JP5649301B2 - 映像加工処理方法及びその装置 - Google Patents

映像加工処理方法及びその装置 Download PDF

Info

Publication number
JP5649301B2
JP5649301B2 JP2009285761A JP2009285761A JP5649301B2 JP 5649301 B2 JP5649301 B2 JP 5649301B2 JP 2009285761 A JP2009285761 A JP 2009285761A JP 2009285761 A JP2009285761 A JP 2009285761A JP 5649301 B2 JP5649301 B2 JP 5649301B2
Authority
JP
Japan
Prior art keywords
person
processing
area
video
detected person
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009285761A
Other languages
English (en)
Other versions
JP2011128816A (ja
Inventor
美穂 石上
美穂 石上
穴吹 まほろ
まほろ 穴吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009285761A priority Critical patent/JP5649301B2/ja
Publication of JP2011128816A publication Critical patent/JP2011128816A/ja
Application granted granted Critical
Publication of JP5649301B2 publication Critical patent/JP5649301B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Description

本発明は、撮影映像中に領域あたりで検出される人数により映像加工の処理を切り替える方法および装置に関する。
犯罪率の増加等に伴い、公共空間を監視するカメラの設置台数は増加している。防犯効果があるが、一方、撮影映像に映っている人のプライバシーを侵害しうるという面も懸念される。
特許文献1には、撮影映像で検出された人物の顔が、事前に登録されている顔情報に一致しない場合、顔の領域に抽象化を施す加工を行うことが開示されている。
また、特許文献2には、監視カメラの撮影映像に映る人数から解析処理を切り替える方法が開示されている。例えば、撮影映像中の人数が多い場合に、解析処理の負荷を軽くすることができる。
特開2004−62560 特開2007−264706 米国公開特許 2007/0237387
特許文献1に開示されている技術では、加工処理を撮影映像に映る人物ごとに行うと、加工処理対象となる人物数が多い場合、処理の負荷が大きくなりすぎるという課題があった。また、記録されている人物以外を判定することができないという課題、撮影映像に映る人物とそのほかの人物との関係性を考慮にいれていないという課題があった。
特許文献2に開示されている技術では、撮影映像に映る人物とそのほかの人物との関係性を考慮にいれていないため、プライバシー保護が十分でないという課題があった。
以上を鑑み、プライバシー保護を考慮にいれつつ、適切な処理負荷を選ぶため、本発明では、撮影映像中に領域あたりで検出される人数により映像加工の処理を切り替えることを目的とする。
上記目的は、以下の方法によって達成できる。
検出手段が、撮影された撮影映像から人物を検出する検出工程と、
判定手段が、前記撮影映像で前記検出された人物から所定の範囲内の領域に、前記検出された人物とは別の人物がいるかを判定する判定工程と、
設定手段が、前記判定工程において前記検出された人物とは別の人物がいると判定された場合に、前記検出された人物の領域に、該領域内の画素値を変換する第1の加工処理を施すための第1の加工領域を設定し、前記検出された人物とは別の人物がいると判定されなかった場合に、前記検出された人物の領域に、前記第1の加工処理よりも処理負荷が大きい、該領域内の画素値を変換する第2の加工処理を施すための第1の加工領域とは異なる第2の加工領域を設定する設定工程と、
加工手段が、前記工程で設定された加工領域に対して、加工処理を施す加工工程と、
を有することを特徴とする映像加工処理方法。
撮影映像中に領域あたりで検出される人数により映像加工の処理を切り替えることにより、プライバシー保護を考慮にいれつつ、適切な処理負荷を選ぶことができる。
第1の実施形態の映像加工処理装置の機能ブロック図である。 第1の実施形態の映像加工処理装置の全体処理フロー図である。 分割領域と人物の関係を説明した図である。 人物が分散・集中して存在する様子を説明した図である。 人物領域の加工方法を説明した図である。 第2の実施形態の映像加工処理装置の機能ブロック図である。 第2の実施形態の映像加工処理装置の全体処理フロー図である。 人物と周辺領域の関係を説明した図である。 コンピュータの構成例を示す図である。
以下、本発明の実施形態に基づいて述べる。
〔第1の実施形態〕
図1は第1の実施形態の映像加工処理装置100を実現させる機能構成図である。
図1で示した機能を構成する各処理部についての概要説明を以下に記述する。
図1に示すように、映像加工処理装置100は、撮影部110、検出部120、分割部130、計数部140、選択部150、加工部160から構成されている。
撮影部110は、カメラ等の映像入力装置を用いて現実空間の撮影を行う。撮影部110により撮影された撮影映像は検出部120へと出力される。
例えば、映像入力装置は、天井から吊り下げられても良いし、床や台の上に据え置いてあっても良い。以下では、駅構内や店舗内などの天井に吊り下げられているカメラを用いるものとして説明する。パンチルトやズームといったカメラパラメータは、固定でも良いし可変であっても良い。カメラパラメータが固定な場合は、パラメータは事前に計測されるか、参照可能な状態になっている。カメラパラメータが可変な場合には、その可変値は映像入力装置において計測され出力される。
検出部120は、撮影部110から撮影映像を受け取り、撮影映像中から人物を検出する処理を行う。検出には、特許文献3に記載の技術を用いても良い。検出部120は、撮影映像から人物を検出した結果から人物位置情報を取得し、計数部140に出力する。また、検出部120は、人物領域情報を取得して選択部150に出力する。ここでの人物領域情報は、人物の検出結果から得られる人物が検出された領域であり、人物位置情報とは人物の検出結果から得られる人物領域中の中心位置座標である。
分割部130は、撮影部110から撮影映像を受け取り、いくつかの領域に分割する処理を行う。例えば、撮影部110により入力された撮影映像は各分割領域が均等な大きさになるように分割される。以下では、分割部130により分割された領域を分割領域と呼ぶ。分割領域は計数部140に出力される。
計数部140は、各人物領域中に人物が映っている人物数を計数する。そして、各人物領域中ごとの人物数を選択部150に出力する。分割部130から分割領域を受け取り、複数の分割領域の中で、分割領域内に人物が検出されている分割領域の数を計数する。そして、人物が検出されている領域(人物領域)を計数部140に、人物が検出されている分割領域数(人物領域数)を選択部150に出力する。
選択部150は、計数部140から人物領域数を受け取り、計数部140から領域毎人数を受け取って、人物領域の加工処理に用いるアルゴリズムの選択を行う。検出部120から人物領域情報を受け取り、選択部150から領域毎アルゴリズム情報を入力して、加工領域の設定を行う。加工領域の設定とは、検出部120によって検出された人物領域とその領域を加工するためのアルゴリズムの紐付けを行い、人物領域と加工方法の対応付けを行う。そして、検出部120から検出された人物領域毎に設定された人物領域の加工処理のためのアルゴリズム、人物領域毎のアルゴリズムを加工部160に出力する。
加工部160は、撮影部110から撮影映像を受け取り、選択部150から人物領域毎のアルゴリズムを受け取って、撮影映像中の人物の映っている領域の加工処理をする。これにより、人物領域には加工処理の施された映像を作成でき、プライバシーを考慮した映像にすることが可能である。
図2に示したフローチャートを用いて、第1の実施形態の映像加工処理装置100が行う処理について説明する。なお、同フローチャートに従ったプログラムコードは、第1の実施形態の装置内の、RAMやROMなどのメモリ902内に格納され、CPU901などにより読み出され、実行される。
ステップS201では、撮影部110により現実空間の撮影が行われる。そして、撮影映像が検出部120に送られ、その撮影映像中から人物を検出する処理が行われる。
ステップS202では、入力映像を複数の領域に分割する。このとき入力映像の分割方法は任意に決めることが可能である。例えば、図3に示すように、入力映像300を縦方向と横方向に3等分し、1フレーム画像を9つに分割すれば良い。ここで、図3中の(1)〜(9)はそれぞれ、横の大きさx、縦の大きさyである分割領域である。また、図3には、後の説明のために、入力映像に映っている人物A〜Fと、それぞれの人物領域の中心×も示す。
ステップS203では、後述のステップS204からステップS207を、分割された分割領域ごとに繰り返す。
ステップS204では、分割領域毎に映っている人物の数が計数される。ステップS202から受け取る分割領域の中で、人物の映っている分割領域数(人物領域数)の計数が行われる。各分割領域に人物が映っているかどうかの判断は、検出部120から得られる人物の検出結果を用いる。検出部120から得られる人物の検出結果は、例えば人物領域全体を包含する長方形の矩形領域である。そのため、人物の中心を、人物の検出結果から得られる矩形領域の中心と定義し、分割領域の各々に人物中心点が含まれているかどうか判断することで、分割領域中の人物の存在有無を決めることができる。図3に示した例では、人物Aは領域(1)、人物Bと人物Cは領域(3)、人物Dは領域(6)、人物Eと人物Fは領域(9)に属していると判断される。人物Dや人物Eのように、人物領域が一つの分割領域内に入らず、いくつかの分割領域にまたがっている場合には、人物の中心×のある領域をその人物の属する領域とするように判断される。したがって、図3に示す例の場合では、人物の映っている領域数は(1)と(3)と(6)と(9)の4つであると計数される。人物が分割領域内に存在しているかどうかの判断と同様に、分割領域内に含まれている人物領域の中心点を用いて、分割領域内に映っている人物の数を計数する。図3に示す例の場合では、領域(1)と領域(6)には1人、領域(3)と領域(9)には2人、それ以外の領域には0人と計数される。
ステップS205では、分割領域の各々に人物が存在するかを判定する。人物が存在しないときは、次の分割領域に対し、ステップS204にて人物の数を計数する。また、人物が存在するときは、ステップS206に進む。
ステップS206では、人物の映っている分割領域数(人物領域数)と、分割領域内の人物数(領域毎人数)を用いて加工方法を選択する。
分割領域中の人物数(領域毎人数)を用いて、人物数が0人以上であるか判断する。人物が分割領域中に映っていなければ、人物領域に関して特別な加工処理を行う必要はないので、加工処理は行わずに次の分割領域の処理に進む。人物が分割領域中に映っていれば、人物領域に対して何らかの処理を行う。
ここでは、入力映像1フレーム毎の処理時間を、そこに映る人物数ならびに映った人物の分布によらず同程度になるような方法を選択する。図4(a)、図4(b)は、撮影部110から入力される撮影映像である。図4(a)は入力映像中に映る人物の分布がまとまっている場合を撮影した画面であり、図4(b)は入力映像中に映る人物の分布が分散している場合を撮影した画面である。ここで、それぞれに対する撮影映像の加工に要する処理時間が同程度になるよう撮影映像に映る人物数に応じてアルゴリズムを選択すると、図4(a)には11人、図4(b)には10人が映っているので、同じアルゴリズムが選択される。もしくは、図4(a)の方が軽負荷なアルゴリズムが選択される。しかし、図4(a)の方は人物同士の重なりがあるので、実際に処理を施すべき映像領域の大きさは、図4(a)の方が図4(b)よりも小さい。すると、それぞれに対する処理時間が同程度にするには、人物の映っている領域の少ない図4(a)に対しては高負荷のアルゴリズムを選択し、人物の映っている領域の多い図4(b)に対しては軽負荷のアルゴリズムを選択する。ステップS206では、選択を分割領域数(人物領域数)と、分割領域内の人物数(領域毎人数)を用いて行う。具体的なアルゴリズム選択方法を、図5および図3を用いて説明する。
以下では、加工領域設定方法が異なるものの中からアルゴリズムを選択する方法について説明する。加工領域設定後の映像変換方法に関しては、指定の色での塗りつぶしや、モザイク加工や体のパーツごとに異なった方法での映像変換などから複数の方法が選ばれうる。これは、加工領域設定方法の選択と同様である。
図5には、映像の加工領域を異なるアルゴリズムを用いて設定する方法を示している。具体的には、人物の検出乃至認識アルゴリズムをベースに加工領域を設定する方法を、処理負荷の軽い順に示している。ここで、加工領域設定方法にかかる処理時間は、映像変換方法にかかる処理時間よりも多いため、2つの方法を含んでいる加工方法の処理時間は加工領域設定方法に依存している。そのため、加工方法の処理負荷の軽い順番と加工領域設定方法の処理負荷が軽い順番は同じになる。図5の上から順に、人物の検出ベース加工方法500、シルエット検出ベース加工方法510、人体パーツ検出ベース加工方法520、姿勢認識ベース加工方法530、行動認識ベース加工方法540となる。
人物の検出ベース加工方法500は、人物が検出された領域を内包する矩形領域に対し塗りつぶし等の加工処理を行う方法である。シルエット検出ベース加工方法510は、人物のシルエットを検出し、そのシルエット内領域に対し加工処理を行う方法である。人体パーツ検出ベース加工方法520は、人体の手や足、頭などのパーツを認識し、認識したパーツ領域ごとに加工処理を行う方法である。例えば、人物を監視する上での重要な役割を果たす”手”のようなパーツに塗りつぶしの加工処理を行うと行動を監視することができない。そこで、”手”以外のパーツに対してのみ加工処理を行う。姿勢認識ベース加工方法530は人物の姿勢を認識し、認識された姿勢ごとに加工処理を行う方法である。例えば、普通の姿勢と異常な姿勢とを区別し、監視する必要のない普通の姿勢をしているときに塗りつぶしの加工処理を行う。行動認識ベース加工方法540は人物の行動を認識し、認識された行動ごとに加工処理を行う方法である。例えば、普通の行動と異常な行動とを区別し、監視する必要のない普通の行動をしているときに塗りつぶしの加工処理を行う。高負荷な加工方法になるほど、単純に人物領域に対して毎回加工処理をするのではなく、加工処理すべき部分だけや、加工処理すべきタイミングだけ、選択的に加工処理をすることができる。
ここで、図3の人物A〜Fは、図5に示した加工方法500〜540のいずれかの方法が選択されて加工処理される。加工方法は、処理を施す分割領域内の人物数(領域毎人数)と、各加工方法500〜540の処理時間と、1フレームに費やす処理時間との関係から選択される。例えば、人物の検出ベース加工方法500の処理時間を10、シルエット検出ベース加工方法510の処理時間を20とする。また、人体パーツ検出ベース加工方法520の処理時間を30、姿勢認識ベース加工方法530の処理時間を40、行動認識ベース加工方法540の処理時間を50とする。そして、1フレームに用いる処理時間を100以下とする。人物が1人で映っている分割領域が2つ、人物が2人で映っている分割領域が2つなので、それぞれに同じ割合で処理時間を割り当てるとすると、1つの分割領域に用いる処理時間は100/4=25となる。よって、1人で映っている領域(1)の人物Aと領域(6)の人物Dの加工方法は処理時間が25以下の加工方法であるシルエット検出ベース加工方法510となる。また、2人で映っている領域(3)の人物Bと人物C、領域(9)の人物Eと人物Fの加工方法は処理時間が25/2=12.5以下の加工方法である、人物の検出ベース加工方法500となる。例えば、処理時間に合わせてモザイクの精度を変えてもよい。
以上のように、加工方法の選択が、人物の映っている分割領域に対して行われると、ステップS207に進む。
ステップS207では、ステップS206から受け取る領域毎加工方法を用いて、各人物領域と加工方法の対応付けを行う。
以上の処理により、撮影映像中の映像領域あたりの人物数が多い場合には軽負荷の加工方法を用いて、撮影映像中の映像領域あたりの人物数が少ない場合には高負荷の加工方法を用いて、人物映像を加工することができる。
〔第2の実施形態〕
図6は第2の実施形態の映像加工処理装置600を実現させる機能構成図である。図6で示した機能を構成する各処理部についての概要説明を以下に記述する。
第2の実施形態では、ある一定の範囲内に複数人でまとまって存在している人と、それとは対照的に、ある一定の範囲内に人が存在せず、一人で行動している人の加工方法を変えて処理する。例えば、群れで存在している人は、互いに相手の目の届くところにいるため、詳細に監視する必要は低いとする。一方、一人でいる人は、不審な行動をとっても他人の目の届かないところにいるため、監視すべきとする。これにより、群れで存在している人には、簡易な加工方法を、一人で行動している人には、時間がかかっても詳細に把握できる加工方法を選択する。
図6に示すように、映像加工処理装置600は、撮影部110、検出部120、計数部140、選択部150、加工部160と、分類部610からなる。
分類部610は、検出部120から受け取る人物領域の中から一人の人物(特定人物)を特定する。特定人物に関しては、入力映像中の人物であれば誰でも良いとするが、特定される時点において、まだ人物領域の加工処理がされていない人物とする。なお、特定人物は、人物の検出で用いられたパーツや行動などの認識内容を用いてもよい。
特定人物からその人物の周辺領域を設定する。周辺領域の設定方法は、特定人物を中心とした、円領域や矩形領域などの任意の分割領域で良いとする。第2の実施形態では、周辺領域を特定人物の中心位置を中心とした所定の半径rの距離の円領域内に設定する。
周辺領域から、特定人物の周辺領域にいる人物を探索して、特定人物と同じグループに分類をする。周辺領域内にいる人物の探索時には、検出部120から得られた人物領域の中心点を用いる。周辺領域内に特定人物以外の人物領域の中心点があれば、その人物を特定人物と同じグループに分類する。そして、特定人物とその周辺人物の人物の分類結果を選択部640に出力する。また、特定人物以外であって、その周辺人物以外の人物の分類結果を選択部640に出力してもよい。
選択部150は、分類部610から受け取る人物の分類結果から、分類された人物領域毎に加工方法の選択をする。グループ毎加工方法とは、分類部610により分類されたグループ毎に選択された、そのグループの人物領域の加工方法である。
図7に示したフローチャートを用いて、第2の実施形態の映像加工処理装置600が行う処理について説明する。なお、同フローチャートに従ったプログラムコードは、第2の実施形態の装置内にあるRAMやROMなどのメモリ902内に格納され、CPU901などにより読み出され、実行される。
ステップS701では、第1の実施形態のステップS201と同様に撮影を行い、人物領域の検出を行う。
ステップS702では、検出部120から受け取った人物領域の中から任意に一人の人物領域の特定を行う。初回の人物領域の特定は任意に行うことができるが、2回目以降の人物領域の特定には、未分類であり、かつ加工処理が施されてない人物領域中から選択する。
ステップS703では、周辺領域が四角形なのか円形なのか、どんな図形をした領域であるかや、領域の大きさの定義を行う。第2の実施形態では、周辺領域を、所定の半径rの距離の円領域とする。特定人物を用いて、特定人物の人物領域の中心点を中心とした所定の半径rの距離の円領域を周辺領域と定義する。
ステップS704では、周辺領域から、特定人物の周辺領域にいる人物を探索して、特定人物と同じグループに分類をする。周辺領域内にいる人物の探索時には、検出部120から得られた人物領域の中心点を用いる。周辺領域内に特定人物以外の人物領域の中心点があれば、その人物を特定人物と同じグループに分類する。そして、特定人物とその周辺人物の人物の分類結果を選択部640に出力する。また、特定人物以外であって、その周辺人物以外の人物の分類結果を選択部640に出力してもよい。
ステップS705では、任意の特定人物の周辺領域内に存在する人物の計数を行う。分類された周辺人物の人数を計数し、ステップS706に進む。
ステップS706では、周辺人物数が0人以上であるか判断する。周辺人物数が一人以上存在する場合と、周辺人物が一人も存在しない場合とでは処理内容が異なる。具体的には、周辺人物数が一人以上存在する場合には、ステップS707とステップS708へ進む。一人も存在しない場合には、ステップS709とステップS710に進む。
ステップS707では、分類部610において、ステップS705により計数された周辺人物と、ステップS702により特定された特定人物を、同じグループとして分類を行う。
具体的な分類例を、図8を用いて説明する。図8には、入力映像300と、第1の実施形態と同様の、撮影された人物A〜F、人物領域の中心×と、第2の実施形態から追記されたグループα〜γを示す。入力映像300に映っている人物は全て、3つのグループα〜γに属している。以下では、人物A〜Fのグループ分け手法について説明する。
入力映像300の人物の中から1人を特定する。第2の実施形態では、人物Aを特定人物として設定する。そして、人物Aの周辺領域として所定の半径rの距離の円領域を定義し、周辺領域内にいる人物を人物Aと同じグループαに分類する。入力映像300では、人物Aの周辺領域には人がいないので、グループαに属する人物は人物Aのみである。
次に、入力映像300で未分類の人物群(人物B〜F)から、人物Bを特定人物として設定し、人物Bの周辺領域にいる人をグループβに分類する。その結果、グループβに分類される人物は、人物Bと人物Cと人物Dとなる。また、同様に、人物Eを特定人物としてグループγの分類をすると、グループγに分類される人物は人物Eと人物Fとなる。
以上より、入力映像300中の人物は3つのグループに分割され、各グループに属する人物は以下のようになる。
グループα:人物A
グループβ:人物B 人物C 人物D
グループγ:人物E 人物F
ステップS708では、加工部160において、選択部150にて設定された人物領域毎加工方法を用いて、周辺人物の加工処理を行う。
例えば、群れで存在している人は、互いに相手の目の届くところにいるため、詳細に監視する必要は低いとする。一方、一人でいる人は、不審な行動をとっても他人の目の届かないところにいるため、監視すべきとする。このような監視する必要性に応じて加工処理を行う。例えば、簡易な方法で加工するとき人物の存在する領域を内包する矩形領域に対し加工処理を行ってもよい。
ステップS709では、ステップS702において特定された特定人物について、検出部120において行った検出より、さらに詳細な認識を行う。ここでは、ステップS710の処理時に必要な情報の認識を行う。例えば、人物認識、服装認識、姿勢認識、動作認識などを行う。もしくは、誰であるか、どんな人であるか(男性か女性か、何歳くらいか、など)、などを認識する。さらには、どんな服装であるか、どんな姿勢であるか、どんな動作をしているか、どんな行動をしているか、何を持っているか、等を認識する。
ステップS710では、加工部160において、選択部150にて設定された人物領域毎加工方法を用いて、ステップS702により特定された特定人物の加工処理を行う。ここでは、周辺人物が一人もいなく、単独で存在している人物に関する加工方法は、処理開始前に決定する。例えば、ステップS709から特定人物のシルエット情報が得られるのであれば、それを用いて、その人物のシルエット領域内に加工処理を行う。ステップS709から何らかの認識結果などが得られるのであれば、それらを用いて加工処理すべき領域やタイミングを判断した上で、選択的・部分的に人物が映る映像領域に加工処理を行っても良い。
ステップS711では、ステップS708とステップS710の処理が終わる度に、撮影映像中に人物領域が未処理の人物がいないか判断する。撮影映像中の全ての人物領域について加工処理が終了していなければ、再度、ステップS702に戻り、処理を継続するが、未加工人物がいなければ、処理を終了する。
以上の処理により、群れで存在している人に対しては簡易的に加工処理を選択し、一人で行動している人に対しては撮影映像から様子が分かる加工処理を選択することができる。
〔その他の実施形態〕
図9は、コンピュータの構成例を示す図である。また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク907又は各種のコンピュータ読み取り可能な記憶媒体902、903を介してシステム或いは装置に供給する。そして、そのシステム或いは装置のコンピュータ901(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
産業上利用可能性
本発明は、例えば、監視カメラに利用することができる。

Claims (7)

  1. 検出手段が、撮影された撮影映像から人物を検出する検出工程と、
    判定手段が、前記撮影映像で前記検出された人物から所定の範囲内の領域に、前記検出された人物とは別の人物がいるかを判定する判定工程と、
    設定手段が、前記判定工程において前記検出された人物とは別の人物がいると判定された場合に、前記検出された人物の領域に、該領域内の画素値を変換する第1の加工処理を施すための第1の加工領域を設定し、前記検出された人物とは別の人物がいると判定されなかった場合に、前記検出された人物の領域に、前記第1の加工処理よりも処理負荷が大きい、該領域内の画素値を変換する第2の加工処理を施すための第1の加工領域とは異なる第2の加工領域を設定する設定工程と、
    加工手段が、前記設定工程で設定された加工領域に対して、加工処理を施す加工工程と、
    を有することを特徴とする映像加工処理方法。
  2. 前記設定手段は、前記判定工程において前記検出された人物とは別の人物がいると判定された場合には、前記検出された人物の領域を内包する矩形領域を加工領域として設定することを特徴とする請求項1に記載の映像加工処理方法。
  3. 前記設定手段は、前記判定工程において前記検出された人物とは別の人物がいると判定されなかった場合には、前記検出された人物の手以外の領域に対して加工領域を設定することを特徴とする請求項1または2に記載の映像加工処理方法。
  4. 前記所定の範囲の領域とは、前記検出された人物を中心とした所定の半径の円領域で定義されることを特徴とする請求項1乃至3のいずれか1項に記載の映像加工処理方法。
  5. 撮影手段が、撮影映像を撮影する撮影工程を更に有することを特徴とする請求項1乃至請求項4の何れか1項に記載の映像加工処理方法。
  6. 請求項1乃至5の何れか1項に記載の映像加工処理方法をコンピュータで実行することを特徴とするプログラム。
  7. 撮影された撮影映像から人物を検出する検出手段と、
    前記撮影映像で前記検出された人物から所定の範囲内の領域に、前記検出された人物とは別の人物がいるかを判定する判定手段と、
    前記判定工程において前記検出された人物とは別の人物がいると判定された場合に、前記検出された人物の領域に、該領域内の画素値を変換する第1の加工処理を施すための第1の加工領域を設定し、前記検出された人物とは別の人物がいると判定されなかった場合に、前記検出された人物の領域に、前記第1の加工処理よりも処理負荷が大きい、該領域内の画素値を変換する第2の加工処理を施すための第1の加工領域とは異なる第2の加工領域を設定する設定手段と、
    前記設定手段で設定された加工領域に対して、加工処理を施す加工手段と、
    を有することを特徴とする映像加工処理装置。
JP2009285761A 2009-12-16 2009-12-16 映像加工処理方法及びその装置 Expired - Fee Related JP5649301B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285761A JP5649301B2 (ja) 2009-12-16 2009-12-16 映像加工処理方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285761A JP5649301B2 (ja) 2009-12-16 2009-12-16 映像加工処理方法及びその装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014229913A Division JP5968402B2 (ja) 2014-11-12 2014-11-12 映像加工処理方法及びその装置

Publications (2)

Publication Number Publication Date
JP2011128816A JP2011128816A (ja) 2011-06-30
JP5649301B2 true JP5649301B2 (ja) 2015-01-07

Family

ID=44291357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285761A Expired - Fee Related JP5649301B2 (ja) 2009-12-16 2009-12-16 映像加工処理方法及びその装置

Country Status (1)

Country Link
JP (1) JP5649301B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650677B2 (ja) 2015-02-26 2020-02-19 キヤノン株式会社 映像処理装置、映像処理方法、およびプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175868A (ja) * 1999-12-22 2001-06-29 Nec Corp 人物検出方法及び装置
JP4198951B2 (ja) * 2002-07-17 2008-12-17 独立行政法人科学技術振興機構 グループ属性推定方法及びグループ属性推定装置
JP2005056213A (ja) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd 情報提供システム、情報提供サーバ、情報提供方法
JP2005346261A (ja) * 2004-06-01 2005-12-15 Konica Minolta Holdings Inc 監視カメラ、画像処理装置、および画像処理プログラム
JP4506381B2 (ja) * 2004-09-27 2010-07-21 沖電気工業株式会社 単独行動者及びグループ行動者検知装置
JP2008160354A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd 映像出力装置
JP4957463B2 (ja) * 2007-08-30 2012-06-20 セイコーエプソン株式会社 画像処理装置
JP2009152718A (ja) * 2007-12-19 2009-07-09 Seiko Epson Corp 画像処理装置、画像処理方法、およびプログラム
JP2009217506A (ja) * 2008-03-10 2009-09-24 Seiko Epson Corp 画像処理装置及び画像処理方法
JP2009284235A (ja) * 2008-05-22 2009-12-03 Fujifilm Corp 撮像装置

Also Published As

Publication number Publication date
JP2011128816A (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
TWI430186B (zh) 影像處理裝置及影像處理方法
JP6674584B2 (ja) 映像監視システム
JP5227911B2 (ja) 監視映像検索装置及び監視システム
JP4642128B2 (ja) 画像処理方法、画像処理装置及びシステム
JP6358258B2 (ja) 画像処理システム、画像処理方法及びプログラム
JP2016100696A (ja) 画像処理装置、画像処理方法、及び画像処理システム
CN111899470B (zh) 人体跌倒检测方法、装置、设备及存储介质
JP2011060058A (ja) 撮影装置および監視システム
JP6503079B2 (ja) 特定人物検知システム、特定人物検知方法および検知装置
JP4667508B2 (ja) 移動体情報検出装置、移動体情報検出方法および移動体情報検出プログラム
JP5771039B2 (ja) 放置人物検出装置
KR101468117B1 (ko) 지능형 영상 감시 방법 및 그 장치
JP2019029747A (ja) 画像監視システム
JP5758165B2 (ja) 物品検出装置および静止人物検出装置
JP5865584B2 (ja) 特定人物検知システムおよび検知方法
JP5968402B2 (ja) 映像加工処理方法及びその装置
JP5649301B2 (ja) 映像加工処理方法及びその装置
CN114764895A (zh) 异常行为检测装置和方法
JP4279181B2 (ja) 監視システム
JP2007336431A (ja) 映像監視装置及び方法
JP2012128693A (ja) 映像処理装置、映像処理方法およびプログラム
JP5777389B2 (ja) 画像処理装置、画像処理システム及び画像処理方法
JP3894038B2 (ja) 画像処理装置、画像処理装置のはみ出し検知方法およびプログラム
JP6744536B1 (ja) 目線撮像方法及び目線撮像システム
JP4530175B2 (ja) 画像処理装置、画像処理装置のはみ出し検知方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

LAPS Cancellation because of no payment of annual fees