JP2017119432A - Method for producing fiber-reinforced plastic and fiber-reinforced plastic - Google Patents

Method for producing fiber-reinforced plastic and fiber-reinforced plastic Download PDF

Info

Publication number
JP2017119432A
JP2017119432A JP2016241871A JP2016241871A JP2017119432A JP 2017119432 A JP2017119432 A JP 2017119432A JP 2016241871 A JP2016241871 A JP 2016241871A JP 2016241871 A JP2016241871 A JP 2016241871A JP 2017119432 A JP2017119432 A JP 2017119432A
Authority
JP
Japan
Prior art keywords
reinforced plastic
fiber
fiber reinforced
prepreg
prepreg laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016241871A
Other languages
Japanese (ja)
Inventor
藤田 雄三
Yuzo Fujita
雄三 藤田
悠太 内藤
Yuta Naito
悠太 内藤
一朗 武田
Ichiro Takeda
一朗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017119432A publication Critical patent/JP2017119432A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a fiber-reinforced plastic having high dynamic characteristics and high productivity when a complicated shape is molded.SOLUTION: A method for producing a fiber-reinforced plastic includes: arranging a prepreg laminate a and a prepreg laminate b obtained by laminating a plurality of prepregs formed by impregnating at least a part of a reinforced fiber having a fiber length L of 10-300 nm with a resin at predetermined positions in both of surface molds; applying a surface pressure to the prepreg laminate a and the prepreg laminate b and flowing the prepreg laminates to form a region (hereinafter referred to as mixed region c) where both of the prepreg laminate a and the prepreg laminate b exist; solidifying the respective prepreg laminates; forming the prepreg laminate a into a fiber-reinforced plastic A, forming the prepreg laminate b into a fiber-reinforced plastic B, and forming the mixed region c into a fiber-reinforced plastic C; and thereby producing a fiber-reinforced plastic where the fiber-reinforced plastic A and the fiber-reinforced plastic B are joined to each other through the fiber-reinforced plastic C.SELECTED DRAWING: Figure 1

Description

本発明は、生産性がよく、高い力学特性を有する繊維強化プラスチックに関する。   The present invention relates to a fiber-reinforced plastic having good productivity and high mechanical properties.

強化繊維と樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、航空機、宇宙機、自動車、鉄道、船舶、電化製品、スポーツ等の構造用途に展開され、その需要は年々高まりつつある。   Fiber reinforced plastics composed of reinforced fibers and resins are attracting attention in industrial applications because they have high specific strength, high specific modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. Deployed in structural applications such as aircraft, spacecraft, automobiles, railways, ships, electrical appliances, sports, etc., the demand is increasing year by year.

繊維強化プラスチックの製造方法には、多種の製造方法が存在し、例えば強化繊維に未硬化の樹脂を含浸させたプリプレグを用いた製造方法が知られている。プリプレグの種類も多種存在し、例えばSMC(シートモールディングコンパウンド)は生産性が良いことで知られている。SMCは未硬化の樹脂が含浸した数mm〜数10mm程度の繊維長さの強化繊維を同一方向に数千本束ねた繊維束をランダムに分散させたシート基材であり、プレス成形することにより流動させることができ、速硬化性の樹脂と組み合わせることで、複雑な形状を数分単位で成形することができる(例えば特許文献1)。しかし、SMCによって製造された繊維強化プラスチックは、強化繊維の長さが短く、含有率も低いため、構造部材としてはしばしば力学特性が不足するという問題があった。   There are various production methods for producing fiber-reinforced plastics. For example, a production method using a prepreg obtained by impregnating a reinforced fiber with an uncured resin is known. There are various types of prepregs, for example, SMC (sheet molding compound) is known for its good productivity. SMC is a sheet base material in which fiber bundles in which thousands of reinforcing fibers having a fiber length of about several mm to several tens of mm impregnated with uncured resin are bundled in the same direction are randomly dispersed. When combined with a fast-curing resin, a complicated shape can be formed in units of several minutes (for example, Patent Document 1). However, the fiber reinforced plastic manufactured by SMC has a problem that mechanical properties are often insufficient as a structural member because the length of the reinforcing fiber is short and the content is low.

高い力学特性を有する繊維強化プラスチックの成形方法には、一方向に強化繊維が配向し、樹脂が含浸したプリプレグ(一方向プリプレグ)を用いた成形方法が知られている。強化繊維を一方向とすることで、SMCよりも強化繊維の体積含有率を高くでき、強化繊維のうねりも少なくなるため、高い力学特性を有する繊維強化プラスチックを得ることができる。一方向プリプレグを用いて複雑形状に成形する方法としては、例えば熱硬化性樹脂が含浸した一方向プリプレグを一枚一枚手で型に沿わせて積層してプリフォームとし、プリフォームをオートクレーブ成形やプレス成形などの加熱・加圧手段を用いて固化させる方法がある(例えば特許文献2)。これにより、高い力学特性を持つ高品質な繊維強化プラスチックを得ることができる。   As a method for molding a fiber reinforced plastic having high mechanical properties, a molding method using a prepreg (unidirectional prepreg) in which reinforcing fibers are oriented in one direction and impregnated with a resin is known. By making the reinforcing fibers unidirectional, the volume content of the reinforcing fibers can be made higher than that of the SMC, and the waviness of the reinforcing fibers can be reduced, so that a fiber-reinforced plastic having high mechanical properties can be obtained. As a method of forming a complicated shape using a unidirectional prepreg, for example, a unidirectional prepreg impregnated with a thermosetting resin is laminated by hand along the mold one by one to form a preform, and the preform is formed by autoclave molding. There is a method of solidifying by using heating / pressurizing means such as press molding (for example, Patent Document 2). Thereby, a high-quality fiber reinforced plastic having high mechanical properties can be obtained.

特開平1−163218号公報JP-A-1-163218 特開平8−25491号公報JP-A-8-25491

しかしながら、一方向プリプレグを手で沿わせて賦形したプリフォームを硬化させて繊維強化プラスチックを製造する方法は生産性が悪く、繊維強化プラスチックの大量製造には不向きである。   However, a method of producing a fiber-reinforced plastic by curing a preform formed by hand-setting a unidirectional prepreg is poor in productivity and is not suitable for mass production of fiber-reinforced plastic.

したがって、本発明の課題は、優れた力学特性と複雑形状を有し、高力学特性を発現する繊維強化プラスチックを生産性よく製造する方法を提供することにある。また、複雑形状を有しながらも、高い力学特性を有する繊維強化プラスチックを提供する。   Accordingly, an object of the present invention is to provide a method for producing a fiber-reinforced plastic having excellent mechanical properties and complex shapes and exhibiting high mechanical properties with high productivity. Further, the present invention provides a fiber reinforced plastic having high mechanical properties while having a complicated shape.

本発明は、かかる課題を解決するために、以下の繊維強化プラスチックの製造方法および繊維強化プラスチックを提供する。
1)少なくとも一部の繊維長さLが10〜300mmである強化繊維に樹脂が含浸したプリプレグを、複数枚積層して得たプリプレグ積層体aおよびプリプレグ積層体bを、両面型内の所定の位置に配置し、プリプレグ積層体aおよびプリプレグ積層体bに面圧を加え流動させ、プリプレグ積層体aとプリプレグ積層体bの両方が存在する領域(以下、混合領域cという)を形成した後、それぞれを固化させて、プリプレグ積層体aを繊維強化プラスチックA、プリプレグ積層体bを繊維強化プラスチックB、混合領域cを繊維強化プラスチックCとすることで、繊維強化プラスチックAと繊維強化プラスチックBが、繊維強化プラスチックCを介して接合された繊維強化プラスチックとする繊維強化プラスチックの製造方法。
2)繊維強化プラスチックAおよび繊維強化プラスチックBが、繊維強化プラスチックCを介して接合された繊維強化プラスチックであって、繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCは強化繊維の体積含有率が40%〜65%であり、かつ少なくとも一部の強化繊維が繊維長さL=10〜300mmに分断されており、繊維強化プラスチックA、および繊維強化プラスチックBは、強化繊維が実質的に一方向に配向した層が複数枚積層された繊維強化プラスチックであり、繊維強化プラスチックAと繊維強化プラスチックCをまたぐ強化繊維、および、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維が存在する、繊維強化プラスチック。
In order to solve this problem, the present invention provides the following fiber-reinforced plastic manufacturing method and fiber-reinforced plastic.
1) A prepreg laminate a and a prepreg laminate b obtained by laminating a plurality of prepregs in which a resin is impregnated with a reinforced fiber having a fiber length L of 10 to 300 mm at least in part are provided in a predetermined type in a double-sided mold. After being disposed at a position and flowing by applying a surface pressure to the prepreg laminate a and the prepreg laminate b to form a region where both the prepreg laminate a and the prepreg laminate b exist (hereinafter referred to as a mixed region c), By solidifying each, the prepreg laminate a is made of fiber reinforced plastic A, the prepreg laminate b is made of fiber reinforced plastic B, and the mixed region c is made of fiber reinforced plastic C, so that the fiber reinforced plastic A and the fiber reinforced plastic B are A method for producing a fiber reinforced plastic, which is a fiber reinforced plastic joined via a fiber reinforced plastic C.
2) Fiber reinforced plastic A and fiber reinforced plastic B are fiber reinforced plastics joined via fiber reinforced plastic C, where fiber reinforced plastic A, fiber reinforced plastic B, and fiber reinforced plastic C are reinforced fiber volumes. The content rate is 40% to 65%, and at least a part of the reinforcing fibers are divided into the fiber length L = 10 to 300 mm. The fiber reinforced plastic A and the fiber reinforced plastic B are substantially reinforced fibers. Is a fiber reinforced plastic in which a plurality of layers oriented in one direction are laminated, and there are reinforced fibers that straddle fiber reinforced plastic A and fiber reinforced plastic C, and reinforced fibers that straddle fiber reinforced plastic B and fiber reinforced plastic C. Yes, fiber reinforced plastic.

本発明によれば、複雑形状かつ優れた力学特性を有する繊維強化プラスチックを生産性よく製造して提供することができる。   According to the present invention, a fiber reinforced plastic having a complicated shape and excellent mechanical properties can be produced and provided with high productivity.

本発明における繊維強化プラスチックの断面の一例を示す概念図である。It is a conceptual diagram which shows an example of the cross section of the fiber reinforced plastics in this invention. 本発明における繊維強化プラスチックの製造方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing method of the fiber reinforced plastic in this invention. 本発明における繊維強化プラスチックの製造方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing method of the fiber reinforced plastic in this invention. 本発明における繊維強化プラスチックの断面の一例を示す概念図である。It is a conceptual diagram which shows an example of the cross section of the fiber reinforced plastics in this invention. 実施例1に記載の一体成形方法を示す図である。1 is a diagram illustrating an integral molding method described in Example 1. FIG. 実施例2に記載の一体成形方法を示す図である。6 is a diagram illustrating an integral molding method described in Example 2. FIG. 実施例3に記載の一体成形方法を示す図である。6 is a diagram illustrating an integral molding method described in Example 3. FIG. 実施例4〜6で成形対象とする形状を示す図である。It is a figure which shows the shape made into a shaping | molding object in Examples 4-6.

本発明者らは、強化繊維と樹脂とからなる優れた力学特性を有する複雑形状の繊維強化プラスチックを生産性よく製造する方法を提供するために、少なくとも一部の繊維長さLが10〜300mmである強化繊維に樹脂が含浸したプリプレグを、複数枚積層して得たプリプレグ積層体aおよびプリプレグ積層体bを、両面型内の所定の位置に配置し、プリプレグ積層体aおよびプリプレグ積層体bに面圧を加え流動させ、プリプレグ積層体aとプリプレグ積層体bの両方が存在する領域(以下、混合領域cという)を形成した後、それぞれを固化させて、プリプレグ積層体aを繊維強化プラスチックA、プリプレグ積層体bを繊維強化プラスチックB、混合領域cを繊維強化プラスチックCとすることで、かかる課題を解決したものである。   In order to provide a method for producing a fiber-reinforced plastic having a complex shape having excellent mechanical properties composed of reinforcing fibers and a resin with high productivity, at least a part of the fiber length L is 10 to 300 mm. A prepreg laminate a and a prepreg laminate b obtained by laminating a plurality of prepregs in which a reinforced fiber is impregnated with a resin are arranged at predetermined positions in a double-sided mold, and the prepreg laminate a and the prepreg laminate b To form a region where both the prepreg laminate a and the prepreg laminate b are present (hereinafter referred to as a mixed region c), and then solidify each of the prepreg laminate a to fiber-reinforced plastic. A, the prepreg laminate b is made of fiber reinforced plastic B, and the mixed region c is made of fiber reinforced plastic C, thereby solving such a problem.

予め樹脂が含浸したプリプレグを用いることで、強化繊維の体積含有率の高い繊維強化プラスチックを製造することができ、高い力学特性を発現することができる。複雑形状を有する繊維強化プラスチックを製造する際に、接合部を許容しない製造方法であれば、プリプレグ積層体を精度よく切り出して型に配置させる必要があるが、プリプレグ積層体同士の混合領域を接合部として許容することで、プリプレグ積層体を扱いやすく、歩留まりのよいサイズ・形状にプリプレグを切り出して、生産性よく繊維強化プラスチックを製造できる。   By using a prepreg impregnated with a resin in advance, a fiber-reinforced plastic having a high volume content of reinforcing fibers can be produced, and high mechanical properties can be exhibited. When manufacturing fiber-reinforced plastics with complex shapes, if the manufacturing method does not allow joints, it is necessary to accurately cut out the prepreg laminate and place it in the mold, but join the mixed regions of the prepreg laminates By allowing it as a part, it is easy to handle the prepreg laminate, and the prepreg can be cut into a size and shape with a good yield to produce a fiber-reinforced plastic with high productivity.

本発明の製造方法においては、プリプレグ積層体a及びbを両面型内の所定の位置に配置して、プリプレグ積層体a及びプリプレグ積層体bに面圧を加えた際にこれらの積層体が流動して、プリプレグ積層体a及びプリプレグ積層体bの両方が混在する領域(混合領域)を形成することが重要である。プリプレグ積層体aおよびプリプレグ積層体bに対して面圧により流動する性質を持たせるために、プリプレグ積層体aおよびプリプレグ積層体bを構成する各プリプレグは、少なくとも一部の強化繊維の繊維長さLが10〜300mmであることが好ましい。さらに好ましくは、プリプレグ積層体aおよびプリプレグ積層体bに含まれる強化繊維の50〜100%の強化繊維の繊維長さLが10〜300mmであり、特に好ましくは、両プリプレグ積層体に含まれる強化繊維の50〜100%の繊維長さLが15〜100mmである。   In the production method of the present invention, the prepreg laminates a and b are arranged at predetermined positions in the double-sided mold, and when the prepreg laminate a and the prepreg laminate b are subjected to surface pressure, the laminates flow. Thus, it is important to form a region (mixed region) where both the prepreg laminate a and the prepreg laminate b are mixed. Each prepreg constituting the prepreg laminate a and the prepreg laminate b has a fiber length of at least a part of the reinforcing fibers in order to give the prepreg laminate a and the prepreg laminate b a property of flowing by surface pressure. L is preferably 10 to 300 mm. More preferably, the fiber length L of 50 to 100% of the reinforcing fibers contained in the prepreg laminate a and the prepreg laminate b is 10 to 300 mm, and particularly preferably the reinforcement included in both prepreg laminates. The fiber length L of 50 to 100% of the fibers is 15 to 100 mm.

プリプレグ積層体aおよびプリプレグ積層体bは、厚みや強化繊維の体積含有率の異なるプリプレグを複数毎積層して得た積層体であってもよいし、プリプレグ積層体aとプリプレグ積層体bの強化繊維および樹脂は異なっていてもよい。プリプレグ積層体中のプリプレグは、強化繊維が一方向に配向した一方向プリプレグであっても、強化繊維がランダムに配向したSMCであってもよく、それらの積層体でもよい。一方向プリプレグの場合、強化繊維の繊維方向が異なる方向のプリプレグを複数枚積層した積層体であってもよい。通常、連続的な強化繊維が一方向に配置された一方向プリプレグを用いて一体成形する際は、プリプレグ積層体aとプリプレグ積層体bを重ねて同時にプレス成形し固化させる方法があるが、強化繊維は繊維方向に流動しないため、プリプレグ積層体aとプリプレグ積層体bの混合領域を形成することができず、接合部の強度が低下するため、一体成形には適していない。本発明では、プリプレグ積層体に、流動可能な不連続な強化繊維を含ませることで、プリプレグ積層体を流動させ、混合領域cを形成することができ、固化した際に繊維強化プラスチックAと繊維強化プラスチックCおよび、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維が存在するため、接合部の強度が向上する。不連続な強化繊維を含み、一方向に強化繊維が配向されたプリプレグとは、例えば後述のような切込プリプレグや、リサイクル繊維を一方向に配向させ樹脂を含浸したものなどが挙げられる。   The prepreg laminate a and the prepreg laminate b may be a laminate obtained by laminating a plurality of prepregs having different thicknesses and volume contents of reinforcing fibers, and the prepreg laminate a and the prepreg laminate b may be reinforced. The fiber and resin may be different. The prepreg in the prepreg laminate may be a unidirectional prepreg in which reinforcing fibers are unidirectionally oriented, SMC in which reinforcing fibers are randomly oriented, or a laminate thereof. In the case of a unidirectional prepreg, it may be a laminate in which a plurality of prepregs having different fiber directions of the reinforcing fibers are laminated. Usually, when integrally molding using a unidirectional prepreg in which continuous reinforcing fibers are arranged in one direction, there is a method in which the prepreg laminate a and the prepreg laminate b are stacked and simultaneously pressed and solidified. Since the fiber does not flow in the fiber direction, a mixed region of the prepreg laminate a and the prepreg laminate b cannot be formed, and the strength of the joint portion is reduced, so that it is not suitable for integral molding. In the present invention, by including discontinuous reinforcing fibers that can flow into the prepreg laminate, the prepreg laminate can be flowed to form a mixed region c, and when solidified, the fiber reinforced plastic A and fibers Since the reinforced plastic C and the reinforced fiber straddling the fiber reinforced plastic B and the fiber reinforced plastic C exist, the strength of the joint portion is improved. Examples of the prepreg that includes discontinuous reinforcing fibers and in which the reinforcing fibers are oriented in one direction include a cut prepreg as described later, and a material in which recycled fibers are oriented in one direction and impregnated with a resin.

本発明に用いる強化繊維は特に限定されず、ガラス繊維、ケブラー繊維、炭素繊維、グラファイト繊維またはボロン繊維等であってもよい。この内、比強度および比弾性率の観点からは、炭素繊維が好ましい。   The reinforcing fiber used in the present invention is not particularly limited, and may be glass fiber, Kevlar fiber, carbon fiber, graphite fiber, boron fiber, or the like. Among these, carbon fiber is preferable from the viewpoint of specific strength and specific modulus.

強化繊維に含浸させる樹脂は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂の変形および2種以上のブレンドの樹脂を用いることもできる。また、これらの熱硬化性樹脂は熱により自己硬化する樹脂であってもよいし、硬化剤や硬化促進剤等を含むものであってもよい。耐熱性や力学特性を向上させる目的でフィラーなどが混合されているものであってもよい。   The resin impregnated into the reinforcing fiber is not particularly limited, and may be a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include polyamide (PA), polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene, polypropylene, Examples thereof include polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether imide (PEI), polyether ketone ketone (PEKK), liquid crystal polymer, vinyl chloride, fluorine resins such as polytetrafluoroethylene, and silicone. Examples of the thermosetting resin include unsaturated polyester resins, vinyl ester resins, epoxy resins, benzoxazine resins, phenol resins, urea resins, melamine resins, and polyimide resins. Deformation of these resins and resins of two or more blends can also be used. Further, these thermosetting resins may be resins that are self-cured by heat, or may include a curing agent, a curing accelerator, and the like. A filler or the like may be mixed for the purpose of improving heat resistance and mechanical properties.

プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方は、実質的に一方向に強化繊維が配向したプリプレグに複数の切込を挿入することで、少なくとも一部の強化繊維を繊維長さL=10〜300mmに分断した切込プリプレグを含むプリプレグ積層体であることが好ましい。予め強化繊維が一方向に配向されたプリプレグに切込を入れて強化繊維を繊維長さL=10〜300mmに分断することで、強化繊維の体積含有率が高く、一方向に強化繊維が配向されていることで固化時には力学特性の高い繊維強化プラスチックとなり、面圧負荷時には強化繊維の繊維方向にも流動性を有する切込プリプレグを得ることができる。全ての強化繊維が切込によって分断されていてもよいし、部分的に分断されない強化繊維を残しても良いが、プリプレグに含まれる強化繊維の80%以上が切込によって分断されていることが流動性の観点から好ましい。通常、一方向に強化繊維が配向されたプリプレグは繊維直角方向に近い方向では高い流動性を有するため、流動方向に対して80〜100°に配向された強化繊維を含むプリプレグには、切込を挿入しなくてもよい。より好ましい強化繊維の繊維長さLは15〜100mmであり、さらに好ましくは15〜30mmである。このような切込プリプレグをプリプレグ積層体aまたはプリプレグ積層体bに含ませることで、本発明の製造方法によってプリプレグ積層体aとプリプレグ積層体bを一体成形により固化した繊維強化プラスチックの力学特性は優れたものとなる。プリプレグ積層体aとプリプレグ積層体bは、共に切込プリプレグを含むことが好ましい。さらに好ましくは、プリプレグ積層体a中のプリプレグの合計の枚数を100%とした時に、切込プリプレグの枚数が50〜100%であるプリプレグ積層体であり、プリプレグ積層体bについても同様である。なお、実質的に一方向に強化繊維が配向するとは、強化繊維の90%以上が、全ての強化繊維の繊維方向の平均配向角度に対して±10°以内であることを指す(以下同じ)。   At least one of the prepreg laminated body a and the prepreg laminated body b has a fiber length L = 10 by inserting a plurality of cuts into a prepreg in which reinforcing fibers are substantially oriented in one direction. It is preferable that it is a prepreg laminated body containing the cut prepreg parted to -300 mm. By cutting into a prepreg in which the reinforcing fibers are oriented in one direction and dividing the reinforcing fibers into fiber length L = 10 to 300 mm, the volume content of the reinforcing fibers is high, and the reinforcing fibers are oriented in one direction. Thus, a fiber-reinforced plastic having high mechanical properties is obtained when solidified, and a cut prepreg having fluidity in the fiber direction of the reinforcing fiber can be obtained when a surface pressure is applied. Although all the reinforcing fibers may be cut by cutting or may leave a reinforcing fiber that is not partially cut, 80% or more of the reinforcing fibers included in the prepreg may be cut by cutting. It is preferable from the viewpoint of fluidity. Usually, a prepreg having reinforcing fibers oriented in one direction has a high fluidity in a direction close to the direction perpendicular to the fibers, and therefore, a prepreg containing reinforcing fibers oriented at 80 to 100 ° with respect to the flow direction is notched. Need not be inserted. More preferably, the fiber length L of the reinforcing fiber is 15 to 100 mm, and more preferably 15 to 30 mm. By including such a cut prepreg in the prepreg laminate a or the prepreg laminate b, the mechanical properties of the fiber reinforced plastic obtained by solidifying the prepreg laminate a and the prepreg laminate b by integral molding by the manufacturing method of the present invention are as follows: It will be excellent. Both the prepreg laminate a and the prepreg laminate b preferably include a cut prepreg. More preferably, it is a prepreg laminate in which the number of cut prepregs is 50 to 100% when the total number of prepregs in the prepreg laminate a is 100%, and the same applies to the prepreg laminate b. Note that that the reinforcing fibers are substantially oriented in one direction means that 90% or more of the reinforcing fibers are within ± 10 ° with respect to the average orientation angle in the fiber direction of all the reinforcing fibers (the same applies hereinafter). .

プリプレグに切込を挿入して切込プリプレグとする方法には限定はなく、刃を用いた方法でもレーザーを用いた方法でもよい。切込のパターンにも限定はなく、強化繊維の繊維方向に対し、斜めの角度でもよく、一つ一つの切込が曲線状であっても直線状であってもよい。   There is no limitation on the method of inserting a notch into the prepreg to obtain a notched prepreg, and a method using a blade or a method using a laser may be used. There is no limitation also in the pattern of a notch, and it may be an angle with respect to the fiber direction of a reinforced fiber, and each notch may be curvilinear or linear.

プリプレグ積層体aとプリプレグ積層体bを両面型内の所定の位置に配置する際の配置方法としては、両プリプレグ積層体を一部重ねて配置してもよい。一部重ねて配置した場合は、面圧を加えることでプリプレグ積層体が流動し、テーパー状の混合領域cが形成され、固化した際には図1のように繊維強化プラスチックAと繊維強化プラスチックBが繊維強化プラスチックC内でテーパー状に接合された繊維強化プラスチックとなり、高い力学特性の接合部を有する一体成形が可能である。   As an arrangement method when the prepreg laminate a and the prepreg laminate b are arranged at predetermined positions in the double-sided mold, the prepreg laminates may be partially overlapped. In the case of a partial overlap, when the surface pressure is applied, the prepreg laminate flows to form a tapered mixed region c, and when solidified, the fiber reinforced plastic A and the fiber reinforced plastic as shown in FIG. B becomes a fiber reinforced plastic joined in a taper shape in the fiber reinforced plastic C, and can be integrally formed with a joint portion having high mechanical properties.

本発明ではプリプレグ同士が複雑に絡み合っていなくとも、流動によりテーパー状となった接合部を含む繊維強化プラスチックもプリプレグ積層体aとプリプレグ積層体bの混合領域cが硬化した繊維強化プラスチックCとみなす。テーパー状の接合面は、繊維強化プラスチックAと繊維強化プラスチックBの間に発生する荷重を効率よく伝達するため、高い接合強度を発現する。   In the present invention, even if the prepregs are not intertwined in a complicated manner, the fiber reinforced plastic including the joint portion tapered by the flow is also regarded as the fiber reinforced plastic C in which the mixed region c of the prepreg laminate a and the prepreg laminate b is cured. . The tapered joint surface efficiently transmits the load generated between the fiber reinforced plastic A and the fiber reinforced plastic B, and thus exhibits high joint strength.

図1には、繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCを含む繊維強化プラスチックの、繊維強化プラスチックCの表面に垂直な断面を示している。図1において、繊維強化プラスチックAから連続した層と繊維強化プラスチックCの一方の表面とが交わる点を交点Pとし、繊維強化プラスチックBから連続した層と繊維強化プラスチックCの他方の表面とが交わる交点Qとすると、プリプレグ積層体aとプリプレグ積層体bを重ねる長さについては、図1に示す角θ、つまり前述の交点Pと交点Qを結んだ線分1と繊維強化プラスチックCのいずれかの表面となす角度が30°よりも小さくなるように、重ねることが好ましい。すなわち、プリプレグ積層体aとプリプレグ積層体bで厚い方の厚さの2倍以上重ねることが好ましい。さらに好ましくは、プリプレグ積層体aとプリプレグ積層体bで厚い方の厚さの4倍以上である。θが30°よりも小さいテーパー状の継ぎ手構造とすることで、図1の断面を有する繊維強化プラスチックに引張や曲げの荷重が与えられた際に、繊維強化プラスチックAから連続した層と繊維強化プラスチックBから連続した層が応力伝達する面積が増え、高い接合強度を発現する。θは小さいほど好ましいが、現実的にはθを1°よりも小さくするためには、高い面圧や、プリプレグ積層体同士を重ねる面積を大幅に増やす必要があるため、生産性の観点からは好ましくない。したがって、プリプレグ積層体aとプリプレグ積層体bを重ねる長さはプリプレグ積層体aとプリプレグ積層体bの厚いほうの厚さの50倍以下が好ましい。   FIG. 1 shows a cross section perpendicular to the surface of the fiber reinforced plastic C of the fiber reinforced plastic including the fiber reinforced plastic A, the fiber reinforced plastic B, and the fiber reinforced plastic C. In FIG. 1, a point where a layer continuous from the fiber reinforced plastic A and one surface of the fiber reinforced plastic C intersect is defined as an intersection point P, and a layer continuous from the fiber reinforced plastic B and the other surface of the fiber reinforced plastic C intersect. Assuming the intersection point Q, the length of the prepreg laminate a and the prepreg laminate b to be stacked is either the angle θ shown in FIG. 1, that is, the line segment 1 connecting the intersection point P and the intersection point Q and the fiber reinforced plastic C. It is preferable to overlap so that the angle formed with the surface of the film becomes smaller than 30 °. That is, it is preferable that the prepreg laminated body a and the prepreg laminated body b are stacked at least twice as thick as the thicker one. More preferably, it is at least four times the thickness of the thicker one of the prepreg laminate a and the prepreg laminate b. By adopting a tapered joint structure in which θ is smaller than 30 °, when a tensile or bending load is applied to the fiber reinforced plastic having the cross section of FIG. The area where stress is transmitted by the continuous layer from the plastic B increases, and high bonding strength is exhibited. From the viewpoint of productivity, θ is preferably as small as possible. However, in practice, in order to make θ smaller than 1 °, it is necessary to greatly increase the surface pressure and the area where the prepreg laminates are stacked. It is not preferable. Accordingly, the length of the prepreg laminate a and the prepreg laminate b that are stacked is preferably 50 times or less the thicker of the prepreg laminate a and the prepreg laminate b.

プリプレグ積層体aとプリプレグ積層体bを両面型内の所定の位置に配置する際の別の配置方法としては、図2に示すようにプリプレグ積層体aとプリプレグ積層体bを離して配置してもよい。複雑形状へと成形するためには、プリプレグ積層体を重ねて配置しにくい型を用いる場合もあり、そのような場合でも、プリプレグ積層体を配置しやすい場所に配置し、面圧によりプリプレグ積層体を流動させて流し込み、プリプレグ積層体同士の混合領域cを形成することができる。プリプレグ積層体aとプリプレグ積層体bの間の距離は、面圧やプリプレグ積層体の厚さにも依存するが、遠すぎる場合は流動する両プリプレグ積層体が接さずに混合領域cを形成せずに接合できず、近すぎる場合は両プリプレグ積層体が流動する前に接触することで流動が妨げられて混合領域cを形成できない場合がある。プリプレグ積層体の流動距離は、プリプレグ積層体の面積に依存し、目標とする成形後のサイズに対して、流動前のプリプレグ積層体の大きさ(チャージ率)が50〜95%であれば、良好な流動が得られ、混合領域cを形成することができる。さらに好ましいチャージ率は60〜80%である。   As another arrangement method when the prepreg laminate a and the prepreg laminate b are arranged at predetermined positions in the double-sided mold, the prepreg laminate a and the prepreg laminate b are arranged separately as shown in FIG. Also good. In order to mold into a complicated shape, a mold that is difficult to place the prepreg laminate may be used. Even in such a case, the prepreg laminate is placed in a place where the prepreg laminate is easy to place, and the prepreg laminate is obtained by surface pressure. Can be made to flow to form a mixed region c between the prepreg laminates. The distance between the prepreg laminate a and the prepreg laminate b depends on the surface pressure and the thickness of the prepreg laminate, but if it is too far, the flowing prepreg laminate forms a mixed region c without contact. If the two prepreg laminates contact each other before flowing, the flow is hindered and the mixed region c may not be formed. The flow distance of the prepreg laminate depends on the area of the prepreg laminate, and if the size (charge rate) of the prepreg laminate before flow is 50 to 95% with respect to the target size after molding, Good flow is obtained, and the mixed region c can be formed. A more preferable charge rate is 60 to 80%.

プリプレグ積層体aとプリプレグ積層体bを離して配置させて一体成形する際には、プリプレグ積層体a中のプリプレグ積層体bと接触する面およびプリプレグ積層体aの流動方向とがなす角度が75°以下である、および/または、プリプレグ積層体b中のプリプレグ積層体aと接触する面およびプリプレグ積層体bの流動方向とがなす角度が75°以下であることが好ましい。図2において、プリプレグ積層体aは流動方向3に流動し、プリプレグ積層体aがプリプレグ積層体bと接触する面は面5であり、流動方向3と面5は角7をなしている。プリプレグ積層体bは流動方向4に流動し、プリプレグ積層体bがプリプレグ積層体aと接触する面は面6であり、流動方向4と面6は角8をなしている。角7と角8が共に75°を超える場合、両プリプレグ積層体が接する面で流動の進行が妨げられ、強化繊維の角度が流動方向に対して90°に近い角度に流されやすく、固化した場合に繊維強化プラスチックCが割れやすくなり、好ましくない。そのため、角7および/または角8が75°以下であることが好ましい。好ましくは角7、角8が共に75°以下であり、さらに好ましくは、共に60°以下である。角度を小さくすることで、強化繊維が流動に逆らわずに流れて、力学特性の高い繊維強化プラスチックCが得られる。なお流動方向3と流動方向4および面5と面6は平行である必要はなく、角7と角8も同じ大きさである必要はない。なお、現実的に達成可能な角7、角8の下限値は10°である。角7、角8が10°未満の場合、そのような面5または面6を有するプリプレグ積層体を準備することが困難となることがある。   When the prepreg laminate a and the prepreg laminate b are arranged separately and integrally formed, the angle formed by the surface in contact with the prepreg laminate b in the prepreg laminate a and the flow direction of the prepreg laminate a is 75. It is preferable that the angle between the surface in contact with the prepreg laminate a in the prepreg laminate b and the flow direction of the prepreg laminate b is 75 ° or less. In FIG. 2, the prepreg laminate a flows in the flow direction 3, the surface where the prepreg laminate a contacts the prepreg laminate b is a surface 5, and the flow direction 3 and the surface 5 form an angle 7. The prepreg laminate b flows in the flow direction 4, the surface where the prepreg laminate b contacts the prepreg laminate a is a surface 6, and the flow direction 4 and the surface 6 form an angle 8. When both the corner 7 and the corner 8 exceed 75 °, the progress of the flow is hindered on the surface where both the prepreg laminates are in contact, and the angle of the reinforcing fiber is easily flowed to an angle close to 90 ° with respect to the flow direction, and solidified. In such a case, the fiber reinforced plastic C tends to break, which is not preferable. Therefore, it is preferable that the angle 7 and / or the angle 8 is 75 ° or less. Preferably, both the corners 7 and 8 are 75 ° or less, and more preferably both are 60 ° or less. By reducing the angle, the reinforcing fiber flows without counteracting the flow, and the fiber-reinforced plastic C having high mechanical properties is obtained. Note that the flow direction 3 and the flow direction 4 and the surface 5 and the surface 6 do not need to be parallel, and the corners 7 and 8 need not have the same size. Note that the lower limit value of the angles 7 and 8 that can be achieved realistically is 10 °. When the corners 7 and 8 are less than 10 °, it may be difficult to prepare a prepreg laminate having such surfaces 5 or 6.

本発明においてプリプレグ積層体の好ましい態様としては、プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、強化繊維がランダムに配向したプリプレグを含むプリプレグ積層体であることが挙げられる。強化繊維がランダムに配向したプリプレグとは、例えばSMCなどである。目標とする繊維強化プラスチックの形状が複雑な場合、流動性を重視した基材、つまりSMCのような強化繊維がランダムに配向したプリプレグを含むプリプレグ積層体を用いることが、有効な繊維強化プラスチックの製造手段となる。   In a preferred embodiment of the prepreg laminate in the present invention, at least one of the prepreg laminate a and the prepreg laminate b is a prepreg laminate including a prepreg in which reinforcing fibers are randomly oriented. The prepreg in which the reinforcing fibers are randomly oriented is, for example, SMC. When the shape of the target fiber reinforced plastic is complicated, it is effective to use a base material that emphasizes fluidity, that is, a prepreg laminate including a prepreg in which reinforcing fibers are randomly oriented such as SMC. It becomes a manufacturing means.

より好ましくは、図3のように、プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、強化繊維が一方向に配向したプリプレグ(一方向プリプレグ)の積層体と、強化繊維がランダムに配向したプリプレグとを積層したプリプレグ積層体であることが挙げられる。さらに好ましくは、プリプレグ積層体aおよびプリプレグ積層体bの両方が、強化繊維が一方向に配向したプリプレグ(一方向プリプレグ)の積層体と、強化繊維がランダムに配向したプリプレグとを積層したプリプレグ積層体である。一方向強化繊維が一方向に配向したプリプレグは上述の切込プリプレグであってもよい。強化繊維がランダムに配向したプリプレグは、一般的に強化繊維の含有率が低いため、一方向プリプレグよりも力学特性が劣る。したがって、一方向プリプレグの力学特性を利用しながら複雑形状を有する繊維強化プラスチックを生産性よく製造するには、接合部を有する一方向プリプレグで剛性を保ち、複雑形状はSMCで形成することが好ましい。   More preferably, as shown in FIG. 3, at least one of the prepreg laminate a and the prepreg laminate b is a prepreg (unidirectional prepreg) laminate in which the reinforcing fibers are oriented in one direction, and the reinforcing fibers are randomly oriented. It is mentioned that it is a prepreg laminated body which laminated | stacked the prepreg. More preferably, both the prepreg laminate a and the prepreg laminate b are a prepreg laminate in which a laminate of prepregs (unidirectional prepreg) in which reinforcing fibers are oriented in one direction and a prepreg in which reinforcing fibers are randomly oriented are laminated. Is the body. The prepreg in which the unidirectional reinforcing fibers are oriented in one direction may be the above-described cut prepreg. A prepreg in which reinforcing fibers are randomly oriented generally has lower mechanical properties than a unidirectional prepreg because the reinforcing fiber content is generally low. Therefore, in order to manufacture a fiber reinforced plastic having a complex shape with high productivity while utilizing the mechanical characteristics of the unidirectional prepreg, it is preferable to maintain rigidity with the unidirectional prepreg having a joint and to form the complex shape by SMC. .

プリプレグ積層体aおよびプリプレグ積層体bは、図3における強化繊維がランダムに配向したプリプレグ10の代わりに、一方向に強化繊維が配向しており、少なくとも一部の強化繊維が10〜15mmのプリプレグの積層体が、一方向プリプレグの積層体に積層されたプリプレグ積層体であってもよい。このとき、一方向プリプレグの積層体9における強化繊維の長さは、力学特性を重視するために、15〜300mmであることが好ましい。すなわち、プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、強化繊維が一方向に配向し、少なくとも一部の強化繊維が15〜300mmのプリプレグの積層体と、強化繊維が一方向に配向し、少なくとも一部の強化繊維が10〜15mmのプリプレグの積層体とを積層したプリプレグ積層体であってもよい。一方向プリプレグは上述の切込プリプレグであってもよい。   The prepreg laminate a and the prepreg laminate b are prepregs in which the reinforcing fibers are oriented in one direction instead of the prepreg 10 in which the reinforcing fibers in FIG. 3 are randomly oriented, and at least some of the reinforcing fibers are 10 to 15 mm. The laminate may be a prepreg laminate laminated on a unidirectional prepreg laminate. At this time, it is preferable that the length of the reinforcing fiber in the laminated body 9 of the unidirectional prepreg is 15 to 300 mm in order to emphasize the mechanical characteristics. That is, at least one of the prepreg laminate a and the prepreg laminate b is such that the reinforcing fibers are oriented in one direction, at least a part of the reinforcing fibers is a prepreg laminate of 15 to 300 mm, and the reinforcing fibers are oriented in one direction. A prepreg laminate in which at least some of the reinforcing fibers are laminated with a prepreg laminate of 10 to 15 mm may be used. The one-way prepreg may be the above-described cut prepreg.

一方向プリプレグに含まれる不連続の強化繊維は、繊維長さが短いほど高い流動性を示し、特に15mmよりも短い場合は、顕著な流動性を示す。したがって、複雑形状を有し、力学特性の高い一方向プリプレグで追従しきれない箇所へ充填させるために、繊維長が比較的短い一方向プリプレグを用いることが有効である。繊維長が15mmよりも短い場合でも、一方向に強化繊維が揃っているため、繊維含有率が高く、複雑形状へと成形した場合でも隅々まで高い繊維含有率を有する繊維強化プラスチックを製造することが可能である。   The discontinuous reinforcing fibers contained in the unidirectional prepreg exhibit a higher fluidity as the fiber length is shorter, and particularly show a remarkable fluidity when the fiber length is shorter than 15 mm. Therefore, it is effective to use a unidirectional prepreg having a relatively short fiber length in order to fill a portion having a complicated shape and cannot be followed by a unidirectional prepreg having high mechanical characteristics. Even when the fiber length is shorter than 15 mm, the reinforced fibers are aligned in one direction, so that the fiber content is high, and even when molded into a complicated shape, a fiber reinforced plastic having a high fiber content everywhere is manufactured. It is possible.

強化繊維がランダムに配向したプリプレグまたは少なくとも一部の強化繊維が10〜15mmのプリプレグを良流動プリプレグとすると、プリプレグ積層体aまたはプリプレグ積層体bに良流動プリプレグと一方向プリプレグを積層したプリプレグ積層体を用いる場合、プリプレグ積層体aまたはプリプレグ積層体bに含まれる一方向プリプレグと良流動プリプレグの混合領域、一方向プリプレグ同士の混合領域、良流動プリプレグ同士の混合領域が発生するが、これらの全てを混合領域cとして、硬化後は繊維強化プラスチックCとみなす。   When a prepreg in which reinforcing fibers are randomly oriented or a prepreg having at least a part of reinforcing fibers of 10 to 15 mm is a good flow prepreg, a prepreg laminate in which a good flow prepreg and a unidirectional prepreg are laminated on a prepreg laminate a or a prepreg laminate b When the body is used, a mixed region of the unidirectional prepreg and the good flow prepreg included in the prepreg laminate a or the prepreg laminate b, a mixed region of the unidirectional prepregs, and a mixed region of the good flow prepregs are generated. All are considered as mixed region c, and are regarded as fiber reinforced plastic C after curing.

本発明で得られる繊維強化プラスチックは比較的単純な形状に配置したプリフォーム同士を成形中に強化繊維をまたがせた接合部で連結して複雑形状を一体成形することで、生産性よく製造されたものである。すなわち、繊維強化プラスチックAおよび繊維強化プラスチックBが、繊維強化プラスチックCを介して接合された繊維強化プラスチックであって、繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCは強化繊維の体積含有率が40〜65%の範囲内であり、かつ少なくとも一部の強化繊維が繊維長さL=10〜300mmの範囲内に分断されており、繊維強化プラスチックA、および繊維強化プラスチックBは、強化繊維が実質的に一方向に配向した層が複数枚積層された繊維強化プラスチックであり、繊維強化プラスチックAと繊維強化プラスチックCをまたぐ強化繊維、および、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維が存在する、繊維強化プラスチックである。   The fiber reinforced plastic obtained in the present invention is manufactured with high productivity by integrally forming complex shapes by connecting preforms arranged in a relatively simple shape with joints that straddle reinforcing fibers during molding. It has been done. That is, fiber reinforced plastic A and fiber reinforced plastic B are fiber reinforced plastics joined via fiber reinforced plastic C, and fiber reinforced plastic A, fiber reinforced plastic B, and fiber reinforced plastic C are reinforced fiber volumes. The content rate is in the range of 40 to 65%, and at least a part of the reinforcing fibers are divided into the fiber length L = 10 to 300 mm, and the fiber reinforced plastic A and the fiber reinforced plastic B are: A fiber reinforced plastic in which a plurality of layers in which reinforced fibers are substantially oriented in one direction are laminated, and includes a reinforced fiber that straddles fiber reinforced plastic A and fiber reinforced plastic C, and fiber reinforced plastic B and fiber reinforced plastic C. It is a fiber-reinforced plastic with striking reinforcing fibers.

図4は本発明における繊維強化プラスチックであって、繊維強化プラスチックAと繊維強化プラスチックBが繊維強化プラスチックCを介して接合されており、繊維強化プラスチックAと繊維強化プラスチックCをまたぐ強化繊維11と繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維12が存在している繊維強化プラスチックの断面を示した概念図である。   FIG. 4 shows a fiber reinforced plastic according to the present invention, in which fiber reinforced plastic A and fiber reinforced plastic B are joined together via fiber reinforced plastic C, and reinforced fiber 11 straddling fiber reinforced plastic A and fiber reinforced plastic C. It is the conceptual diagram which showed the cross section of the fiber reinforced plastic in which the reinforced fiber 12 which straddles the fiber reinforced plastic B and the fiber reinforced plastic C exists.

繊維強化プラスチックA、繊維強化プラスチックBおよび繊維強化プラスチックCは、強化繊維の体積含有率が40%以上であることが、優れた弾性率・強度などの力学特性を発揮するために好ましい。強化繊維の体積含有率が65%よりも大きい場合、強化繊維が密に詰まりすぎ、強化繊維に沿ったクラックが生じやすくなるため、強化繊維の体積含有率は65%以下であることが好ましい。したがって、繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCの強化繊維の体積含有率は40〜65%の範囲内であることが好ましい。特に好ましい強化繊維の体積含有率の範囲は45〜60%の範囲内である。   The fiber reinforced plastic A, fiber reinforced plastic B, and fiber reinforced plastic C preferably have a volume content of the reinforced fiber of 40% or more in order to exhibit excellent mechanical properties such as elastic modulus and strength. When the volume content of the reinforcing fibers is larger than 65%, the reinforcing fibers are too tightly packed and cracks along the reinforcing fibers are likely to occur. Therefore, the volume content of the reinforcing fibers is preferably 65% or less. Accordingly, the volume content of the reinforcing fibers of the fiber reinforced plastic A, the fiber reinforced plastic B, and the fiber reinforced plastic C is preferably in the range of 40 to 65%. A particularly preferable volume content range of the reinforcing fibers is in the range of 45 to 60%.

繊維強化プラスチックAおよび繊維強化プラスチックBは、強化繊維が実質的に一方向に配向した層が複数枚積層された積層構造を有することが好ましい。例えば、図1において繊維強化プラスチックAおよび繊維強化プラスチックBは強化繊維の繊維方向が横方向に配向された層3と強化繊維の繊維方向が奥行方向に配向された層4が積層された繊維強化プラスチックである。強化繊維は一方向に配向された方が、強化繊維が密に詰まり、上記強化繊維の体積含有率を達成しやすくなり、力学特性が向上する。
また、繊維強化プラスチックAおよび繊維強化プラスチックBは、強化繊維が実質的に一方向に配向された層を複数枚重ねた積層構成とすることで、繊維強化プラスチックの面内様々な方向の荷重に耐えうる構造に設計可能である。
The fiber reinforced plastic A and the fiber reinforced plastic B preferably have a laminated structure in which a plurality of layers in which reinforcing fibers are substantially oriented in one direction are laminated. For example, in FIG. 1, fiber reinforced plastic A and fiber reinforced plastic B are fiber reinforced layers in which a layer 3 in which the fiber direction of the reinforced fiber is oriented in the transverse direction and a layer 4 in which the fiber direction of the reinforced fiber is oriented in the depth direction are laminated. It is plastic. When the reinforcing fibers are oriented in one direction, the reinforcing fibers are densely packed, and it becomes easier to achieve the volume content of the reinforcing fibers, thereby improving the mechanical properties.
In addition, the fiber reinforced plastic A and the fiber reinforced plastic B can be loaded in various directions within the surface of the fiber reinforced plastic by forming a laminated structure in which a plurality of layers in which the reinforced fibers are substantially oriented in one direction are stacked. It can be designed to withstand the structure.

繊維強化プラスチックAおよび繊維強化プラスチックBの厚み、積層数および積層構成は異なっていてもよく、強化繊維および樹脂の種類が異なっていてもよいが、成形一体化した際の接合部強度を高めるためには同種の樹脂の種類であるのが好ましい。   The thickness, the number of layers and the layer configuration of the fiber reinforced plastic A and the fiber reinforced plastic B may be different, and the types of the reinforced fiber and the resin may be different. Are preferably the same kind of resin.

繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCにおける強化繊維の長さは、少なくとも一部の強化繊維が繊維長さL=10〜300mmの範囲内に分断されていることが好ましい。全ての強化繊維が連続的である場合、複雑形状の繊維強化プラスチックへ成形した際に、角部に強化繊維が追従しにくく樹脂不足によるヒケもしくは樹脂が搾り出されて樹脂リッチとなることがある。より好ましい強化繊維の繊維長さLは15〜100mmである。さらに好ましくは、繊維強化プラスチックA、繊維強化プラスチックB、繊維強化プラスチックCに含まれる強化繊維の50〜100%の繊維長さLが15〜100mmである繊維強化プラスチックである。   Regarding the lengths of the reinforcing fibers in the fiber reinforced plastic A, the fiber reinforced plastic B, and the fiber reinforced plastic C, it is preferable that at least a part of the reinforcing fibers is divided within a range of the fiber length L = 10 to 300 mm. When all the reinforcing fibers are continuous, when molded into a fiber reinforced plastic with a complicated shape, the reinforcing fibers are difficult to follow the corners, and sink marks or resin due to insufficient resin may be squeezed out and the resin may be rich. . A more preferable fiber length L of the reinforcing fibers is 15 to 100 mm. More preferably, it is a fiber reinforced plastic in which the fiber length L of 50 to 100% of the reinforced fibers contained in the fiber reinforced plastic A, fiber reinforced plastic B, and fiber reinforced plastic C is 15 to 100 mm.

繊維強化プラスチックCについては、積層構造を有することが好ましいが、積層構造を有していなくともよい。図4における強化繊維11や強化繊維12のように、繊維強化プラスチック間をまたぐ強化繊維の存在によって、繊維強化プラスチックAと繊維強化プラスチックBは繊維強化プラスチックCによって強固に接合される。本発明において、強化繊維11や強化繊維12のように繊維強化プラスチックAと繊維強化プラスチックCまたは繊維強化プラスチックBと繊維強化プラスチックCにまたがる強化繊維の繊維長さや本数は特に限定はしていないが、繊維強化プラスチック間をまたぐ強化繊維は繊維長さが長く、多いほど好ましい。繊維強化プラスチックAまたは繊維強化プラスチックBから、層ごと繊維強化プラスチックCにまたがっていてもよい。   The fiber reinforced plastic C preferably has a laminated structure, but may not have a laminated structure. Like the reinforcing fiber 11 and the reinforcing fiber 12 in FIG. 4, the fiber reinforced plastic A and the fiber reinforced plastic B are firmly joined by the fiber reinforced plastic C due to the presence of the reinforced fiber that straddles the fiber reinforced plastic. In the present invention, the fiber length and the number of the reinforcing fibers spanning the fiber reinforced plastic A and the fiber reinforced plastic C or the fiber reinforced plastic B and the fiber reinforced plastic C, such as the reinforced fiber 11 and the reinforced fiber 12, are not particularly limited. The reinforcing fiber that straddles the fiber-reinforced plastic has a long fiber length and is preferably as many as possible. The fiber reinforced plastic A or the fiber reinforced plastic B may straddle the fiber reinforced plastic C with each layer.

本発明における繊維強化プラスチックは、強化繊維と樹脂とからなるシート状の基材を複数枚用いて一体成形した際に、乱れの少ない層構造を保持している領域を繊維強化プラスチックAおよび繊維強化プラスチックB、繊維強化プラスチックAと繊維強化プラスチックBの間の、繊維強化プラスチックAと繊維強化プラスチックBが混合する領域を繊維強化プラスチックCと定義する。また、繊維強化プラスチックA、繊維強化プラスチックBおよび繊維強化プラスチックCは、必ずしも直列に並んでいる必要はない。図4(a)に示すように、繊維強化プラスチックCを介して繊維強化プラスチックAと繊維強化プラスチックBが段を形成していてもよく、図4(b)に示すように繊維強化プラスチックA、繊維強化プラスチックBおよび繊維強化プラスチックCは曲線状となっていてもよい。   In the fiber reinforced plastic according to the present invention, when a plurality of sheet-like base materials composed of reinforced fibers and a resin are integrally formed, a region holding a layer structure with less disturbance is formed in the fiber reinforced plastic A and the fiber reinforced plastic. A region where the fiber reinforced plastic A and the fiber reinforced plastic B are mixed between the plastic B and the fiber reinforced plastic A is defined as a fiber reinforced plastic C. Further, the fiber reinforced plastic A, the fiber reinforced plastic B, and the fiber reinforced plastic C are not necessarily arranged in series. As shown in FIG. 4 (a), the fiber reinforced plastic A and the fiber reinforced plastic B may form a step through the fiber reinforced plastic C. As shown in FIG. 4 (b), the fiber reinforced plastic A, The fiber reinforced plastic B and the fiber reinforced plastic C may be curved.

本発明において、好ましい繊維強化プラスチックの構造には、図1のように繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCを含み、繊維強化プラスチックCの表面に垂直な断面において、繊維強化プラスチックAから連続した層と繊維強化プラスチックBから連続した層とが接する部位に実質的に樹脂層が存在せず、繊維強化プラスチックAから連続した層と繊維強化プラスチックCの一方の表面とが交わる点を交点Pとして、繊維強化プラスチックBから連続した層と繊維強化プラスチックCの他方の表面とが交わる点を交点Qとしたときに、交点Pと交点Qを結んだ線分と、繊維強化プラスチックCのいずれかの表面とのなす角度が30°よりも小さい繊維強化プラスチックが挙げられる。   In the present invention, the preferred fiber-reinforced plastic structure includes fiber-reinforced plastic A, fiber-reinforced plastic B, and fiber-reinforced plastic C as shown in FIG. There is substantially no resin layer at the site where the continuous layer from plastic A and the continuous layer from fiber reinforced plastic B are in contact, and the continuous layer from fiber reinforced plastic A and one surface of fiber reinforced plastic C intersect. When the point where the point where the point is the intersection point P and the point where the layer continuous from the fiber reinforced plastic B and the other surface of the fiber reinforced plastic C intersect is the intersection point Q, the line segment connecting the intersection point P and the intersection point Q, and the fiber reinforced plastic Examples thereof include fiber reinforced plastics having an angle formed with any surface of C smaller than 30 °.

繊維強化プラスチックC内において、繊維強化プラスチックAと繊維強化プラスチックBはともに徐々に厚みが減少しテーパーを形成しながら重なった領域として定義され、繊維強化プラスチックAと繊維強化プラスチックCをまたぐ強化繊維および、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維は、それぞれ繊維強化プラスチックAおよび繊維強化プラスチックBから連続した層内に存在している。図1の繊維強化プラスチックCの断面内において、繊維強化プラスチックAと繊維強化プラスチックBが接する部位は曲線2ある。曲線2に樹脂層が含まれないことで、繊維強化プラスチックAおよび繊維強化プラスチックBから連続した層との間で応力伝達が効率よく行われ一体成形された繊維強化プラスチックの力学特性が向上する。したがって、繊維強化プラスチックAから連続した層と繊維強化プラスチックBから連続した層とが接する部位に実質的に樹脂層が存在しないことが好ましい。ここで、実質的に樹脂層が存在しないとは、厚さが100μmよりも大きな樹脂のみで構成された連続した層が存在しないことを指す。   Within the fiber reinforced plastic C, both the fiber reinforced plastic A and the fiber reinforced plastic B are defined as regions where the thickness gradually decreases and overlaps while forming a taper. The reinforcing fibers straddling the fiber reinforced plastic B and the fiber reinforced plastic C are present in a continuous layer from the fiber reinforced plastic A and the fiber reinforced plastic B, respectively. A portion where the fiber reinforced plastic A and the fiber reinforced plastic B are in contact with each other in the cross section of the fiber reinforced plastic C in FIG. Since the resin layer is not included in the curve 2, the stress is efficiently transmitted between the fiber reinforced plastic A and the continuous layer of the fiber reinforced plastic B, and the mechanical properties of the integrally formed fiber reinforced plastic are improved. Therefore, it is preferable that the resin layer is not substantially present at a portion where the layer continuous from the fiber reinforced plastic A and the layer continuous from the fiber reinforced plastic B are in contact with each other. Here, the phrase “substantially no resin layer” means that there is no continuous layer composed only of a resin having a thickness greater than 100 μm.

図1において、繊維強化プラスチックAから連続した層と繊維強化プラスチックCの一方の表面とが交わる点を交点Pとし、繊維強化プラスチックBから連続した層と繊維強化プラスチックCの他方の表面とが交わる交点Qを結んだ線分は線分1であり、線分1と繊維強化プラスチックCの一方の表面とのなす角θは、30°よりも小さいことが好ましい。角θが30°よりも小さいテーパー状の継ぎ手構造とすることで、図1の断面を有する繊維強化プラスチックに引張や曲げの荷重が与えられた際に、繊維強化プラスチックAから連続した層と繊維強化プラスチックBから連続した層が応力伝達する面積が増え、接合強度となる。したがって、角θを30°よりも小さくすることで、図1の断面を有する繊維強化プラスチックは高い力学特性が有する。より好ましい角θの角度は20°以下であり、さらに好ましくは、線分1と繊維強化プラスチックCの両表面となす角度が共に20°以下である。なお、線分1と繊維強化プラスチックCのいずれかの表面とのなす角度について、その下限は特に限定されないが、現実的に達成可能な角θの下限値は1°である。   In FIG. 1, a point where a layer continuous from the fiber reinforced plastic A and one surface of the fiber reinforced plastic C intersect is defined as an intersection point P, and a layer continuous from the fiber reinforced plastic B and the other surface of the fiber reinforced plastic C intersect. The line segment connecting the intersection points Q is the line segment 1, and the angle θ between the line segment 1 and one surface of the fiber reinforced plastic C is preferably smaller than 30 °. By adopting a tapered joint structure in which the angle θ is smaller than 30 °, when a tensile or bending load is applied to the fiber reinforced plastic having the cross section of FIG. The area in which the continuous layer from the reinforced plastic B transmits stress increases, and the bonding strength is obtained. Accordingly, by making the angle θ smaller than 30 °, the fiber reinforced plastic having the cross section of FIG. 1 has high mechanical properties. More preferably, the angle θ is 20 ° or less, and more preferably, the angles formed by both the surface of the line segment 1 and the fiber reinforced plastic C are both 20 ° or less. Note that the lower limit of the angle formed between the line segment 1 and one of the surfaces of the fiber reinforced plastic C is not particularly limited, but the lower limit of the angle θ that can be practically achieved is 1 °.

本発明の繊維強化プラスチックは必要に応じて、強化繊維の体積含有率が40%よりも低く、ランダムに強化繊維が配向した繊維強化プラスチックや、樹脂層等のコーティング層が、本発明の繊維強化プラスチックの表面に接着されていてもよい。   The fiber reinforced plastic of the present invention has a fiber reinforced plastic in which the volume content of the reinforced fiber is lower than 40% and the reinforcing fibers are randomly oriented, or a coating layer such as a resin layer, as necessary. It may be adhered to a plastic surface.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。本実施例で用いたプリプレグは“トレカ”(登録商標)プリプレグシートP3052S−15(強化繊維:T700S、熱硬化性樹脂:2500、強化繊維の体積含有率:58%)であり、強化繊維は実質的に一方向に配向されている。プリプレグに刃を用いて切込を挿入し、実質的に全ての強化繊維が24mmの繊維長さとなるように強化繊維を分断した切込プリプレグとした。切込は直線状であり、一つ一つの切込を強化繊維と直角に交わる辺に投影した長さは1.0mm、切込と強化繊維の繊維方向がなす角度は14°とした。切込プリプレグの強化繊維の方向を0°とし、[+45°/0°/−45°/90°]2s(厚さ2.4mm)に積層し、図5〜7に示すように、100mm×100mmの枠を有する下型14内に、成形前のプリプレグ積層体の面積の合計が8000mmになるようにプリプレグ積層体aとプリプレグ積層体bを準備し、130℃に加熱した型内に、流動方向が0°方向となるように配置した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the invention as described in an Example. The prepreg used in this example is “Torayca” (registered trademark) prepreg sheet P3052S-15 (reinforced fiber: T700S, thermosetting resin: 2500, volume content of reinforced fiber: 58%), and the reinforced fiber is substantially Are oriented in one direction. A notch was inserted into the prepreg using a blade, and a cut prepreg in which the reinforcing fibers were divided so that substantially all the reinforcing fibers had a fiber length of 24 mm was obtained. The cuts were straight, the length of each cut projected onto the side perpendicular to the reinforcing fibers was 1.0 mm, and the angle between the cut and the fiber direction of the reinforcing fibers was 14 °. The direction of the reinforcing fiber of the cut prepreg is set to 0 °, and laminated to [+ 45 ° / 0 ° / −45 ° / 90 °] 2s (thickness 2.4 mm), and as shown in FIGS. In the lower mold 14 having a frame of 100 mm, the prepreg laminate a and the prepreg laminate b are prepared so that the total area of the prepreg laminate before molding is 8000 mm 2 , and the mold is heated to 130 ° C. It arrange | positioned so that a flow direction might become a 0 degree direction.

その後、上型13を用いて3MPaの面圧を与えて両プリプレグ積層体を流動させ、プリプレグ積層体aとプリプレグ積層体bの両方が存在する混合領域cを形成し、1時間保持し固化させ、プリプレグ積層体aを繊維強化プラスチックA、プリプレグ積層体bを繊維強化プラスチックB、混合領域cを繊維強化プラスチックCとして、繊維強化プラスチックAと繊維強化プラスチックBが繊維強化プラスチックCを介して接合された繊維強化プラスチックを製造した。繊維強化プラスチックから、0°方向が長手方向になるように、15mm×100mmの試験片を切り出し、中央に繊維強化プラスチックCが来るように、JIS K 7074(2008)に従いスパン長が80mmの3点曲げ試験を行い、曲げ強度を取得した。   Thereafter, a surface pressure of 3 MPa is applied using the upper mold 13 to cause both the prepreg laminates to flow to form a mixed region c where both the prepreg laminate a and the prepreg laminate b exist, and hold and solidify for 1 hour. The prepreg laminate a is fiber reinforced plastic A, the prepreg laminate b is fiber reinforced plastic B, the mixed region c is fiber reinforced plastic C, and the fiber reinforced plastic A and the fiber reinforced plastic B are joined via the fiber reinforced plastic C. Manufactured fiber reinforced plastic. A test piece of 15 mm × 100 mm is cut out from the fiber reinforced plastic so that the 0 ° direction is the longitudinal direction, and the span length is 80 mm according to JIS K 7074 (2008) so that the fiber reinforced plastic C comes to the center. A bending test was performed to obtain the bending strength.

(実施例1)
図5に示すようにプリプレグ積層体aとプリプレグ積層体bを共に40mm×100mmのプリプレグ積層体とし、10mm重ねて一体成形し繊維強化プラスチックを得た。流動方向と繊維強化プラスチックの表面に垂直な断面を確認したところ、図1に示すように積層構造を有する繊維強化プラスチックAおよび繊維強化プラスチックBと、テーパー状の断面構造を持つ繊維強化プラスチックCが確認できた。繊維強化プラスチックAから連続した層と繊維強化プラスチックBから連続した層とが接する部位には樹脂層は存在していなかった。角θに相当する角は、15°であった。三点曲げ強度は450MPaであった。
Example 1
As shown in FIG. 5, the prepreg laminate a and the prepreg laminate b were both made into a 40 mm × 100 mm prepreg laminate, and 10 mm overlapped and integrally molded to obtain a fiber reinforced plastic. When the cross section perpendicular to the flow direction and the surface of the fiber reinforced plastic was confirmed, the fiber reinforced plastic A and the fiber reinforced plastic B having a laminated structure and the fiber reinforced plastic C having a tapered cross sectional structure as shown in FIG. It could be confirmed. The resin layer did not exist in the part which the layer continuous from the fiber reinforced plastic A and the layer continuous from the fiber reinforced plastic B contact. The angle corresponding to the angle θ was 15 °. The three point bending strength was 450 MPa.

(実施例2)
図6に示すようにプリプレグ積層体aとプリプレグ積層体bを共に40mm×100mmのプリプレグ積層体とし、20mm離して配置し、一体成形した。断面を観察したところ、積層構造を有する繊維強化プラスチックAと繊維強化プラスチックBの間には、両者が混合した繊維強化プラスチックCが見られ、繊維強化プラスチックAと繊維強化プラスチックC、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維が確認できた。三点曲げ強度は90MPaであった。
(Example 2)
As shown in FIG. 6, the prepreg laminate a and the prepreg laminate b were both 40 mm × 100 mm prepreg laminates, arranged 20 mm apart, and integrally molded. When the cross section was observed, a fiber reinforced plastic C in which both were mixed was found between the fiber reinforced plastic A and the fiber reinforced plastic B having a laminated structure, and the fiber reinforced plastic A, the fiber reinforced plastic C, and the fiber reinforced plastic B were mixed. Reinforcing fibers across the fiber reinforced plastic C were confirmed. The three point bending strength was 90 MPa.

(実施例3)
図7に示すようにプリプレグ積層体aとプリプレグ積層体bが互いに接する面と流動方向がなす角を45°とし、プリプレグ積層体aとプリプレグ積層体bを20mm離して配置し一体成形した。断面を観察したところ、積層構造を有する繊維強化プラスチックAと繊維強化プラスチックBの間には、両者が混合した繊維強化プラスチックCが見られ、繊維強化プラスチックAと繊維強化プラスチックC、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維が確認できた。三点曲げ強度は310MPaであった。
(Example 3)
As shown in FIG. 7, the angle formed by the flow direction with the surface where the prepreg laminate a and the prepreg laminate b are in contact with each other was 45 °, and the prepreg laminate a and the prepreg laminate b were arranged 20 mm apart and integrally molded. When the cross section was observed, a fiber reinforced plastic C in which both were mixed was found between the fiber reinforced plastic A and the fiber reinforced plastic B having a laminated structure, and the fiber reinforced plastic A, the fiber reinforced plastic C, and the fiber reinforced plastic B were mixed. Reinforcing fibers across the fiber reinforced plastic C were confirmed. The three point bending strength was 310 MPa.

(比較例1)
プリプレグ積層体aとプリプレグ積層体bを50mm×100mmで準備し、隙間なく型の中に入れたこと以外は実施例2と同様に一体成形し繊維強化プラスチックを製造した。その結果、基材がほとんど流動しておらず、型から繊維強化プラスチックを取り出す際に割れてしまった。
(Comparative Example 1)
A prepreg laminate a and a prepreg laminate b were prepared in a size of 50 mm × 100 mm, and were integrally molded in the same manner as in Example 2 except that they were put in a mold without a gap to produce a fiber reinforced plastic. As a result, the base material hardly flowed and cracked when taking out the fiber reinforced plastic from the mold.

(比較例2)
切込の入っていないプリプレグを用いたこと以外は、実施例1と同じ条件で一体成形を行った。断面を観察すると、接合箇所はテーパー状にはなっておらず、樹脂だまりが存在していた。三点曲げ強度は50MPaであった。
(Comparative Example 2)
Integral molding was performed under the same conditions as in Example 1 except that a prepreg without a cut was used. When the cross-section was observed, the joint location was not tapered and a resin pool was present. The three point bending strength was 50 MPa.

(比較例3)
切込の入っておらず、全ての強化繊維が連続繊維であるプリプレグを用いたこと以外は、実施例2と同じ条件で一体成形を行い、曲げ強度を取得した。プリプレグは90°層は流動したものの、0°層が流動せず、試験片を切り出す際に割れてしまった。
(Comparative Example 3)
Except that a prepreg in which all the reinforcing fibers were continuous fibers was used without any notches, it was integrally molded under the same conditions as in Example 2 to obtain bending strength. The prepreg flowed in the 90 ° layer, but the 0 ° layer did not flow, and cracked when the test piece was cut out.

(実施例4)
図8のように、リブを有する形状を成形する型を用いた以外は、実施例1と同様に、一体成形を行った。その結果、リブの一部に強化繊維が入り込まない箇所が存在していた。
Example 4
As shown in FIG. 8, integral molding was performed in the same manner as in Example 1 except that a mold for molding a shape having ribs was used. As a result, there was a portion where the reinforcing fiber did not enter into a part of the rib.

(実施例5)
プリプレグ積層体aおよびプリプレグ積層体bとして、実施例1のプリプレグ積層体aおよびプリプレグ積層体bの上にさらに1mmの厚さのSMCを追加したプリプレグ積層体aおよびプリプレグ積層体bとした。SMCは、切込プリプレグを作製する際に用いたプリプレグから、25mm×3mmのチョップドストランドを切り出し、型の中で70℃にし、真空引きをすることで製造した。
(Example 5)
As the prepreg laminate a and the prepreg laminate b, a prepreg laminate a and a prepreg laminate b in which SMC having a thickness of 1 mm was further added on the prepreg laminate a and prepreg laminate b of Example 1 were obtained. The SMC was manufactured by cutting a chopped strand of 25 mm × 3 mm from the prepreg used for producing the cut prepreg, bringing the chopped strand to 70 ° C. in a mold, and vacuuming.

一体成形の結果、プリプレグ積層体aとプリプレグ積層体bの混合領域cを含みながら、リブにも強化繊維が入った繊維強化プラスチックを製造することができた。   As a result of the integral molding, it was possible to produce a fiber reinforced plastic including reinforcing fibers in the ribs, including the mixed region c of the prepreg laminate a and the prepreg laminate b.

(実施例6)
プリプレグ積層体aおよびプリプレグ積層体bとして、実施例1のプリプレグ積層体aおよびプリプレグ積層体bの上にさらに、全ての繊維が繊維長が12mmとなるように切込を挿入した切込プリプレグを[+45/0/−45/90]sで積層した積層体を追加したプリプレグ積層体aおよびプリプレグ積層体bとした。
(Example 6)
As the prepreg laminate a and the prepreg laminate b, a cut prepreg in which cuts were inserted on the prepreg laminate a and prepreg laminate b of Example 1 so that all the fibers had a fiber length of 12 mm was used. A prepreg laminate a and a prepreg laminate b were added to the laminate laminated at [+ 45/0 / −45 / 90] s.

一体成形の結果、プリプレグ積層体aとプリプレグ積層体bの混合領域cを含みながら、リブにも強化繊維が入った繊維強化プラスチックを製造することができた。   As a result of the integral molding, it was possible to produce a fiber reinforced plastic including reinforcing fibers in the ribs, including the mixed region c of the prepreg laminate a and the prepreg laminate b.

1:交点Pと交点Qを結ぶ線分
2:繊維強化プラスチックAと繊維強化プラスチックBが互いに接する部位の断面を示す曲線
3:プリプレグ積層体aの流動方向
4:プリプレグ積層体bの流動方向
5:プリプレグ積層体aがプリプレグ積層体bに接する面
6:プリプレグ積層体bがプリプレグ積層体aに接する面
7:流動方向3と面5がなす角
8:流動方向4と面6がなす角
9:一方向プリプレグの積層体
10:強化繊維がランダムに配向したプリプレグ
11:繊維強化プラスチックAと繊維強化プラスチックCをまたぐ強化繊維
12:繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維
13:上型
14:下型(枠)
1: Line segment connecting intersection point P and intersection point Q 2: Curve showing a cross section of a portion where fiber reinforced plastic A and fiber reinforced plastic B contact each other 3: Flow direction of prepreg laminate a 4: Flow direction 5 of prepreg laminate b : Surface 6 where the prepreg laminate a is in contact with the prepreg laminate b 6: surface where the prepreg laminate b is in contact with the prepreg laminate a 7: angle 8 formed by the flow direction 3 and the surface 5: angle 9 formed by the flow direction 4 and the surface 6 : Unidirectional prepreg laminate 10: prepreg with reinforcing fibers randomly oriented 11: reinforcing fiber straddling fiber reinforced plastic A and fiber reinforced plastic C 12: reinforcing fiber straddling fiber reinforced plastic B and fiber reinforced plastic C 13: top Mold 14: Lower mold (frame)

Claims (10)

少なくとも一部の繊維長さLが10〜300mmである強化繊維に樹脂が含浸したプリプレグを、複数枚積層して得たプリプレグ積層体aおよびプリプレグ積層体bを、両面型内の所定の位置に配置し、プリプレグ積層体aおよびプリプレグ積層体bに面圧を加え流動させ、プリプレグ積層体aとプリプレグ積層体bの両方が存在する領域(以下、混合領域cという)を形成した後、それぞれを固化させて、プリプレグ積層体aを繊維強化プラスチックA、プリプレグ積層体bを繊維強化プラスチックB、混合領域cを繊維強化プラスチックCとすることで、繊維強化プラスチックAと繊維強化プラスチックBが、繊維強化プラスチックCを介して接合された繊維強化プラスチックとする繊維強化プラスチックの製造方法。   A prepreg laminate a and a prepreg laminate b obtained by laminating a plurality of prepregs in which a resin is impregnated with a reinforced fiber having a fiber length L of 10 to 300 mm is placed at a predetermined position in a double-sided mold. And after forming a region where both the prepreg laminate a and the prepreg laminate b are present (hereinafter referred to as a mixed region c), each of the prepreg laminate a and the prepreg laminate b is caused to flow. By solidifying, the prepreg laminate a is made of fiber reinforced plastic A, the prepreg laminate b is made of fiber reinforced plastic B, and the mixed region c is made of fiber reinforced plastic C. A method for producing a fiber reinforced plastic, which is a fiber reinforced plastic joined via plastic C. プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、実質的に一方向に強化繊維が配向したプリプレグに複数の切込を挿入することで、少なくとも一部の強化繊維を繊維長さL=10〜300mmに分断した切込プリプレグを含むプリプレグ積層体である、請求項1に記載の繊維強化プラスチックの製造方法。   At least one of the prepreg laminate a and the prepreg laminate b has a fiber length L = 10 by inserting a plurality of cuts into the prepreg in which the reinforcement fibers are oriented substantially in one direction. The manufacturing method of the fiber reinforced plastics of Claim 1 which is a prepreg laminated body containing the cut prepreg parted in -300mm. プリプレグ積層体aとプリプレグ積層体bを一部重ねて配置する、請求項1または2に記載の繊維強化プラスチックの製造方法。   The manufacturing method of the fiber reinforced plastics of Claim 1 or 2 which arrange | positions the prepreg laminated body a and the prepreg laminated body b partially overlapping. プリプレグ積層体aとプリプレグ積層体bを離して配置する、請求項1または2に記載の繊維強化プラスチックの製造方法。   The manufacturing method of the fiber reinforced plastics of Claim 1 or 2 which arrange | positions the prepreg laminated body a and the prepreg laminated body b apart. プリプレグ積層体a中のプリプレグ積層体bと接触する面およびプリプレグ積層体aの流動方向とがなす角度が75°以下である、および/または、プリプレグ積層体b中のプリプレグ積層体aと接触する面およびプリプレグ積層体bの流動方向とがなす角度が75°以下である、請求項4に記載の繊維強化プラスチックの製造方法。   The angle formed by the surface in contact with the prepreg laminate b in the prepreg laminate a and the flow direction of the prepreg laminate a is 75 ° or less and / or in contact with the prepreg laminate a in the prepreg laminate b. The manufacturing method of the fiber reinforced plastics of Claim 4 whose angle which the surface and the flow direction of the prepreg laminated body b make is 75 degrees or less. プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、強化繊維がランダムに配向したプリプレグを含むプリプレグ積層体である、請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。   The method for producing a fiber-reinforced plastic according to any one of claims 1 to 5, wherein at least one of the prepreg laminate a and the prepreg laminate b is a prepreg laminate including a prepreg in which reinforcing fibers are randomly oriented. プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、強化繊維が一方向に配向したプリプレグと、強化繊維がランダムに配向したプリプレグとを積層したプリプレグ積層体である、請求項1〜6のいずれかに記載の繊維強化プラスチックの製造方法。   Any one of the prepreg laminated body a and the prepreg laminated body b is a prepreg laminated body in which a prepreg in which reinforcing fibers are oriented in one direction and a prepreg in which reinforcing fibers are randomly oriented are laminated. A method for producing the fiber-reinforced plastic according to claim 1. プリプレグ積層体aおよびプリプレグ積層体bの少なくとも一方が、強化繊維が一方向に配向し、少なくとも一部の強化繊維が15〜300mmのプリプレグと、強化繊維が一方向に配向し、少なくとも一部の強化繊維が10〜15mmのプリプレグとを積層したプリプレグ積層体である、請求項1〜7のいずれかに記載の繊維強化プラスチックの製造方法。   At least one of the prepreg laminate a and the prepreg laminate b is such that the reinforcing fibers are oriented in one direction, at least some reinforcing fibers are prepregs of 15 to 300 mm, and the reinforcing fibers are oriented in one direction, and at least some The manufacturing method of the fiber reinforced plastics in any one of Claims 1-7 which is a prepreg laminated body which the reinforced fiber laminated | stacked the prepreg of 10-15 mm. 繊維強化プラスチックAおよび繊維強化プラスチックBが、繊維強化プラスチックCを介して接合された繊維強化プラスチックであって、
繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCは強化繊維の体積含有率が40%〜65%であり、かつ少なくとも一部の強化繊維が繊維長さL=10〜300mmに分断されており、
繊維強化プラスチックA、および繊維強化プラスチックBは、強化繊維が実質的に一方向に配向した層が複数枚積層された繊維強化プラスチックであり、
繊維強化プラスチックAと繊維強化プラスチックCをまたぐ強化繊維、および、繊維強化プラスチックBと繊維強化プラスチックCをまたぐ強化繊維が存在する、繊維強化プラスチック。
Fiber reinforced plastic A and fiber reinforced plastic B are fiber reinforced plastics joined via fiber reinforced plastic C,
The fiber reinforced plastic A, the fiber reinforced plastic B, and the fiber reinforced plastic C have a volume content of reinforced fibers of 40% to 65%, and at least some of the reinforced fibers are divided into fiber lengths L = 10 to 300 mm. And
The fiber reinforced plastic A and the fiber reinforced plastic B are fiber reinforced plastics in which a plurality of layers in which reinforced fibers are substantially oriented in one direction are laminated.
A fiber-reinforced plastic in which there are reinforcing fibers that straddle fiber-reinforced plastic A and fiber-reinforced plastic C, and reinforcing fibers that straddle fiber-reinforced plastic B and fiber-reinforced plastic C.
繊維強化プラスチックA、繊維強化プラスチックB、および繊維強化プラスチックCを含み、繊維強化プラスチックCの表面に垂直な断面において、
繊維強化プラスチックAから連続した層と繊維強化プラスチックBから連続した層とが接する部位に実質的に樹脂層が存在せず、
繊維強化プラスチックAから連続した層と繊維強化プラスチックCの一方の表面とが交わる点を交点Pとして、繊維強化プラスチックBから連続した層と繊維強化プラスチックCの他方の表面とが交わる点を交点Qとしたときに、交点Pと交点Qを結んだ線分と、繊維強化プラスチックCのいずれかの表面とのなす角度が30°よりも小さい、請求項9に記載の繊維強化プラスチック。
In a cross section that includes fiber reinforced plastic A, fiber reinforced plastic B, and fiber reinforced plastic C and is perpendicular to the surface of fiber reinforced plastic C,
There is substantially no resin layer at the site where the continuous layer from fiber reinforced plastic A and the continuous layer from fiber reinforced plastic B are in contact,
The point where the continuous layer from the fiber reinforced plastic A and one surface of the fiber reinforced plastic C intersect is defined as the intersection point P, and the point where the layer continuous from the fiber reinforced plastic B and the other surface of the fiber reinforced plastic C intersect is defined as the intersection point Q. The fiber reinforced plastic according to claim 9, wherein an angle formed between a line segment connecting the intersection point P and the intersection point Q and any surface of the fiber reinforced plastic C is smaller than 30 °.
JP2016241871A 2015-12-25 2016-12-14 Method for producing fiber-reinforced plastic and fiber-reinforced plastic Pending JP2017119432A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015253488 2015-12-25
JP2015253488 2015-12-25

Publications (1)

Publication Number Publication Date
JP2017119432A true JP2017119432A (en) 2017-07-06

Family

ID=59271550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241871A Pending JP2017119432A (en) 2015-12-25 2016-12-14 Method for producing fiber-reinforced plastic and fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2017119432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142962A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
WO2018142963A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
JPWO2018230432A1 (en) * 2017-06-14 2019-06-27 三菱ケミカル株式会社 Method of producing composite laminate, method of producing fiber reinforced composite material molded article, and fiber reinforced composite material molded article
CN114746491A (en) * 2019-12-11 2022-07-12 东丽株式会社 Prepreg, laminate, and integrated molded article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142962A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
WO2018142963A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
US11872773B2 (en) 2017-02-02 2024-01-16 Toray Industries, Inc. Method for producing fiber-reinforced plastic
US11951695B2 (en) 2017-02-02 2024-04-09 Toray Industries, Inc. Method for producing fiber-reinforced plastic
JPWO2018230432A1 (en) * 2017-06-14 2019-06-27 三菱ケミカル株式会社 Method of producing composite laminate, method of producing fiber reinforced composite material molded article, and fiber reinforced composite material molded article
JP2020078948A (en) * 2017-06-14 2020-05-28 三菱ケミカル株式会社 Method of producing fiber-reinforced composite material molded product
CN114746491A (en) * 2019-12-11 2022-07-12 东丽株式会社 Prepreg, laminate, and integrated molded article

Similar Documents

Publication Publication Date Title
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP2017119432A (en) Method for producing fiber-reinforced plastic and fiber-reinforced plastic
KR102344759B1 (en) Infeed prepreg and manufacturing method of infeed prepreg
JP6273804B2 (en) Manufacturing method of fiber reinforced plastic molding
JP2020062893A (en) Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product
JP2015178241A (en) Method of producing fiber-reinforced resin material
US10427361B2 (en) Fiber-reinforced sheet and structure
CN108284618B (en) Structural component made of composite material and method for the production thereof
US11059239B2 (en) Method and apparatus for composite rib and rib-and-sheet molding
US9919473B2 (en) Method for producing fiber-reinforced resin bonded body
JP6947163B2 (en) Manufacturing method of fiber reinforced plastic
WO2018142963A1 (en) Method for producing fiber-reinforced plastic
WO2022024939A1 (en) Fiber-reinforced plastic and production method for fiber-reinforced plastic
JP6568445B2 (en) Manufacturing method of fiber reinforced sheet and manufacturing method of structure
JP2010253801A (en) Fiber-reinforced composite material molded product and method for producing the molding
KR102401275B1 (en) Fiber reinforced composite material having a hollow section and methode for manufacturing the same
KR20150001481U (en) Fiber-reinforced sheet
JP2015112805A (en) Method for molding composite material and molded article composed of composite material
JP6163955B2 (en) 3D fiber reinforced composite
WO2021192464A1 (en) Preform and method for producing same
JP2019025847A (en) Laminated structure and compact
KR102021188B1 (en) Composite molded article using fiber reinforced plastics and manufacturing method thereof
JP2017206015A5 (en)
JP7021216B2 (en) Fiber reinforced plastic with serrated edges
JP2014205300A (en) Method for manufacturing fiber-reinforced resin material