メンブレン・システムズ株式会社より販売されている、装置型式VCR40シリーズ、VCR80シリーズ、NER40シリーズ、NER80シリーズ、SHRシリーズのほか、実施例で使用したもの等を用いることができる。   As the RO device 1, a known device can be used. For example, in addition to the device types VCR40 series, VCR80 series, NER40 series, NER80 series and SHR series sold by Daisen Membrane Systems Co., Ltd. Those used in the above can be used.

RO装置1は、処理能力(処理水の製造能力)が30〜5000L/hrのものを用いることができるが、前記範囲に限定されるものではなく、精製水の供給量に応じて、適宜選択することができる。   The RO device 1 having a treatment capacity (treatment water production capacity) of 30 to 5000 L / hr can be used, but is not limited to the above range, and is appropriately selected according to the supply amount of purified water. can do.

RO処理水タンク2の貯水容量は100〜3000Lが好ましい。RO処理水タンク2は、ステンレス等の金属製、ポリエチレン、ポリプロピレン等の樹脂製等にすることができる。   The water storage capacity of the RO treated water tank 2 is preferably 100 to 3000 L. The RO treated water tank 2 can be made of a metal such as stainless steel or a resin such as polyethylene or polypropylene.

RO処理水タンク2の形状は特に制限されるものではないが、タンク内部への液の残留を防止して液の流れを円滑にする観点から、図示するように底部が円錐あるいは四角錐の錐状構造ものが好ましく、前記錐状の頂点部分に第2RO処理水ライン13が接続されているものが特に好ましい。   The shape of the RO treated water tank 2 is not particularly limited, but from the viewpoint of facilitating the flow of the liquid by preventing the liquid from remaining inside the tank, the bottom of the RO treated water tank 2 has a conical or quadrangular pyramid as shown in the figure. It is preferable that the second RO treated water line 13 is connected to the cone-shaped apex portion.

RO処理水タンク2は、外部雰囲気からの雑菌等の混入を防ぐためのエアフィルター付きの通気孔を有しており、必要に応じて、内部には、殺菌を目的として紫外線ランプを取り付けることもできる。   The RO-treated water tank 2 has a vent hole with an air filter for preventing contamination of germs and the like from the outside atmosphere, and if necessary, an ultraviolet lamp can be attached inside for the purpose of sterilization. it can.

RO処理水タンク2内部には水位計を取り付けておき、水位に応じてRO装置1の運転を開始又は停止できるようにすることが好ましい。例えば、予めRO処理水タンク2内の水位の上限値と下限値を決めておき、上限値に達したときにRO装置1の運転を停止させ、逆に下限値に達したときにRO装置1の運転を開始させるようにする。   It is preferable that a water level meter is attached inside the RO treated water tank 2 so that the operation of the RO device 1 can be started or stopped according to the water level. For example, the upper limit value and the lower limit value of the water level in the RO treated water tank 2 are determined in advance, the operation of the RO device 1 is stopped when the upper limit value is reached, and conversely the RO device 1 when the lower limit value is reached. Let's start driving.

次に、EDI供給ポンプ6を作動させて、開閉弁22、23を開放した状態で、RO処理水タンク2に貯水されたRO処理水を第2RO処理水ライン13からEDI装置3に送って処理し、EDI処理水を得る。
EDI装置3で生じた濃縮水は、濃縮水ライン14からRO処理水タンク2に返送して再処理するか、別途設けた排水ラインから排水する。
Next, the EDI supply pump 6 is operated and the on-off valves 22 and 23 are opened, and the RO treated water stored in the RO treated water tank 2 is sent from the second RO treated water line 13 to the EDI device 3 for treatment. To obtain EDI-treated water.
Concentrated water generated in the EDI apparatus 3 is returned to the RO treated water tank 2 from the concentrated water line 14 and reprocessed or drained from a separately provided drainage line.

EDI装置3は、中央部にあるイオン交換室(脱塩室)、脱塩室の両外側にある2つの濃縮室、濃縮室のそれぞれの外側にある電極室(正及び負の電極室)を有する公知の装置であり、イオン交換室で脱イオン処理して脱塩水(EDI処理水)を取り出すことができるものである。
EDI装置としては、例えば、特開2007−252396号公報、特開2007−237062号公報、特開平11−244853号公報、特開2001−239270号公報、特開2001−353498号公報、特開2004−74109号公報に記載のもののほか、市販のEDI装置である、EDIシステムシリーズ,商品名MOLSEP(登録商標)(ダイセン・メンブレン・システムズ(株)販売)、実施例で使用したもの等を用いることができる。
The EDI apparatus 3 includes an ion exchange chamber (desalination chamber) in the center, two concentration chambers on both outer sides of the desalination chamber, and electrode chambers (positive and negative electrode chambers) on the outer sides of the concentration chamber. It is a known device having deionized water (EDI-treated water) by deionization treatment in an ion exchange chamber.
As the EDI apparatus, for example, JP 2007-252396 A, JP 2007-237062 A, JP 11-244853 A, JP 2001-239270 A, JP 2001-353498 A, and JP 2004 A4. In addition to the one described in Japanese Patent No. -74109, use a commercially available EDI apparatus such as EDI system series, trade name MOLSEP (registered trademark) (sold by Daisen Membrane Systems Co., Ltd.), and those used in the examples. Can do.

EDI装置3の運転条件は、
第2RO処理水ライン13からの供給液量は、好ましくは50〜4500L/hrであり、
EDI処理水量(脱塩水量)は、好ましくは30〜4000L/hrであり、
濃縮水流量は、好ましくは供給液量の5%〜40%の流量であり、
印加電圧は30〜1000Vが好ましく、印加電流は0.2〜6A、印加電流密度で0.05〜4A/dm2が好ましい。
The operating conditions of the EDI device 3 are
The amount of liquid supplied from the second RO treated water line 13 is preferably 50 to 4500 L / hr,
The amount of EDI treated water (demineralized water amount) is preferably 30 to 4000 L / hr,
The concentrated water flow rate is preferably 5% to 40% of the supply liquid amount,
The applied voltage is preferably 30 to 1000 V, the applied current is preferably 0.2 to 6 A, and the applied current density is preferably 0.05 to 4 A / dm 2 .

EDI装置3で処理したEDI処理水は、開閉弁(三方弁)24〜26の開閉操作により第1EDI処理水ライン15からEDI処理水タンク4に送って貯水する。
EDI処理水タンク4は、外部雰囲気からの雑菌等の混入を防ぐためのエアフィルター付きの通気孔を有しており、必要に応じて、内部には、殺菌を目的として紫外線ランプを取り付けることもできる。
EDI処理水タンク4内のEDI処理水(医療用精製水)は、開閉弁27を開放した状態で、採水ライン19から採水して人工透析用水等として使用する。
The EDI treated water treated by the EDI device 3 is sent from the first EDI treated water line 15 to the EDI treated water tank 4 by the opening / closing operation of the on-off valves (three-way valves) 24 to 26 and stored therein.
The EDI treated water tank 4 has a vent hole with an air filter to prevent contamination of germs and the like from the external atmosphere, and an ultraviolet lamp may be attached inside for the purpose of sterilization, if necessary. it can.
EDI treated water (purified water for medical use) in the EDI treated water tank 4 is collected from the water collection line 19 with the on-off valve 27 opened, and used as artificial dialysis water or the like.

本発明の製造方法を実施する医療用精製水の製造装置は、EDI処理水タンク4とEDI装置3が第2EDI処理水ライン16で接続されている。
このため、EDI装置3、第1EDI処理水ライン15、EDI処理水タンク4及び第2EDI処理水ライン16からなる循環ラインを有しており、前記循環ラインは開閉弁26を閉じ、開閉弁23、27を閉じることで閉鎖系にすることができる。
前記循環ラインには循環用ポンプ7が設置されているが、EDI供給ポンプ6が循環用ポンプ7としても機能できるように配置することもできる。
In the apparatus for producing purified medical water for carrying out the production method of the present invention, the EDI treated water tank 4 and the EDI apparatus 3 are connected by a second EDI treated water line 16.
For this reason, it has a circulation line composed of the EDI device 3, the first EDI treated water line 15, the EDI treated water tank 4 and the second EDI treated water line 16, which closes the opening / closing valve 26, By closing 27, a closed system can be obtained.
Although the circulation pump 7 is installed in the circulation line, the EDI supply pump 6 may be arranged so as to function as the circulation pump 7.

本発明の製造方法では、医療用精製水の製造装置を使用した医療用精製水の製造運転を停止した後、運転再開までの間において、EDI装置3のみを運転しながら、前記閉鎖系の循環ラインに対してEDI処理水を循環させる。
このとき、RO装置1の運転は停止し、開閉弁26、開閉弁23、27を閉じ、開閉弁24、25と開閉弁28は開放する。
そして、循環用ポンプ7を作動させ、EDI装置3のみを通電運転しながら、EDI処理水タンク4内のEDI処理水を循環させる。
In the production method of the present invention, the closed system circulation is performed while only the EDI apparatus 3 is operated until the operation is resumed after the production operation of the medical purified water using the medical purified water production apparatus is stopped. Circulate EDI treated water to the line.
At this time, the operation of the RO device 1 is stopped, the on-off valve 26 and the on-off valves 23 and 27 are closed, and the on-off valves 24 and 25 and the on-off valve 28 are opened.
Then, the circulation pump 7 is operated, and the EDI treated water in the EDI treated water tank 4 is circulated while only the EDI device 3 is energized.

前記閉鎖系の循環ラインに対してEDI処理水を循環させるときの運転条件は次のようにすることができる。
循環水量は、30〜4000L/hrが好ましく、500〜3000L/hrがより好ましい。
EDI装置3の印加電圧は30〜1000Vが好ましく、100〜500Vがより好ましい。
EDI装置3の印加電流は0.2〜6Aが好ましく、0.5〜5Aがより好ましい。
EDI装置3の印加電流密度は、0.05〜2A/dm2が好ましく、0.1〜1.5A/dm2がより好ましい。
循環運転開始時におけるEDI処理水の電気伝導度は2μS/cm以下が好ましく、1μS/cm以下がより好ましい。
The operating conditions for circulating EDI treated water through the closed circulation line can be as follows.
The amount of circulating water is preferably 30 to 4000 L / hr, more preferably 500 to 3000 L / hr.
The applied voltage of the EDI device 3 is preferably 30 to 1000V, and more preferably 100 to 500V.
The applied current of the EDI device 3 is preferably 0.2 to 6A, and more preferably 0.5 to 5A.
It applied current density of EDI device 3 is preferably 0.05~2A / dm 2, 0.1~1.5A / dm 2 is more preferable.
The electric conductivity of EDI treated water at the start of the circulation operation is preferably 2 μS / cm or less, and more preferably 1 μS / cm or less.

図2は、図1とは別実施形態である医療用精製水の製造方法を実施するための製造フロー(製造装置)を示している。
図1の製造フローとは、RO処理水タンク2とEDI処理水タンク4を一体型にしたほかは実質的に同じである。
FIG. 2 shows a production flow (manufacturing apparatus) for carrying out the method for producing purified medical water, which is an embodiment different from that shown in FIG.
The manufacturing flow of FIG. 1 is substantially the same except that the RO treated water tank 2 and the EDI treated water tank 4 are integrated.

本発明の製造方法における上記した循環ラインにおける循環運転は、医療用精製水の製造運転を停止した後、運転再開までの間に実施するものであるから、人工透析用水の製造方法として実施したとき、例えば、午後5時に治療(人工透析)が終了し、翌朝午前9時に治療(人工透析)が開始するときには、午後5時から治療開始前の適当な時間(治療開始の30〜5分前程度)までである。
祝日等の休診日を含む場合には、それを含めた時間(例えば、土日が休診日であるときは、合計で48時間が追加される)である。
Since the circulation operation in the above-described circulation line in the production method of the present invention is performed before the resumption of operation after stopping the production operation of purified water for medical use, when implemented as a method for producing water for artificial dialysis For example, when the treatment (artificial dialysis) ends at 5 pm and the treatment (artificial dialysis) starts at 9:00 am the next morning, an appropriate time before the start of treatment from 5 pm (about 30 to 5 minutes before the start of treatment) ).
When a holiday such as a holiday is included, the time includes the holiday (for example, when a weekend is a holiday, a total of 48 hours are added).

本発明を実施しないときには、医療用精製水の製造運転を停止した後、運転再開までの間において、EDI装置3内に残留する細菌が増殖する場合がある。
本発明を実施しない場合であって、EDI装置3を停止したまま、上記循環ラインEDI処理水タンク4内のEDI処理水を循環させたときには、細菌の増殖を抑制する効果はあるが殺菌効果まではなく、さらにエンドトキシン(ET)は不活性化されることなくそのままEDI装置3内に残留する。
しかし、本発明の製造方法を実施することによって、EDI装置3内の細菌殺菌もしくは細菌増殖は抑制されるか減少され、さらにETも不活性化される。
このような効果が得られる理由としては、EDI装置3を通電運転しながらEDI処理水を循環させたとき、EDI装置全体で水解離現象が生じやすくなり、その結果、殺菌効果やETの不活性化効果が高められるものと考えられる。
また、電気伝導度の低いEDI処理水を循環させることで、より水解離現象が生じやすくなり、上記効果が高められるものと考えられる。
When the present invention is not carried out, bacteria remaining in the EDI apparatus 3 may proliferate after the production operation of medical purified water is stopped and before the operation is resumed.
In the case where the present invention is not carried out, when the EDI treated water in the circulation line EDI treated water tank 4 is circulated while the EDI device 3 is stopped, there is an effect of suppressing the growth of bacteria but the sterilizing effect is achieved. Further, endotoxin (ET) remains in the EDI apparatus 3 without being inactivated.
However, by implementing the manufacturing method of the present invention, bacterial sterilization or bacterial growth in the EDI apparatus 3 is suppressed or reduced, and ET is also inactivated.
The reason why such an effect can be obtained is that when EDI-treated water is circulated while the EDI device 3 is energized, water dissociation is likely to occur in the entire EDI device. It is thought that the effect of crystallization is enhanced.
Further, it is considered that by circulating EDI-treated water having a low electrical conductivity, a water dissociation phenomenon is more likely to occur, and the above effect is enhanced.

本発明の製造方法を実施することで、翌日の治療開始時に採水ライン19から採水される医療用精製水中の菌濃度とET濃度を医療用精製水(人工透析液等)として十分に安全なレベルにまで清浄化させることができる。
このため、製造装置の運転再開時には、速やかに人工透析用水として利用することができる。
By carrying out the production method of the present invention, the bacterial concentration and ET concentration in the medical purified water collected from the water collection line 19 at the start of the next day treatment are sufficiently safe as medical purified water (artificial dialysate etc.) Can be cleaned to a certain level.
For this reason, when resuming operation of the production apparatus, it can be quickly used as water for artificial dialysis.

本発明の製造方法によって、菌濃度及びET濃度を低下させ、人体に対して安全な高品質の精製水を得ることができるが、更に安全性を高めるために、ライン15又はライン19の途中にイオン交換樹脂片の捕集、エンドトキシンや微生物の除去の役目をするUF装置を設置することもできる。   According to the production method of the present invention, high-quality purified water that is safe for the human body can be obtained by reducing the bacteria concentration and the ET concentration. It is also possible to install a UF device that serves to collect ion exchange resin pieces and remove endotoxins and microorganisms.

実施例1
1.装置仕様等
・RO装置1:ダイセン・メンブレン・システムズ(株)製のRO装置(RO水製造能力:600L/hr)
・RO処理水タンク2:容量200L、材質:SUS304
・EDI装置3:ダイセン・メンブレン・システムズ(株)製EDI2000(EDI電極面積:4.2dm2、セル枚数50枚)
・EDI処理水タンク4:容量200L、材質:SUS304
Example 1
1. Equipment specifications, RO equipment 1: RO equipment manufactured by Daisen Membrane Systems Co., Ltd. (RO water production capacity: 600L / hr)
-RO treated water tank 2: Capacity 200L, Material: SUS304
EDI device 3: EDI2000 manufactured by Daisen Membrane Systems Co., Ltd. (EDI electrode area: 4.2 dm 2 , 50 cells)
EDI treated water tank 4: capacity 200L, material: SUS304

2.精製水の製造方法
図1に示す製造フローにて医療用精製水を製造した。
運転は、RO処理水タンク2に200LのRO処理水が溜まった時点で、EDI装置3の運転を開始した。EDI装置3の運転は下記条件にて8時間継続した。
<EDI装置の運転条件>
EDI脱塩水量:2000L/hr
EDI濃縮水量:200L/hr
EDI電極水量:10L/hr
印加電圧:400V
印加電流:1.5A(印加電流密度:0.36A/dm2
2. Purified water production method Medical purified water was produced according to the production flow shown in FIG.
In operation, when 200 L of RO treated water was accumulated in the RO treated water tank 2, the operation of the EDI apparatus 3 was started. The operation of the EDI apparatus 3 was continued for 8 hours under the following conditions.
<Operating conditions of EDI device>
EDI demineralized water volume: 2000 L / hr
EDI concentrated water volume: 200L / hr
EDI electrode water volume: 10L / hr
Applied voltage: 400V
Applied current: 1.5 A (applied current density: 0.36 A / dm 2 )

RO装置1及びEDI供給ポンプ6の運転を停止後、循環用ポンプ7を起動させ、下記条件の循環運転を1時間継続した。
循環水量:1500L/hr
EDI脱塩水量: 1500L/hr
EDI濃縮水量: 150L/hr
EDI電極水量: 10L/hr
印加電圧:400V
印加電流:1.5A(印加電流密度:0.36A/dm2
After stopping the operation of the RO device 1 and the EDI supply pump 6, the circulation pump 7 was started and the circulation operation under the following conditions was continued for 1 hour.
Circulating water volume: 1500 L / hr
EDI demineralized water volume: 1500L / hr
EDI water concentration: 150L / hr
EDI electrode water volume: 10L / hr
Applied voltage: 400V
Applied current: 1.5 A (applied current density: 0.36 A / dm 2 )

試験例1、2
(1)EDI装置
EDI装置は、中央が脱塩室で、脱塩室の外方向両側が濃縮室、濃縮室の外方向両側が電極室から構成される5室系の装置(脱塩室の膜間距離は0.4cm,有効膜面積は297cm2)を用いた。
陽極側の脱塩室と濃縮室の間には陰イオン交換膜(陰イオン交換膜AHA;(株)アストム製)が配置され、濃縮室と電極室の間には陽イオン交換膜(陽イオン交換膜CMB;(株)アストム製)が配置されている。
陰極側の脱塩室と濃縮室の間には前記の陽イオン交換膜が配置され、濃縮室と電極室の間には前記の陰イオン交換膜が配置されている。濃縮室の膜間距離は二室とも0.4cmであり、電極室の電極とイオン交換膜との距離は両電極室とも0.4cmであった。また、濃縮室と電極間に配置されたイオン交換膜の有効膜面積は297cm2であった。
脱塩室内には、陰イオン交換樹脂としてアンバーライトIRA−900J(オルガノ(株)製)と、陽イオン交換樹脂としてアンバーライトIR−120B(オルガノ(株)製)を混床式のイオン交換樹脂を充填した。
Test examples 1 and 2
(1) EDI device The EDI device is a five-chamber system consisting of a desalination chamber at the center, a concentrating chamber on both sides of the desalting chamber, and electrode chambers on both sides of the concentrating chamber. The distance between membranes was 0.4 cm and the effective membrane area was 297 cm 2 ).
An anion exchange membrane (anion exchange membrane AHA; manufactured by Astom Co., Ltd.) is disposed between the desalting chamber and the concentration chamber on the anode side, and a cation exchange membrane (cation) is disposed between the concentration chamber and the electrode chamber. Exchange membrane CMB (made by Astom Co., Ltd.) is arranged.
The cation exchange membrane is disposed between the desalting chamber and the concentration chamber on the cathode side, and the anion exchange membrane is disposed between the concentration chamber and the electrode chamber. The distance between the membranes in the concentrating chamber was 0.4 cm in both chambers, and the distance between the electrode in the electrode chamber and the ion exchange membrane was 0.4 cm in both electrode chambers. The effective membrane area of the ion exchange membrane disposed between the concentration chamber and the electrode was 297 cm 2 .
In the desalination chamber, Amberlite IRA-900J (manufactured by Organo Corporation) as an anion exchange resin and Amberlite IR-120B (manufactured by Organo Corporation) as a cation exchange resin are mixed bed type ion exchange resins. Filled.

(2)EDI装置の運転条件
EDI装置の脱塩室、濃縮室、電極室のそれぞれに対して、試料水を417ml/min、200ml/min、167ml/minで通水しつつ、電流密度0.11A/dm2で通電した。なお、前記流速条件は、前記EDI装置を脱塩目的に使用する場合の実用通水速度である。
(2) Operating conditions of EDI apparatus The sample water was passed through each of the desalination chamber, the concentration chamber, and the electrode chamber of the EDI apparatus at 417 ml / min, 200 ml / min, and 167 ml / min, while a current density of 0. Current was supplied at 11 A / dm 2 . The flow rate condition is a practical water flow rate when the EDI device is used for desalting purposes.

(3)緑膿菌添加によるEDI処理試験
前記(1)と同じEDI装置と、表1に示す電気伝導度の異なる各試料水を使用した。
試験例1の試料水は、RO装置で処理したRO処理水である。
試験例2の試料水は、RO処理水をさらにイオン交換樹脂で処理した水(Pure Lab純水装置;オルガノ(株)社製)である。
各試料水には、緑膿菌(Pseudomonas aeruginosa GNB-139)を表1に示す菌濃度になるように添加した。なお、ETは、実質的に添加した緑膿菌に由来するものである。
試験例1、2の各試料水を使用し、EDI装置に通電及び通水運転したときの菌濃度及びET濃度を試験評価した。
採水時間(分)は運転開始からの時間であり、0分は試料水であることを示す。
菌濃度(CFU/ml)は、R2A寒天培地を用いた平板塗抹法で評価した。
ET不活化効果の評価は、トキシノメーターを用いたLALテスト−比濁時間法により元の試料水とEDI処理水のET活性を測定し,以下の式(2)によりET不活化率を算出し評価した。
菌の生存率の結果を図3に示す。
試験例2において、180分の運転終了後にEDI装置を解体して脱塩室内のイオン交換樹脂を採取し、脱塩室入口部のイオン交換樹脂と、出口部のイオン交換樹脂のSEM写真(×5000倍)を撮影した。それぞれのSEM写真を図4(a)、(b)に示す。
(3) EDI treatment test by addition of Pseudomonas aeruginosa The same EDI apparatus as in (1) above and each sample water having different electrical conductivity shown in Table 1 were used.
The sample water of Test Example 1 is RO treated water treated with the RO device.
The sample water of Test Example 2 is water obtained by further treating RO-treated water with an ion exchange resin (Pure Lab pure water device; manufactured by Organo Corporation).
Pseudomonas aeruginosa GNB-139 was added to each sample water so that it might become the microbe concentration shown in Table 1. ET is derived from Pseudomonas aeruginosa substantially added.
Each sample water of Test Examples 1 and 2 was used, and the bacteria concentration and the ET concentration when the EDI apparatus was energized and passed through the water were tested and evaluated.
The sampling time (min) is the time from the start of operation, and 0 min indicates sample water.
The bacterial concentration (CFU / ml) was evaluated by a plate smearing method using R2A agar medium.
The ET inactivation effect was evaluated by measuring the ET activity of the original sample water and EDI-treated water using the LAL test-turbidimetric time method using a toxinometer, and calculating the ET inactivation rate using the following equation (2) And evaluated.
The results of the survival rate of the bacteria are shown in FIG.
In Test Example 2, the EDI apparatus was disassembled after the operation for 180 minutes was completed, and the ion exchange resin in the desalting chamber was collected, and SEM photographs of the ion exchange resin at the inlet of the desalting chamber and the ion exchange resin at the outlet (× 5000 times). Each SEM photograph is shown to Fig.4 (a), (b).

図3から明らかなとおり、電気伝導度の低い試料水(試験例2)を使用した方が、菌の生存率が小さかった(即ち、殺菌効果が高かった)ことが確認された。ETの不活性化効果については、試験例1、2とも99.5%以上を示した。
図4(a)、(b)からも確認できるとおり、脱塩室入口(図4(a))部分では桿状の細菌の存在が確認されたが、脱塩室出口(図4(b))部分では、桿状細菌は観察されず菌の細胞膜が破壊されて断片化した形状のものがわずかに観察されるのみであった。このSEM写真の観察結果から、脱塩室入口部分では菌が残存しているのに対して、脱塩室出口部付近では菌が存在し得ない環境下にあるものと考えられる。
これらの試験例1、2の結果から、本発明のEDI装置を含む閉鎖系においてEDI装置を通電運転しながら、かつEDI処理水を循環させた場合には、高い殺菌効果とET不活性効果が得られることが明らかである。
As is clear from FIG. 3, it was confirmed that the survival rate of the bacteria was smaller (that is, the bactericidal effect was higher) when the sample water (Test Example 2) having a low electrical conductivity was used. Regarding the inactivation effect of ET, both Test Examples 1 and 2 showed 99.5% or more.
As can also be confirmed from FIGS. 4 (a) and (b), the presence of rod-shaped bacteria was confirmed at the desalting chamber inlet (FIG. 4 (a)), but the desalting chamber outlet (FIG. 4 (b)). In some parts, rod-shaped bacteria were not observed, and only a few of the fragmented shapes of the cell membrane were observed. From the observation result of this SEM photograph, it is considered that the bacteria remain at the entrance of the desalting chamber, whereas the bacteria cannot exist near the exit of the desalting chamber.
From the results of these test examples 1 and 2, when the EDI apparatus is energized in a closed system including the EDI apparatus of the present invention and the EDI-treated water is circulated, a high sterilization effect and an ET inertness effect are obtained. It is clear that it is obtained.

試験例3、4
実施例1と同じEDI装置と、試験例1、2と同じRO処理水と純水を使用した。
試験例1、2と同様にして、EDI装置を通電通水運転し、所定時間に採水した。
採水した処理水の脱塩室入口及び出口における菌濃度から生存率を求めた。
Test examples 3 and 4
The same EDI apparatus as in Example 1 and the same RO-treated water and pure water as in Test Examples 1 and 2 were used.
In the same manner as in Test Examples 1 and 2, the EDI apparatus was energized with water and sampled at a predetermined time.
The survival rate was calculated from the concentration of bacteria at the inlet and outlet of the desalination chamber of the collected treated water.

これらの試験例3(表2)、試験例4(表3)の結果から、本発明のEDI装置を含む閉鎖系においてEDI装置を通電運転しながら、かつEDI処理水を循環させた場合には、高い殺菌効果とET不活性効果が得られることが明らかである。   From the results of Test Example 3 (Table 2) and Test Example 4 (Table 3), when the EDI device is energized in a closed system including the EDI device of the present invention and EDI treated water is circulated. It is clear that a high bactericidal effect and ET inactive effect can be obtained.

1 RO装置
2 RO処理水タンク
3 EDI装置
4 EDI処理水タンク
5 ROポンプ
6 EDI供給ポンプ
7 循環用ポンプ
11 原水(水道水)供給ライン
12 第1RO処理水ライン
13 第2RO処理水ライン
14 濃縮水ライン
15 第1EDI処理水ライン
16 第2EDI処理水ライン
19 採水ライン
DESCRIPTION OF SYMBOLS 1 RO apparatus 2 RO treated water tank 3 EDI apparatus 4 EDI treated water tank 5 RO pump 6 EDI supply pump 7 Circulation pump 11 Raw water (tap water) supply line 12 1st RO treated water line 13 2nd RO treated water line 14 Concentrated water Line 15 First EDI treated water line 16 Second EDI treated water line 19 Water sampling line

Claims (3)

逆浸透膜処理装置(以下「RO装置」という)、RO装置で処理された処理水(以下「RO処理水」という)を貯水するRO処理水タンク、電気再生式脱イオン装置(以下「EDI装置」という)、EDI装置で処理された処理水(以下「EDI処理水」という)を貯水するEDI処理水タンクを有する医療用精製水の製造装置を用いた医療用精製水の製造方法であって、
前記医療用精製水の製造装置が、
原水をRO装置に送る原水ラインと、
RO装置で処理したRO処理水をRO処理水タンクに送る第1RO処理水ラインと、
RO処理水タンク内のRO処理水をEDI装置に送る第2RO処理水ラインと、
EDI装置で処理したEDI処理水をEDI処理水タンクに送る第1EDI処理水ラインと、
EDI処理水タンクからEDI装置にEDI処理水を送る第2EDI処理水ラインと、
EDI処理水タンクからの採水ラインを有しており、
さらに前記EDI装置、前記第1EDI処理水ライン、前記EDI処理水タンク及び第2EDI処理水ラインからなる閉鎖系の循環ラインを有しており、
前記医療用精製水の製造装置を使用した医療用精製水の製造運転を停止した後、運転再開までの間において、前記EDI装置のみを通電運転しながら、前記閉鎖系の循環ラインに対してEDI処理水を循環させる、医療用精製水の製造方法。
Reverse osmosis membrane treatment device (hereinafter referred to as “RO device”), RO treated water tank for storing treated water treated by RO device (hereinafter referred to as “RO treated water”), electric regenerative deionization device (hereinafter referred to as “EDI device”) ”), A method for producing purified medical water using an apparatus for producing purified medical water having an EDI treated water tank for storing treated water treated by an EDI apparatus (hereinafter referred to as“ EDI treated water ”). ,
The medical purified water production apparatus comprises:
A raw water line for sending raw water to the RO device;
A first RO treated water line for sending RO treated water treated by the RO device to the RO treated water tank;
A second RO treated water line for sending the RO treated water in the RO treated water tank to the EDI device;
A first EDI treated water line for sending EDI treated water treated by the EDI device to an EDI treated water tank;
A second EDI treated water line for sending EDI treated water from the EDI treated water tank to the EDI device;
Has a sampling line from the EDI treated water tank,
Furthermore, it has a closed circulation line consisting of the EDI device, the first EDI treated water line, the EDI treated water tank, and the second EDI treated water line,
After stopping the production operation of the purified water for medical use using the apparatus for producing purified medical water, until the operation is resumed, only the EDI device is energized and the EDI is applied to the closed system circulation line. A method for producing purified water for medical treatment, in which treated water is circulated.
前記閉鎖系の循環ラインに対してEDI処理水を循環させる循環運転において、前記EDI装置運転時の印加電圧が100〜500V、印加電流が0.5〜4A、印加電流密度が0.1〜1.5A/dm2である、請求項1記載の医療用精製水の製造方法。 In the circulation operation in which EDI treated water is circulated through the closed circulation line, the applied voltage during operation of the EDI device is 100 to 500 V, the applied current is 0.5 to 4 A, and the applied current density is 0.1 to 1. a .5A / dm 2, the method of manufacturing a medical purified water according to claim 1, wherein. 前記閉鎖系の循環ラインに対してEDI処理水を循環させる循環運転において、循環運転開始時におけるEDI処理水の電気伝導度が2μS/cm以下である、請求項1又は2記載の医療用精製水の製造方法。   3. The purified medical water according to claim 1, wherein the electrical conductivity of the EDI treated water at the start of the circulating operation is 2 μS / cm or less in the circulating operation in which the EDI treated water is circulated through the closed circulation line. Manufacturing method.
JP2012032652A 2012-02-17 2012-02-17 Method for producing medical purified water Expired - Fee Related JP5931493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032652A JP5931493B2 (en) 2012-02-17 2012-02-17 Method for producing medical purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032652A JP5931493B2 (en) 2012-02-17 2012-02-17 Method for producing medical purified water

Publications (2)

Publication Number Publication Date
JP2013166139A JP2013166139A (en) 2013-08-29
JP5931493B2 true JP5931493B2 (en) 2016-06-08

Family

ID=49177019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032652A Expired - Fee Related JP5931493B2 (en) 2012-02-17 2012-02-17 Method for producing medical purified water

Country Status (1)

Country Link
JP (1) JP5931493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453710B2 (en) * 2015-06-01 2019-01-16 ダイセン・メンブレン・システムズ株式会社 Quality control method for artificial dialysis water
US20170038299A1 (en) * 2015-08-07 2017-02-09 Sentinel Monitoring Systems, Inc. Online process monitoring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237062A (en) * 2006-03-07 2007-09-20 Osumo:Kk Artificial dialysis water manufacturing method and its manufacturing apparatus
JP4440989B1 (en) * 2009-06-03 2010-03-24 ダイセン・メンブレン・システムズ株式会社 Method for producing purified water
JP5357836B2 (en) * 2010-06-15 2013-12-04 ダイセン・メンブレン・システムズ株式会社 Purified water production equipment and its use
JP3168338U (en) * 2011-03-28 2011-06-09 ダイセン・メンブレン・システムズ株式会社 Medical purified water production equipment

Also Published As

Publication number Publication date
JP2013166139A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP4972049B2 (en) Desalination method
JP4440989B1 (en) Method for producing purified water
JP5357836B2 (en) Purified water production equipment and its use
JP2007252396A (en) Manufacturing device and manufacturing method of medical purpose dialysis fluid
CN105293794A (en) Device for producing pharmaceutical water
JP5028397B2 (en) Method for producing medical purified water
JP5931493B2 (en) Method for producing medical purified water
CN102824109A (en) Water dispenser
JP6158658B2 (en) Purified water production equipment
CN105858982B (en) A kind of simple desk type water dispenser
CN112321063A (en) Functional water treatment device
JP2001170630A (en) Pure water production device
WO2012063583A1 (en) Water purification device and disinfection/sterilization method for water purification device
JP5184401B2 (en) Pure water production method and pure water production apparatus
CN110550806A (en) Water purification and supply system and device for livestock water
CN105668871B (en) A kind of micro- discharge water purification machine
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
CN108409030A (en) A kind of multiple-unit desalination plant and method
JP2007075712A (en) Sterilized electrodialysis method
CN109502709B (en) Water purifier capable of producing alkalescent electrodialysis water and method for manufacturing alkalescent water
JP5093437B2 (en) Bacteria control method for fuel cell system
JP3228053B2 (en) Pure water production equipment
CN203728674U (en) Pipe direct drinking water equipment with capacity of keeping trace elements
JP6637320B2 (en) Pharmaceutical purified water production apparatus and method for sterilizing pharmaceutical purified water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees