JP5651645B2 - 静電潜像現像用トナー - Google Patents

静電潜像現像用トナー Download PDF

Info

Publication number
JP5651645B2
JP5651645B2 JP2012166398A JP2012166398A JP5651645B2 JP 5651645 B2 JP5651645 B2 JP 5651645B2 JP 2012166398 A JP2012166398 A JP 2012166398A JP 2012166398 A JP2012166398 A JP 2012166398A JP 5651645 B2 JP5651645 B2 JP 5651645B2
Authority
JP
Japan
Prior art keywords
toner
particles
shell layer
resin fine
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012166398A
Other languages
English (en)
Other versions
JP2014026124A (ja
Inventor
崇伯 田中
崇伯 田中
中山 幸則
幸則 中山
浩明 森山
浩明 森山
猛雄 溝部
猛雄 溝部
裕輝 上村
裕輝 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Document Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Document Solutions Inc filed Critical Kyocera Document Solutions Inc
Priority to JP2012166398A priority Critical patent/JP5651645B2/ja
Priority to CN201310263578.1A priority patent/CN103576477B/zh
Priority to EP13177832.6A priority patent/EP2690498B1/en
Priority to US13/950,124 priority patent/US8980514B2/en
Publication of JP2014026124A publication Critical patent/JP2014026124A/ja
Application granted granted Critical
Publication of JP5651645B2 publication Critical patent/JP5651645B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、静電潜像現像用トナーに関する。
一般に電子写真法においては、静電潜像担持体の表面をコロナ放電等により帯電させた後、レーザー等により露光して静電潜像を形成する。形成した静電潜像をトナーで現像してトナー像を形成する。さらに、形成したトナー像を記録媒体に転写して高品質な画像を得ている。通常このような電子写真法に適用するトナーには熱可塑性樹脂等の結着樹脂に、着色剤、電荷制御剤、離型剤、磁性材料等を混合した後、混練、粉砕、分級を行い平均粒径5μm以上10μm以下のトナー粒子(トナー母粒子)としたものが用いられる。このような、トナーに含まれる材料の混練と、混練物の粉砕と、粉砕物の分級と、を含むトナーの製造法は、「粉砕法」と呼ばれている。そしてトナーにし流動性を付与したり、トナー好適な帯電性能を付与したり、感光体ドラムからのトナーのクリーニング性を向上させたりする目的で、シリカや酸化チタン等の無機微粉末がトナー母粒子に外添されている。
このようなトナーに関して、従来より低い温度域で良好な定着性を得る目的、高温での保存安定性の向上の目的、及び耐ブロッキング性の向上の目的等で、低融点の結着樹脂を用いたトナーコア粒子を、トナーコア粒子の結着樹脂のガラス転移点(Tg)よりも高いTgを示す樹脂からなるシェル材により被覆するコア−シェル構造のトナーが使用されている。
このようなトナーとしては、ポリエステル樹脂、又は、ポリエステル樹脂とビニル樹脂とが結合した樹脂を含むトナーコア粒子と、スチレンと、ポリアルキレンオキシド単位を含む(メタ)アクリレート系の単量体との共重合体を含むシェル材からなるシェル層と、からなるコア−シェル構造のトナーが提案されている(特許文献1参照)。特許文献1では、酢酸エチル等の有機溶媒の存在下で、水性媒体中に分散された樹脂の粒子によってトナーコア粒子の表面を被覆して、コア−シェル構造のトナーが形成されている。
また、一般的に粉砕法で得られるトナーは、真球度が低い不規則な形状であるため、流動性に乏しい。トナーの真球度が低い場合、潜像担持体表面との接触摩擦係数が増大し、潜像担持体上のトナー像を転写・現像した後に、転写されなかったトナーが潜像担持体上に残留することがある。このような転写残トナーは、通常、弾性ブレード等の機構を有するクリーニング部によって、潜像担持体表面から除去される。
前述の通り、トナーの粒子径は5μm以上10μm以下に調整されることが多く、このため、トナーには粒子径5μ未満の微小なトナー粒子が含まれる場合が多い。このような微小な粒子を含むトナーを用いる場合に、転写残トナーが生じると、転写残トナーに含まれる微小なトナーが、クリーニング部の弾性ブレードをすり抜けてしまう場合がある。転写残トナーのクリーニング部の「すり抜け」は、形成画像における画像不良の発生の原因となる。
また、粉砕法で得られるトナーは形状が不均一であるため、トナー中に、断面形状のアスペクト比(長径の長さの、短径の長さに対する比)が高いトナー粒子が一部含まれる。アスペクト比が高いトナーは、長径方向の面で、潜像担持体上に強固に張り付きやすく、潜像担持体上に形成されたトナー像の一部が被記録媒体に転写されない場合がある。この場合、形成画像に「中抜け」と呼ばれる画像不良が発生する。また、潜像担持部表面のトナー像を、中間転写ベルト等の中間転写体に転写した後、中間転写体上のトナー像を、被記録媒体に転写して画像を形成する場合、転写不良が生じると、「文字チリ」(転写された画像において、文字等の近傍にトナーが散ったような状態で付着している現象)と呼ばれる画像不良が形成画像に生じやすい。
そこで、トナーの転写性の改良を目的に、例えば、平均円形度が0.970以上であり、質量平均粒子径が3μm以上10μm以下であるトナーが提案されている(特許文献2参照)。
特開2011−70179号公報 特開2002−148852号公報
しかし、特許文献1に記載のトナーのシェル層は、樹脂微粒子同士の接触部が有機溶剤に溶解されながら形成されているため、樹脂粒子間の空隙が殆ど残らず、且つ、樹脂粒子の形状が残存している状態の、均質な膜となっている。このため、特許文献1に記載のトナーは、トナーを被記録媒体上に定着させる際に、定着ローラー対間に形成された定着ニップにおいてトナーに加わる圧力によってシェル層が破壊されにくい場合がある。シェル層が容易に破壊されない場合、被記録媒体上にトナーを良好に定着させにくい。
また、特許文献2に記載のトナーによれば、形成画像に中抜けによる画像不良が発生することは抑制される反面、トナーの平均円形度が高いため、クリーニング部での転写残トナーのすり抜けが生じやすく、そのために、形成画像に画像不良が発生することがある。トナーの平均円形度が高いため、トナー粒子の形状が真球に近く、真球に近い形状のトナー粒子が弾性ブレード等にひっかかりにくいためである。
本発明は、定着性、及び耐熱保存性に優れ、クリーニング部でのトナーすり抜けに起因した形成画像における画像不良の発生、及び形成画像における中抜けや文字チリのような画像不良の発生を抑制できる、静電潜像現像用トナーを提供することを目的とする。
本発明は、少なくとも結着樹脂を含むトナーコア粒子と、
前記トナーコア粒子を被覆するシェル層と、からなる静電潜像現像用トナーであって、
前期シェル層は、球状の樹脂微粒子を用いて形成され、
前記静電潜像現像用トナーの表面を、走査型電子顕微鏡を用いて観察する場合に、粒子径が6μm以上8μm以下のトナー粒子について、シェル層に球状の前記樹脂微粒子に由来する構造が観察されず、
前記静電潜像現像用トナーの断面を、透過型電子顕微鏡を用いて観察する場合に、前記シェル層の内部に、前記トナーコア粒子の表面に対して略垂直方向の、前記樹脂微粒子同士の界面に由来するクラックが観察され、
前記静電潜像現像用トナーは、粒子径3μm以上10μm以下のトナー粒子の平均円形度が0.960以上0.970以下である、静電潜像現像用トナーに関する。
本発明によれば、定着性、及び耐熱保存性に優れ、クリーニング部でのトナーすり抜けに起因した形成画像における画像不良の発生、及びの形成画像における中抜けや文字チリのような画像不良の発生を抑制できる、静電潜像現像用トナーを提供できる。
本発明のトナーの断面の一部を示した模式図である。 参考例1のトナーの断面の透過型電子顕微鏡写真を示す図である。 参考例2のトナーの断面の透過型電子顕微鏡写真を示す図である。 参考例4のトナーの断面の透過型電子顕微鏡写真を示す図である。 画像形成装置の概略構成を示す断面図である。
以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。
本発明の静電潜像現像用トナー(以下単にトナーともいう)は、少なくとも結着樹脂を含むトナーコア粒子と、トナーコア粒子の全表面を被覆するシェル層と、からなり、粒子径3μm以上10μm以下のトナー粒子の平均円形度が0.960以上0.970以下である。そして、トナーコア粒子を被覆するシェル層は、球状の樹脂微粒子を用いて形成される。
また、本発明のトナーは、その表面を、走査型電子顕微鏡を用いて観察する場合に、粒子径が6μm以上8μm以下のトナー粒子について、シェル層に球状の樹脂微粒子に由来する構造が観察されない。そして、本発明のトナーは、トナーの断面を、透過型電子顕微鏡を用いて観察する場合に、シェル層の内部に、トナーコア粒子の表面に対して略垂直方向の、樹脂微粒子同士の界面に由来するクラックが観察される。以下、トナーの構造と、トナーの材料とについて説明する。
[トナーの構造]
本発明のトナーは、トナーコア粒子がその全表面をシェル層により被覆されている。静電潜像現像用トナーの表面のシェル層による被覆状態は、走査型電子顕微鏡(SEM)を用いて確認できる。また、シェル層の平滑化の程度と、静電潜像現像用トナーのシェル層の内部とは、トナーの断面を、透過型電子顕微鏡(TEM)を用いて観察することにより確認できる。本発明のトナーの好適な一態様について、TEMを用いて観察されるトナーの断面の模式図を図1に示す。
図1に示されるように、静電潜像現像用トナー101では、樹脂微粒子からなるシェル層103が、トナーコア粒子102の全表面を被覆している。また、シェル層は、トナーコア粒子に樹脂微粒子層を付着させて形成される樹脂微粒子層の外表面を、外力により平滑化されて形成されたものである。
シェル層103の厚さは、本発明の目的を阻害しない範囲で特に限定されず、0.03μm以上1μm以下が好ましく、0.04μm以上0.7μm以下がより好ましく、0.05μm以上0.5μm以下が特に好ましく、0.05μm以上0.3μm以下が最も好ましい。なお、後述するように、シェル層が凸部を有する場合、シェル層の厚さが不均一である場合がある。このようにシェル層の厚さが不均一な場合について、本出願の、特許請求の範囲、及び明細書では、シェル層の最も厚い部分の厚さを、「シェル層の厚さ」とする。
シェル層が厚過ぎる場合、トナーを定着する際にトナーに加わる圧力によるシェル層の破壊が起こりにくい。この場合、トナーコア粒子に含まれる結着樹脂や離型剤の軟化又は溶融が速やかに進行せず、トナーを被記録媒体上に定着させにくい。一方、シェル層が薄すぎる場合、シェル層の強度が低くなる。シェル層の強度が低いと、輸送時等の衝撃によりシェル層が破壊される場合があり、高温でトナーを保存する場合に、シェル層が破壊された個所からの、トナー表面への離型剤の染み出し等によって、トナーが凝集しやすくなる。
シェル層103の厚さは、トナー101断面のTEM撮影像を市販の画像解析ソフトウェアにより解析することにより、計測することができる。市販の画像解析ソフトウェアとしては、WinROOF(三谷商事株式会社製)等を用いることができる。
本発明のトナーは、図1に示すようにシェル層103が、トナーコア粒子102とシェル層103との界面上、且つ、2つのクラック104間に、凸部105を有するのが好ましい。シェル層103がこのような凸部105を有することにより、シェル層が凸部105を有していない場合に比べて、トナーコア粒子102とシェル層103との接触面積を大きくすることができる。これにより、シェル層に凸部105を設けることで、トナーコア粒子102とシェル層103との密着性が向上し、シェル層103がトナーコア粒子102から剥離しにくくなる。このため、シェル層が凸部105を備える場合、耐熱保存性が良好なトナーを得ることができる。
本発明の静電潜像現像用トナーの、樹脂微粒子を用いて形成されるシェル層は、より具体的には、
I)球状の樹脂微粒子を、トナーコア粒子の表面に対して垂直方向に重ならないように、トナーコア粒子の表面に付着させて、トナーコア粒子の全表面を被覆する樹脂微粒子層を形成する工程、及び
II)樹脂微粒子層の外表面への外力の印加によって、樹脂微粒子層中の樹脂微粒子を変形させることにより、樹脂微粒子層の外表面を平滑化させてシェル層を形成する工程、
を含む方法により形成されている。
シェル層の平滑化の程度は、本発明のトナーの表面を、走査型電子顕微鏡を用いて観察する場合に、粒子径6μm以上8μm以下のトナー粒子のシェル層の外表面に、シェル層の形成に用いる球状の樹脂微粒子に由来する構造が観察されない程度であればよい。粒子径6μm以上8μm以下のトナーのシェル層の状態がこのような状態であれば、トナーに含まれるトナー粒子の殆どで、コア粒子の表面が露出しないようにシェル層が形成されている。シェル層の外表面の状態を、走査型電子顕微鏡観察を用いて確認する場合の、トナー粒子の粒子径とは、電子顕微鏡画像上のトナーの投影面積から算出される円相当径である。
図1に示されるシェル層の好適な態様では、トナー101は、トナーコア粒子102の全表面がシェル層103により被覆されている。また、シェル層103は、その外表面が平滑であるようにトナーコア粒子102の全表面を被覆しているため、トナー101を高温で保存する際に、離型剤等のトナー101表面のへの染み出しが生じにくい。
さらに、トナー101は、シェル層103の内部に空隙(クラック)105が存在するため、トナーを被記録媒体上に定着させる際に、トナーに加わる圧力によって、クラックを基点とするシェル層の破壊が起こりやすい。これにより、トナー101は、トナーコア粒子102に含まれる結着樹脂や離型剤等の軟化又は溶融が速やかに進行するため、トナーを被記録媒体上に定着させやすい。
また、本発明のトナーは、一次粒子径3μm以上10μm以下のトナー粒子の平均円形度が0.960以上0.970以下である。トナー粒子について、平均円形度が低すぎる場合、トナーが丸みの少ない形状になり、潜像担持体(感光体ドラム)との接触摩擦係数が増大し、潜像担持体から被記録媒体へトナー像を転写する際に、潜像担持体表面からトナーが剥離しにくくなる。このような場合、形成した画像に、転写中抜けの発生に起因した画像不良が生じやすい。また、平均円形度が高すぎる場合、潜像担持体に付着した転写残トナーをクリーニングする際に、転写残トナーを除去するための装置をトナーがすり抜けやすくなる。
粒子径3μm以上10μm以下の範囲のトナー粒子の平均円形度は、以下の方法に従って測定できる。なお、粒子径3μm未満の粒子として測定される粒子には、トナー粒子は殆ど含まれず、粒子径10μm超の粒子として測定される粒子には、凝集体を形成したトナー粒子が多く含まれる。そのため、平均円形度を求めるトナー粒子の粒子径の範囲を3μm以上10μm以下とする。
<円形度測定方法>
フロー式粒子像分析装置(FPIA−3000(シスメックス株式会社製))を用いてトナーの円形度を測定する。23℃、60%RHの環境下で、トナー全粒子について、粒子像と同じ投影面積を持つ円の円周の長さ(L)と、粒子投影像の外周の長さ(L)とを測定し、下式により円形度を求める。トナー全粒子のうち、円相当径3.0μm以上10.0μm以下の範囲のトナー粒子のデータを用いて、平均円形度を算出する。具体的には、円相当径3.0μm以上10.0μm以下の測定したトナー粒子の円形度の総和を、測定した円相当径3.0μm以上10.0μm以下のトナー粒子の全粒子数で除した値を平均円形度とする。
(円形度算出式)
円形度=L/L
[トナー材料]
本発明のトナーは、少なくとも結着樹脂を含むトナーコア粒子と、トナーコア粒子の全表面を被覆するシェル層と、からなる。トナーコア粒子は、結着樹脂中に、必要に応じ、離型剤、電荷制御剤、着色剤、磁性粉等を含んでいてもよい。また、本発明のトナーは所望によりトナー粒子(トナー母粒子)の表面が、外添剤により処理されたものであってもよい。さらに、本発明のトナーは、所望のキャリアと混合して2成分現像剤として使用することもできる。なお、外添剤を付着させる前のトナー粒子をトナー母粒子と呼称する場合がある。
以下、本発明の静電潜像現像用トナーを構成する必須、又は任意の成分である、結着樹脂、離型剤、電荷制御剤、着色剤、磁性粉、シェル層を形成する樹脂微粒子、外添剤、及び本発明のトナーを2成分現像剤として使用する場合に用いるキャリアと、本発明の静電潜像現像用トナーの製造方法とについて順に説明する。
〔結着樹脂〕
本発明のトナーにおけるトナーコア粒子は、結着樹脂を含む。トナーコア粒子に含まれる結着樹脂に用いることができる樹脂としては、従来からトナー用の結着樹脂として用いられている樹脂であれば特に制限されない。結着樹脂の具体例としては、スチレン系樹脂、アクリル系樹脂、スチレンアクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、塩化ビニル系樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリビニルアルコール系樹脂、ビニルエーテル系樹脂、N−ビニル系樹脂、スチレン−ブタジエン樹脂のような熱可塑性樹脂が挙げられる。これらの樹脂の中でも、結着樹脂中の着色剤の分散性、トナーの帯電性、用紙に対する定着性の面から、ポリスチレン系樹脂、及びポリエステル樹脂が好ましい。以下、ポリスチレン系樹脂、及びポリエステル樹脂について説明する。
ポリスチレン系樹脂は、スチレンの単独重合体でもよく、スチレンと共重合可能な他の共重合モノマーとの共重合体でもよい。スチレンと共重合可能な他の共重合モノマーの具体例としては、p−クロルスチレン;ビニルナフタレン;エチレン、プロピレン、ブチレン、イソブチレンのようなエチレン不飽和モノオレフィン類;塩化ビニル、臭化ビニル、弗化ビニルのようなハロゲン化ビニル;酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル、酪酸ビニルのようなビニルエステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ドテシル、アクリル酸n−オクチル、アクリル酸2−クロルエチル、アクリル酸フェニル、α−クロルアクリル酸メチル、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸ブチルのような(メタ)アクリル酸エステル;アクリロニトリル、メタアクリロニトリル、アクリルアミドのような他のアクリル酸誘導体;ビニルメチルエーテル、ビニルイソブチルエーテルのようなビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、メチルイソプロペニルケトンのようなビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリデンのようなN−ビニル化合物が挙げられる。これらの共重合モノマーは、2種以上を組み合わせてスチレン単量体と共重合できる。
ポリエステル樹脂は、2価又は3価以上のアルコール成分と2価又は3価以上のカルボン酸成分との縮重合や共縮重合によって得られるものを使用することができる。ポリエステル樹脂を合成する際に用いられる成分としては、以下のアルコール成分やカルボン酸成分が挙げられる。
2価又は3価以上のアルコール成分の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールのようなジオール類;ビスフェノールA、水素添加ビスフェノールA、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールAのようなビスフェノール類;ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、ジグリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼンのような3価以上のアルコール類が挙げられる。
2価又は3価以上のカルボン酸成分の具体例としては、マレイン酸、フマール酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸、或いはn−ブチルコハク酸、n−ブテニルコハク酸、イソブチルコハク酸、イソブテニルコハク酸、n−オクチルコハク酸、n−オクテニルコハク酸、n−ドデシルコハク酸、n−ドデセニルコハク酸、イソドデシルコハク酸、イソドデセニルコハク酸のようなアルキル又はアルケニルコハク酸のような2価カルボン酸;1,2,4−ベンゼントリカルボン酸(トリメリット酸)、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン、1,2,4−シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8−オクタンテトラカルボン酸、ピロメリット酸、エンポール三量体酸のような3価以上のカルボン酸が挙げられる。これらの2価又は3価以上のカルボン酸成分は、酸ハライド、酸無水物、低級アルキルエステルのようなエステル形成性の誘導体として用いてもよい。ここで、「低級アルキル」とは、炭素原子数1から6のアルキル基を意味する。
結着樹脂がポリエステル系樹脂である場合の、ポリエステル系樹脂の軟化点は、70℃以上130℃以下であることが好ましく、80℃以上120℃以下がより好ましい。
本発明のトナーが、磁性1成分トナーとして用いられる場合、結着樹脂として、ヒドロキシ基、カルボキシル基、アミノ基、及びエポキシ基(グリシジル基等)からなる群より選択される1以上の官能基を分子内に有する樹脂を使用するのが好ましい。これらの官能基を分子内に有する結着樹脂を用いることにより、結着樹脂中での磁性粉、電荷制御剤等の分散性を向上させることができる。なお、これらの官能基の有無は、フーリエ変換赤外分光光度計(FT−IR)を用いて確認することができる。また、樹脂中のこれらの官能基の量は、滴定等の公知の方法により測定することができる。
結着樹脂としては、用紙に対する定着性が良好であることから熱可塑性樹脂を用いることが好ましいが、熱可塑性樹脂単独で使用するだけでなく、熱可塑性樹脂に架橋剤や熱硬化性樹脂を添加することができる。架橋剤や熱硬化性樹脂を添加して、結着樹脂内に、一部架橋構造を導入することにより、トナーの定着性を低下させることなく、トナーの耐熱保存性、耐久性等を向上させることができる。なお、熱硬化性樹脂を用いる場合は、ソックスレー抽出器を用いて抽出される結着樹脂の架橋部分量(ゲル量)は、結着樹脂の質量に対して、10質量%以下が好ましく、0.1質量%以上10質量%以下がより好ましい。
熱可塑性樹脂と共に使用できる熱硬化性樹脂としては、エポキシ樹脂やシアネート系樹脂が好ましい。好適な熱硬化性樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、水素化ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、環状脂肪族型エポキシ樹脂、シアネート樹脂が挙げられる。これらの熱硬化性樹脂は、2種以上を組み合わせて使用できる。
結着樹脂のガラス転移点(Tg)は、40℃以上70℃以下が好ましい。ガラス転移点が高すぎる場合、トナーの低温定着性が低下する傾向がある。ガラス転移点が低すぎる場合、トナーの耐熱保存性が低下する傾向がある。
結着樹脂のガラス転移点は、示差走査熱量計(DSC)を用いて、結着樹脂の比熱の変化点から求めることができる。より具体的には、測定装置としてセイコーインスツルメンツ株式会社製示差走査熱量計DSC−6200を用い、結着樹脂の吸熱曲線を測定することで結着樹脂のガラス転移点を求めることができる。測定試料10mgをアルミパン中に入れ、リファレンスとして空のアルミパンを使用する。測定温度範囲25℃以上200℃以下、昇温速度10℃/分で常温常湿下にて測定して得られた結着樹脂の吸熱曲線より結着樹脂のガラス転移点を求めることができる。
結着樹脂の質量平均分子量(Mw)は、本発明の目的を阻害しない範囲で特に限定されない。典型的には、結着樹脂の質量平均分子量(Mw)は、20,000以上300,000以下が好ましく、30,000以上2,000,000以下がより好ましい。なお、結着樹脂の質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレン樹脂を用いて予め作成しておいた検量線を用いて求めることができる。
また、結着樹脂がポリスチレン系樹脂である場合、結着樹脂は、ゲルパーミエーションクロマトグラフィー等により測定される分子量分布上で、低分子量領域と、高分子量領域とにそれぞれピークを有するのが好ましい。具体的には、低分子量領域のピークを分子量3,000以上20,000以下の範囲に有するのが好ましく、高分子量領域のピークを分子量300,000以上1,500,000以下の範囲に有するのが好ましい。また、このような分子量分布のポリスチレン系樹脂について、数平均分子量(Mn)と質量平均分子量(Mw)との比(Mw/Mn)は、10以上が好ましい。結着樹脂が、分子量分布において、低分子量領域のピークと高分子量領域のピークをこのような範囲に有することで、低温定着性に優れ、高温オフセットを抑制できるトナーを得ることができる。
〔離型剤〕
トナーコア粒子は、定着性や耐オフセット性を向上させる目的で、離型剤を含むのが好ましい。トナーコア粒子に含むことができる離型剤の種類は、本発明の目的を阻害しない範囲で特に限定されない。離型剤としてはワックスが好ましく、ワックスの例としては、カルナウバワックス、合成エステルワックス、ポリエチレンワックス、ポリプロピレンワックス、フッ素樹脂系ワックス、フィッシャートロプシュワックス、パラフィンワックス、モンタンワックス、ライスワックスが挙げられる。これらの離型剤は2種以上を組み合わせて使用できる。このような離型剤をトナーに添加することにより、オフセットや像スミアリング(画像をこすった際の画像周囲の汚れ)の発生をより効率的に抑制することができる。
結着樹脂としてポリエステル樹脂が用いられる場合は、相溶性の観点から、離型剤として、カルナバワックス、合成エステルワックス、及びポリエチレンワックスからなる群より選択される1以上の離型剤が好適に用いられる。また、結着樹脂としてポリスチレン系樹脂が用いられる場合は、同じく相溶性の観点から、離型剤として、フィッシャートロプシュワックス、及び/又はパラフィンワックスが好適に用いられる。
なお、フィッシャートロプシュワックスは、一酸化炭素の接触水素化反応であるフィッシャートロプシュ反応を利用して製造される、イソ(iso)構造分子や側鎖が少ない、直鎖炭化水素化合物である。
フィッシャートロプシュワックスの中でも、質量平均分子量が1,000以上であり、且つDSC測定により観測される吸熱ピークのボトム温度が、100℃以上120℃以下の範囲内であるものがより好ましい。このようなフィッシャートロプシュワックスとしては、サゾール社から入手できるサゾールワックスC1(吸熱ピークのボトム温度:106.5℃)、サゾールワックスC105(吸熱ピークのボトム温度:102.1℃)、サゾールワックスSPRAY(吸熱ピークのボトム温度:102.1℃)等が挙げられる。
離型剤の使用量は、本発明の目的を阻害しない範囲で特に限定されない。具体的な離型剤の使用量は、トナーコア粒子の全質量に対して、1質量%以上10質量%以下が好ましい。離型剤の使用量が過少である場合、形成画像におけるオフセットや像スミアリングの発生の抑制について所望の効果が得られない場合があり、離型剤の使用量が過多である場合、トナー同士の融着によってトナーの耐熱保存性が低下する場合がある。
〔電荷制御剤〕
トナーコア粒子は、トナーの、帯電レベルや、所定の帯電レベルに短時間で帯電可能か否かの指標となる帯電立ち上がり特性を向上させ、耐久性や安定性に優れたトナーを得る目的で、電荷制御剤を含むのが好ましい。トナーを正帯電させて現像を行う場合、正帯電性の電荷制御剤が使用され、トナーを負帯電させて現像を行う場合、負帯電性の電荷制御剤が使用される。
電荷制御剤の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来からトナーに使用されている電荷制御剤から適宜選択して使用できる。正帯電性の電荷制御剤の具体例としては、ピリダジン、ピリミジン、ピラジン、オルトオキサジン、メタオキサジン、パラオキサジン、オルトチアジン、メタチアジン、パラチアジン、1,2,3−トリアジン、1,2,4−トリアジン、1,3,5−トリアジン、1,2,4−オキサジアジン、1,3,4−オキサジアジン、1,2,6−オキサジアジン、1,3,4−チアジアジン、1,3,5−チアジアジン、1,2,3,4−テトラジン、1,2,4,5−テトラジン、1,2,3,5−テトラジン、1,2,4,6−オキサトリアジン、1,3,4,5−オキサトリアジン、フタラジン、キナゾリン、キノキサリンのようなアジン化合物;アジンファストレッドFC、アジンファストレッド12BK、アジンバイオレットBO、アジンブラウン3G、アジンライトブラウンGR、アジンダークグリ−ンBH/C、アジンディ−プブラックEW、及びアジンディープブラック3RLのようなアジン化合物からなる直接染料;ニグロシン、ニグロシン塩、ニグロシン誘導体のようなニグロシン化合物;ニグロシンBK、ニグロシンNB、ニグロシンZのようなニグロシン化合物からなる酸性染料;ナフテン酸又は高級脂肪酸の金属塩類;アルコキシル化アミン;アルキルアミド;ベンジルメチルヘキシルデシルアンモニウム、デシルトリメチルアンモニウムクロライドのような4級アンモニウム塩が挙げられる。これらの正帯電性の電荷制御剤の中では、より迅速な帯電立ち上がり性が得られる点で、ニグロシン化合物が特に好ましい。これらの正帯電性の電荷制御剤は、2種以上を組み合わせて使用できる。
官能基として4級アンモニウム塩、カルボン酸塩、又はカルボキシル基を有する樹脂も正帯電性の電荷制御剤として使用できる。より具体的には、4級アンモニウム塩を有するスチレン系樹脂、4級アンモニウム塩を有するアクリル系樹脂、4級アンモニウム塩を有するスチレン−アクリル系樹脂、4級アンモニウム塩を有するポリエステル樹脂、カルボン酸塩を有するスチレン系樹脂、カルボン酸塩を有するアクリル系樹脂、カルボン酸塩を有するスチレン−アクリル系樹脂、カルボン酸塩を有するポリエステル樹脂、カルボキシル基を有するスチレン系樹脂、カルボキシル基を有するアクリル系樹脂、カルボキシル基を有するスチレン−アクリル系樹脂、カルボキシル基を有するポリエステル樹脂が挙げられる。これらの樹脂の分子量は、本発明の目的を阻害しない範囲で特に限定されず、オリゴマーであってもポリマーであってもよい。
正帯電性の電荷制御剤として使用できる樹脂の中では、帯電量を所望の範囲内の値に容易に調節することができる点から、4級アンモニウム塩を官能基として有するスチレン−アクリル系樹脂がより好ましい。4級アンモニウム塩を官能基として有するスチレン−アクリル系樹脂において、スチレン単位と共重合させる好ましいアクリル系コモノマーの具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸iso−プロピル、アクリル酸n−ブチル、アクリル酸iso−ブチル、アクリル酸2−エチルヘキシル、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸n−ブチル、メタアクリル酸iso−ブチルのような(メタ)アクリル酸アルキルエステルが挙げられる。
また、4級アンモニウム塩としては、ジアルキルアミノアルキル(メタ)アクリレート、ジアルキル(メタ)アクリルアミド、又はジアルキルアミノアルキル(メタ)アクリルアミドから第4級化の工程を経て誘導される単位が用いられる。ジアルキルアミノアルキル(メタ)アクリレートの具体例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレートが挙げられ、ジアルキル(メタ)アクリルアミドの具体例としてはジメチルメタクリルアミドが挙げられ、ジアルキルアミノアルキル(メタ)アクリルアミドの具体例としては、ジメチルアミノプロピルメタクリルアミドが挙げられる。また、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミドのようなヒドロキシ基含有重合性モノマーを重合時に併用することもできる。
負帯電性の電荷制御剤の具体例としては、有機金属錯体、キレート化合物、モノアゾ金属錯体、アセチルアセトン金属錯体、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸系の金属錯体、芳香族モノカルボン酸、及び芳香族ポリカルボン酸、及びその金属塩、無水物、エステル類、並びにビスフェノールのようなフェノール誘導体類が挙げられる。これらの中でも有機金属錯体、キレート化合物が好ましく、有機金属錯体、及びキレート化合物としては、アルミニウムアセチルアセトナートや鉄(II)アセチルアセトナートのようなアセチルアセトン金属錯体、及び、3,5−ジ−tert−ブチルサリチル酸クロムのようなサリチル酸系金属錯体又はサリチル酸系金属塩がより好ましく、サリチル酸系金属錯体又はサリチル酸系金属塩が特に好ましい。これらの負帯電性の電荷制御剤は、2種以上を組み合わせて使用できる。
正帯電性又は負帯電性の電荷制御剤の使用量は、本発明の目的を阻害しない範囲で特に限定されない。正帯電性又は負帯電性の電荷制御剤の使用量は、典型的には、トナーコア粒子の全質量に対し、0.1質量%以上10質量%以下が好ましい。電荷制御剤の使用量が過少である場合、所定の極性にトナーを安定して帯電させにくいため、形成画像の画像濃度が所望する値を下回ったり、画像濃度を長期にわたって維持することが困難になったりすることがある。また、電荷制御剤が均一に分散し難いため、形成画像にかぶりが生じやすくなったり、潜像担持部のトナー成分による汚染が起こりやすくなったりする。電荷制御剤の使用量が過多である場合、耐環境性の悪化による、高温高湿下での帯電不良に起因する形成画像における画像不良や、潜像担持部のトナー成分による汚染等が起こりやすくなる。
〔着色剤〕
トナーコア粒子は、必要に応じて着色剤を含んでいてもよい。トナーコア粒子に含むことができる着色剤は、トナーの色に合わせて、公知の顔料や染料を用いることができる。トナーに添加可能な好適な着色剤の具体例としては、カーボンブラック、アセチレンブラック、ランプブラック、アニリンブラックのような黒色顔料;黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファストイエロー、ニッケルチタンイエロー、ネーブルスイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ、モノアゾイエロー、ジアゾイエローのような黄色顔料;赤口黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジGKのような橙色顔料;ベンガラ、カドミウムレッド、鉛丹、硫化水銀カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウオッチングレッドカルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B、モノアゾレッドのような赤色顔料;マンガン紫、ファストバイオレットB、メチルバイオレットレーキのような紫色顔料;紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルー部分塩素化物、ファーストスカイブルー、インダスレンブルーBC、フタロシアニンブルーのような青色顔料;クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、ファイナルイエローグリーンGのような緑色顔料;亜鉛華、酸化チタン、アンチモン白、硫化亜鉛のような白色顔料;バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイトのような体質顔料が挙げられる。これらの着色剤は、トナーを所望の色相に調整する目的等で2種以上を組み合わせて用いることもできる。
着色剤の使用量は、本発明の目的を阻害しない範囲で特に限定されない。具体的には、着色剤の使用量は、トナーコア粒子の全質量に対して、0.1質量%以上50質量%以下が好ましく、0.5質量%以上20質量%以下がより好ましい。
なお、熱可塑性樹脂等の樹脂材料中に予め着色剤が分散されたマスターバッチとして、着色剤を用いることもできる。着色剤をマスターバッチとして用いる場合、マスターバッチに含まれる樹脂は、結着樹脂と同種の樹脂であるのが好ましい。
〔磁性粉〕
本発明の静電潜像現像用トナーは、所望により、トナーコア粒子にて、結着樹脂中に磁性粉を配合することにより、磁性1成分現像剤とすることができる。トナーを磁性1成分現像剤とする場合に用いる磁性粉の種類は、本発明の目的を阻害しない範囲で特に限定されない。好適な磁性粉の例としては、フェライト、マグネタイトのような鉄;コバルト、ニッケル等の強磁性金属;鉄、及び/又は強磁性金属を含む合金;鉄、及び/又は強磁性金属を含む化合物;熱処理等の強磁性化処理を施された強磁性合金;二酸化クロムが挙げられる。
磁性粉の粒子径は、本発明の目的を阻害しない範囲で限定されない。具体的な磁性粉の粒子径は、0.1μm以上1.0μm以下が好ましく、0.1μm以上0.5μm以下がより好ましい。このような囲の粒子径の磁性粉を用いる場合、結着樹脂中に磁性粉を均一に分散させやすい。
磁性粉は、結着樹脂中での分散性を改良する目的等で、チタン系カップリング剤やシラン系カップリング剤等の表面処理剤により表面処理されたものを用いることができる。
磁性粉の使用量は、本発明の目的を阻害しない範囲で特に限定されない。具体的な磁性粉の使用量は、トナーコア粒子の全質量に対して、35質量%以上65質量%以下が好ましく、35質量%以上55質量%以下がより好ましい。磁性粉の使用量が過多である場合、長期間連続して画像を形成する場合に所望する画像濃度の画像を形成しにくくなったり、定着性が極度に低下したりする場合がある。また、磁性粉の使用量が過少である場合、形成画像にかぶりが発生しやすかったり、長期間にわたり印刷する場合に形成画像の画像濃度が低下しやすかったりする場合がある。
〔樹脂微粒子〕
本発明の静電潜像現像用トナー中のシェル層を形成する樹脂微粒子は、トナーコア粒子を被覆できる限り特に限定されない。所定の構造のシェル層を形成しやすいことから、シェル層を形成する樹脂微粒子は、不飽和結合を有するモノマーの重合体が好ましい。また、樹脂微粒子は、ソープフリー乳化重合により合成可能な樹脂が好ましい。ソープフリー乳化重合で樹脂微粒子を製造すれば、粒子径が揃っており、界面活性剤を含まないか、殆ど含まない樹脂微粒子を調製できるからである。
不飽和結合を有するモノマーの種類は、シェル層として十分な物理的性質を有する樹脂を合成可能であれば特に限定されない。不飽和結合を有するモノマーとしては、ビニル系単量体が好ましい。ビニル系単量体に含まれるビニル基は、α位をアルキル基により置換されていてもよい。また、ビニル系単量体に含まれるビニル基は、ハロゲン原子により置換されていてもよい。ビニル基が有していてもよいアルキル基は、炭素数1〜6のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。また、ビニル基が有していてもよいハロゲン原子は、塩素原子、又は臭素原子が好ましく、塩素原子がより好ましい。
ビニル系単量体は、含窒素極性官能基を有するものであってもよく、フッ素置換された炭化水素基を有するものであってもよい。樹脂を製造する際に、含窒素極性官能基を有するビニル系単量体を用いる場合、得られる樹脂に正帯電性を付与することができる。また、樹脂を製造する際に、フッ素置換された炭化水素基を有するビニル系単量体を用いる場合、得られる樹脂に負帯電性を付与することができる。樹脂微粒子として、上記の正帯電性の樹脂、又は負帯電性の樹脂を用いる場合、トナーコア粒子中に電荷制御剤を配合しないか、トナーコア粒子中への電荷制御剤の配合量を減らしても、所望する帯電量に帯電可能なトナーを得ることができる。
ビニル系単量体のうち、含窒素極性官能基、及びフッ素置換された炭化水素基を持たない単量体の具体例としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−エトキシスチレン、p−フェニルスチレン、p−クロロスチレン、3,4−ジクロロスチレンのようなスチレン類;エチレン、プロピレン、ブチレン、イソブチレンのようなエチレン性不飽和モノオレフィン類;塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニルのようなハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニルのようなビニルエステル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸フェニル、α−クロロアクリル酸メチルのような(メタ)アクリル酸エステル類;アクリロニトリルのような(メタ)アクリル酸誘導体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルのようなビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンのようなビニルケトン類;ビニルナフタリン類が挙げられる。これらの中でも、スチレン類が好ましく、スチレンがより好ましい。これらのモノマーは2種以上を組み合わせて使用できる。
含窒素極性官能基を持つビニル系単量体の例としては、N−ビニル化合物や、アミノ(メタ)アクリル系単量体や、メタクリロニトリル(メタ)アクリルアミドが挙げられる。N−ビニル化合物の具体例としては、N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、及びN−ビニルピロリドンのようなN−ビニル化合物が挙げられる。また、アミノ(メタ)アクリル系単量体の好適な例としては、下式で表される化合物が挙げられる。
CH=C(R)−(CO)−X−N(R)(R
(式中、Rは水素又はメチル基を示す。R及びRは、それぞれ水素原子又は炭素数1〜20のアルキル基を示す。Xは−O−、−O−Q−又は−NHを示す。Qは炭素数1〜10のアルキレン基、フェニレン基、又はこれらの基の組合せを示す。)
上記式中、R及びRの具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基、tert−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基(ラウリル基)、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基(ステアリル基)、n−ノナデシル基、及びn−イコシル基が挙げられる。
上記式中、Qの具体例としては、メチレン基、1,2−エタン−ジイル基、1,1−エチレン基、プロパン−1,3−ジイル基、プロパン−2,2−ジイル基、プロパン−1,1−ジイル基、プロパン−1,2−ジイル基、ブタン−1,4−ジイル基、ペンタン−1,5−ジイル基、ヘキサン−1,6−ジイル基、ヘプタン−1,7−ジイル基、オクタン−1,8−ジイル基、ノナン−1,9−ジイル基、デカン−1,10−ジイル基、p−フェニレン基、m−フェニレン基、o−フェニレン基、及びベンジル基に含まれるフェニル基の4位から水素を除いた二価基が挙げられる。
上記式で表されるアミノ(メタ)アクリル系単量体の具体例としては、例えば、N,N−ジメチルアミノ(メタ)アクリレート、N,N−ジメチルアミノメチル(メタ)アクリレート、N,N−ジエチルアミノメチル(メタ)アクリレート、2−(N,N−メチルアミノ)エチル(メタ)アクリレート、2−(N,N−ジエチルアミノ)エチル(メタ)アクリレート、3−(N,N−ジメチルアミノ)プロピル(メタ)アクリレート、4−(N,N−ジメチルアミノ)ブチル(メタ)アクリレート、p−N,N−ジメチルアミノフェニル(メタ)アクリレート、p−N,N−ジエチルアミノフェニル(メタ)アクリレート、p−N,N−ジプロピルアミノフェニル(メタ)アクリレート、p−N,N−ジ−n−ブチルアミノフェニル(メタ)アクリレート、p−N−ラウリルアミノフェニル(メタ)アクリレート、p−N−ステアリルアミノフェニル(メタ)アクリレート、(p−N,N−ジメチルアミノフェニル)メチル(メタ)アクリレート、(p−N,N−ジエチルアミノフェニル)メチル(メタ)アクリレート、(p−N,N−ジ−n−プロピルアミノフェニル)メチル(メタ)アクリレート、(p−N,N−ジ−n−ブチルアミノフェニル)メチルベンジル(メタ)アクリレート、(p−N−ラウリルアミノフェニル)メチル(メタ)アクリレート、(p−N−ステアリルアミノフェニル)メチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジエチルアミノエチル(メタ)アクリルアミド、3−(N,N−ジメチルアミノ)プロピル(メタ)アクリルアミド、3−(N,N−ジエチルアミノ)プロピル(メタ)アクリルアミド、p−N,N−ジメチルアミノフェニル(メタ)アクリルアミド、p−N,N−ジエチルアミノフェニル(メタ)アクリルアミド、p−N,N−ジ−n−プロピルアミノフェニル(メタ)アクリルアミド、p−N,N−ジ−n−ブチルアミノフェニル(メタ)アクリルアミド、p−N−ラウリルアミノフェニル(メタ)アクリルアミド、p−N−ステアリルアミノフェニル(メタ)アクリルアミド、(p−N,N−ジメチルアミノフェニル)メチル(メタ)アクリルアミド、(p−N,N−ジエチルアミノフェニル)メチル(メタ)アクリルアミド、(p−N,N−ジ−n−プロピルアミノフェニル)メチル(メタ)アクリルアミド、(p−N,N−ジ−n−ブチルアミノフェニル)メチル(メタ)アクリルアミド、(p−N−ラウリルアミノフェニル)メチル(メタ)アクリルアミド、(p−N−ステアリルアミノフェニル)メチル(メタ)アクリルアミドが挙げられる。
フッ素置換された炭化水素基を持つビニル系単量体は、含フッ素樹脂の製造に使用されるものであれば特に限定されない。フッ素置換された炭化水素基を有するビニル系単量体の具体例としては、2,2,2−トリフルオロエチルアクリレート、2,2,3,3−テトラフルオロプロピルアクリレート、2,2,3,3,4,4,5,5−オクタフルオロアミルアクリレート、1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートのようなフルオロアルキル(メタ)アクリレート類、トリフルオロクロルエチレン、フッ化ビニリデン、三フッ化エチレン、四フッ化エチレン、トリフルオロプロピレン、ヘキサフルオロプロペン、ヘキサフルオロプロピレンが挙げられる。これらの中でも、フルオロアルキル(メタ)アクリレート類が好ましい。
不飽和結合を有するモノマーの付加重合方法は本発明の目的を阻害しない範囲で限定されず、溶液重合、塊状重合、乳化重合、懸濁重合のような方法を選択できる。これらの製造方法の中では、粒子径のそろった樹脂微粒子を得やすいことから、乳化重合法が好ましい。
以上説明したビニル系単量体の重合に使用できる重合開始剤としては過硫酸カリウム、過酸化アセチル、過酸化デカノイル、過酸化ラウロイル、過酸化ベンゾイル、アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリルのような公知の重合開始剤を使用できる。これらの重合開始剤の使用量は、モノマーの総質量に対して0.1質量%以上15質量%以下が好ましい。
上記のビニル系単量体の重合方法は本発明の目的を阻害しない範囲で限定されず、溶液重合、塊状重合、乳化重合、懸濁重合のような任意の方法を選択できる。これらの製造方法の中では、粒子径のそろった樹脂微粒子を得やすいことから、乳化重合法が好ましい。
樹脂微粒子を乳化重合法により製造する方法としては、乳化剤(界面活性剤)を使用しないソープフリー乳化重合法が好ましい。ソープフリー乳化重合法では、水相で発生した開始剤のラジカルが水相にわずかに溶けているモノマーを結合させてゆき、重合が進むにつれて、不溶化した樹脂微粒子の粒子核が形成される。ソープフリー乳化重合法によれば、粒度分布の幅が狭い樹脂微粒子が得られ、また、樹脂微粒子の平均粒子径を0.03μm以上1μm以下の範囲に制御しやすい。このため、ソープフリー乳化重合法によれば、粒子径が均一な樹脂微粒子が得られる。
後述する、シェル層の好適な形成方法では、樹脂微粒子を用いてシェル層を形成する。この場合、ソープフリー乳化重合法で得られる粒子径の均一な樹脂微粒子を用いることで、トナーコア粒子に対する樹脂微粒子の付着力のバラツキを減らすことによって、厚さが均一であり均質なシェル層を形成できる。また、ソープフリー乳化重合法により製造される樹脂微粒子は、乳化剤(界面活性剤)を用いることなく形成されるので、ソープフリー乳化重合法により得られる樹脂微粒子を用いることにより、湿気による影響を受けにくいシェル層を形成できる。
樹脂微粒子は、必要に応じて、前述の着色剤、及び電荷制御樹脂等を含有するように調製されてもよい。樹脂微粒子に十分な量の電荷制御剤を含有させる場合には、トナーコア粒子に電荷制御剤を含有させなくてもよい。
樹脂微粒子を構成する樹脂のガラス転移点は、本発明の目的を阻害しない範囲で特に限定されない。典型的には、ガラス転移点は45℃以上90℃以下が好ましく、50℃以上80℃以下がより好ましい。また、樹脂微粒子を構成する樹脂の軟化点は、本発明の目的を阻害しない範囲で特に限定されない。典型的には、軟化点は100℃以上250℃以下が好ましく、110℃以上240℃以下がより好ましい。また、樹脂の軟化点は、トナーコア粒子に含まれる結着樹脂の軟化点よりも高いのが好ましく、10℃以上140℃以下高いのがより好ましい。樹脂微粒子を構成する樹脂の温度特性をこのような範囲とすることで、樹脂微粒子がトナーコア粒子に埋め込まれる際に、樹脂微粒子のトナーコア粒子と接触する部分が変形しにくいため、シェル層の内表面に、シェル層に変化する前の樹脂微粒子の形状に由来する凸部が形成されやすい。
樹脂微粒子を構成する樹脂の質量平均分子量(Mw)は、本発明の目的を阻害しない範囲で特に限定されない。典型的には、質量平均分子量は20,000以上1,500,000以下が好ましい。樹脂微粒子の材料である樹脂の質量平均分子量(Mw)は、従来知られる方法に従って、ゲルパーミエーションクロマトグラフィーにより測定できる。
樹脂微粒子の平均粒子径は、本発明の目的を阻害しない範囲で特に限定されず、0.03μm以上1μm以下が好ましく、0.04μm以上0.7μm以下がより好ましく、0.05μm以上0.5μm以下が特に好ましく、0.05μm以上0.3μm以下が最も好ましい。このような粒子径の樹脂微粒子を用いる場合、トナーコア粒子の表面を、樹脂微粒子により単層で均一に被覆しやすく、所望の構造のシェル層を形成しやすい。樹脂微粒子の平均粒子径が過小である場合、トナーコア粒子表面に好ましい厚さのシェル層を形成しにくく、耐熱保存性に優れるトナーを得にくい。一方、樹脂微粒子の平均粒子径が過大である場合、トナーコア粒子表面に均一に樹脂微粒子を付着させにくい。このため、所定の構造のシェル層を形成しにくく、耐熱保存性に優れるトナーを得にくい。
樹脂微粒子の平均粒子径は、重合条件の調整や、公知の粉砕方法、分級方法等により調整することができる。樹脂微粒子の平均粒子径については、フィールドエミッション走査電子顕微鏡(JSM−6700F(日本電子株式会社製))を用いて撮影した電子顕微鏡写真から、50個以上の樹脂微粒子の粒子径を測定して、個数平均粒径を測定できる。
樹脂微粒子の使用量は、本発明の目的を阻害しない範囲で特に限定されない。樹脂微粒子の使用量は、典型的には、トナーコア粒子100質量部に対して1質量部以上20質量部以下が好ましく、3質量部以上15質量部以下がより好ましい。樹脂微粒子の使用量が過少であると、トナーコア粒子の全表面を樹脂微粒子により被覆できない場合がある。トナーコア粒子の全表面を樹脂微粒子により被覆できない場合、高温での保存時にトナーが凝集しやすく、耐熱保存性が低下しやすい。樹脂微粒子の使用量が過多であると、シェル層が厚くなりやすい。この場合、定着性に優れるトナーを得にくい。
〔外添剤〕
本発明のトナーは、トナーコア粒子の表面にシェル層を形成した後に、所望により外添剤により処理することができる。以下、外添剤により処理されるトナー粒子を、「トナー母粒子」とも記載する。
外添剤の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来からトナー用に使用されている外添剤から適宜選択できる。好適な外添剤の具体例としては、シリカや、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、チタン酸ストロンチウム、チタン酸バリウムのような金属酸化物が挙げられる。これらの外添剤は、2種以上を組み合わせて使用できる。
外添剤の粒子径は、本発明の目的を阻害しない範囲で特に限定されず、典型的には0.01μm以上1.0μm以下が好ましい。
外添剤の使用量は、本発明の目的を阻害しない範囲で特に限定されない。外添剤の使用量は、典型的には、トナーコア粒子の表面にシェル層を形成して製造したトナー母粒子の全質量に対して、0.1質量%以上10質量%以下が好ましく、0.2質量%以上5質量%以下がより好ましい。外添剤の使用量が過少であると、トナーの疎水性が低下しやすい。その結果、高温高湿環境下において空気中の水分子の影響を受けやすくなり、トナーの帯電量の極端な低下に起因した形成画像の画像濃度の低下、及びトナーの流動性の低下の問題が起こりやすくなる。また、外添剤の使用量が過多であると、トナーの過度のチャージアップにより形成画像の画像濃度が低下する恐れがある。
〔キャリア〕
本発明の静電潜像現像用トナーは、所望のキャリアと混合して2成分現像剤として使用することもできる。2成分現像剤を調製する場合、キャリアとして磁性キャリアを用いるのが好ましい。
本発明の静電潜像現像用トナーを2成分現像剤とする場合の好適なキャリアとしては、キャリア芯材が樹脂により被覆されたものが挙げられる。キャリア芯材の具体例としては、鉄、酸化処理鉄、還元鉄、マグネタイト、銅、ケイ素鋼、フェライト、ニッケル、コバルトのような粒子や、これらの材料とマンガン、亜鉛、アルミニウム等との合金の粒子、鉄−ニッケル合金、鉄−コバルト合金のような粒子、酸化チタン、酸化アルミニウム、酸化銅、酸化マグネシウム、酸化鉛、酸化ジルコニウム、炭化ケイ素、チタン酸マグネシウム、チタン酸バリウム、チタン酸リチウム、チタン酸鉛、ジルコン酸鉛、ニオブ酸リチウムのようなセラミックスの粒子、リン酸二水素アンモニウム、リン酸二水素カリウム、ロッシェル塩のような高誘電率物質の粒子、樹脂中に上記磁性粒子を分散させた樹脂キャリアが挙げられる。
キャリアを被覆する樹脂の具体例としては、(メタ)アクリル系重合体、スチレン系重合体、スチレン−(メタ)アクリル系共重合体、オレフィン系重合体(ポリエチレン、塩素化ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル、ポリ酢酸ビニル、ポリカーボネート、セルロース樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂(ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン等)、フェノール樹脂、キシレン樹脂、ジアリルフタレート樹脂、ポリアセタール樹脂、アミノ樹脂が挙げられる。これらの樹脂は2種以上を組み合わせて使用できる。
キャリアの粒子径は、本発明の目的を阻害しない範囲で特に限定されないが、電子顕微鏡を用いて測定される粒子径で、20μm以上200μm以下が好ましく、30μm以上150μm以下がより好ましい。
キャリアの見掛け密度は、本発明の目的を阻害しない範囲で特に限定されない。見掛け密度は、キャリアの組成や表面構造によって異なるが、典型的には、2400kg/m以上3000kg/m以下が好ましい。
本発明の静電潜像現像用トナーを2成分現像剤として用いる場合、トナーの含有量は、2成分現像剤の質量に対して、1質量%以上20質量%以下が好ましく、3質量%以上15質量%以下が好ましい。2成分現像剤におけるトナーの含有量をかかる範囲とすることにより、形成画像の画像濃度を所望する濃度に維持したり、トナー飛散の抑制によって画像形成装置内部のトナーによる汚染や転写紙等へのトナーの付着を抑制したりできる。
[静電潜像現像用トナーの製造方法]
以上説明した静電潜像現像用トナーの製造方法は、トナーコア粒子とシェル層とが、それぞれ所定の構造となるように形成される限り特に限定されない。また、必要に応じて、シェル層で被覆されたトナーコア粒子をトナー母粒子として用いて、トナー母粒子の表面に、外添剤を付着させる外添処理を施してもよい。以上説明した静電潜像現像用トナーの好適な製造方法として、以下に、トナーコア粒子の製造方法と、シェル層の形成方法と、外添処理方法とを順に説明する。
〔トナーコア粒子の製造方法〕
トナーコア粒子を製造する方法は、結着樹脂中に着色剤、離型剤、電荷制御剤、磁性粉等の任意成分を良好に分散できる限り特に限定されない。トナーコア粒子の好適な製造方法の具体例としては、結着樹脂と、着色剤、離型剤、電荷制御剤、及び磁性粉等の成分とを混合機等により混合した後、一軸又は二軸押出機等の混練機により結着樹脂と結着樹脂に配合される成分とを溶融混練し、冷却された混練物を粉砕・分級する方法が挙げられる。トナーコア粒子の平均粒子径は、本発明の目的を阻害しない範囲で特に限定されないが、一般的には5μm以上10μm以下が好ましい。
本発明のトナーは、平均円形度が0.960以上0.970以下であるため、トナーコア粒子も同様の平均円形度を有するように調製される。このような平均円形度のトナーコア粒子を製造する方法は、特に限定されず、トナーコア粒子に含まれる成分の溶融混練物を粗粉砕及び微粉砕して得られる所定の粒子径の粉砕物を熱処理する方法や、前述の溶融混練物を粉砕する際に、粗粉砕と、微粉砕とを行う操作において、微粉砕を、複数段階に分けて行う方法が挙げられる。複数段階に分けて微粉砕を行うとは、粉砕機による粗粉砕物の粉砕が、粉砕された粒子の粒子径が所望の粒子径となる前に、微粉砕物を粉砕機より一旦回収する操作と、回収される微粉砕物を再度粉砕機により微粉砕する操作と、を微粉砕物の粒子径が所定の粒子径となるまで繰り返し行うことをいう。微粉砕工程を複数段階に分けて行う方法によりトナーコア粒子を製造する場合、微粉砕工程の段階数は特に限定されないが、3回以上が好ましい。
微粉砕工程で使用される機械式粉砕機は特に限定されず、例えば、ターボミル(フロイント・ターボ株式会社製)、クリプトロン(株式会社アーステクニカ)が挙げられる。なお、微粉砕工程を複数段階に分けて行う場合には、各段階で異なる機械式粉砕機を用いることができる。
〔シェル層の形成方法〕
シェル層は、球状の樹脂微粒子を用いて形成される。そして、より具体的には、
I)球状の樹脂微粒子を、トナーコア粒子の表面に対して垂直方向に重ならないように、トナーコア粒子の表面に付着させて、トナーコア粒子の全表面を被覆する樹脂微粒子層を形成する工程、及び
II)樹脂微粒子層の外表面への外力の印加によって、樹脂微粒子層中の樹脂微粒子を変形させることにより、樹脂微粒子層の外表面を平滑化させてシェル層を形成する工程、
を含む方法により形成されている。
このように、樹脂微粒子によりシェル層を形成させる方法としては、乾式条件でトナーコア粒子と樹脂微粒子とを混合できる混合装置を用いる方法が好ましい。具体例には、トナーコア粒子の表面に樹脂微粒子を付着させつつ、表面に樹脂微粒子が付着したトナーコア粒子に対して機械的外力を与えることができる混合装置を用いて、トナーコア粒子の表面にシェル層を形成させる方法が挙げられる。機械的外力としては、混合装置内の狭小な空間をトナーコア粒子が高速で移動する際に、トナーコア粒子同士のずりや、トナーコア粒子と、装置内壁、ローター、又はステーター等との間に生じるずりによって、トナーコア粒子に与えられる剪断力や、トナーコア粒子同士の衝突又はトナーコア粒子の装置内壁等との衝突等によって、トナーコア粒子に与えられる撃力が挙げられる。
より具体的な方法について説明する。まず、混合装置内で、トナーコア粒子と、樹脂微粒子とを、混合することによって、トナーコア粒子の表面に対して垂直方向に樹脂微粒子が重ならないように、樹脂微粒子を均一にトナーコア粒子に付着させる。粒子径の大きなトナーコア粒子と、粒子径の小さな樹脂微粒子とが接触する場合、微視的には平面とみなせるトナーコア粒子の表面と、樹脂微粒子の表面との間で、面と面との接触が起こるため、樹脂微粒子はトナーコア粒子に付着しやすい。他方、樹脂微粒子同士が接触する場合、二つの樹脂微粒子の曲面である表面が接触するため、点と点との接触が起こる。このため、トナーコア粒子に樹脂微粒子を付着させる過程で、トナーコア粒子表面に付着する樹脂微粒子にさらに樹脂微粒子が付着しても、混合装置によって、樹脂微粒子が付着したトナーコア粒子に与えられる機械的外力によって、樹脂微粒子に付着する樹脂微粒子は、樹脂微粒子から容易に剥離する。このような理由から、以下説明する方法では、トナーコア粒子の表面に対して垂直方向に樹脂微粒子が重ならないように、トナーコア粒子が樹脂微粒子により被覆される。
樹脂微粒子をトナーコア粒子に付着させる際、トナーコア粒子表面の樹脂微粒子層に、前述の機械的外力が加えられる。トナーコア粒子表面の樹脂微粒子層に、機械的外力が加えられることにより、樹脂微粒子がトナーコア粒子に埋め込まれつつ変形し、トナーコア粒子の全表面を被覆する樹脂微粒子層外表面が平滑化され、樹脂微粒子層がシェル層に変化する。このように、シェル層の外表面では平滑化が進行するのに対し、シェル層内部では、樹脂微粒子間の境界面が残されたままとなる。このため、樹脂微粒子を用いて形成されるシェル層の内部には、トナーコア粒子の表面に対して略垂直方向のクラックが形成される。
このとき、トナーコア粒子の材質がシェル層を形成する樹脂微粒子と同等の硬さか、やや硬い材質である場合、シェル層の内表面(トナーコア粒子側の表面)が平滑になる場合がある。他方、トナーコア粒子の材質がシェル層を形成する樹脂微粒子よりも柔らかい材質である場合、樹脂微粒子がトナーコア粒子に埋め込まれる際に、樹脂微粒子のトナーコア粒子と接触する部分が変形しにくいため、シェル層の内表面に、シェル層に変化するまえの微粒子の形状に由来する凸部が形成されやすい。なお、この場合、凸部は、シェル層が備える2つのクラック間に形成される。
上記方法では、機械的外力が弱いと、所望する程度の樹脂微粒子の変形が起こらず、所定の形状のシェル層を形成できない場合がある。シェル層の形成に用いる装置によって、所定の形状のシェル層を形成するための条件は異なるが、樹脂微粒子により被覆されたトナーコア粒子に与えられる機械的外力が強くなるように、段階的に運転条件を変更し、各条件で得られるトナーのシェル層の構造を確認することによって、種々の装置についての、所定のシェル層を形成するための好適な条件を定めることができる。しかし、機械的外力が強すぎる場合、例えば、樹脂微粒子が激しく変形しすぎ、シェル層の内部にトナーコア粒子に対して略垂直方向のクラックが形成されなかったり、機械的外力が熱に変換されることによって、トナーコア粒子や、樹脂微粒子の溶融が生じたりする等の不具合が生じる場合がある。
樹脂微粒子によりトナーコア粒子を被覆しつつ、樹脂微粒子により被覆されたトナーコア粒子に対して機械的外力を与えることができる装置としては、例えば、ハイブリダイザーNHS−1(株式会社奈良機械製作所製)、コスモスシステム(川崎重工業株式会社製)、ヘンシェルミキサー(日本コークス工業株式会社製)、マルチパーパスミキサー(日本コークス工業株式会社製)、コンポジ(日本コークス工業株式会社製)、メカノフュージョン装置(ホソカワミクロン株式会社製)、メカノミル(岡田精工株式会社製)、ノビルタ(ホソカワミクロン株式会社製)等が挙げられる。
〔外添処理方法〕
外添剤によるトナー母粒子の処理方法は特に限定されず、従来知られている方法に従ってトナー母粒子を処理できる。具体的には、外添剤の粒子がトナー母粒子中に埋没しないように処理条件を調整し、ヘンシェルミキサーやナウターミキサーのような混合機によって、外添剤によるトナー母粒子の処理が行われる。
以上説明した本発明の静電潜像現像用トナーは、定着性、及び耐熱保存性に優れ、クリーニング部でのトナーすり抜けによる形成画像における画像不良、及び形成画像における中抜けや文字チリのような画像不良の発生を抑制できる。このため、本発明の静電潜像現像用トナーは、種々の画像形成装置において好適に使用できる。
[画像形成方法]
以上説明した本発明の静電潜像現像用トナーを用いて画像を形成する際に使用する画像形成装置は、良好な画像を形成できる限り特に限定されず、従来から使用される画像形成装置から適宜選択される。本発明の静電潜像現像用トナーにより画像を形成する際に用いる画像形成装置は、後述するような、複数色のトナーを用いるタンデム方式のカラー画像形成装置が好ましい。ここでは、タンデム方式のカラー画像形成装置を用いた画像形成方法について説明する。
なお、以下に説明するタンデム方式のカラー画像形成装置は、各潜像担持部の表面上にそれぞれ異なった各色のトナーによるトナー像を形成させるために、所定方向に並設された、複数の潜像担持部と、各潜像担持部に対向して配置され、表面にトナーを担持して搬送し、搬送されたトナーを、各潜像担持部の表面にそれぞれ供給するローラー(現像スリーブ)を備えた複数の現像部とを備え、現像部において、本発明の静電潜像現像用トナーを潜像担持部に供給する。
図5は、好適な画像形成装置の構成を示す概略図である。ここでは、画像形成装置として、カラープリンター1を例に挙げて説明する。
このカラープリンター1は、図5に示すように、箱型の機器本体1aを有している。この機器本体1a内には、用紙Pを給紙する給紙部2と、この給紙部2から給紙された用紙Pを搬送しながら当該用紙Pに画像データ等に基づくトナー像を転写する画像形成部3と、この画像形成部3で用紙P上に転写された未定着トナー像を用紙Pに定着する定着処理を施す定着部4とが設けられている。さらに、機器本体1aの上面には、定着部4で定着処理の施された用紙Pが排紙される排紙部5が設けられている。
給紙部2は、給紙カセット121、ピックアップローラー122、給紙ローラー123,124,125、及びレジストローラー対126を備えている。給紙カセット121は、機器本体1aから挿脱可能に設けられ、用紙Pを貯留する。ピックアップローラー122は、給紙カセット121の図5に示す左上方位置に設けられ、給紙カセット121に貯留されている用紙Pを1枚ずつ取り出す。給紙ローラー123,124,125は、ピックアップローラー122によって取り出された用紙Pを用紙搬送路に送り出す。レジストローラー対126は、給紙ローラー123,124,125によって用紙搬送路に送り出された用紙Pを一時待機させた後、所定のタイミングで画像形成部3に供給する。
また、給紙部2は、機器本体1aの図5に示す左側面に取り付けられる不図示の手差しトレイとピックアップローラー127とをさらに備えている。このピックアップローラー127は、手差しトレイに載置された用紙Pを取り出す。ピックアップローラー127によって取り出された用紙Pは、給紙ローラー123,125によって用紙搬送路に送り出され、レジストローラー対126によって、所定のタイミングで画像形成部3に供給される。
画像形成部3は、画像形成ユニット7と、この画像形成ユニット7によってその表面(接触面)にコンピューター等から電送された画像データに基づくトナー像が1次転写される中間転写ベルト31と、この中間転写ベルト31上のトナー像を給紙カセット121から送り込まれた用紙Pに2次転写させるための2次転写ローラー32とを備えている。
画像形成ユニット7は、中間転写ベルト31の移動方向の上流側(図5では右側)から下流側に向けて順次配設されたブラック用ユニット7Kと、イエロー用ユニット7Yと、シアン用ユニット7Cと、マゼンタ用ユニット7Mとを備えている。各ユニット7K,7Y,7C及び7Mは、それぞれの中央位置に像担持体であるドラム型の潜像担持部37が矢符(時計回り)方向に回転可能に配置されている。そして、各潜像担持部37の周囲には、帯電部39、露光部38、現像部71、クリーニング部8、及び除電器等が、潜像担持部37の回転方向上流側から順に各々配置されている。
帯電部39は、矢符方向に回転されている潜像担持部37の周面を均一に帯電させる。帯電部39は、潜像担持部37の周面を均一に帯電させることができれば特に制限されず、非接触方式であっても、接触方式であってもよい。帯電部の具体例としては、コロナ帯電装置、帯電ローラー、帯電ブラシが挙げられる。
潜像担持部37の表面電位(帯電電位)は、本発明の目的を阻害しない範囲で特に限定されない。現像性と潜像担持部37の帯電能力とのバランスを考慮すると、表面電位は+200V以上+500V以下であるのが好ましく、+200V以上+300V以下であるのがより好ましい。表面電位が低すぎる場合、現像電界が不十分となり、形成画像の画像濃度を確保し難くなる。表面電位が高すぎる場合、感光層の膜厚によっては帯電能力が不足、潜像担持部37の絶縁破壊、オゾンの発生量が増加する等の問題が起こりやすくなる。
潜像担持部37としては、アモルファスシリコン等の無機感光体;導電性基体上に電荷発生剤、電荷輸送剤、結着樹脂等を含有する単層又は積層の感光層が形成された有機感光体が挙げられる。
露光部38は、いわゆるレーザー走査ユニットであり、帯電部39によって均一に帯電された潜像担持部37の周面に、上位装置であるパーソナルコンピューター(PC)から入力された画像データに基づくレーザー光を照射し、潜像担持部37上に画像データに基づく静電潜像を形成する。現像部71は、静電潜像が形成された潜像担持部37の周面に本発明のトナーを供給し、画像データに基づくトナー像を形成させる。本発明のトナーを用いることにより、現像部71が備える現像ローラー(スリーブ)へのトナーの付着を抑制することができ、良好な画像を形成することができる。現像部71の構成は、現像剤の種類、及び現像方式によって適宜変更される。現像部71により潜像担持部37の周面に形成されたトナー像は、中間転写ベルト31に1次転写される。
中間転写ベルト31へのトナー像の1次転写が終了した後、潜像担持部37の周面に残留しているトナーをクリーニング部8により清掃する。クリーニング部8は、弾性ブレード81を備え、弾性ブレード81により潜像担持部37の周面に残留するトナーを除去する。弾性ブレードはウレタン系ゴムやエチレン−プロピレン系ゴム等により構成される。本発明のトナーを用いる場合、トナーのクリーニング部8のすり抜けが生じ難く、形成画像における画像不良の発生を抑制できる。
除電器は、1次転写が終了した後、潜像担持部37の周面を除電する。クリーニング部8及び除電器によって清浄化処理された潜像担持部37の周面は、新たな帯電処理のために帯電部39へ向かい、新たな帯電処理が行われる。
中間転写ベルト31は、無端状のベルト状回転体であって、表面(接触面)側が各潜像担持部37の周面にそれぞれ当接するように駆動ローラー33、従動ローラー34、バックアップローラー35、及び1次転写ローラー36等の複数のローラーに架け渡されている。また、中間転写ベルト31は、各潜像担持部37と対向配置された1次転写ローラー36によって潜像担持部37に押圧された状態で、複数のローラーによって無端回転するように構成されている。駆動ローラー33は、不図示のステッピングモータ等の駆動源によって回転駆動し、中間転写ベルト31に無端回転させるための駆動力を与える。従動ローラー34、バックアップローラー35、及び1次転写ローラー36は、回転自在に設けられ、駆動ローラー33による中間転写ベルト31の無端回転に伴って従動回転する。これらのローラー34,35,36は、駆動ローラー33の主動回転に応じて中間転写ベルト31を介して従動回転すると共に、中間転写ベルト31を支持する。
1次転写ローラー36は、1次転写バイアスを中間転写ベルト31に印加する。そうすることによって、各潜像担持部37上に形成されたトナー像は、各潜像担持部37と1次転写ローラー36との間で、駆動ローラー33の駆動により矢符(反時計回り)方向に周回する中間転写ベルト31に重ね塗り状態で順次転写(1次転写)される。
2次転写ローラー32は、2次転写バイアスを用紙Pに印加する。そうすることによって、中間転写ベルト31上に1次転写されたトナー像は、2次転写ローラー32とバックアップローラー35との間で用紙Pに2次転写され、これによって、用紙Pにカラーの転写画像(未定着トナー像)が転写される。
定着部4は、画像形成部3で用紙Pに転写された転写画像に定着処理を施すものであり、通電発熱体により加熱される加熱ローラー41と、この加熱ローラー41に対向配置され、周面が加熱ローラー41の周面に押圧当接される加圧ローラー42とを備えている。
そして、画像形成部3で2次転写ローラー32により用紙Pに転写された転写画像は、当該用紙Pが加熱ローラー41と加圧ローラー42との間を通過する際の加熱及び加圧からなる定着処理で用紙Pに定着される。そして、定着処理の施された用紙Pは、排紙部5へ排紙されるようになっている。また、本実施形態のカラープリンター1では、定着部4と排紙部5との間の適所に複数の搬送ローラー対6が配設されている。
排紙部5は、カラープリンター1の機器本体1aの頂部が凹没されることによって形成され、この凹没した凹部の底部に排紙された用紙Pを受ける排紙トレイ51が形成されている。
カラープリンター1は、以上のような画像形成動作によって、用紙Pに画像を形成する。そして、本発明のトナーを用いて画像を形成することにより、クリーニング部でのトナーのすり抜けによる形成画像における画像不良の発生や、形成画像における中抜け等の画像不良の発生を抑制できる。
以下、実施例により本発明をさらに具体的に説明する。なお、本発明は実施例により何ら限定されるものではない。
[製造例1]
(ポリエステル樹脂の製造)
ビスフェノールAのプロピレンオキサイド付加物1960g、ビスフェノールAのエチレンオキサイド付加物780g、ドデセニル無水コハク酸257g、テレフタル酸770g、及び酸化ジブチル錫4gを反応容器に仕込んだ。次に、反応容器内を窒素雰囲気とし、撹拌しながら反応容器内を235℃まで昇温した。次いで、同温度において8時間反応を行った後、反応容器内を8.3kPaに減圧して1時間反応を行った。その後、反応混合物を180℃に冷却し、所望の酸化となるようにトリメリット酸無水物を反応容器に添加した。次いで、10℃/時間の速度で反応混合物の温度を210℃まで昇温させて、同温度で反応を行った。反応終了後、反応容器の内容物を取り出し、冷却してポリエステル樹脂を得た。
[製造例2]
トナーコア粒子A〜Eを下記手順に従って製造した。
(トナーコア粒子A〜Cの製造)
結着樹脂(製造例1で得たポリエステル樹脂)89質量部、離型剤(ポリプロピレンワックス 660P(三洋化成株式会社製))5質量部、電荷制御剤(P−51(オリヱント化学工業株式会社製))1質量部、及び着色剤(カーボンブラック MA100(三菱化学株式会社製))5質量部を、混合機により混合し混合物を得た。次に、混合物を2軸押出機により溶融混練して混練物を得た。混練物を、粉砕機(ロートプレックス(株式会社東亜機械製作所製))により粗粉砕して体積平均粒子径(D50)約20μmの粗粉砕物を得た。得られた粗粉砕物を、機械式粉砕機(ターボミル(ターボ工業株式会社製))により、表1に記載の段階数に分けて微粉砕して微粉砕物を得た。次いで、得られた微粉砕物を、分級機(エルボージェット(日鉄鉱業株式会社製))によって分級して、体積平均粒子径(D50)が表1記載の値であるトナーコア粒子A〜Cを得た。体積平均粒子径は、コールターカウンターマルチサイザー3(ベックマンコールター社製)を用いて測定した。
(トナーコア粒子Dの製造)
粗粉砕物を微粉砕する際、機械式粉砕機に変えて、衝突式粉砕機(ジェットミル粉砕機(日本ニューマチック工業株式会社製))を用いる他は、トナーコア粒子Aと同様にして、体積平均粒子径(D50)が7.0μmのトナーコア粒子Dを得た。
(トナーコア粒子Eの製造)
以下の方法に従い、熱処理により平均円形度を高めたトナーコア粒子Eを調製した。
分級後に得られた分級物に対して、さらに熱処理装置(サフュージョン(日本ニューマチック工業株式会社製))を用いて、280℃で熱処理を行った他は、トナーコア粒子Aと同様にして、体積平均粒子径(D50)が7.05μmのトナーコア粒子Eを得た。
(※)トナーコア粒子Dの調製のみ衝突式粉砕装置を用いた。
[製造例3]
(樹脂微粒子の製造)
撹拌装置、温度計、冷却管、及び窒素導入装置を備えた1000mlの反応容器に、蒸留水450mlと、ドデシルアンモニウムクロライド0.52gとを仕込んだ。反応器の内容物を、窒素雰囲気下で撹拌しながら、反応容器内温を80℃まで昇温させた。昇温後、反応容器に、濃度1質量%の過硫酸カリウム(重合開始剤)水溶液120gとイオン交換水200gとを加えた。次いで、アクリル酸ブチル15g、メタクリル酸メチル165g、及びn−オクチルメルカプタン(連鎖移動剤)3.6gからなる混合物を1.5時間かけて反応容器に滴下した後、さらに2時間かけて重合を行い、樹脂微粒子の水性分散液を得た。得られた樹脂微粒子の水性分散液を、フリーズドライにより乾燥して、樹脂微粒子を得た。樹脂微粒子の個数平均粒子径は、0.10μmであった。なお、個数平均粒子径の測定方法は、まず、フィールドエミッション走査電子顕微鏡(JSM−6700F(日本電子株式会社製))を用いて、倍率100,000倍の樹脂微粒子の写真を撮影した。撮影した電子顕微鏡写真を必要に応じてさらに拡大し、50個以上の樹脂微粒子について定規、ノギス等を用いて、個数平均粒子径を測定した。
まず、シェル層の形成条件による、形成されるシェル層の形態への影響を確認するために、製造例2で得たトナーコア粒子Cと、製造例3で得た樹脂微粒子とを用いて、以下の方法に従って、トナーコア粒子がシェル層により被覆された参考例1〜4のトナーを調製した。
[参考例1〜3]
(トナー母粒子の調製)
トナーコア粒子C100gに対して、製造例3で得た樹脂微粒子10gを用い、トナーコア粒子を樹脂微粒子により被覆し、トナーコア粒子表面にシェル層を形成した。シェル化処理には粉体処理装置(マルチパーパスミキサー MP型(日本コークス工業株式会社製))を用い、粉体処理装置の処理槽内にトナーコア粒子と樹脂微粒子とを投入し、表2に記載の回転数、及び処理時間で処理してトナー母粒子を得た。なお、参考例1で、粉体処理装置の槽内温度が50℃以上60℃以下の範囲となるように制御した。
得られたトナー母粒子に、トナー母粒子の質量に対して、2.0質量%の酸化チタン(EC−100(チタン工業株式会社製))と、1.0質量%の疎水性シリカ(RA−200H(日本アエロジル株式会社製))とを加え、ヘンシェルミキサー(三井鉱山株式会社製)にて、回転周速30m/秒にて5分間、撹拌・混合して、トナーを得た。
[参考例4]
トナーコア粒子C100gに対して、製造例3で得た樹脂微粒子10gを用い、トナーコア粒子をシェル層により被覆した。
シェル層の形成には表面改質装置(微粒子コーティング装置 SFP−01型(株式会社パウレック製))を用いた。トナーコア粒子を、表面改質装置の流動層中に、給気温度80℃で循環させた。製造例3で得た樹脂微粒子の水性分散液の樹脂微粒子の濃度を調整して得た、樹脂微粒子10gを含む水性分散液300gを、スプレー速度5g/分で、60分間、表面改質装置の流動層中に噴霧し、トナー母粒子を得た。得られたトナー母粒子を、参考例1〜3と同様に外添処理し、参考例4のトナーを得た。
≪シェル層の構造の確認≫
下記方法に従って、参考例1〜4のトナーの表面を、走査型電子顕微鏡(SEM)にて観察し、トナーコア粒子のシェル層による被覆状態と、シェル層の表面の状態とを確認した。また、下記方法に従って、参考例1、2、及び4のトナーの断面の写真を、透過型電子顕微鏡(TEM)にて撮影した。得られたTEM写真により、シェル層の表面状態と、シェル層の内部の状態と、シェル層の内表面の形状とを確認した。参考例1のトナーの断面のTEM写真を図2に示し、参考例2のトナーの断面のTEM写真を図3に示し、参考例4のトナーの断面のTEM写真を図4に示す。
<トナーの表面の観察方法>
走査型電子顕微鏡(JSM−6700F(日本電子株式会社製))を用いて、トナー粒子表面を、倍率10,000倍にて観察した。
<トナーの断面の撮影方法>
トナーを樹脂に包埋した試料を作成した。ミクロトーム(EM UC6(ライカ株式会社製))を用いて、得られた試料から厚さ200nmのトナーの断面観察用の薄片試料を作成した。得られた薄片試料を、透過型電子顕微鏡(TEM、JSM−6700F(日本電子株式会社製))を用いて倍率50,000倍にて観察し、任意のトナーの断面の画像を撮影した。
参考例1のトナーは、その表面に対して走査型電子顕微鏡観察(SEM)を行った際に、粒子径6μm以上8μm以下のトナー粒子についてシェル層に球状の樹脂微粒子に由来する構造が観察されなかった。また、図2に示す参考例1のトナーの断面のTEM写真からも、参考例1のトナーのシェル層の外表面が平滑であることが確認された。さらに、参考例1のトナーの断面のTEM写真から、参考例1のトナーのシェル層の内部に、トナーコア粒子の表面に対して略垂直方向のクラックが存在すること確認された。また、参考例1のトナーの断面のTEM写真から、参考例1のトナーのシェル層が、その内表面側の、2つのクラック間に凸部を有することが確認された。
参考例2及び3のトナーは、SEM観察によってその表面を観察した際に、トナーコア粒子の表面が球状の粒子状態のままの樹脂微粒子により被覆されていることが確認された。また、図3の参考例2のトナーの断面のTEM写真からも、参考例2のトナーについて、トナーコア粒子の表面が粒子状態のままの樹脂微粒子により被覆されていることが確認された。なお、参考例3のトナーについては、断面を、TEMにより観察した際に、参考例3のトナーのシェル層の構造が、参考例2のトナーのシェル層の構造と同様であったため、TEM写真を撮影しなかった。
また、参考例1〜3のトナーのSEM観察により、シェル層の形成に用いる装置の回転数を上昇させるほど、形成されるシェル層の平滑度が上がることが確認された。
参考例4のトナーは、その表面に対してSEM観察を行った際に、粒子径6μm以上8μm以下のトナー粒子についてシェル層に球状の樹脂微粒子に由来する構造が観察されなかった。また、図4に示す参考例4のトナーの断面のTEM写真からも、参考例4のトナーのシェル層の外表面が平滑であることが確認された。しかし、参考例4のトナーの断面のTEM写真から、参考例4のトナーのシェル層の内部に、トナーコア粒子の表面に対して略垂直方向のクラックが存在することが確認されなかった。
[実施例1、実施例2、比較例1、比較例2、及び比較例4〜6]
表3に記載のトナーコア粒子を用いること、及びシェル層の形成条件を表3に記載の条件に変更することの他は、参考例1と同様にして、実施例1、実施例2、比較例1、比較例2、及び比較例4〜6のトナーを得た。なお、比較例4のトナーは、参考例1のトナーと同一である。
[比較例3]
表3に記載のトナーコア粒子を用いることの他は、参考例4と同様にして、比較例3のトナーを得た。
実施例1〜2、及び比較例1〜6のトナーについて、以下の方法に従って、平均円形度を測定した。実施例1〜2、及び比較例1〜6のトナーの平均円形度を表3に記す。
<平均円形度測定方法>
フロー式粒子像分析装置(FPIA−3000(シスメックス株式会社製))を用いてトナーの円形度を測定した。23℃、60%RHの環境下において、トナー全粒子について、粒子像と同じ投影面積を持つ円の円周の長さ(L)と、粒子投影像の外周の長さ(L)とを測定し、下式により円形度を求めた。測定したトナー全粒子のうち、円相当径3.0μm以上10.0μm以下の範囲の粒子のデータを用いて、平均円形度を算出した。具体的には、測定した円相当径3.0μm以上10.0μm以下のトナー粒子の円形度の総和を、測定した円相当径3.0μm以上10.0μm以下の粒子の全粒子数で除した値を平均円形度とした。
(円形度算出式)
円形度=L/L
≪評価≫
下記方法に従って、実施例1、実施例2、及び比較例1〜6のトナーの定着性、耐熱保存性、転写性、及びクリーニング性の評価を行った。各トナーの評価結果を表3に記す。定着性、転写性、及びクリーニング性の評価に用いる評価機として、評価用に温度を調節できるように改造し、弾性ブレードを有するクリーニング部を備えるページプリンター(FS−C5016N(京セラドキュメントソリューションズ製))を用い、定着温度を180℃に設定して、20℃65%RH環境下にて評価画像を得た。評価機は、電源を切った状態で10分間静置した後、電源を入れて用いた。なお、定着性、転写性、及びクリーニング性の評価には、下記製造例4で得た、2成分現像剤を用いた。
[製造例4]
(2成分現像剤の調製)
キャリア(フェライトキャリア(パウダーテック株式会社製))と、フェライトキャリアの質量に対して10質量%のトナーとを、ボールミル(京セラドキュメントソリューションズ株式会社製)を用い、回転数120rpmにて30分間混合して2成分現像剤を調製した。
<定着性>
評価機を用い、評価画像を得た。得られた評価画像の、摩擦前の画像濃度を、グレタグマクベススペクトロアイ(グレタグマクベス社製)により測定した。
次いで、布帛により覆った1kgの分銅を用いて、分銅の自重のみが画像にかかるように10往復させて摩擦し、摩擦後の評価画像の画像濃度を測定した。下式に従って、摩擦前後の画像濃度から定着率を算出した。算出した定着率から、下記基準に従って定着性を評価した。○評価を合格とした。
定着率(%)=(摩擦後画像濃度/摩擦前画像濃度)×100
○:定着率が95%以上
△:定着率が90%以上95%未満
×:定着率が90%未満
<耐熱保存性>
トナーを、50℃にて100時間保存した。次いで、パウダーテスター(ホソカワミクロン株式会社製)のマニュアルに従い、レオスタッド目盛り5、時間30秒の条件で、140メッシュ(目開き105μm)の篩によりトナーを篩別して、下式により凝集度(%)を求め、下記基準により評価した。○評価を合格とした。
(凝集度算出式)
凝集度(%)=篩上に残留したトナー質量/篩別前のトナーの質量×100
○:凝集度が20%以下
△:凝集度が20%超、50%以下
×:凝集度が50%超
<転写性>
評価機を用いて、初期画像として細線画像を形成した。下記方法により形成された細線画像の転写効率を求め、細線画像上の中抜けの有無をルーペにより観察して、文字チリの発生をルーペ、及び目視により確認して、下記基準に従って転写性を評価した。○評価を合格とした。
(転写効率算出式)
転写効率は、現像器内から消費されたトナー量(消費トナー量)と、クリーニング部にて回収された廃棄トナー量とを測定して、下記式により求めた。
転写効率(%)=((消費トナー量)−(廃棄トナー量))/(消費トナー量)×100
○:転写効率が90%以上、且つ、中抜けや文字チリが確認できなかった。
△:転写効率が90%以上であるが、中抜けや文字チリが確認できた。
×:転写効率が90%未満である。
<転写効率算出方法>
<クリーニング性>
評価機を用いて、ベタ画像を形成した直後に白紙画像を形成し、トナーすり抜けの状態を目視により観察して、下記基準に従ってクリーニング性を評価した。○評価を合格とした。
○:白紙画像中にトナーすり抜けによる黒筋は確認されない。
△:白紙画像中にトナーすり抜けによる黒筋がわずかに確認される。
×:白紙画像中に多量のトナーすり抜けによる黒筋が確認される。
まず、参考例1によれば、参考例1と同条件でシェル層が形成された実施例1〜2及び比較例4〜6では、シェル層に球状の前記樹脂微粒子に由来する構造が見られず、その外表面が平滑であり、層内部に所定のクラックを有するシェル層が形成されていることが分かる。また、参考例2及び3と同条件でシェル層が形成された比較例1及び2のトナーは、トナーコア粒子の表面が粒子状態のままの樹脂微粒子により被覆されていることが分かる。さらに、参考例4と同条件でシェル層が形成された比較例3では、外表面が平滑ではあるが、層内部に所定のクラックを持たないシェル層が形成されていることが分かる。
実施例1及び2によれば、少なくとも結着樹脂を含むトナーコア粒子と、トナーコア粒子の全表面を被覆するシェル層と、からなり、粒子径3μm以上10μm以下の粒子の平均円形度が0.960以上0.970以下であり、シェル層が、その外表面が平滑であり、静電潜像現像用トナーの断面を、透過型電子顕微鏡を用いて観察する場合に、シェル層の内部に、トナーコア粒子の表面に対して略垂直方向のクラックが観察されるトナーは、定着性、及び耐熱保存性に優れ、クリーニング部でのトナーすり抜けによる形成画像における画像不良、及びの形成画像における中抜けや文字チリのような画像不良の発生を抑制できることが分かる。
比較例1及び2によれば、トナーコア粒子のシェル層の表面が平滑でない場合、耐熱保存性が良好なトナーを得にくいことが分かる。シェル層の表面が平滑でない場合、シェル層を被覆する、ある程度変形した樹脂微粒子間に隙間が残るため、トナーコア粒子に含まれる離型剤等の成分の、トナー表面への染み出しが生じやすいため、比較例1及び2のトナーは耐熱保存性に劣ると推察できる。
比較例3によれば、シェル層の内部に、トナーコア粒子の表面に対して略垂直方向のクラックが観察されない場合、定着性が良好なトナーを得にくいことが分かる。これは、定着ローラー対からなる定着ニップにおいてトナーに加わる圧力によってシェル層の破壊が起こりにくいためと推察される。
比較例4及び5によれば、トナーの粒子径が3μm以上10μm以下である粒子の平均円形度が低過ぎる場合、形成した画像に、中抜けや、文字チリの発生に起因する画像不良が生じやすいことが分かる。
比較例6によれば、トナーの粒子径が3μm以上10μm以下である粒子の平均円形度が高過ぎる場合、トナーの像担持体からのクリーニング性が劣ることが分かる。
101 静電潜像現像用トナー
102 トナーコア粒子
103 シェル層
104 クラック
105 凸部
1 カラープリンター
1a 機器本体
2 給紙部
3 画像形成部
37 潜像担持部
38 露光部
39 帯電部
4 定着部
6 搬送ローラー
5 排紙部
7 画像形成ユニット
71 現像部
8 クリーニング部
81 弾性ブレード
P 用紙

Claims (3)

  1. 少なくとも結着樹脂を含むトナーコア粒子と、
    前記トナーコア粒子を被覆するシェル層と、からなる静電潜像現像用トナーであって、
    前期シェル層は、球状の樹脂微粒子を用いて、下記工程I)及びII):
    I)球状の樹脂微粒子を、前記トナーコア粒子の表面に対して垂直方向に重ならないように、前記トナーコア粒子の表面に付着させて、前記トナーコア粒子の全表面を被覆する樹脂微粒子層を形成する工程、及び
    II)前記樹脂微粒子層の外表面への外力の印加によって、前記樹脂微粒子層中の前記樹脂微粒子を変形させることにより、前記樹脂微粒子層の外表面を平滑化させてシェル層を形成する工程、
    を含む方法により形成され、
    前記静電潜像現像用トナーの表面を、走査型電子顕微鏡を用いて観察する場合に、粒子径が6μm以上8μm以下のトナー粒子について、シェル層に球状の前記樹脂微粒子に由来する構造が観察されず、
    前記静電潜像現像用トナーの断面を、透過型電子顕微鏡を用いて観察する場合に、前記シェル層の内部に、前記トナーコア粒子の表面に対して略垂直方向の、前記樹脂微粒子同士の界面に由来するクラックが観察され、
    前記静電潜像現像用トナーは、粒子径3μm以上10μm以下のトナー粒子の平均円形度が0.960以上0.970以下である、静電潜像現像用トナー。
  2. 前記シェル層の厚さが0.05μm以上0.3μm以下である、請求項1に記載の静電潜像現像用トナー。
  3. 前記静電潜像現像用トナーの断面を、透過型電子顕微鏡を用いて観察する場合に、前記トナーコア粒子と前記シェル層との界面上、且つ、2つの前記クラック間に、前記シェル層が有する凸部が観察される、請求項1又は2に記載の静電潜像現像用トナー。
JP2012166398A 2012-07-26 2012-07-26 静電潜像現像用トナー Expired - Fee Related JP5651645B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012166398A JP5651645B2 (ja) 2012-07-26 2012-07-26 静電潜像現像用トナー
CN201310263578.1A CN103576477B (zh) 2012-07-26 2013-06-27 静电潜像显影用调色剂和静电潜像显影用调色剂制备方法
EP13177832.6A EP2690498B1 (en) 2012-07-26 2013-07-24 Toner for electrostatic latent image development
US13/950,124 US8980514B2 (en) 2012-07-26 2013-07-24 Toner for electrostatic latent image development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166398A JP5651645B2 (ja) 2012-07-26 2012-07-26 静電潜像現像用トナー

Publications (2)

Publication Number Publication Date
JP2014026124A JP2014026124A (ja) 2014-02-06
JP5651645B2 true JP5651645B2 (ja) 2015-01-14

Family

ID=50199809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166398A Expired - Fee Related JP5651645B2 (ja) 2012-07-26 2012-07-26 静電潜像現像用トナー

Country Status (1)

Country Link
JP (1) JP5651645B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041336A (ja) * 2012-07-26 2014-03-06 Kyocera Document Solutions Inc 静電潜像現像用トナー

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651646B2 (ja) * 2012-07-26 2015-01-14 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP5622803B2 (ja) * 2012-07-26 2014-11-12 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP5651654B2 (ja) * 2012-08-30 2015-01-14 京セラドキュメントソリューションズ株式会社 静電潜像現像用磁性トナー
JP5651650B2 (ja) * 2012-08-09 2015-01-14 京セラドキュメントソリューションズ株式会社 静電潜像現像用磁性トナー

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143445A (en) * 1980-04-10 1981-11-09 Canon Inc Microencapsulated toner
JP2009151060A (ja) * 2007-12-20 2009-07-09 Konica Minolta Business Technologies Inc 静電荷像現像用トナーとその製造方法、及び画像形成装置
JP2010160451A (ja) * 2009-01-09 2010-07-22 Sharp Corp トナー、二成分現像剤、現像装置および画像形成装置
JP5451129B2 (ja) * 2009-03-23 2014-03-26 キヤノン株式会社 トナー
JP2012137717A (ja) * 2010-12-28 2012-07-19 Ricoh Co Ltd トナー、及びその製造方法、該トナーを用いる現像装置、プロセスカートリッジ、画像形成装置、画像形成方法
JP5651646B2 (ja) * 2012-07-26 2015-01-14 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP5622803B2 (ja) * 2012-07-26 2014-11-12 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP6059084B2 (ja) * 2012-07-26 2017-01-11 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナーの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041336A (ja) * 2012-07-26 2014-03-06 Kyocera Document Solutions Inc 静電潜像現像用トナー

Also Published As

Publication number Publication date
JP2014026124A (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
JP4493683B2 (ja) トナーおよびそれを用いた二成分現像剤
JP4606483B2 (ja) トナー、トナーの製造方法、現像剤、現像方法および画像形成方法
JP5622803B2 (ja) 静電潜像現像用トナー
JP5651645B2 (ja) 静電潜像現像用トナー
JP6059084B2 (ja) 静電潜像現像用トナーの製造方法
JP2009249579A (ja) 球形粒子の製造方法、球形粒子、トナー、現像剤、現像装置および画像形成装置
JP5651646B2 (ja) 静電潜像現像用トナー
US8980515B2 (en) Magnetic toner for electrostatic latent image development
JP5622809B2 (ja) 静電潜像現像用トナー
JP2005266317A (ja) 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像剤及び画像形成方法
JP5504245B2 (ja) 静電潜像現像用トナー、及び静電潜像現像用トナーの製造方法
JP6137978B2 (ja) 静電潜像現像用トナーの製造方法
US8999619B2 (en) Toner for electrostatic latent image development
US8980514B2 (en) Toner for electrostatic latent image development
JP5651650B2 (ja) 静電潜像現像用磁性トナー
JP5781038B2 (ja) 画像形成方法
JP5651654B2 (ja) 静電潜像現像用磁性トナー
JP5868804B2 (ja) 静電潜像現像用トナー
JP4035040B2 (ja) トナー及び二成分現像剤
JP2009249580A (ja) 非球形粒子、トナー、現像剤、現像装置および画像形成装置
JP5869448B2 (ja) 静電潜像現像用トナー及びその製造方法
JP7364498B2 (ja) 2成分現像剤及びその製造方法
JP2005003945A (ja) 静電荷像現像用トナー及びその製造方法並びに画像形成方法
JP2015022227A (ja) 静電潜像現像用トナー
JP4511332B2 (ja) フルカラー画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5651645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees