JP5648270B2 - Fiber-reinforced composite material molded article and its manufacturing method - Google Patents
Fiber-reinforced composite material molded article and its manufacturing method Download PDFInfo
- Publication number
- JP5648270B2 JP5648270B2 JP2009106619A JP2009106619A JP5648270B2 JP 5648270 B2 JP5648270 B2 JP 5648270B2 JP 2009106619 A JP2009106619 A JP 2009106619A JP 2009106619 A JP2009106619 A JP 2009106619A JP 5648270 B2 JP5648270 B2 JP 5648270B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- composite material
- reinforced composite
- resin
- frp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Description
本発明は、繊維強化複合材料成形品とその製造方法に関する。 The present invention relates to a method of manufacturing a fiber-reinforced composite material molded article and its.
繊維強化複合材料(以下、「FRP」という。)は、軽量で且つ高強度である特徴から、航空機、自動車、スポーツ、レジャー、その他各種工業用途に利用されている。また、FRPは、それを構成する繊維集束体の配向性によって特徴ある異方性光沢を有し、さらに表面に塗装等の処理を施すことによって、深みのある重厚な外観を与える等の特徴を有する。 BACKGROUND ART Fiber reinforced composite materials (hereinafter referred to as “FRP”) are used for aircraft, automobiles, sports, leisure, and other various industrial applications because of their light weight and high strength. In addition, FRP has a characteristic anisotropic gloss due to the orientation of the fiber bundling body constituting the FRP, and further has features such as giving a deep and heavy appearance by applying a treatment such as painting to the surface. Have.
近年、これらの特徴に加え、難燃性を付与したFRPも数多く検討され、各種電気・電子機器筐体から航空機内装品、自動車内装品などへの用途が拡がっている。これら電気・電子機器筐体、航空機内装品、自動車内装品に用いる場合には、FRP板に同種のFRPや熱可塑性樹脂、金属材料などを接合一体化した三次元形状の部材を用いる場合が多い。
例えば、特許文献1には、可撓性を有する炭素繊維複合材料板の表面に、熱可塑性樹脂を射出成形して結合一体化せしめた炭素繊維複合成形品が開示されている。
In recent years, in addition to these features, many FRPs imparted with flame retardancy have been studied, and applications from various electrical / electronic equipment casings to aircraft interior parts, automobile interior parts, and the like are expanding. When used in these electrical / electronic equipment casings, aircraft interior parts, and automobile interior parts, a three-dimensional member obtained by joining and integrating the same type of FRP, thermoplastic resin, metal material, etc. to the FRP plate is often used. .
For example, Patent Document 1 discloses a carbon fiber composite molded article in which a thermoplastic resin is injection-molded and bonded and integrated on the surface of a flexible carbon fiber composite material plate.
しかしながら、特許文献1に記載のように、FRPに熱可塑性樹脂を射出成形して接合一体化する場合、特にFRPと熱可塑性樹脂との接合部分の端面における接着性が不十分となる場合があり、FRPと熱可塑性樹脂が剥離することがあった。 However, as described in Patent Document 1, when the thermoplastic resin is injection-molded into the FRP and bonded and integrated, the adhesiveness at the end face of the bonded portion between the FRP and the thermoplastic resin may be insufficient. The FRP and the thermoplastic resin sometimes peeled off.
本発明は上記事情に鑑みてなされたもので、特に繊維強化複合材料と熱可塑性樹脂との接合部分の端面において、接着性に優れる繊維強化複合材料成形品とその製造方法の提供を課題とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a fiber-reinforced composite material molded article having excellent adhesion and a method for producing the same, particularly at the end face of the joint portion between the fiber-reinforced composite material and the thermoplastic resin. .
本発明の繊維強化複合材料成形品は、強化繊維にマトリックス樹脂が含浸したシート状の繊維強化複合材料の表面に、熱可塑性樹脂を射出成形して接合一体化した繊維強化複合材料成形品であって、前記熱可塑性樹脂と接合する前記繊維強化複合材料は、端面が当該繊維強化複合材料の厚さ方向に対して平行でないことを特徴とする。
また、前記強化繊維が、炭素繊維であることが好ましい。
さらに、前記マトリックス樹脂が、リンを含有するエポキシ樹脂であることが好ましい。
また、前記熱可塑性樹脂が、ポリカーボネート樹脂とアクリロニトリル−ブタジエン−スチレン樹脂とのアロイ樹脂であることが好ましい。
さらに、前記接合一体化は、インジェクションプレスによりなされることが好ましい。
The fiber-reinforced composite material molded article of the present invention is a fiber-reinforced composite material molded article obtained by injection-molding a thermoplastic resin on a surface of a sheet-like fiber-reinforced composite material in which a reinforcing resin is impregnated with a matrix resin. The fiber reinforced composite material joined to the thermoplastic resin is characterized in that an end surface is not parallel to the thickness direction of the fiber reinforced composite material.
The reinforcing fiber is preferably a carbon fiber.
Furthermore, it is preferable that the matrix resin is an epoxy resin containing phosphorus.
Moreover, it is preferable that the thermoplastic resin is an alloy resin of a polycarbonate resin and an acrylonitrile-butadiene-styrene resin.
Furthermore, it is preferable that the joining and integration be performed by an injection press.
また、本発明の繊維強化複合材料成形品の製造方法は、強化繊維にマトリックス樹脂が含浸したシート状の繊維強化複合材料の表面に、熱可塑性樹脂を射出成形して接合一体化する繊維強化複合材料成形品の製造方法であって、前記繊維強化複合材料の熱可塑性樹脂との接合部分のうち、当該繊維強化複合材料の厚さ方向に対して平行にならないように、端面を形成した後に、前記熱可塑性樹脂を射出成形することを特徴とする。
さらに、インジェクションプレスにより、前記熱可塑性樹脂を射出成形することが好ましい。
In addition, the method for producing a fiber-reinforced composite material molded article according to the present invention is a fiber-reinforced composite in which a thermoplastic resin is injection-molded and joined and integrated on the surface of a sheet-like fiber-reinforced composite material in which a reinforcing fiber is impregnated with a matrix resin. A method for producing a material molded article, wherein after forming an end face so as not to be parallel to the thickness direction of the fiber reinforced composite material, of the joint portion of the fiber reinforced composite material with the thermoplastic resin, The thermoplastic resin is injection-molded.
Furthermore, it is preferable to injection-mold the thermoplastic resin by an injection press.
本発明の繊維強化複合材料成形品は、特に繊維強化複合材料と熱可塑性樹脂との接合部分の端面において、接着性に優れる。
また、本発明の繊維強化複合材料成形品の製造方法によれば、特に繊維強化複合材料と熱可塑性樹脂との接合部分の端面において、接着性に優れる繊維強化複合材料成形品が得られる。
The fiber-reinforced composite material molded article of the present invention is excellent in adhesiveness particularly at the end face of the joint portion between the fiber-reinforced composite material and the thermoplastic resin.
Moreover, according to the manufacturing method of the fiber reinforced composite material molded article of the present invention, a fiber reinforced composite material molded article having excellent adhesion can be obtained particularly at the end face of the joint portion between the fiber reinforced composite material and the thermoplastic resin.
以下、本発明について、図面を用いて詳細に説明する。
図1は、本発明の繊維強化複合材料成形品の一例を示す断面図である。この例の繊維強化複合材料成形品10は、シート状の繊維強化複合材料(以下、「FRP」という。)11の表面に、射出成形された熱可塑性樹脂12が接合一体化されている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a fiber-reinforced composite material molded article of the present invention. In the fiber-reinforced composite material molded
<繊維強化複合材料>
本発明に用いるFRP11としては、強化繊維にマトリックス樹脂が含浸したプリプレグを、必要に応じて複数積層し、高温高圧下で成形したものが挙げられる。
強化繊維としては、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維などの各種の無機繊維または有機繊維を用いることができる。これらの中でも難燃性の観点から炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましく、さらに比強度および比弾性に優れる点で炭素繊維が特に好ましい。
強化繊維の形態としては、一方向に引き揃えてもよく、織物、またノンクリンプファブリックでもよい。
<Fiber reinforced composite material>
As FRP11 used for this invention, what laminated | stacked multiple prepreg which impregnated the matrix resin to the reinforced fiber as needed, and shape | molded under high temperature high pressure is mentioned.
As the reinforcing fiber, various inorganic fibers or organic fibers such as carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber can be used. Among these, carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferable from the viewpoint of flame retardancy, and carbon fiber is particularly preferable in terms of excellent specific strength and specific elasticity.
The form of the reinforcing fiber may be aligned in one direction, or may be a woven fabric or a non-crimp fabric.
マトリックス樹脂としては、公知の熱硬化性樹脂または熱可塑性樹脂が挙げられる。
熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、ビスマレイミド樹脂、メラミン樹脂、不飽和ポリエステル樹脂等が挙げられる。
熱可塑性樹脂としては、例えばポリアミド(PA)樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−エチレン−スチレン(AES)樹脂、アクリロニトリル−スチレン−アクリレート(ASA)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリカーボネート(PC)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエーテルスルフォン(PES)樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリイミド(PI)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリエーテル樹脂、ポリオレフィン(PO)樹脂、液晶ポリマー樹脂、ポリアリレート樹脂、ポリスルフォン樹脂、ポリアクリロニトリルスチレン(PAS)樹脂、ポリスチレン(PS)樹脂、ポリアクリロニトリル(PAN)樹脂、ポリ塩化ビニル(PVC)樹脂等が挙げられる。
これらの中でも靭性、耐衝撃性に優れる点で熱硬化性樹脂、特にエポキシ樹脂が好ましい。さらに電気・電子機器筐体や航空機・自動車内装品、各種工業品に用いることを考慮すると、難燃性を有する点で、リンを含有するエポキシ樹脂が特に好ましい。
Examples of the matrix resin include known thermosetting resins and thermoplastic resins.
Examples of the thermosetting resin include an epoxy resin, a phenol resin, a vinyl ester resin, a bismaleimide resin, a melamine resin, and an unsaturated polyester resin.
Examples of the thermoplastic resin include polyamide (PA) resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-ethylene-styrene (AES) resin, acrylonitrile-styrene-acrylate (ASA) resin, polyethylene terephthalate (PET) resin, Polycarbonate (PC) resin, polymethyl methacrylate (PMMA) resin, polybutylene terephthalate (PBT) resin, polyether sulfone (PES) resin, polyphenylene ether (PPE) resin, polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) ) Resin, polyether ketone ketone (PEKK) resin, polyimide (PI) resin, polytetrafluoroethylene (PTFE) resin, polyether resin, polyolefin Resin (PO) resin, liquid crystal polymer resin, polyarylate resin, polysulfone resin, polyacrylonitrile styrene (PAS) resin, polystyrene (PS) resin, polyacrylonitrile (PAN) resin, polyvinyl chloride (PVC) resin, etc. It is done.
Among these, a thermosetting resin, particularly an epoxy resin is preferable in terms of excellent toughness and impact resistance. Furthermore, in consideration of use in electrical / electronic equipment casings, aircraft / automobile interior parts, and various industrial products, epoxy resins containing phosphorus are particularly preferable in terms of flame retardancy.
FRP11は、熱可塑性樹脂12が接合する部分のうち、端面11aがFRP11の厚さT1方向に対して平行でないことを特徴とする。これにより、端面11aにおける熱可塑性樹脂との接合面積が、図9に示すような繊維強化複合材料成形品50に比べて広がる。従って、特にFRPと熱可塑性樹脂との接合部分の端面において、FRPと熱可塑性樹脂の接着性が向上する。
なお、図9に示す繊維強化複合材料成形品50は、熱可塑性樹脂52が接合する部分のうち、端面51aがFRP51の厚さT5方向に対して平行であるFRP51の表面に、熱可塑性樹脂52が射出成形され接合一体化している。
The
Incidentally, a fiber-reinforced composite material molded
FRP11の端面11aの形状は、厚さT1方向に対して平行でなければよく、特に制限されない。例えば図1、2に示すようにFRP11の端面11aの稜角の上下共にR加工が施されている形状、図3に示すようにFRP21の端面21aの稜角の上側のみR加工が施されている形状、図4に示すようにFRP31の端面31aの上側の稜角が面取りされた1つの平面31a’からなり、該平面の向きが厚さT3方向と異なる形状、図5に示すようにFRP41の厚みが段階的に変化する形状などが挙げられる。
なお、図5に示すように、FRP41の端面41aが2つ以上の平面41a’を有する場合、少なくとも1つの平面の向きがFRP41の厚さT4方向と異なれば、残りの平面の向きは厚さT4方向と同じであってもよく、異なっていてもよい。
Shape of the
As shown in FIG. 5, when the
<熱可塑性樹脂>
FRPの表面に射出成形する熱可塑性樹脂としては、例えばマトリックス樹脂の説明において先に例示した熱可塑性樹脂や、ポリビニルフォルマール(PVF)、あるいはこれらの樹脂を組み合わせてなるアロイ樹脂等、射出成形できる樹脂であればよく、FRPとの接着性を考慮して適宜選定して使用することができる。これらの中でも、靭性・汎用性に優れる点で、ABS樹脂、AES樹脂、ASA樹脂、ポリアミド樹脂、PC樹脂とABS樹脂とのアロイ樹脂、PC樹脂とAES樹脂とのアロイ樹脂、PC樹脂とASA樹脂とのアロイ樹脂が好適であり、特にABS樹脂、PC樹脂とABS樹脂とのアロイ樹脂が適している。
また、FRPの表面に射出成形する熱可塑性樹脂には、強化繊維、強化充填材、難燃剤、着色剤、安定剤等の添加剤を適宜配合してもよい。
<Thermoplastic resin>
As the thermoplastic resin to be injection-molded on the surface of the FRP, for example, the thermoplastic resin exemplified above in the description of the matrix resin, polyvinyl formal (PVF), or an alloy resin formed by combining these resins can be injection-molded. Any resin can be used, and it can be appropriately selected and used in consideration of adhesiveness with FRP. Among these, ABS resin, AES resin, ASA resin, polyamide resin, alloy resin of PC resin and ABS resin, alloy resin of PC resin and AES resin, PC resin and ASA resin are excellent in toughness and versatility. And an alloy resin of an ABS resin, a PC resin and an ABS resin are particularly suitable.
In addition, additives such as reinforcing fibers, reinforcing fillers, flame retardants, colorants, stabilizers and the like may be appropriately blended in the thermoplastic resin that is injection-molded on the surface of the FRP.
<繊維強化複合材料成形品の製造方法>
本発明の繊維強化複合材料成形品は、以下のようにして製造できる。
まず、FRPの熱可塑性樹脂との接合部分のうち、端面がFRPの厚さ方向に対して平行にならないように、端面を形成する。端面の形成方法としては、例えば端面がERPの厚さ方向に対して平行にならないように、FRPの端部を削る方法が挙げられる。
FRPの端部の削り方としては特に制限されず、例えば図1、2に示すようにFRP10の端部11bの全てを面取りする方法(すなわち、稜角の上下共にR加工を施す方法)、図3に示すようにFRP20の端部21bの一部を面取りする方法(すなわち、稜角の上側のみにR加工を施す方法)、図4に示すようにFRP30の端部31bを厚さT3方向と異なる方向に切断する方法、図5に示すように端面41aに2つ以上の平面41a’ができるように、かつ隣り合う平面41a’同士の向きが異なるように、FRP40の端部41bを切断する方法などが挙げられる。
<Production method of fiber-reinforced composite material molded product>
The fiber-reinforced composite material molded article of the present invention can be produced as follows.
First, the end face is formed so that the end face is not parallel to the thickness direction of the FRP in the joining portion of the FRP with the thermoplastic resin. As a method for forming the end face, for example, a method of scraping the end of the FRP so that the end face is not parallel to the thickness direction of the ERP can be mentioned.
The way of cutting the end of the FRP is not particularly limited. For example, as shown in FIGS. 1 and 2, a method of chamfering all of the
ついで、端部を削ったFRPを金型に入れ、熱可塑性樹脂を射出成形し、FRPと熱可塑性樹脂が接合一体化した繊維強化複合材料成形品を得る。
射出条件としては特に制限されず、用いるFRPや熱可塑性樹脂の種類や、金型の形状に合わせて適宜設定すればよい。
Next, the FRP with the end cut off is put into a mold and a thermoplastic resin is injection-molded to obtain a fiber-reinforced composite material molded product in which the FRP and the thermoplastic resin are joined and integrated.
The injection conditions are not particularly limited, and may be set as appropriate according to the type of FRP and thermoplastic resin used and the shape of the mold.
例えば図2に示すFRP11を用いた場合、図1に示すようなFRP11と熱可塑性樹脂12が接合一体化した繊維強化複合材料成形品10が得られる。図3に示すFRP21を用いた場合、図6に示すようなFRP21と熱可塑性樹脂22が接合一体化した繊維強化複合材料成形品20が得られる。図4に示すFRP31を用いた場合、図7に示すようなFRP31と熱可塑性樹脂32が接合一体化した繊維強化複合材料成形品30が得られる。図5に示すFRP41を用いた場合、図8に示すようなFRP41と熱可塑性樹脂42が接合一体化した繊維強化複合材料成形品40が得られる。
For example, when the
本発明の繊維強化複合材料成形品は、既存の射出成形機を用いて製造できるが、大型成形品の成形が可能であり、FRPと熱可塑性樹脂との接着性がより強固となる点で、インジェクションプレスを用いることが好ましい。 The fiber-reinforced composite material molded product of the present invention can be manufactured using an existing injection molding machine, but can be molded into a large molded product, and the adhesiveness between the FRP and the thermoplastic resin becomes stronger. It is preferable to use an injection press.
なお、本発明においては、FRPの端部が例えば図2〜5に示すような形状になるように、大きさの異なる複数のプリプレグを積層してFRPを作製し、該FRPを用いて熱可塑性樹脂を射出成形し、繊維強化複合材料成形品を製造してもよい。 In the present invention, an FRP is prepared by laminating a plurality of prepregs having different sizes so that the end of the FRP has a shape as shown in FIGS. 2 to 5, for example, and thermoplasticity is produced using the FRP. A resin reinforced composite material molded product may be manufactured by injection molding.
以上説明したように、本発明によれば、熱可塑性樹脂との接合部分のうち、端面がFRPの厚さ方向に対して平行でないFRPを用いて、該FRPの表面に熱可塑性樹脂を射出成形するので、FRPの端部における熱可塑性樹脂との接合面積が広がる。従って、特にFRPと熱可塑性樹脂との接合部分の端面において接着性に優れ、FRPと熱可塑性樹脂とが剥離しにくい繊維強化複合材料成形品が得られる。
また、本発明により得られる繊維強化複合材料成形品は、FRP本来の特性、すなわち軽量で、優れた強度、剛性、寸法安定性、耐久性、衝撃吸収性を発現できると共に、FRP特有の深みのある重厚な外観を有する。
As described above, according to the present invention, the FRP having an end surface that is not parallel to the thickness direction of the FRP is used for injection molding of the thermoplastic resin on the surface of the FRP. Therefore, the bonding area with the thermoplastic resin at the end of the FRP is expanded. Therefore, a fiber-reinforced composite material molded article having excellent adhesion at the end face of the joint portion between the FRP and the thermoplastic resin and being difficult to peel off the FRP and the thermoplastic resin can be obtained.
In addition, the fiber-reinforced composite material molded product obtained by the present invention has the characteristics inherent to FRP, that is, light weight, excellent strength, rigidity, dimensional stability, durability, shock absorption, and a depth unique to FRP. Has a heavy appearance.
以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
[実施例1]
<FRPの作製>
プリプレグ(三菱レイヨン株式会社製のパイロフィルプリプレグ、「品番:TR380G200S」、繊維目付200g/m2、樹脂含有率33質量%)を300mm×300mmに切断し、炭素繊維が0°/90°/90°/0°の向きになるよう4枚積み重ね、130℃×90分、昇温速度2℃/分、圧力0.6MPaの条件でオートクレーブにて硬化し、厚さ0.8mmのFRPを得た。
ついで、得られたFRPを280mm×220mmに切断した後、FRPの端面が図5に示すように、厚さが段階的に変化する形状になるように端部を削った。
[Example 1]
<FRP production>
A prepreg (Pyrofil prepreg manufactured by Mitsubishi Rayon Co., Ltd., “product number: TR380G200S”, fiber basis weight 200 g / m 2 , resin content 33 mass%) is cut into 300 mm × 300 mm, and the carbon fiber is 0 ° / 90 ° / 90. 4 sheets were stacked so that the orientation was at 0 ° / 0 °, and cured in an autoclave under conditions of 130 ° C. × 90 minutes, heating rate 2 ° C./minute, pressure 0.6 MPa, and 0.8 mm thick FRP was obtained. .
Next, after cutting the obtained FRP into 280 mm × 220 mm, the end of the FRP was shaved so that the thickness of the FRP was changed stepwise as shown in FIG.
<繊維強化複合材料成形品の製造>
端部を削ったFRPを金型底部にセットし、熱可塑性樹脂(UMGABS株式会社製の難燃性ポリカーボネート樹脂とABS樹脂のアロイ樹脂、「品番:CX55A」)を、シリンダー温度230℃、金型温度60℃の条件で、熱可塑性樹脂の高さが5mmになるように射出成形して、図8に示すような、FRP41(厚さT4:0.8mm)と熱可塑性樹脂42(高さH:5mm)とが接合一体化した繊維強化複合材料成形品40を得た。
<Manufacture of fiber reinforced composite material molded products>
FRP with the end cut off is set on the bottom of the mold, and a thermoplastic resin (flammable polycarbonate resin and ABS resin alloy made by UMGABS Co., Ltd., “Product No .: CX55A”) is set at a cylinder temperature of 230 ° C. Under the condition of a temperature of 60 ° C., injection molding is performed so that the height of the thermoplastic resin becomes 5 mm, and FRP 41 (thickness T 4 : 0.8 mm) and the thermoplastic resin 42 (height as shown in FIG. 8). H: 5 mm) was joined and integrated to obtain a fiber reinforced composite material molded
得られた繊維強化複合材料成形品は、FRPと熱可塑性樹脂との接着性、特にFRPと熱可塑性樹脂との接合部分の端面における接着性が良好であり、1mの高さから落下させても、FRPと熱可塑性樹脂とが剥離することはなかった。
また、外観はFRP特有の高級重厚感を有し、電気・電子機器筐体や航空機・自動車内装品をはじめ各種工業用品へ有効に利用できるものであった。
The obtained fiber reinforced composite material molded article has good adhesion between the FRP and the thermoplastic resin, particularly at the end face of the joint portion between the FRP and the thermoplastic resin, and even when dropped from a height of 1 m. FRP and the thermoplastic resin were not peeled off.
In addition, the appearance has a high-class profound feeling peculiar to FRP, and can be effectively used for various industrial products such as electrical and electronic equipment casings, aircraft and automobile interior parts.
[実施例2]
FRP用のプリプレグとして、炭素繊維クロスプリプレグ(三菱レイヨン株式会社製、「品番:TR3110 380GMP」、繊維目付200g/m2、樹脂含有率40質量%)を用いた以外は、実施例1と同様にしてFRPを作製し、FRPの端面が図2に示すように、稜角の上下共にR加工が施され丸みのある形状になるように端部を削った。ついで、実施例1と同様にして該FRPと熱可塑性樹脂とが接合一体化した繊維強化複合材料成形品を得た。
得られた繊維強化複合材料成形品は、実施例1と同様に、FRPと熱可塑性樹脂との接着性、特にFRPと熱可塑性樹脂との接合部分の端面における接着性が良好であり、1mの高さから落下させても、FRPと熱可塑性樹脂とが剥離することはなかった。
また、外観はFRP特有の高級重厚感を有し、電気・電子機器筐体や航空機・自動車内装品をはじめ各種工業用品へ有効に利用できるものであった。
[Example 2]
Except for using a carbon fiber cloth prepreg (manufactured by Mitsubishi Rayon Co., Ltd., “Part No .: TR3110 380GMP”, fiber basis weight 200 g / m 2 ,
The obtained fiber-reinforced composite material molded article had good adhesion between the FRP and the thermoplastic resin, in particular, the adhesion at the end face of the joined portion of the FRP and the thermoplastic resin, as in Example 1. Even when dropped from the height, the FRP and the thermoplastic resin did not peel off.
In addition, the appearance has a high-class profound feeling peculiar to FRP, and can be effectively used for various industrial products such as electrical and electronic equipment casings, aircraft and automobile interior parts.
[実施例3]
FRP用のプリプレグとして、一方向に引き揃えた炭素繊維(三菱レイヨン株式会社製、「品番:TR50S15L」)にリンを含有するエポキシ樹脂が含浸したプリプレグ(繊維目付225g/m2、樹脂含有率30質量%)4枚を用いた以外は、実施例1と同様にしてFRPを作製し、FRPの端面が図4に示すように、上側の稜角が面取りされ、断面が台形の形状になるように端部を削った。ついで、実施例1と同様にして該FRPと熱可塑性樹脂とが接合一体化した繊維強化複合材料成形品を得た。
得られた繊維強化複合材料成形品は、実施例1と同様に、FRPと熱可塑性樹脂との接着性、特にFRPと熱可塑性樹脂との接合部分の端面における接着性が良好であり、1mの高さから落下させても、FRPと熱可塑性樹脂とが剥離することはなかった。
また、外観はFRP特有の高級重厚感を有し、電気・電子機器筐体や航空機・自動車内装品をはじめ各種工業用品へ有効に利用できるものであった。
[Example 3]
As a prepreg for FRP, carbon fiber (Mitsubishi Rayon Co., Ltd., “Product No .: TR50S15L”) aligned in one direction is impregnated with an epoxy resin containing phosphorus (fiber basis weight 225 g / m 2 , resin content 30 (Mass%) Except for using 4 sheets, FRP was produced in the same manner as in Example 1, and the end face of the FRP was chamfered at the upper ridge angle and the cross-section was trapezoidal as shown in FIG. Sharpened the edge. Next, in the same manner as in Example 1, a fiber-reinforced composite material molded article in which the FRP and the thermoplastic resin were joined and integrated was obtained.
The obtained fiber-reinforced composite material molded article had good adhesion between the FRP and the thermoplastic resin, in particular, the adhesion at the end face of the joined portion of the FRP and the thermoplastic resin, as in Example 1. Even when dropped from the height, the FRP and the thermoplastic resin did not peel off.
In addition, the appearance has a high-class profound feeling peculiar to FRP, and can be effectively used for various industrial products such as electrical and electronic equipment casings, aircraft and automobile interior parts.
[比較例1]
FRPの端部を削らなかった以外は、実施例1と同様の条件でFRPの表面に熱可塑性樹脂を射出成形し、図9に示すような、FRP51と熱可塑性樹脂52とが接合一体化した繊維強化複合材料成形品50を得た。
得られた繊維強化複合材料成形品は、FRPと熱可塑性樹脂との接着性は一見良好であったが、1mの高さから落下させるとFRPと熱可塑性樹脂が剥離した。
[Comparative Example 1]
A thermoplastic resin was injection molded on the surface of the FRP under the same conditions as in Example 1 except that the end of the FRP was not cut, and the
The obtained fiber reinforced composite material molded article had good adhesion between FRP and thermoplastic resin at first glance, but when dropped from a height of 1 m, FRP and thermoplastic resin were peeled off.
10、20、30、40、50:繊維強化複合材料成形品、
11、21、31、41、51:繊維強化複合材料、
11a、21a、31a、41a、51a:端面、
11b、21b、31b、41b:端部、
12、22、32、42、52:熱可塑性樹脂、
T1、T3、T4、T5:厚さ。
10, 20, 30, 40, 50: Fiber-reinforced composite material molded article,
11, 21, 31, 41, 51: fiber reinforced composite material,
11a, 21a, 31a, 41a, 51a: end face,
11b, 21b, 31b, 41b: end,
12, 22, 32, 42, 52: thermoplastic resin,
T 1 , T 3 , T 4 , T 5 : thickness.
Claims (4)
前記熱可塑性樹脂と接合する前記繊維強化複合材料は、端面に隣り合う2つ以上の平面を有し、少なくとも1つの平面の向きが当該繊維強化複合材料の厚さ方向に対して平行でなく、かつ端面における厚みが段階的に変化する、繊維強化複合材料成形品。 A fiber-reinforced composite material molded product obtained by injection-molding a thermoplastic resin on a surface of a sheet-like fiber-reinforced composite material impregnated with a matrix resin in a reinforced fiber,
The fiber-reinforced composite material to be bonded to the thermoplastic resin has two or more planes adjacent to the end surface, rather parallel orientation of at least one plane with respect to the thickness direction of the fiber-reinforced composite material In addition, a fiber-reinforced composite material molded article in which the thickness at the end face changes stepwise .
前記繊維強化複合材料の熱可塑性樹脂との接合部分のうち、端面に隣り合う2つ以上の平面を形成し、少なくとも1つの平面の向きが当該繊維強化複合材料の厚さ方向に対して平行にならないように、かつ端面における厚みが段階的に変化するように、端面を形成した後に、前記熱可塑性樹脂を射出成形する、繊維強化複合材料成形品の製造方法。 On the surface of the fiber-reinforced composite material of the sheet which the matrix resin is impregnated into reinforcing fibers, a method for producing a fiber-reinforced composite material molded article integrally bonding a thermoplastic resin injection molding to,
Two or more planes adjacent to the end face are formed in the joint portion of the fiber reinforced composite material with the thermoplastic resin, and the direction of at least one plane is parallel to the thickness direction of the fiber reinforced composite material. A method for producing a fiber-reinforced composite material molded article, in which the thermoplastic resin is injection-molded after forming the end face so that the thickness at the end face changes stepwise .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106619A JP5648270B2 (en) | 2009-04-24 | 2009-04-24 | Fiber-reinforced composite material molded article and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106619A JP5648270B2 (en) | 2009-04-24 | 2009-04-24 | Fiber-reinforced composite material molded article and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010253801A JP2010253801A (en) | 2010-11-11 |
JP5648270B2 true JP5648270B2 (en) | 2015-01-07 |
Family
ID=43315295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009106619A Active JP5648270B2 (en) | 2009-04-24 | 2009-04-24 | Fiber-reinforced composite material molded article and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5648270B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6479544B2 (en) * | 2015-04-10 | 2019-03-06 | Nok株式会社 | Manufacturing method of gasket |
JP6915277B2 (en) | 2015-12-25 | 2021-08-04 | 東レ株式会社 | Composite molded body and its manufacturing method |
CN113557192B (en) * | 2019-03-18 | 2023-09-08 | 日本制铁株式会社 | Reinforced steel member for automobile |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49109449A (en) * | 1973-02-21 | 1974-10-17 | ||
JPS6050106U (en) * | 1983-09-14 | 1985-04-09 | 大日本印刷株式会社 | Cup-shaped synthetic resin multilayer container |
JP3035409B2 (en) * | 1992-06-30 | 2000-04-24 | 三菱レイヨン株式会社 | Manufacturing method of carbon fiber composite molded product |
JPH0935615A (en) * | 1995-07-21 | 1997-02-07 | Yazaki Corp | Resin mold and manufacture of it |
JPH09277420A (en) * | 1996-04-19 | 1997-10-28 | Toray Ind Inc | Fiber reinforced plastic structure and its production |
JPH10100193A (en) * | 1996-09-30 | 1998-04-21 | Kojima Press Co Ltd | Resin molded product and its production |
JP2004042554A (en) * | 2002-07-15 | 2004-02-12 | Asahi Kasei Chemicals Corp | Case component and its injection molding method |
CN101824205B (en) * | 2004-02-27 | 2014-04-16 | 东丽株式会社 | Integrated molding, fiber-reinforced composite material board and housing for electric/electronic device |
JP2005239939A (en) * | 2004-02-27 | 2005-09-08 | Toray Ind Inc | Fiber reinforced resin composite material |
CN101193506B (en) * | 2006-11-22 | 2011-03-30 | 深圳富泰宏精密工业有限公司 | Electronic device shell and its making method |
JP2008238624A (en) * | 2007-03-28 | 2008-10-09 | Toray Ind Inc | Polyamide resin structure and its manufacturing method |
CN101835596B (en) * | 2007-09-11 | 2012-08-29 | 东丽株式会社 | Composite shaped article and process for manufacturing the same |
-
2009
- 2009-04-24 JP JP2009106619A patent/JP5648270B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010253801A (en) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5844967B2 (en) | Fiber-reinforced thermoplastic resin molded article and method for producing the same | |
US20100239856A1 (en) | Continuous Fiber Reinforced Thermoplastic Parts With In-Situ Molded Features | |
KR101196787B1 (en) | Composite shaped article and process for manufacturing the same | |
EP2669081B1 (en) | Joint body of carbon fiber reinforced composite material | |
JP5968600B2 (en) | Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same | |
KR101771287B1 (en) | Continuous fiber reinforced composite material and molded product thereof | |
JP2014125532A5 (en) | ||
CN105246681B (en) | The manufacturing method of resin composite body and resin composite body | |
CN109996658B (en) | Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article | |
JP6273804B2 (en) | Manufacturing method of fiber reinforced plastic molding | |
JP2015178241A (en) | Method of producing fiber-reinforced resin material | |
CA3077669A1 (en) | Manufacturing method for fiber-reinforced plastic composite | |
JP2013176876A (en) | Manufacturing method of molding | |
JP5648270B2 (en) | Fiber-reinforced composite material molded article and its manufacturing method | |
JP5651925B2 (en) | Fiber-reinforced composite material molded article and its manufacturing method | |
WO2022260186A1 (en) | Laminate for pressing, and pressed laminate | |
CN106687271B (en) | Method for producing a multi-shell composite component with an integrated reinforcing structure and multi-shell composite component produced therefrom | |
US11872773B2 (en) | Method for producing fiber-reinforced plastic | |
JP6229197B2 (en) | Molded product and manufacturing method thereof | |
JP2017119432A (en) | Method for producing fiber-reinforced plastic and fiber-reinforced plastic | |
JP6488696B2 (en) | Method for producing fiber-reinforced composite material molded body | |
US11951695B2 (en) | Method for producing fiber-reinforced plastic | |
KR101237614B1 (en) | Zipper lock type silicone bag for molding composite materials | |
JPH10156881A (en) | Production of carbon fiber composite molding | |
JP2007131697A (en) | Fiber-reinforced thermoplastic resin stampable sheet and fiber-reinforced thermoplastic resin molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141014 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141027 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5648270 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |