JP5650926B2 - Waste water treatment method and waste water treatment equipment - Google Patents

Waste water treatment method and waste water treatment equipment Download PDF

Info

Publication number
JP5650926B2
JP5650926B2 JP2010111732A JP2010111732A JP5650926B2 JP 5650926 B2 JP5650926 B2 JP 5650926B2 JP 2010111732 A JP2010111732 A JP 2010111732A JP 2010111732 A JP2010111732 A JP 2010111732A JP 5650926 B2 JP5650926 B2 JP 5650926B2
Authority
JP
Japan
Prior art keywords
anaerobic ammonia
tanks
wastewater treatment
waste water
ammonia oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111732A
Other languages
Japanese (ja)
Other versions
JP2011240207A (en
Inventor
哲文 渡辺
哲文 渡辺
長武 高瀬
長武 高瀬
康博 福崎
康博 福崎
岡本 裕行
裕行 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Asahi Group Holdings Ltd
Original Assignee
Meidensha Corp
Asahi Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Asahi Group Holdings Ltd filed Critical Meidensha Corp
Priority to JP2010111732A priority Critical patent/JP5650926B2/en
Priority to PCT/JP2011/057837 priority patent/WO2011142185A1/en
Publication of JP2011240207A publication Critical patent/JP2011240207A/en
Application granted granted Critical
Publication of JP5650926B2 publication Critical patent/JP5650926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process

Description

本発明は排水処理技術に係る嫌気性アンモニア酸化処理に適用される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理技術に関する。   The present invention relates to a wastewater treatment technology that also serves as an adaptation of anaerobic ammonia oxidizing bacteria applied to anaerobic ammonia oxidation treatment according to wastewater treatment technology.

水環境保全のための富栄養化対策においては特に窒素除去の重要性が増している。特に排水中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因の一つであり、排水処理工程で効率的に除去する必要がある。   In the eutrophication measures for water environment conservation, the importance of nitrogen removal is increasing. In particular, ammoniacal nitrogen contained in wastewater is one of the causes of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the wastewater treatment process.

生物学的に窒素除去を行う手段として従来から硝化脱窒法が主流となっている(例えば特許文献1等)。硝化脱窒法は硝化工程と脱窒工程の2段階の生物反応を経て窒素ガスに変換する。硝化工程ではアンモニア性窒素をアンモニア酸化細菌によって亜硝酸性窒素に酸化し、さらにこの亜硝酸性窒素を亜硝酸酸化細菌によって硝酸性窒素に酸化する。脱窒工程では、前記亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒細菌によって有機物を水素供与体として利用して窒素ガスに還元する。   As a means for biologically removing nitrogen, a nitrification denitrification method has hitherto been the mainstream (for example, Patent Document 1). The nitrification denitrification method converts it into nitrogen gas through a two-stage biological reaction of a nitrification process and a denitrification process. In the nitrification step, ammonia nitrogen is oxidized to nitrite nitrogen by ammonia oxidizing bacteria, and this nitrite nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. In the denitrification step, the nitrite nitrogen and nitrate nitrogen are reduced to nitrogen gas using denitrifying bacteria, which are heterotrophic bacteria, using organic substances as hydrogen donors.

硝化脱窒法では、アンモニア性窒素を酸化するために必要な曝気動力が運転コストのうち大部分を占めている。さらに、曝気のためのコストのみならず、脱窒工程において電子供与体としてメタノール等の有機物を多量に必要とし、発生汚泥量も多いという欠点がある。また、硝化工程に係る硝化槽は負荷0.2〜0.3kg−N/m3/日の範囲で運転され、脱窒工程に係る脱窒槽は負荷0.2〜0.4kg−N/m3/日の範囲で運転される。下水の総窒素濃度30〜40mg/Lを処理するには、硝化槽で6〜8時間の滞留時間、脱窒槽で5〜8時間が必要であり、大規模な処理槽が必要である。無機質だけを含有する産業廃水では、硝化槽や脱窒槽は先と同様の負荷で設計されるが、脱窒に有機物が必要であるので、窒素濃度の3〜4倍濃度のメタノール等の有機物の添加を要する。 In the nitrification denitrification method, the aeration power necessary for oxidizing ammonia nitrogen occupies most of the operating cost. In addition to the cost for aeration, there are disadvantages in that a large amount of organic matter such as methanol is required as an electron donor in the denitrification step, and the amount of generated sludge is large. Moreover, the nitrification tank which concerns on a nitrification process is drive | operated in the range of load 0.2-0.3kg-N / m < 3 > / day, and the denitrification tank which concerns on a denitrification process has load 0.2-0.4kg-N / m. It is operated in the range of 3 / day. In order to treat the total nitrogen concentration of 30 to 40 mg / L of sewage, a residence time of 6 to 8 hours is required in the nitrification tank, and 5 to 8 hours is required in the denitrification tank, and a large-scale treatment tank is required. In industrial wastewater containing only inorganic substances, nitrification tanks and denitrification tanks are designed with the same load as before, but organic substances are required for denitrification, so organic substances such as methanol with a concentration of 3 to 4 times the nitrogen concentration. Requires addition.

このように硝化脱窒方法は、イニシャルコスト、ランニングコストの面で課題がある。そこで、この課題を解決できる生物処理方法として、嫌気性アンモニア酸化細菌を利用した嫌気性アンモニア酸化法が近年になって注目されている(非特許文献1)。   Thus, the nitrification denitrification method has problems in terms of initial cost and running cost. Therefore, an anaerobic ammonia oxidation method using anaerobic ammonia oxidizing bacteria has recently attracted attention as a biological treatment method that can solve this problem (Non-Patent Document 1).

嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを以下の反応式により脱窒する方法である。   The anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrous acid is used as a hydrogen acceptor, and ammonia and nitrous acid are denitrified by the following reaction formula using anaerobic ammonia oxidizing bacteria.

1.0NH4 + + 1.32NO2 - + 0.066HCO3 - + 0.13H+
1.02N2 + 0.26NO3 - + 0.066CH20.50.15 + 2.03H2
この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがある。
1.0 NH 4 + + 1.32 NO 2 + 0.066 HCO 3 + 0.13H +
1.02N 2 + 0.26NO 3 + 0.066CH 2 0 0.5 N 0.15 + 2.03H 2 O
According to this method, since ammonia is used as a hydrogen donor, there are merits such that the amount of methanol used for denitrification can be significantly reduced and the amount of sludge generated can be reduced.

独立行政法人新エネルギー・産業技術総合開発機構、委託先:アサヒビール株式会社 事業開発研究所,“平成18年度成果報告書 副産物を活用した廃水中の窒素除去技術に関する調査研究”,[online]、2007年9月3日、独立行政法人新エネルギー・産業技術総合開発機構、[2010年3月23日検索]、インターネット<URL:https://app5.infoc.nedo.go.jp/disclosure/SearchResultDetail>Independent Administrative Institution New Energy and Industrial Technology Development Organization, Contractor: Business Development Laboratory, Asahi Breweries Co., Ltd., “Results of FY 2006 Survey on Nitrogen Removal Technology from Wastewater Utilizing By-Products”, [online], September 3, 2007, New Energy and Industrial Technology Development Organization, [Search March 23, 2010], Internet <URL: https://app5.infoc.nedo.go.jp/disclosure/SearchResultDetail > Strous,Metal.Missing lithotroph identified as new planctomycete., Nature 400,446-449,(1999)Strous, Metal. Missing lithotroph identified as new planctomycete., Nature 400,446-449, (1999)

特開平6−328089号公報JP-A-6-328089 特開2005−324133号公報JP 2005-324133 A 特開平4−367796号公報JP-A-4-367796

嫌気性アンモニア酸化細菌はその増殖速度が小さいので(非特許文献2によると最大比増殖速度が0.0027h-1(倍化時間11日)と報告されている)、その馴養時間が長期化する傾向にある。 Anaerobic ammonia-oxidizing bacteria have a low growth rate (according to Non-Patent Document 2, the maximum specific growth rate is reported to be 0.0027 h −1 (doubled time of 11 days)), so the acclimatization time is prolonged. There is a tendency.

嫌気性アンモニア酸化細菌の馴養過程では、アンモニア性窒素や亜硝酸性窒素等の基質の不足は当該細菌の増殖の障害となる。特許文献2に開示された馴養方法によると、嫌気性アンモニア酸化槽の後段に馴養槽を設けて、この馴養槽にて固定した嫌気性アンモニア酸化細菌を馴養するようにしている。   In the acclimatization process of anaerobic ammonia oxidizing bacteria, the lack of substrates such as ammonia nitrogen and nitrite nitrogen becomes an obstacle to the growth of the bacteria. According to the acclimatization method disclosed in Patent Literature 2, an acclimatization tank is provided after the anaerobic ammonia oxidation tank, and the anaerobic ammonia oxidizing bacteria fixed in the acclimatization tank are acclimatized.

しかしながら、特許文献2の処理装置では、基質が嫌気性アンモニア酸化槽で消費されているのでこの酸化槽の後段に配置された馴養槽においては馴養に必要な基質の濃度を確保できないことがある。ゆえに、特許文献2に係る馴養槽では結果的に嫌気性アンモニア酸化細菌の馴養が非効率的なものとなる。したがって、特許文献2のような嫌気性アンモニア酸化槽の後段に馴養槽を配置させた装置システムは嫌気性アンモニア酸化細菌の馴養には適さない。   However, in the processing apparatus of Patent Document 2, since the substrate is consumed in the anaerobic ammonia oxidation tank, the concentration of the substrate necessary for the habituation may not be ensured in the habituation tank disposed downstream of the oxidation tank. Therefore, the acclimatization tank according to Patent Document 2 results in inefficient acclimatization of anaerobic ammonia-oxidizing bacteria. Therefore, the apparatus system which arrange | positioned the acclimatization tank in the back | latter stage of the anaerobic ammonia oxidation tank like patent document 2 is not suitable for acclimatization of anaerobic ammonia oxidation bacteria.

一方、特許文献3に開示された嫌気性処理槽を複数並列に備えた廃水処理装置において流入負荷に応じて新たに使用する嫌気性処理槽にて嫌気性アンモニア酸化細菌を馴養する場合、使用中の既存の嫌気性処理槽から当該細菌を導入する方法が考えられる。または、他の処理装置から当該細菌を導入する方法が考えられる。しかしながら、馴養過程の嫌気性アンモニア酸化槽においては排水処理の硝化脱窒に必要な嫌気性アンモニア酸化細菌の細菌保持量が不十分となる。ゆえに、当該嫌気性処理槽から排出された処理水の水質は処理装置として期待される水質レベルを維持できないことがある。   On the other hand, when acclimatizing anaerobic ammonia-oxidizing bacteria in an anaerobic treatment tank that is newly used according to the inflow load in a wastewater treatment apparatus equipped with a plurality of anaerobic treatment tanks disclosed in Patent Document 3, in use A method of introducing the bacterium from an existing anaerobic treatment tank is considered. Or the method of introduce | transducing the said bacteria from another processing apparatus can be considered. However, in the acclimatized anaerobic ammonia oxidation tank, the amount of bacteria retained by the anaerobic ammonia oxidizing bacteria necessary for nitrification denitrification in wastewater treatment becomes insufficient. Therefore, the quality of the treated water discharged from the anaerobic treatment tank may not be able to maintain the water quality level expected as a treatment apparatus.

以上のように期待される処理水の水質レベルを維持する排水処理を行いながら嫌気性アンモニア酸化細菌の馴養を行える方法とその装置の実現が嫌気性アンモニア酸化処理法の普及のためには重要となる。   As mentioned above, it is important for the popularization of anaerobic ammonia oxidation treatment method to realize anaerobic ammonia-oxidizing bacteria and a device capable of acclimatizing anaerobic ammonia-oxidizing bacteria while performing wastewater treatment to maintain the expected quality level of the treated water. Become.

本発明はかかる事情に鑑みなされたもので排水処理を行いながら嫌気性アンモニア酸化細菌の馴養も可能な排水処理方法とその装置の提供にある。   The present invention has been made in view of such circumstances, and provides a wastewater treatment method and apparatus capable of acclimatizing anaerobic ammonia-oxidizing bacteria while performing wastewater treatment.

そこで、本発明では、嫌気性アンモニア酸化細菌の汚泥の沈降性が良好であることに着目し、嫌気性アンモニア酸化系から活性の高い嫌気性アンモニア酸化細菌を分離して回収する。そして、この回収した嫌気性アンモニア細菌を含む汚泥を馴養の目的のために嫌気性アンモニア酸化系に対して供給する。これにより排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理が実現する。   Therefore, in the present invention, focusing on the fact that the sludge of the anaerobic ammonia-oxidizing bacteria is good, the anaerobic ammonia-oxidizing bacteria having high activity are separated and recovered from the anaerobic ammonia-oxidizing system. The recovered sludge containing anaerobic ammonia bacteria is supplied to the anaerobic ammonia oxidation system for the purpose of acclimatization. This realizes waste water treatment that also serves to acclimatize the anaerobic ammonia-oxidizing bacteria used in waste water treatment.

本発明の排水処理方法の態様としては、排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理方法であって、複数の嫌気性アンモニア酸化系にて嫌気性アンモニア酸化細菌によって被処理水に含まれるアンモニアと亜硝酸から脱窒を行う過程と、前記複数の嫌気性アンモニア酸化系の液相から分離した前記嫌気性アンモニア酸化菌を含む汚泥を一時的に集積して前記複数の嫌気性アンモニア酸化系に分配供給する過程を有する。この方法に対応した装置の態様としては、排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理装置であって、被処理水を導入して嫌気性アンモニア酸化細菌によって当該被処理水に含まれるアンモニアと亜硝酸から脱窒を行う複数の嫌気性アンモニア酸化槽と、前記各嫌気性アンモニア酸化槽の後段に配置され当該酸化槽から供給された液相から前記嫌気性アンモニア酸化菌を含む汚泥を分離する沈殿槽と前記各沈殿槽にて分離された嫌気性アンモニア酸化菌を含む汚泥を一時的に集積して前記複数の嫌気性アンモニア酸化槽に分配返送する返送統合手段を備える。 An aspect of the wastewater treatment method of the present invention is a wastewater treatment method that also serves to acclimate anaerobic ammonia-oxidizing bacteria used in wastewater treatment, and is covered by anaerobic ammonia-oxidizing bacteria in a plurality of anaerobic ammonia-oxidizing systems. A process of denitrifying ammonia and nitrous acid contained in the treated water, and a plurality of the sludge containing the anaerobic ammonia oxidizing bacteria separated from the liquid phase of the plurality of anaerobic ammonia oxidizing systems It has a process of distributing and feeding to an anaerobic ammonia oxidation system . As an aspect of the apparatus corresponding to this method, there is a wastewater treatment apparatus that also serves to acclimatize anaerobic ammonia oxidizing bacteria used for wastewater treatment, and the treated water is introduced by anaerobic ammonia oxidizing bacteria by introducing the treated water. A plurality of anaerobic ammonia oxidation tanks for denitrification from ammonia and nitrous acid contained in water, and the anaerobic ammonia oxidizing bacteria arranged from the liquid phase disposed after the anaerobic ammonia oxidation tank and supplied from the oxidation tank A sedimentation tank that separates sludge containing slag, and a return integration means that temporarily accumulates sludge containing anaerobic ammonia oxidizing bacteria separated in each sedimentation tank and distributes and returns the sludge to the plurality of anaerobic ammonia oxidation tanks. Prepare.

また、本発明の他の態様としては、排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理方法であって、複数の嫌気性アンモニア酸化系にて嫌気性アンモニア酸化細菌によって被処理水に含まれるアンモニアと亜硝酸から脱窒を行う過程と、前記複数の嫌気性アンモニア酸化槽の液相を単一の沈殿槽に供して分離した汚泥を前記複数の嫌気性アンモニア酸化系に分配供給する過程を有する。この方法に対応した装置の態様としては、排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理装置であって、被処理水を導入して嫌気性アンモニア酸化細菌によって当該被処理水に含まれるアンモニアと亜硝酸から脱窒を行う複数の嫌気性アンモニア酸化槽と、この複数の嫌気性アンモニア酸化槽から供された液相から前記嫌気性アンモニア酸化菌を含む汚泥を分離する単一の沈殿槽と、この沈殿槽にて分離された嫌気性アンモニア酸化菌を含む汚泥を前記複数の嫌気性アンモニア酸化槽に分配返送する汚泥返送経路を備えるAccording to another aspect of the present invention, there is provided a wastewater treatment method that also serves to acclimatize anaerobic ammonia-oxidizing bacteria that are subjected to wastewater treatment, and is covered by anaerobic ammonia-oxidizing bacteria in a plurality of anaerobic ammonia-oxidizing systems. The process of denitrification from ammonia and nitrous acid contained in the treated water, and the sludge separated by subjecting the liquid phase of the plurality of anaerobic ammonia oxidation tanks to a single settling tank into the plurality of anaerobic ammonia oxidation systems It has a process of distributing and supplying . As an aspect of the apparatus corresponding to this method, there is a wastewater treatment apparatus that also serves to acclimatize anaerobic ammonia oxidizing bacteria used for wastewater treatment, and the treated water is introduced by anaerobic ammonia oxidizing bacteria by introducing the treated water. A plurality of anaerobic ammonia oxidation tanks for denitrification from ammonia and nitrous acid contained in water, and a single unit for separating sludge containing the anaerobic ammonia oxidation bacteria from the liquid phase provided from the plurality of anaerobic ammonia oxidation tanks. And a sludge return path for distributing and returning the sludge containing anaerobic ammonia oxidizing bacteria separated in the settling tank to the plurality of anaerobic ammonia oxidizing tanks .

以上の発明によれば、回収した嫌気性アンモニア酸化菌を含む汚泥の分配系が簡略化して各嫌気性アンモニア酸化系への汚泥返送の操作性及び作業性の効率化が図れる。 According to the above invention, the distribution system of the sludge containing the recovered anaerobic ammonia oxidizing bacteria can be simplified, and the operability and workability of returning sludge to each anaerobic ammonia oxidizing system can be improved.

上記の排水処理方法において、系外から導入した被処理水を前記複数の嫌気性アンモニア酸化系に分配供給する過程を有するようにするとよい。被処理水の流入条件に応じた柔軟な排水処理を実現させることができる。尚、この方法に対応した排水処理装置の態様としては、上記の排水処理装置において、導入した被処理水を前記複数の嫌気性アンモニア酸化槽に分配供給する供給経路を備えればよい。   In the above waste water treatment method, it is preferable to have a process of distributing and supplying water to be treated introduced from outside the system to the plurality of anaerobic ammonia oxidation systems. Flexible drainage treatment according to the inflow conditions of the water to be treated can be realized. In addition, as an aspect of the waste water treatment apparatus corresponding to this method, a supply path that distributes and supplies the introduced treated water to the plurality of anaerobic ammonia oxidation tanks in the waste water treatment apparatus may be provided.

上記の排水処理方法において、前記複数の嫌気性アンモニア酸化系の液相から分離させた処理水を統合して系外に排出する過程を有するようにするとよい。系外に排出される処理水の水質を安定させることができる。尚、この方法に対応した排水処理装置の態様としては、上記の排水処理装置において、前記複数の嫌気性アンモニア酸化槽の液相から分離させた処理水を統合して系外に排出する排出経路を備えればよい。   In the above waste water treatment method, it is preferable to have a process in which treated water separated from the plurality of anaerobic ammonia oxidation liquid phases is integrated and discharged out of the system. The quality of treated water discharged out of the system can be stabilized. In addition, as an aspect of the waste water treatment apparatus corresponding to this method, in the above waste water treatment apparatus, a discharge path for discharging the treated water separated from the liquid phase of the plurality of anaerobic ammonia oxidation tanks to the outside of the system Should be provided.

上記の排水処理方法において、前記複数の嫌気性アンモニア酸化系の液相から分離させた処理水を前記導入した被処理水に供給する過程を有するようにするとよい。処理水水質の向上や嫌気性アンモニア酸化系の環境の安定化を図ることができる。尚、この方法に対応した排水処理装置の態様としては、上記の排水処理装置において、排水処理装置前記複数の嫌気性アンモニア酸化槽の液相から分離させた処理水を前記導入した被処理水に供給する処理水返送経路を備えればよい。   The waste water treatment method may include a process of supplying treated water separated from the plurality of anaerobic ammonia oxidation liquid phases to the introduced treated water. It is possible to improve the quality of treated water and stabilize the environment of an anaerobic ammonia oxidation system. In addition, as an aspect of the wastewater treatment apparatus corresponding to this method, in the wastewater treatment apparatus described above, the treated water separated from the liquid phase of the plurality of anaerobic ammonia oxidation tanks in the wastewater treatment apparatus is added to the introduced treated water. What is necessary is just to provide the treated water return path to supply.

また、前記排水処理装置は、装置本体をユニット形式で構成し、前記嫌気性アンモニア酸化槽は装置本体から着脱自在であるような態様にしてもよい。   The waste water treatment apparatus may be configured such that the apparatus main body is configured in a unit form and the anaerobic ammonia oxidation tank is detachable from the apparatus main body.

以上の発明によれば嫌気性アンモニア酸化処理系に供される嫌気性アンモニア酸化菌の馴養を兼ねた排水処理が実現するので嫌気性アンモニア酸化処理法の普及が図られる。   According to the above invention, since the waste water treatment which serves as the acclimatization of the anaerobic ammonia oxidizing bacteria provided to the anaerobic ammonia oxidizing treatment system is realized, the anaerobic ammonia oxidizing treatment method can be widely used.

発明の実施形態1に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 1 of invention. 発明の実施形態2に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 2 of invention. 発明の実施形態3に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 3 of invention. 発明の実施形態4に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 4 of invention. 発明の実施形態5に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 5 of invention. 発明の実施形態6に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 6 of invention. 発明の実施形態7に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 7 of invention. 発明の実施形態8に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 8 of invention. 発明の実施形態9に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 9 of invention. 発明の実施形態10に係る排水処理装置の構成図。The block diagram of the waste water treatment equipment which concerns on Embodiment 10 of invention.

本発明の実施形態に係る排水処理装置は、複数の嫌気性アンモニア酸化槽を並列に配置し、この各槽の液相から固液分離した嫌気性アンモニア酸化菌を当該各槽に返送する態様となっている。このように複数の嫌気性アンモニア酸化槽を備えることで排水処理と共に他の施設に供される嫌気性アンモニア酸化菌を馴養できる。さらに、本実施形態では、一つの排水処理装置に複数の嫌気性アンモニア酸化槽を有するので、複数の酸化槽の一つを分離、移送して新規な排水処理装置に設置した場合であっても、残存する複数の酸化槽へ容易に排水を分配し処理できる。したがって、処理能力の低減を最小限に抑え、安定した排水処理を継続することが可能となる。   The waste water treatment apparatus according to the embodiment of the present invention includes a plurality of anaerobic ammonia oxidation tanks arranged in parallel, and an anaerobic ammonia oxidation bacterium that has been solid-liquid separated from the liquid phase of each tank, and returned to each tank. It has become. Thus, by providing a plurality of anaerobic ammonia oxidation tanks, it is possible to acclimate anaerobic ammonia oxidation bacteria provided to other facilities together with wastewater treatment. Furthermore, in this embodiment, since one wastewater treatment apparatus has a plurality of anaerobic ammonia oxidation tanks, even when one of the plurality of oxidation tanks is separated and transferred and installed in a new wastewater treatment apparatus. The waste water can be easily distributed to the plurality of remaining oxidation tanks. Therefore, it becomes possible to continue the stable wastewater treatment while minimizing the reduction in processing capacity.

上記の排水処理装置はユニット形式で構成し、前記嫌気性アンモニア酸化槽は当該排水処理装置本体から着脱自在であるようにするとよい。他の装置への移送及び設置が容易となる。例えば、他の処理施設の運転を開始する場合等に嫌気性アンモニア酸化細菌が必要なときには、当該処理施設に本発明に係る嫌気性アンモニア酸化槽を適用することで、嫌気性アンモニア酸化菌の馴養期間をほぼ省略することができる。さらに、従来の馴養槽を別途具備させる必要もない。また、機器のトラブル等により嫌気性アンモニア酸化細菌の活性が低下して排水処理効率が悪化した排水処理装置においては、前記活性が高く維持されている嫌気性アンモニア酸化槽と容易に交換設置できる。これにより、復帰運転等の煩雑な操作をする必要なく、排水水質を維持し、継続して排水処理操作が可能となり、嫌気性アンモニア酸化細菌処理の信頼性向上にも寄与する。   The waste water treatment apparatus may be configured in a unit form, and the anaerobic ammonia oxidation tank may be detachable from the waste water treatment apparatus main body. Transfer and installation to other devices are facilitated. For example, when anaerobic ammonia-oxidizing bacteria are required when starting operation of other processing facilities, etc., the anaerobic ammonia-oxidizing bacterium according to the present invention is applied to the processing facility, so The period can be almost omitted. Furthermore, it is not necessary to separately provide a conventional acclimatization tank. Further, in a wastewater treatment apparatus in which the activity of anaerobic ammonia-oxidizing bacteria is reduced due to equipment troubles and the like, and the wastewater treatment efficiency is deteriorated, it can be easily replaced with an anaerobic ammonia oxidation tank in which the activity is maintained high. This makes it possible to maintain the quality of the waste water and continuously perform the waste water treatment operation without the need for complicated operations such as a return operation, thereby contributing to the improvement of the reliability of the anaerobic ammonia oxidizing bacteria treatment.

以下、本発明の具体的な実施形態について説明する。   Hereinafter, specific embodiments of the present invention will be described.

[実施形態1]
(1−1)装置の構成
図1に示された本実施形態の排水処理装置1は嫌気性アンモニア酸化槽2,4を並列に配置している。嫌気性アンモニア酸化槽2,4の後段にはそれぞれ嫌気性アンモニア酸化細菌を沈殿、回収する沈殿槽3,5が配置されている。排水処理装置1は嫌気性アンモニア酸化槽と沈殿槽を各2つ備えているが、本発明に係る嫌気性アンモニア酸化槽と沈殿槽の設定数はこの態様に限定されるものではない。
[Embodiment 1]
(1-1) Structure of apparatus The waste water treatment apparatus 1 of this embodiment shown by FIG. 1 has arrange | positioned the anaerobic ammonia oxidation tanks 2 and 4 in parallel. In the subsequent stage of the anaerobic ammonia oxidation tanks 2 and 4, precipitation tanks 3 and 5 for depositing and collecting anaerobic ammonia oxidation bacteria are arranged. The waste water treatment apparatus 1 includes two anaerobic ammonia oxidation tanks and two precipitation tanks, but the number of anaerobic ammonia oxidation tanks and precipitation tanks according to the present invention is not limited to this mode.

嫌気性アンモニア酸化槽2,4は、それぞれ原水配管11,21を介してアンモニアと亜硝酸とを含有する被処理水を導入し、槽2,4内に滞留させた嫌気性アンモニア酸化細菌によって当該被処理水に含まれるアンモニアと亜硝酸から脱窒を行う。尚、前記被処理水はポンプによって導入される。   The anaerobic ammonia oxidation tanks 2, 4 introduce treated water containing ammonia and nitrous acid through the raw water pipes 11, 21, respectively, and the anaerobic ammonia oxidation bacteria retained in the tanks 2, 4 Denitrification is performed from ammonia and nitrous acid contained in the water to be treated. The treated water is introduced by a pump.

嫌気性アンモニア酸化槽2,4は固定化材料により嫌気性アンモニア酸化細菌を捕捉・固定化したものを滞留させてもよい。固定化材料における担体、固定床の材質は特に限定はしない。例えば、ビール工場の副産物を原料とする炭化物であるモルトセラミックス、ポリビニルアルコール、アルギン酸、ポリエチレングリコール系のゲルや、セルロース、ポリエステル、ポリプロピレン、塩化ビニルなどのプラスチック担体などが挙げられる。担体の形状としては、球状体、円筒形状体、多孔質体、立方体、スポンジ状体、ハニカム状体などの整形を行なったものを用いるとよい。また、微生物の自己造粒を利用したグラニュールも適用できる。   The anaerobic ammonia oxidation tanks 2 and 4 may retain the anaerobic ammonia oxidizing bacteria captured and immobilized by an immobilization material. The material of the carrier and the fixed bed in the immobilization material is not particularly limited. Examples thereof include malt ceramics, polyvinyl alcohol, alginic acid, polyethylene glycol-based gels, which are carbides made from by-products of beer factories, and plastic carriers such as cellulose, polyester, polypropylene, and vinyl chloride. As the shape of the carrier, a shape obtained by shaping a spherical body, a cylindrical body, a porous body, a cube, a sponge body, a honeycomb body or the like may be used. In addition, granules using self-granulation of microorganisms can be applied.

沈殿槽3,5はそれぞれ第一配管12,22を介して嫌気性アンモニア酸化細菌処理槽2,4から供された処理水に存在する沈降性に優れる嫌気性アンモニア酸化細菌またはこれを固定した固定化材料からなる汚泥を固液分離する。沈殿槽3,5にて汚泥が分離された処理水はそれぞれ処理水配管13,23を介して系外に移送される。   The sedimentation tanks 3 and 5 are anaerobic ammonia-oxidizing bacteria excellent in sedimentation existing in the treated water supplied from the anaerobic ammonia-oxidizing bacteria treatment tanks 2 and 4 via the first pipes 12 and 22, respectively, or fixed to which these are fixed. Solid-liquid separation of sludge made of chemical materials. The treated water from which the sludge has been separated in the settling tanks 3 and 5 is transferred out of the system through the treated water pipes 13 and 23, respectively.

排水処理装置1は、嫌気性アンモニア酸化細菌からなる汚泥の沈降性が良好であることに着目したものであるが、実際には、沈殿槽3,5での脱窒などの生物反応により、嫌気性アンモニア酸化細菌ならなる沈殿汚泥が浮上することが想定される。また、嫌気性アンモニア酸化細菌を馴養している嫌気性アンモニア酸化槽2,4では当該細菌が十分量保持できていないため、同槽から流出する液相に当該細菌の馴養に適した濃度のアンモニア性窒素や亜硝酸性窒素が含まれることもありえる。   The wastewater treatment apparatus 1 is focused on the good sedimentation property of sludge composed of anaerobic ammonia-oxidizing bacteria. Actually, the wastewater treatment apparatus 1 is anaerobic due to biological reactions such as denitrification in the sedimentation tanks 3 and 5. It is assumed that the precipitated sludge, which is an ammonia-oxidizing bacterium, will surface. In addition, since anaerobic ammonia oxidation tanks 2 and 4 acclimatizing anaerobic ammonia oxidizing bacteria do not hold a sufficient amount of the bacteria, ammonia in a concentration suitable for acclimatization of the bacteria in the liquid phase flowing out from the tank Nitrogen and nitrite nitrogen may be included.

そこで、沈殿槽3,5は水処理技術に適用されている周知の沈殿槽の構造に付加し以下の汚泥分離機能を有する。この汚泥分離機能としては、例えば、嫌気性アンモニア酸化槽2,4から移流してきた嫌気性アンモニア酸化細菌からなる汚泥を沈殿槽3,5から流出しないようにするためのフィルタ構造等に例示されるような汚泥流出防止機能が挙げられる。この機能は沈殿槽3,5にて沈殿していた汚泥が浮上して同槽から流出しないようにするための流出防止機能としても機能する。尚、沈殿槽3,5は、前記汚泥を沈殿・回収できる構造であればよく、特定の形状に限定しない。   Therefore, the settling tanks 3 and 5 are added to the well-known settling tank structure applied to the water treatment technology and have the following sludge separation function. Examples of the sludge separation function include a filter structure for preventing sludge composed of anaerobic ammonia oxidizing bacteria transferred from the anaerobic ammonia oxidation tanks 2 and 4 from flowing out of the precipitation tanks 3 and 5. Such sludge spill prevention function is mentioned. This function also functions as an outflow prevention function for preventing sludge precipitated in the settling tanks 3 and 5 from floating and flowing out from the tanks. In addition, the sedimentation tanks 3 and 5 should just be the structures which can precipitate and collect | recover the said sludge, and are not limited to a specific shape.

沈殿槽3,5内に集積された活性の高い前記汚泥は汚泥引抜配管31、51より沈降汚泥として回収される。そして、この沈降汚泥は引抜配管31,51にそれぞれ接続された第一返送配管32,52、さらにこの配管32,52から分岐した第二返送配管33,34と53,54を介して、原水配管11,21に供されることで嫌気性アンモニア酸化槽2,4に返送される。これにより増殖速度が極めて遅い嫌気性アンモニア酸化細菌を嫌気性アンモニア酸化槽2,4において再度、保持させることできる。尚、沈降汚泥の返送はポンプによって行われる。   The highly active sludge accumulated in the sedimentation tanks 3 and 5 is collected as sludge from the sludge extraction pipes 31 and 51. Then, the settled sludge is supplied to the raw water pipe via the first return pipes 32 and 52 connected to the drawing pipes 31 and 51, respectively, and the second return pipes 33 and 34 and 53 and 54 branched from the pipes 32 and 52. By being provided to 11 and 21, it is returned to the anaerobic ammonia oxidation tanks 2 and 4. Thereby, the anaerobic ammonia oxidizing bacteria having a very slow growth rate can be held again in the anaerobic ammonia oxidizing tanks 2 and 4. The sedimentation sludge is returned by a pump.

また、第一返送配管32、第一返送配管52からそれぞれ分岐する第二返送配管33,34、第二返送配管53,54に電動バルブを備えることで、配管ラインを任意に選択できるようにするよい。沈殿槽3,5にて回収された沈降汚泥を、嫌気性アンモニア酸化細菌を多く保持したい槽(嫌気性アンモニア酸化槽2,4のいずれか)に任意に供給できる。   In addition, the second return pipes 33 and 34 and the second return pipes 53 and 54 branched from the first return pipe 32 and the first return pipe 52 are provided with electric valves so that the pipe line can be arbitrarily selected. Good. The sedimentation sludge collected in the sedimentation tanks 3 and 5 can be optionally supplied to a tank (any one of the anaerobic ammonia oxidation tanks 2 and 4) that wants to retain a large amount of anaerobic ammonia oxidation bacteria.

(1−2)動作の説明
図1を参照しながら排水処理装置1の動作例について説明する。
(1-2) Description of Operation An example of operation of the wastewater treatment apparatus 1 will be described with reference to FIG.

原水配管11を流れるアンモニアと亜硝酸とを含有する被処理水はポンプによって嫌気性アンモニア酸化槽2に送水される。また、別系統の原水配管21を流れるアンモニアと亜硝酸とを含有する被処理水もポンプによって嫌気性アンモニア酸化槽4に送水される。嫌気性アンモニア酸化細菌処理槽2,4では被処理水中に含まれるアンモニアと亜硝酸とが嫌気性アンモニア酸化細菌によって脱窒される。嫌気性アンモニア酸化槽2,4内の液相は第一配管12,22を介して沈殿槽3,5に至る。そして、沈殿槽3,5にて汚泥が分離された処理水は処理水配管13,23を介して系外に排出される。一方、沈殿槽3,5にて集積された沈降汚泥は第一返送配管32,52及び第二返送配管34,54を介してそれぞれ嫌気性アンモニア酸化槽2,4に返送されることで槽2,4内に嫌気性アンモニア酸化菌が保持される。   The treated water containing ammonia and nitrous acid flowing through the raw water pipe 11 is sent to the anaerobic ammonia oxidation tank 2 by a pump. In addition, the water to be treated containing ammonia and nitrous acid flowing through the separate raw water pipe 21 is also sent to the anaerobic ammonia oxidation tank 4 by a pump. In the anaerobic ammonia oxidizing bacteria treatment tanks 2 and 4, ammonia and nitrous acid contained in the water to be treated are denitrified by the anaerobic ammonia oxidizing bacteria. The liquid phase in the anaerobic ammonia oxidation tanks 2 and 4 reaches the precipitation tanks 3 and 5 via the first pipes 12 and 22. The treated water from which the sludge has been separated in the settling tanks 3 and 5 is discharged out of the system through the treated water pipes 13 and 23. On the other hand, the sedimentation sludge accumulated in the sedimentation tanks 3 and 5 is returned to the anaerobic ammonia oxidation tanks 2 and 4 through the first return pipes 32 and 52 and the second return pipes 34 and 54, respectively. , 4 holds anaerobic ammonia oxidizing bacteria.

また、嫌気性アンモニア酸化槽4にて嫌気性アンモニア酸化菌を選択的に集中して馴養している場合、沈殿槽3にて回収した嫌気性アンモニア細菌からなる汚泥が第一返送配管32及び第二返送配管33を介して嫌気性アンモニア酸化槽4に優先的に返送される。これにより嫌気性アンモニア酸化槽4における嫌気性アンモニア酸化菌の菌体量を増加させることができる。   When the anaerobic ammonia oxidizing bacteria are selectively concentrated and acclimatized in the anaerobic ammonia oxidizing tank 4, the sludge composed of anaerobic ammonia bacteria collected in the settling tank 3 is added to the first return pipe 32 and the first return pipe 32. It is preferentially returned to the anaerobic ammonia oxidation tank 4 via the two return pipes 33. Thereby, the amount of anaerobic ammonia oxidizing bacteria in the anaerobic ammonia oxidizing tank 4 can be increased.

(1−3)本実施形態の効果
排水処理装置1によれば、沈殿槽3,5にて沈降汚泥として回収した嫌気性アンモニア酸化細菌を当該細菌の濃度を高めたい嫌気性アンモニア酸化槽に対して選択的に供給できるので、排水処理と同時に当該細菌の馴養を効率的に行うことができる。
(1-3) Effect of this Embodiment According to the waste water treatment apparatus 1, the anaerobic ammonia oxidizing bacteria collected as the sedimented sludge in the sedimentation tanks 3 and 5 are compared with the anaerobic ammonia oxidizing tank in which the concentration of the bacteria is to be increased. Therefore, the bacteria can be acclimatized efficiently at the same time as the waste water treatment.

また、排水処理装置1を他の施設でも共用可能なユニット形式の態様し、嫌気性アンモニア酸化槽2,4を着脱自在すれば、十分馴養された嫌気性アンモニア酸化槽を必要とする他施設へ容易に移動できる。これにより、この他施設では排水処理能力を落とすことなく処理運転を継続することができる。   Moreover, if the waste water treatment apparatus 1 is in the form of a unit that can be shared with other facilities and the anaerobic ammonia oxidation tanks 2 and 4 are detachable, the facility can be used for other facilities that require a well-adapted anaerobic ammonia oxidation tank. Can move easily. Thereby, the treatment operation can be continued in this other facility without reducing the wastewater treatment capacity.

さらに、排水処理装置1から嫌気性アンモニア酸化槽2,4のいずれかを取り出して他施設へ移動させた場合に当該装置に新たに設置された嫌気性アンモニア酸化槽に対しては沈殿槽3,5にて回収した嫌気性アンモニア酸化細菌を供すればよい。これにより、嫌気性アンモニア酸化菌の馴養を兼ねた排水処理が実現する。   Further, when any one of the anaerobic ammonia oxidation tanks 2 and 4 is taken out from the waste water treatment apparatus 1 and moved to another facility, the settling tank 3 for the anaerobic ammonia oxidation tank newly installed in the apparatus is used. The anaerobic ammonia-oxidizing bacteria recovered in 5 may be provided. Thereby, the waste water treatment which also acclimatized the anaerobic ammonia oxidizing bacteria is realized.

[実施形態2]
図2に示された排水処理装置20は原水配管11,21に分岐される原水配管121を備えていること以外は実施形態1に係る排水処理装置1と同じ構成となっている。尚、排水処理装置20も排水処理装置1と同様にユニット形式で構成し嫌気性アンモニア酸化槽2,4を他の処理施設でも移設、共有できる着脱自在の仕様の態様とするよい。
[Embodiment 2]
The waste water treatment apparatus 20 shown in FIG. 2 has the same configuration as the waste water treatment apparatus 1 according to the first embodiment, except that the raw water pipe 121 is branched into the raw water pipes 11 and 21. The waste water treatment apparatus 20 may be configured in a unit form like the waste water treatment apparatus 1, and the anaerobic ammonia oxidation tanks 2 and 4 may be detachable specifications that can be transferred and shared in other treatment facilities.

実施形態1の排水処理装置1は被処理水が処理系列毎に流入する場合に適用される形態であった。実施形態2の排水処理装置20は被処理水の流入系統が1系統となっている。そして、導入した被処理水を嫌気性アンモニア酸化槽2,4に分配している。原水配管11,21にはそれぞれ電動バルブが備えられて、被処理水の流入条件、嫌気性アンモニア酸化槽2,4の処理能力に応じて、原水配管121の分岐数ならびに嫌気性アンモニア酸化槽の数が適宜に増減可能となっている。   The waste water treatment apparatus 1 of Embodiment 1 was a form applied when to-be-processed water flows in for every process series. The wastewater treatment apparatus 20 of Embodiment 2 has one inflow system of water to be treated. The introduced water to be treated is distributed to the anaerobic ammonia oxidation tanks 2 and 4. The raw water pipes 11 and 21 are each equipped with an electric valve, and the number of branches of the raw water pipe 121 and the anaerobic ammonia oxidation tank are set according to the inflow conditions of the water to be treated and the treatment capacity of the anaerobic ammonia oxidation tanks 2 and 4. The number can be increased or decreased as appropriate.

以上の排水処理装置20によれば、排水処理装置1の効果に加えて、被処理水の流入条件に応じて、嫌気性アンモニア酸化槽を任意に増減使用することができる。嫌気性アンモニア酸化槽を増設した場合には、この酸化槽に対して嫌気性アンモニア酸化槽2,4のいずれから分離された活性を高めた嫌気性アンモニア酸化細菌からなる汚泥を供すればよい。   According to the above waste water treatment apparatus 20, in addition to the effect of the waste water treatment apparatus 1, the anaerobic ammonia oxidation tank can be arbitrarily increased or decreased according to the inflow conditions of the water to be treated. When an anaerobic ammonia oxidation tank is added, sludge composed of anaerobic ammonia oxidation bacteria with enhanced activity separated from any of the anaerobic ammonia oxidation tanks 2 and 4 may be provided to the oxidation tank.

[実施形態3]
図3に示された排水処理装置30は沈殿槽3,5内の沈降汚泥として回収した嫌気性アンモニア酸化細菌を含んだ汚泥を一時的に集積して原水配管11,21へ分配返送する返送統合部6を備えたこと以外は実施形態1に係る排水処理装置1と同じ構成となっている。
[Embodiment 3]
The waste water treatment device 30 shown in FIG. 3 is a return integration that temporarily accumulates sludge containing anaerobic ammonia-oxidizing bacteria collected as settling sludge in the settling tanks 3 and 5 and distributes and returns it to the raw water pipes 11 and 21. Except for the provision of the unit 6, the configuration is the same as the wastewater treatment apparatus 1 according to the first embodiment.

排水処理装置30は、排水処理装置1と同様に、被処理水を、処理系列毎に流入する場合に導入する形態となっているが、沈降汚泥として回収した嫌気性アンモニア酸化細菌は、一旦、返送統合部6へ集積された後に嫌気性アンモニア酸化槽2,4に分配される。   The wastewater treatment device 30 is configured to introduce the water to be treated when it flows into each treatment series, like the wastewater treatment device 1, but the anaerobic ammonia-oxidizing bacteria recovered as the settled sludge is once, After being accumulated in the return integration unit 6, it is distributed to the anaerobic ammonia oxidation tanks 2 and 4.

排水処理装置30によれば、排水処理装置1の効果に加えて、各返送配管によって個別に嫌気性アンモニア酸化槽2,4に分配するような操作(例えば各返送配管のバルブ操作)を行う必要がなくなるので、装置の操作・作業の効率化が図れる。   According to the waste water treatment apparatus 30, in addition to the effect of the waste water treatment apparatus 1, it is necessary to perform an operation (for example, valve operation of each return pipe) such that each return pipe separately distributes to the anaerobic ammonia oxidation tanks 2 and 4. Therefore, the operation and operation of the apparatus can be made more efficient.

[実施形態4]
図4に示された排水処理装置40は原水配管11,21に分岐される原水配管121を備えていること以外は実施形態3に係る排水処理装置30と同じ構成となっている。尚、排水処理装置40も排水処理装置1と同様にユニット形式で構成し嫌気性アンモニア酸化槽2,4を他の処理施設でも移設、共有できる着脱自在の仕様の態様とするよい。
[Embodiment 4]
The waste water treatment apparatus 40 shown in FIG. 4 has the same configuration as the waste water treatment apparatus 30 according to the third embodiment, except that the raw water pipe 121 is branched into the raw water pipes 11 and 21. The waste water treatment device 40 may be configured in a unit form like the waste water treatment device 1, and the anaerobic ammonia oxidation tanks 2 and 4 may be detachable specifications that can be transferred and shared in other treatment facilities.

実施形態3の排水処理装置30は被処理水を処理系列毎に導入する場合に取りうる形態であった。実施形態4に係る排水処理装置40は、被処理水の流入系統が1系統となっている。そして、導入した被処理水を嫌気性アンモニア酸化槽2,4に分配している。原水配管11,21にはそれぞれ電動バルブが備えられて、被処理水の流入条件、嫌気性アンモニア酸化槽2,4の処理能力に応じて、原水配管121の分岐数ならびに嫌気性アンモニア酸化槽の数が適宜に増減可能となっている。   The waste water treatment apparatus 30 of Embodiment 3 was a form that can be taken when water to be treated is introduced for each treatment series. In the wastewater treatment apparatus 40 according to Embodiment 4, the inflow system of the water to be treated is one system. The introduced water to be treated is distributed to the anaerobic ammonia oxidation tanks 2 and 4. The raw water pipes 11 and 21 are each equipped with an electric valve, and the number of branches of the raw water pipe 121 and the anaerobic ammonia oxidation tank are set according to the inflow conditions of the water to be treated and the treatment capacity of the anaerobic ammonia oxidation tanks 2 and 4. The number can be increased or decreased as appropriate.

以上の排水処理装置40によれば、排水処理装置30の効果に加えて、被処理水の流入条件に応じて、嫌気性アンモニア酸化槽を任意に増減使用することができる。嫌気性アンモニア酸化槽を増設した場合には、この酸化槽に対して嫌気性アンモニア酸化槽2,4のいずれから分離された活性を高めた嫌気性アンモニア酸化細菌からなる汚泥を供すればよい。   According to the above waste water treatment apparatus 40, in addition to the effect of the waste water treatment apparatus 30, the anaerobic ammonia oxidation tank can be arbitrarily increased or decreased according to the inflow conditions of the water to be treated. When an anaerobic ammonia oxidation tank is added, sludge composed of anaerobic ammonia oxidation bacteria with enhanced activity separated from any of the anaerobic ammonia oxidation tanks 2 and 4 may be provided to the oxidation tank.

[実施形態5]
図5に示された排水処理装置50は、沈殿槽3,5の処理水配管13,23を統合させせる処理水配管122を備えていること以外は、実施形態1に係る排水処理装置10と同じ構成となっている。
[Embodiment 5]
The waste water treatment apparatus 50 shown in FIG. 5 includes the waste water treatment apparatus 10 according to the first embodiment, except that it includes a treated water pipe 122 that integrates the treated water pipes 13 and 23 of the settling tanks 3 and 5. It has the same configuration.

排水処理装置50では処理水配管を一系統としており、処理水配管122にて処理水配管13,23の各処理水質が混合したものが最終的な処理水の水質となる。したがって、個々の嫌気性アンモニア酸化槽2,4による処理水質のばらつきがあったとしても、運転条件を個別に厳密に操作して目標水質をクリアする必要がなくなり、余裕を持った運転操作が可能となる。   In the waste water treatment apparatus 50, the treated water pipe is made into one system, and the treated water pipe 122 mixed with the treated water qualities of the treated water pipes 13 and 23 becomes the final treated water quality. Therefore, even if there is a variation in treated water quality between the individual anaerobic ammonia oxidation tanks 2 and 4, it is not necessary to strictly operate the operating conditions individually to clear the target water quality, and operation with sufficient margins is possible. It becomes.

また、嫌気性アンモニア酸化槽2(または4)にて嫌気性アンモニア酸化菌の不足により処理水質が低下した場合でも、他の槽4(または2)で生物処理が順調に行われていれば、槽2(または4)に対して過度の排水水質を維持し要求することは必要ない。この排水処理装置50による馴養操作によって目的を達成することが容易となる。   In addition, even if the treatment water quality is reduced due to the shortage of anaerobic ammonia oxidizing bacteria in the anaerobic ammonia oxidation tank 2 (or 4), if biological treatment is being performed smoothly in the other tank 4 (or 2), It is not necessary to maintain and require excessive drainage quality for tank 2 (or 4). It becomes easy to achieve the object by the habituation operation by the waste water treatment apparatus 50.

以上のように排水処理装置50によれば排水処理装置1の効果に加えて処理水の水質を安定させることができる。   As described above, according to the waste water treatment apparatus 50, the quality of the treated water can be stabilized in addition to the effect of the waste water treatment apparatus 1.

また、排水処理装置50もユニット形成で構成し、嫌気性アンモニア酸化槽2,4を着脱自在とするよい。嫌気性アンモニア酸化槽2,4のいずれかを他の装置50へ移動させた後には、この装置50に新たに設置された嫌気性アンモニア酸化槽に対しては沈殿槽3,5にて回収した嫌気性アンモニア酸化細菌を供すればよい。新たに設置された酸化槽にて嫌気性アンモニア酸化細菌を馴養させる手間が省かれるので被処理水の流入負荷を低減させることなく排水処理を継続できる。   Moreover, the waste water treatment apparatus 50 is also configured by unit formation, and the anaerobic ammonia oxidation tanks 2 and 4 may be detachable. After moving any one of the anaerobic ammonia oxidation tanks 2 and 4 to the other apparatus 50, the anaerobic ammonia oxidation tank newly installed in the apparatus 50 is collected in the precipitation tanks 3 and 5. Anaerobic ammonia oxidizing bacteria may be provided. Since the trouble of acclimatizing the anaerobic ammonia oxidizing bacteria is eliminated in the newly installed oxidation tank, the wastewater treatment can be continued without reducing the inflow load of the water to be treated.

[実施形態6]
図6に示された排水処理装置60は原水配管11,21に分岐される原水配管121を備えていること以外は実施形態5に係る排水処理装置50と同じ構成となっている。尚、排水処理装置60も排水処理装置1と同様にユニット形式で構成し嫌気性アンモニア酸化槽2,4を他の処理施設でも移設、共有できる着脱自在の仕様の態様とするよい。
[Embodiment 6]
The waste water treatment apparatus 60 shown in FIG. 6 has the same configuration as the waste water treatment apparatus 50 according to the fifth embodiment except that the raw water pipe 121 is branched into the raw water pipes 11 and 21. The waste water treatment device 60 may also be configured in a unit form as in the waste water treatment device 1 so that the anaerobic ammonia oxidation tanks 2 and 4 are detachable specifications that can be transferred and shared in other treatment facilities.

実施形態5の排水処理装置50は被処理水を処理系列毎に導入する場合に取りうる形態であった。実施形態6に係る排水処理装置60は、被処理水の流入系統が1系統となっている。そして、導入した被処理水を嫌気性アンモニア酸化槽2,4に分配している。原水配管11,21にはそれぞれ電動バルブが備えられて、被処理水の流入条件、嫌気性アンモニア酸化槽2,4の処理能力に応じて、原水配管121の分岐数ならびに嫌気性アンモニア酸化槽の数が適宜に増減可能となっている。   The waste water treatment apparatus 50 of Embodiment 5 was a form that can be taken when water to be treated is introduced for each treatment series. In the wastewater treatment apparatus 60 according to Embodiment 6, the inflow system of the water to be treated is one system. The introduced water to be treated is distributed to the anaerobic ammonia oxidation tanks 2 and 4. The raw water pipes 11 and 21 are each equipped with an electric valve, and the number of branches of the raw water pipe 121 and the anaerobic ammonia oxidation tank are set according to the inflow conditions of the water to be treated and the treatment capacity of the anaerobic ammonia oxidation tanks 2 and 4. The number can be increased or decreased as appropriate.

以上の排水処理装置60によれば、排水処理装置50の効果に加えて、被処理水の流入条件に応じて、嫌気性アンモニア酸化槽を任意に増減使用することができる。嫌気性アンモニア酸化槽を増設した場合には、この酸化槽に対して嫌気性アンモニア酸化槽2,4のいずれから分離された活性を高めた嫌気性アンモニア酸化細菌からなる汚泥を供すればよい。   According to the above waste water treatment device 60, in addition to the effect of the waste water treatment device 50, the anaerobic ammonia oxidation tank can be arbitrarily increased or decreased according to the inflow conditions of the water to be treated. When an anaerobic ammonia oxidation tank is added, sludge composed of anaerobic ammonia oxidation bacteria with enhanced activity separated from any of the anaerobic ammonia oxidation tanks 2 and 4 may be provided to the oxidation tank.

[実施形態7]
図7に示された排水処理装置70は沈殿槽3,5内の沈降汚泥として回収した嫌気性アンモニア酸化細菌を含んだ汚泥を一時的に集積して原水配管11,21へ分配返送する返送統合部6を備えたこと以外は実施形態5に係る排水処理装置50と同じ構成である。
[Embodiment 7]
The waste water treatment apparatus 70 shown in FIG. 7 is a return integration that temporarily accumulates sludge containing anaerobic ammonia-oxidizing bacteria collected as settling sludge in the settling tanks 3 and 5 and distributes and returns the sludge to the raw water pipes 11 and 21. The configuration is the same as that of the waste water treatment apparatus 50 according to the fifth embodiment except that the unit 6 is provided.

排水処理装置70は、排水処理装置50と同様に被処理水を系統毎に導入する形態となっているが、沈降汚泥として回収した嫌気性アンモニア酸化細菌は、一旦、返送統合部6へ集積された後に嫌気性アンモニア酸化槽2,4に分配される。   The waste water treatment device 70 is configured to introduce the water to be treated for each system in the same manner as the waste water treatment device 50. However, the anaerobic ammonia oxidizing bacteria collected as the settled sludge are once accumulated in the return integration unit 6. After that, it is distributed to the anaerobic ammonia oxidation tanks 2 and 4.

以上の排水処理装置70によれば、排水処理装置50の作用効果に加えて、各返送配管によって個別に嫌気性アンモニア酸化槽2,4に分配するような操作(例えば各返送配管のバルブ操作)を行う必要がなく装置の操作・作業の効率化が図れる。   According to the waste water treatment device 70 described above, in addition to the effects of the waste water treatment device 50, an operation for distributing the water to the anaerobic ammonia oxidation tanks 2 and 4 individually by each return pipe (for example, valve operation of each return pipe). It is possible to improve the efficiency of operation and work of the apparatus.

[実施形態8]
図8に示された排水処理装置80は原水配管11,21に分岐される原水配管121を備えていること以外は実施形態7に係る排水処理装置70と同じ構成となっている。尚、排水処理装置80も排水処理装置1と同様にユニット形式で構成し嫌気性アンモニア酸化槽2,4を他の処理施設でも移設、共有できる着脱自在の仕様の態様とするよい。
[Embodiment 8]
The waste water treatment apparatus 80 shown in FIG. 8 has the same configuration as the waste water treatment apparatus 70 according to the seventh embodiment except that the raw water pipe 121 is branched into the raw water pipes 11 and 21. The waste water treatment apparatus 80 may be configured in a unit form like the waste water treatment apparatus 1, and the anaerobic ammonia oxidation tanks 2 and 4 may be detachable specifications that can be transferred and shared in other treatment facilities.

実施形態7の排水処理装置70は被処理水を処理系列毎に導入する場合に取りうる形態であった。これに対して実施形態8に係る排水処理装置80は被処理水の流入系統が1系統となっている。そして、導入した被処理水を嫌気性アンモニア酸化槽2,4に分配している。原水配管11,21にはそれぞれ電動バルブが備えられて、被処理水の流入条件、嫌気性アンモニア酸化槽2,4の処理能力に応じて、原水配管121の分岐数ならびに嫌気性アンモニア酸化槽の数が適宜に増減可能となっている。   The waste water treatment apparatus 70 of Embodiment 7 was a form that can be taken when water to be treated is introduced for each treatment series. On the other hand, the wastewater treatment apparatus 80 according to Embodiment 8 has one inflow system of the water to be treated. The introduced water to be treated is distributed to the anaerobic ammonia oxidation tanks 2 and 4. The raw water pipes 11 and 21 are each equipped with an electric valve, and the number of branches of the raw water pipe 121 and the anaerobic ammonia oxidation tank are set according to the inflow conditions of the water to be treated and the treatment capacity of the anaerobic ammonia oxidation tanks 2 and 4. The number can be increased or decreased as appropriate.

以上の排水処理装置80によれば、排水処理装置70の効果に加えて、被処理水の流入条件に応じて、嫌気性アンモニア酸化槽を任意に増減使用することができる。嫌気性アンモニア酸化槽を増設した場合には、この酸化槽に対して嫌気性アンモニア酸化槽2,4のいずれから分離された活性を高めた嫌気性アンモニア酸化細菌からなる汚泥を供すればよい。   According to the above waste water treatment apparatus 80, in addition to the effect of the waste water treatment apparatus 70, the anaerobic ammonia oxidation tank can be arbitrarily increased or decreased according to the inflow conditions of the water to be treated. When an anaerobic ammonia oxidation tank is added, sludge composed of anaerobic ammonia oxidation bacteria with enhanced activity separated from any of the anaerobic ammonia oxidation tanks 2 and 4 may be provided to the oxidation tank.

[実施形態9]
図9に示された排水処理装置90は嫌気性アンモニア酸化槽2,4で処理された処理水(汚泥を分離した処理水)の一部を原水配管11,21のいずれかに返送させる処理水返送ライン(第三返送配管14,24、第四返送配管15,16,25,26)を備える。排水処理装置90はこの構成以外は実施形態1に係る排水処理装置1と同じ構成となっている。尚、前記処理水の返送はポンプによって行われる。
[Embodiment 9]
The waste water treatment apparatus 90 shown in FIG. 9 is a treated water that returns a part of treated water (treated water from which sludge is separated) treated in the anaerobic ammonia oxidation tanks 2 and 4 to either of the raw water pipes 11 and 21. A return line (third return pipes 14, 24, fourth return pipes 15, 16, 25, 26) is provided. Except for this configuration, the wastewater treatment apparatus 90 has the same configuration as the wastewater treatment apparatus 1 according to the first embodiment. The treated water is returned by a pump.

処理水返送ラインにおいては、第三返送配管14、第三返送配管24からそれぞれ分岐する第四返送配管15,16、第四返送配管25,26に電動バルブが具備されることで、返送ラインを任意に選択できる。   In the treated water return line, the fourth return pipes 15 and 16 and the fourth return pipes 25 and 26 branch from the third return pipe 14 and the third return pipe 24, respectively, are equipped with electric valves so that the return line is Can be arbitrarily selected.

排水処理装置90は排水処理装置1と同様に被処理水を処理系列毎に導入する形態となっている。嫌気性アンモニア酸化槽2,4で処理された処理水はそれぞれ第1配管12,22を介して沈殿槽3,5に至る。沈殿槽3,5にて汚泥が除去された処理水はそれぞれ処理水配管13,23を介して系外に排出される。   The waste water treatment device 90 is configured to introduce the water to be treated for each treatment series in the same manner as the waste water treatment device 1. The treated water treated in the anaerobic ammonia oxidation tanks 2 and 4 reaches the precipitation tanks 3 and 5 through the first pipes 12 and 22, respectively. The treated water from which the sludge has been removed in the settling tanks 3 and 5 is discharged out of the system through the treated water pipes 13 and 23, respectively.

一方、沈殿槽3,5から流出した処理水の一部はそれぞれ第三返送配管14,24及び第四返送配管15,16と25,26を介して原水配管11,21へ返送される。処理水の循環量は嫌気性アンモニア酸化槽2,4の状態(例えば嫌気性アンモニア酸化菌の馴養状態)により決定される。   On the other hand, part of the treated water flowing out of the settling tanks 3 and 5 is returned to the raw water pipes 11 and 21 through the third return pipes 14 and 24 and the fourth return pipes 15, 16 and 25 and 26, respectively. The circulation amount of the treated water is determined by the state of the anaerobic ammonia oxidation tanks 2 and 4 (for example, the acclimatized state of the anaerobic ammonia oxidation bacteria).

以上の排水処理装置90によれば、処理水の嫌気性アンモニア酸化槽2,4への循環的な供給により、排水処理装置1の効果に加えて、嫌気性アンモニア酸化槽2,4の槽内の処理環境の安定化が図られ、さらなる処理水水質の向上並びに安定化が期待できる。   According to the waste water treatment apparatus 90 described above, the inside of the anaerobic ammonia oxidation tanks 2, 4 is added to the effect of the waste water treatment apparatus 1 by circulating supply of treated water to the anaerobic ammonia oxidation tanks 2, 4. The treatment environment can be stabilized, and further improvement and stabilization of treated water quality can be expected.

[実施形態10]
図10に示された排水処理装置100は原水配管11,21に分岐される原水配管121を備えていること以外は実施形態9に係る排水処理装置90と同じ構成となっている。第三返送配管14,24は原水配管121に接続されている。尚、排水処理装置100も排水処理装置1と同様にユニット形式で構成し嫌気性アンモニア酸化槽2,4を他の処理施設でも移設、共有できる着脱自在の仕様の態様とするよい。
[Embodiment 10]
The wastewater treatment apparatus 100 shown in FIG. 10 has the same configuration as the wastewater treatment apparatus 90 according to Embodiment 9 except that the wastewater treatment apparatus 100 includes a raw water pipe 121 branched into the raw water pipes 11 and 21. The third return pipes 14 and 24 are connected to the raw water pipe 121. The waste water treatment apparatus 100 may be configured in a unit form like the waste water treatment apparatus 1 and may have a removable specification that allows the anaerobic ammonia oxidation tanks 2 and 4 to be transferred and shared in other treatment facilities.

実施形態9の排水処理装置90は被処理水が処理系列毎に流入する場合に適用される形態であった。実施形態10の排水処理装置100は被処理水の流入系統が1系統となっている。そして、導入した被処理水を嫌気性アンモニア酸化槽2,4に分配している。原水配管11,21にはそれぞれ電動バルブが備えられて、被処理水の流入条件、嫌気性アンモニア酸化槽2,4の処理能力に応じて、原水配管121の分岐数ならびに嫌気性アンモニア酸化槽の数が適宜に増減可能となっている。   The waste water treatment apparatus 90 of Embodiment 9 was a form applied when the water to be treated flows in every treatment series. The waste water treatment apparatus 100 of Embodiment 10 has one inflow system of water to be treated. The introduced water to be treated is distributed to the anaerobic ammonia oxidation tanks 2 and 4. The raw water pipes 11 and 21 are each equipped with an electric valve, and the number of branches of the raw water pipe 121 and the anaerobic ammonia oxidation tank are set according to the inflow conditions of the water to be treated and the treatment capacity of the anaerobic ammonia oxidation tanks 2 and 4. The number can be increased or decreased as appropriate.

以上の排水処理装置100によれば、排水処理装置9の効果に加えて、被処理水の流入条件に応じて、嫌気性アンモニア酸化槽を任意に増減使用することができる。嫌気性アンモニア酸化槽を増設した場合には、この酸化槽に対して嫌気性アンモニア酸化槽2,4のいずれから分離された活性を高めた嫌気性アンモニア酸化細菌からなる汚泥を供すればよい。   According to the above waste water treatment apparatus 100, in addition to the effect of the waste water treatment apparatus 9, the anaerobic ammonia oxidation tank can be arbitrarily increased or decreased according to the inflow conditions of the water to be treated. When an anaerobic ammonia oxidation tank is added, sludge composed of anaerobic ammonia oxidation bacteria with enhanced activity separated from any of the anaerobic ammonia oxidation tanks 2 and 4 may be provided to the oxidation tank.

[本発明の他の態様]
実施形態1〜100の装置構成は適宜に組み合わせてもよい。
[Other aspects of the present invention]
You may combine the apparatus structure of Embodiment 1-100 suitably.

上述の排水処理装置1〜100は、嫌気性アンモニア酸化槽2,4の後段に、それぞれ沈殿槽3,5が配置されているが、沈殿槽3,5の機能を嫌気性アンモニア酸化槽2,4の内部に具備させてもよい。例えば、第1配管12,22を省略し、これに係わる配管系を、嫌気性アンモニア酸化槽2,4内の「沈殿槽」機能部に接続すれれば、実現可能となる。そして、嫌気性アンモニア酸化槽2,4での第一返送配管32,52の引抜・接続箇所は、この引抜操作により、馴養に支障のない程度に適切な微生物濃度が得られれば、特にその嫌気性アンモニア酸化槽の接続点に限定はない。以上のように排水処理装置1〜100に係る嫌気性アンモニア酸化槽2,4内に沈殿槽の機能を具備させることで、沈殿槽3,5を省略でき、装置の省スペース化が実現する。   In the above-described waste water treatment apparatuses 1 to 100, the precipitation tanks 3 and 5 are arranged in the subsequent stage of the anaerobic ammonia oxidation tanks 2 and 4, respectively. 4 may be included. For example, this can be realized by omitting the first pipes 12 and 22 and connecting the related piping system to the “precipitation tank” function section in the anaerobic ammonia oxidation tanks 2 and 4. The extraction / connection locations of the first return pipes 32 and 52 in the anaerobic ammonia oxidation tanks 2 and 4 are particularly anaerobic if an appropriate microbial concentration is obtained to such an extent that they do not interfere with habituation. There is no limitation on the connection point of the basic ammonia oxidation tank. As described above, by providing the functions of the precipitation tank in the anaerobic ammonia oxidation tanks 2 and 4 related to the wastewater treatment apparatuses 1 to 100, the precipitation tanks 3 and 5 can be omitted, and the space saving of the apparatus is realized.

また、第一返送配管32,52によって返送される引抜汚泥は原水配管11,21に供されているが、原水配管11,21に供することなく、直接、嫌気性アンモニア酸化槽2,4に返送するようにすると、同槽2,4内の希望する箇所への返送が可能となる。さらに、排水処理装置90,100においては沈殿槽3,5から流出した処理水の一部はそれぞれ第三返送配管14,24及び第四返送配管15,16,25,26を介して原水配管11,21または原水配管121へ返送しているが、沈殿槽3,5から返送する処理水は沈殿槽3,5から直接引抜いてもよい。処理水量が減少するため、処理水配管13,23の配管の小径化が図れる。   Further, the drawn sludge returned by the first return pipes 32 and 52 is supplied to the raw water pipes 11 and 21, but is directly returned to the anaerobic ammonia oxidation tanks 2 and 4 without being supplied to the raw water pipes 11 and 21. By doing so, it is possible to return the tank 2 or 4 to a desired location. Furthermore, in the waste water treatment apparatuses 90 and 100, a part of the treated water flowing out from the settling tanks 3 and 5 is supplied to the raw water pipe 11 through the third return pipes 14 and 24 and the fourth return pipes 15, 16, 25, and 26, respectively. 21 or the raw water pipe 121, the treated water returned from the settling tanks 3 and 5 may be drawn directly from the settling tanks 3 and 5. Since the amount of treated water decreases, the diameter of the treated water pipes 13 and 23 can be reduced.

排水処理装置1,20,50,60においては第一返送配管32、第一返送配管52から返送汚泥を第二返送配管33,34、第二返送配管53,54の各配管に任意に分配できるように電動バルブを備えて汚泥返送の分配比を任意に設定できるようにするとよい。この返送汚泥の分配供給によって嫌気性アンモニア酸化槽2,4にて所望の嫌気性アンモニア酸化細菌の保持比率に調整できる。   In the waste water treatment apparatuses 1, 20, 50, 60, the return sludge can be arbitrarily distributed to the second return pipes 33, 34 and the second return pipes 53, 54 from the first return pipe 32 and the first return pipe 52. Thus, it is preferable to provide an electric valve so that the distribution ratio of sludge return can be set arbitrarily. By distributing and supplying the returned sludge, the retention ratio of the desired anaerobic ammonia oxidizing bacteria can be adjusted in the anaerobic ammonia oxidizing tanks 2 and 4.

排水処理装置30,40,70,80においては沈降汚泥として回収した嫌気性アンモニア酸化細菌は返送統合部6に一旦集積させた後に各返送配管61,62,63に備えた電動バルブの操作により任意に分配することで各原水配管11,21に供給してもよい。例えば、複数並列に配置された嫌気性アンモニア酸化槽内の嫌気性アンモニア酸化細菌の保持量に基づき馴養程度を判断し、各嫌気性アンモニア酸化槽の馴養に適切な引き抜き汚泥の量の分配比を設定して返送汚泥を分配供給するようにするとよい。このような返送汚泥の分配供給によれば、個々の嫌気性アンモニア酸化槽の馴養程度が異なっている場合でも、複数の嫌気性アンモニア酸化槽の馴養が同時に可能となる。   In the waste water treatment apparatuses 30, 40, 70, 80, the anaerobic ammonia oxidizing bacteria collected as the settled sludge are temporarily accumulated in the return integration unit 6 and then arbitrarily operated by operating the electric valves provided in the return pipes 61, 62, 63. May be supplied to the raw water pipes 11 and 21. For example, the degree of acclimatization is determined based on the amount of anaerobic ammonia-oxidizing bacteria retained in anaerobic ammonia-oxidizing tanks arranged in parallel, and the distribution ratio of the amount of extracted sludge appropriate for acclimatization of each anaerobic ammonia-oxidizing tank is determined. It is recommended to set and distribute and supply the returned sludge. According to such a distribution and supply of the return sludge, even if the acclimatization levels of the individual anaerobic ammonia oxidation tanks are different, the acclimatization of a plurality of anaerobic ammonia oxidation tanks can be performed simultaneously.

排水処理装置90,100においては第三返送配管14,24から供される処理水を統合させる返送水統合部を備えるとよい。そして、この返送水統合部にて集積させた処理水を装置90の原水配管11,21または装置100の原水配管121の各配管へ任意に分配できるように電動バルブを備えるとよい。各嫌気性アンモニア酸化槽2,4からの処理水の水質にばらつきがある場合でも、各酸化槽2,4に返送される処理水の水質が前記返送水統合部によって均一化する。そして、各嫌気性アンモニア酸化槽2,4の処理能力に応じた各槽2,4への処理水の返送量の分配比を前記電動バルブによって任意に設定しやすくなる。以上の返送水統合部及び電動バルブを備えることで、排水処理装置90,100は、排水処理装置1の効果に加えて、馴養程度が異なるなどで処理能力が異なった複数の嫌気性アンモニア酸化槽を有する場合でも各槽にて安定した排水処理を実現させることができる。また、処理水を個別に原水配管へ返送する操作が必要最小限となっているので、各嫌気性アンモニア酸化槽の処理能力に応じた装置の運転操作及び作業を効率に行うことができる。また、沈殿槽3,5からの処理水を統合する水槽を設け、この水槽に第三返送配管14,24を備え、当該水槽内の処理水をポンプによって返送してもよい。これにより、より多量の処理水を返送することが可能となる。   The waste water treatment apparatuses 90 and 100 may include a return water integration unit that integrates treated water supplied from the third return pipes 14 and 24. And it is good to provide an electric valve so that the treated water collected in this return water integrated part can be arbitrarily distributed to each pipe of raw water piping 11 and 21 of device 90 or raw water piping 121 of device 100. Even when the quality of the treated water from each of the anaerobic ammonia oxidation tanks 2 and 4 varies, the quality of the treated water returned to each of the oxidation tanks 2 and 4 is made uniform by the return water integration unit. And it becomes easy to set arbitrarily the distribution ratio of the return amount of the treated water to each tank 2 and 4 according to the processing capacity of each anaerobic ammonia oxidation tank 2 and 4 by the electric valve. By providing the above-described return water integration unit and electric valve, the waste water treatment apparatuses 90 and 100 have a plurality of anaerobic ammonia oxidation tanks having different treatment capacities due to different degrees of acclimatization in addition to the effects of the waste water treatment apparatus 1. Even if it has, it can implement | achieve the stable waste water treatment in each tank. In addition, since the operation of individually returning the treated water to the raw water piping is the minimum necessary, the operation and operation of the apparatus according to the treatment capacity of each anaerobic ammonia oxidation tank can be performed efficiently. Moreover, the water tank which integrates the treated water from the sedimentation tanks 3 and 5 may be provided, the 3rd return piping 14 and 24 may be provided in this water tank, and the treated water in the said water tank may be returned with a pump. This makes it possible to return a larger amount of treated water.

以上説明した実施形態は各嫌気性アンモニア酸化系において、その嫌気性アンモニア酸化槽に各々対応する沈殿槽を備えたものとなっている。本発明はこの態様に限定されることなく、複数の嫌気性アンモニア酸化槽に対して単一の沈殿槽を備えた排水処理装置の構成としてもよい。この構成によれば、沈殿汚泥として嫌気性アンモニア酸化細菌を一つの沈殿槽にて統合することができ、排水処理装置30,40,70,80に具備の返送統合部6と同様な効果を有すると共に複数の沈殿槽(装置30,40,70,80に具備された各沈殿槽)の機能を一つの沈殿槽に集約できる。さらに、当該沈殿槽の処理水を嫌気性アンモニア酸化槽に返送する場合には、当該沈殿槽に処理水を統合する機能をもたせることができる。   The embodiment described above includes a settling tank corresponding to each anaerobic ammonia oxidation tank in each anaerobic ammonia oxidation system. This invention is not limited to this aspect, It is good also as a structure of the waste water treatment apparatus provided with the single sedimentation tank with respect to several anaerobic ammonia oxidation tanks. According to this configuration, anaerobic ammonia-oxidizing bacteria can be integrated as a sedimentation sludge in a single sedimentation tank, and the same effect as the return integration unit 6 provided in the wastewater treatment apparatuses 30, 40, 70, 80 is obtained. At the same time, the functions of a plurality of settling tanks (respective settling tanks provided in the devices 30, 40, 70, 80) can be integrated into one settling tank. Furthermore, when returning the treated water of the said sedimentation tank to an anaerobic ammonia oxidation tank, the function which integrates treated water into the said sedimentation tank can be given.

1,20,30,40,50,60,70,80,90,100…排水処理装置
2,4…嫌気性アンモニア酸化槽(嫌気性アンモニア酸化系)
6…返送統合部(返送統合手段)
11,21,121…原水配管(供給経路)
13,23,122…処理水配管(排出経路)
14,24…第三返送配管(処理水返送経路)
15,16,25,26…第四返送配管(処理水返送経路)
32,52…第一返送配管(汚泥返送経路)
33,34,53,54…第二返送配管(汚泥返送経路)
1, 20, 30, 40, 50, 60, 70, 80, 90, 100 ... Waste water treatment equipment 2, 4 ... Anaerobic ammonia oxidation tank (anaerobic ammonia oxidation system)
6 ... Return integration unit (return integration means)
11, 21, 121 ... Raw water piping (supply route)
13, 23, 122 ... treated water piping (discharge route)
14, 24 ... Third return piping (process water return route)
15, 16, 25, 26 ... Fourth return pipe (process water return route)
32, 52 ... First return piping (sludge return route)
33, 34, 53, 54 ... Second return piping (sludge return route)

Claims (11)

排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理方法であって、
複数の嫌気性アンモニア酸化系にて嫌気性アンモニア酸化細菌によって被処理水に含まれるアンモニアと亜硝酸から脱窒を行う過程と、
前記複数の嫌気性アンモニア酸化系の液相から分離した前記嫌気性アンモニア酸化菌を含む汚泥を一時的に集積して前記複数の嫌気性アンモニア酸化系に分配供給する過程と
を有すること
を特徴とする排水処理方法。
A wastewater treatment method also serving as an acclimatization of anaerobic ammonia-oxidizing bacteria used for wastewater treatment,
A process of denitrifying ammonia and nitrite contained in water to be treated by anaerobic ammonia oxidizing bacteria in a plurality of anaerobic ammonia oxidizing systems;
A step of temporarily accumulating sludge containing the anaerobic ammonia oxidizing bacteria separated from the liquid phase of the plurality of anaerobic ammonia oxidizing systems and distributing and supplying the sludge to the plurality of anaerobic ammonia oxidizing systems. A wastewater treatment method characterized by that.
排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理方法であって、
複数の嫌気性アンモニア酸化系にて嫌気性アンモニア酸化細菌によって被処理水に含まれるアンモニアと亜硝酸から脱窒を行う過程と、
前記複数の嫌気性アンモニア酸化槽の液相を単一の沈殿槽に供して分離した汚泥を前記複数の嫌気性アンモニア酸化系に分配供給する過程と
を有すること
を特徴とする排水処理方法。
A wastewater treatment method also serving as an acclimatization of anaerobic ammonia-oxidizing bacteria used for wastewater treatment,
A process of denitrifying ammonia and nitrite contained in water to be treated by anaerobic ammonia oxidizing bacteria in a plurality of anaerobic ammonia oxidizing systems;
A process of distributing and supplying sludge separated from the liquid phase of the plurality of anaerobic ammonia oxidation tanks to a single settling tank to the plurality of anaerobic ammonia oxidation systems;
Waste water treatment method according to claim <br/> to have.
系外から導入した被処理水を前記複数の嫌気性アンモニア酸化系に分配供給する過程を有することを特徴とする請求項1または2に記載の排水処理方法。   The wastewater treatment method according to claim 1 or 2, further comprising a step of distributing and supplying water to be treated introduced from outside the system to the plurality of anaerobic ammonia oxidation systems. 前記複数の嫌気性アンモニア酸化系の液相から分離させた処理水を統合して系外に排出する過程を有すること
を特徴とする請求項1から3のいずれか1項に記載の排水処理方法。
The wastewater treatment method according to any one of claims 1 to 3, further comprising a step of integrating the treated water separated from the plurality of anaerobic ammonia oxidation liquid phases and discharging the treated water to the outside of the system. .
前記複数の嫌気性アンモニア酸化系の液相から分離させた処理水を前記導入した被処理水に供給する過程を有すること
を特徴とする請求項1から4のいずれか1項に記載の排水処理方法。
The wastewater treatment according to any one of claims 1 to 4, further comprising a step of supplying treated water separated from the liquid phase of the plurality of anaerobic ammonia oxidation systems to the introduced treated water. Method.
排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理装置であって、
被処理水を導入して嫌気性アンモニア酸化細菌によって当該被処理水に含まれるアンモニアと亜硝酸から脱窒を行う複数の嫌気性アンモニア酸化槽と、
前記各嫌気性アンモニア酸化槽の後段に配置され当該酸化槽から供給された液相から前記嫌気性アンモニア酸化菌を含む汚泥を分離する沈殿槽と
前記各沈殿槽にて分離された嫌気性アンモニア酸化菌を含む汚泥を一時的に集積して前記複数の嫌気性アンモニア酸化槽に分配返送する返送統合手段と
を備えたこと
を特徴とする排水処理装置。
A wastewater treatment device that also serves as an acclimatizer for anaerobic ammonia-oxidizing bacteria that is used in wastewater treatment,
A plurality of anaerobic ammonia oxidation tanks for denitrifying from ammonia and nitrite contained in the treated water by introducing the treated water and anaerobic ammonia oxidizing bacteria;
A settling tank for separating sludge containing the anaerobic ammonia-oxidizing bacteria from a liquid phase disposed after the anaerobic ammonia-oxidizing tank and supplied from the oxidizing tank ;
Return integrated means for temporarily accumulating sludge containing anaerobic ammonia-oxidizing bacteria separated in each settling tank and distributing and returning the sludge to the plurality of anaerobic ammonia-oxidizing tanks. Wastewater treatment equipment.
排水処理に供される嫌気性アンモニア酸化細菌の馴養を兼ねた排水処理装置であって、
被処理水を導入して嫌気性アンモニア酸化細菌によって当該被処理水に含まれるアンモニアと亜硝酸から脱窒を行う複数の嫌気性アンモニア酸化槽と、
この複数の嫌気性アンモニア酸化槽から供された液相から前記嫌気性アンモニア酸化菌を含む汚泥を分離する単一の沈殿槽と、
この沈殿槽にて分離された嫌気性アンモニア酸化菌を含む汚泥を前記複数の嫌気性アンモニア酸化槽に分配返送する汚泥返送経路
を備えたこと
を特徴とする排水処理装置。
A wastewater treatment device that also serves as an acclimatizer for anaerobic ammonia-oxidizing bacteria that is used in wastewater treatment,
A plurality of anaerobic ammonia oxidation tanks for denitrifying from ammonia and nitrite contained in the treated water by introducing the treated water and anaerobic ammonia oxidizing bacteria;
A single settling tank for separating the sludge containing the anaerobic ammonia oxidizing bacteria from the liquid phase provided from the plurality of anaerobic ammonia oxidizing tanks;
A sludge return path for distributing and returning sludge containing anaerobic ammonia oxidizing bacteria separated in the settling tank to the plurality of anaerobic ammonia oxidizing tanks ;
Waste water treatment apparatus according to claim <br/> further comprising a.
導入した被処理水を前記複数の嫌気性アンモニア酸化槽に分配供給する供給経路を備えたことを特徴とする請求項6または7に記載の排水処理装置。   The wastewater treatment apparatus according to claim 6 or 7, further comprising a supply path for distributing and supplying the introduced treated water to the plurality of anaerobic ammonia oxidation tanks. 前記複数の嫌気性アンモニア酸化槽の液相から分離させた処理水を統合して系外に排出する排出経路を備えたこと
を特徴とする請求項6から8のいずれか1項に記載の排水処理装置。
The waste water according to any one of claims 6 to 8, further comprising a discharge path for integrating treated water separated from the liquid phases of the plurality of anaerobic ammonia oxidation tanks and discharging the treated water out of the system. Processing equipment.
前記複数の嫌気性アンモニア酸化槽の液相から分離させた処理水を前記導入した被処理水に供給する処理水返送経路を備えたこと
を特徴とする請求項6から9のいずれか1項に記載の排水処理装置。
The treated water return path for supplying the treated water separated from the liquid phase of the plurality of anaerobic ammonia oxidation tanks to the introduced treated water is provided. The waste water treatment apparatus as described.
前記排水処理装置はユニット形式で構成され、
前記嫌気性アンモニア酸化槽は当該装置の本体から着脱自在であること
を特徴とする請求項6から10のいずれか1項に記載の排水処理装置。
The waste water treatment device is configured in a unit form,
The wastewater treatment apparatus according to any one of claims 6 to 10, wherein the anaerobic ammonia oxidation tank is detachable from a main body of the apparatus.
JP2010111732A 2010-05-14 2010-05-14 Waste water treatment method and waste water treatment equipment Active JP5650926B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010111732A JP5650926B2 (en) 2010-05-14 2010-05-14 Waste water treatment method and waste water treatment equipment
PCT/JP2011/057837 WO2011142185A1 (en) 2010-05-14 2011-03-29 Wastewater treatment method, and wastewater treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111732A JP5650926B2 (en) 2010-05-14 2010-05-14 Waste water treatment method and waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2011240207A JP2011240207A (en) 2011-12-01
JP5650926B2 true JP5650926B2 (en) 2015-01-07

Family

ID=44914241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111732A Active JP5650926B2 (en) 2010-05-14 2010-05-14 Waste water treatment method and waste water treatment equipment

Country Status (2)

Country Link
JP (1) JP5650926B2 (en)
WO (1) WO2011142185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487847A (en) * 2017-08-31 2017-12-19 北京工业大学 A kind of method of integral anaerobic ammoxidation enhanced endogenesis denitrification SBBR advanced nitrogens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864993B2 (en) * 2012-04-04 2014-10-21 Veolia Water Solutions & Technologies Support Process for removing ammonium from a wastewater stream
CN103508546B (en) * 2013-10-08 2015-04-15 中国石油天然气集团公司 Method for implementing rapid start of short-cut nitrification and denitrification to treat wastewater by preposed pre-oxidation
CN105417687B (en) * 2016-01-07 2018-05-29 江苏裕隆环保有限公司 The method and apparatus of sewage and bed mud in a kind of Combined Treatment black-odor riverway
JP7133339B2 (en) * 2018-04-11 2022-09-08 株式会社日立製作所 Nitrogen treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP4042719B2 (en) * 2004-05-11 2008-02-06 株式会社日立プラントテクノロジー Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus
JP4645157B2 (en) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
EP1903010A1 (en) * 2006-09-22 2008-03-26 Holm, Niels Christian Method for wastewater treatment in continuously charged activated sludge plants comprising upstream denitrification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487847A (en) * 2017-08-31 2017-12-19 北京工业大学 A kind of method of integral anaerobic ammoxidation enhanced endogenesis denitrification SBBR advanced nitrogens

Also Published As

Publication number Publication date
JP2011240207A (en) 2011-12-01
WO2011142185A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
EP1595851B1 (en) Method and apparatus for collecting bacterial cells, method for acclimatizing bacterial cells, and wastewater treatment equipment
Figueroa et al. Is the CANON reactor an alternative for nitrogen removal from pre-treated swine slurry?
JP5899373B2 (en) Process comprising an ANAMOX microorganism on a biofilm carrier for removing ammonium from a wastewater stream
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
JP5650926B2 (en) Waste water treatment method and waste water treatment equipment
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
JP2003047990A (en) Biological denitrifier
Sutton Membrane bioreactors for industrial wastewater treatment: Applicability and selection of optimal system configuration
JP2009136725A (en) Ammonia-containing waste water treatment apparatus
TW201002629A (en) Denitrifying method and denitrifying device
JP2008296164A (en) Nitrogen removal method and apparatus
WO2009151190A1 (en) Combined organic sewage disposal installation using effective microorganism
WO2016122426A1 (en) Biofilm nitrification - contact denitrification system and method
JP2013233482A (en) Wastewater treatment system and its treatment method
KR20210040632A (en) Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement
JP5077334B2 (en) Nitrogen removal treatment apparatus and nitrogen removal treatment method
JP4993109B2 (en) Cultivation method and apparatus, and wastewater treatment method and apparatus
Yerushalmi et al. Removal of carbon, nitrogen and phosphorus from the separated liquid phase of hog manure by the multi-zone BioCAST technology
JP4596533B2 (en) Wastewater treatment method
KR20160024009A (en) Compact Type Waste Water Treatment Apparatus
KR20170046244A (en) Sewage disposal system for small-scale village by biofilm process using fluidized bed media
JP6934358B2 (en) Organic wastewater treatment equipment and treatment method
BOERIU et al. The tertiary treatment stage of wastewater
Gogina et al. Modern technologies of wastewater treatment for low-capacity facilities
JP3167529B2 (en) Household wastewater purification equipment and water treatment tanks for household wastewater purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5650926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250