JP5644054B2 - 定着装置、および画像形成装置 - Google Patents

定着装置、および画像形成装置 Download PDF

Info

Publication number
JP5644054B2
JP5644054B2 JP2009049574A JP2009049574A JP5644054B2 JP 5644054 B2 JP5644054 B2 JP 5644054B2 JP 2009049574 A JP2009049574 A JP 2009049574A JP 2009049574 A JP2009049574 A JP 2009049574A JP 5644054 B2 JP5644054 B2 JP 5644054B2
Authority
JP
Japan
Prior art keywords
temperature
fixing
fixing belt
magnetic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009049574A
Other languages
English (en)
Other versions
JP2010204371A (ja
Inventor
英一郎 徳弘
英一郎 徳弘
長谷波 茂彦
茂彦 長谷波
内藤 康隆
康隆 内藤
馬場 基文
基文 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2009049574A priority Critical patent/JP5644054B2/ja
Publication of JP2010204371A publication Critical patent/JP2010204371A/ja
Application granted granted Critical
Publication of JP5644054B2 publication Critical patent/JP5644054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Description

本発明は、定着装置、および画像形成装置に関する。
電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。
例えば特許文献1には、磁束発生手段としての電磁誘導コイルが磁性金属製の芯金シリンダからなる定着ロールの内部に配置され、電磁誘導コイルにて生成した誘導磁界により定着ロールに渦電流を誘起させて、定着ロールを直接的に加熱する誘導加熱方式の定着装置が記載されている。
特開2003−186322号公報
ここで一般に、電磁誘導コイルにより加熱される定着部材を熱容量の小さいベルト部材で構成することにより、定着部材を定着可能温度まで上昇させる時間(ウォームアップタイム)が短縮される。ところが、例えば小サイズの用紙を連続して通紙した場合等に、熱消費の少ない非通紙領域が過剰に昇温して、定着部材に損傷が生じる場合があった。
本発明は、誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制することを目的とする。
請求項1に記載の発明は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、前記定着部材と前記磁路形成部材との間において当該定着部材および当該磁路形成部材に接して設けられ、熱伝導率が当該磁路形成部材よりも小さく形成され、当該定着部材にて発生した熱を当該定着部材から当該磁路形成部材に移動させる熱移動部材とを備え、前記磁路形成部材は、前記磁界生成部材にて生成された交流磁界により発生する渦電流を分断する渦電流分断部と、前記熱移動部材を介して前記定着部材に対向し熱を長手方向に沿って伝熱する伝熱部とが形成され、前記熱移動部材は、前記磁路形成部材の前記伝熱部に接触して設けられ、当該磁路形成部材のうち前記定着部材と対向しない側の面には形成されないことを特徴とする定着装置である。
請求項2に記載の発明は、前記磁路形成部材の前記伝熱部は、前記定着部材を通過する前記記録材の中で最小サイズの当該記録材が通過する当該定着部材の幅方向領域よりも端部側の領域と、当該最小サイズの記録材が通過する幅方向領域との双方に跨って形成されたことを特徴とする請求項1記載の定着装置である。
請求項3に記載の発明は、前記熱移動部材は、前記定着部材の温度と前記磁路形成部材の温度との対応関係が維持されるように当該定着部材にて発生した熱を当該磁路形成部材に伝熱させることを特徴とする請求項1記載の定着装置である。
請求項4に記載の発明は、前記熱移動部材は、外周面が前記定着部材の内周面と接触し、内周面が前記磁路形成部材の外周面と接触する層状部材で形成されたことを特徴とする請求項1記載の定着装置である。
請求項5に記載の発明は、トナー像を形成するトナー像形成手段と、前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、前記定着手段は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、前記定着部材と前記磁路形成部材との間において当該定着部材および当該磁路形成部材に接して設けられ、熱伝導率が当該磁路形成部材よりも小さく形成され、当該定着部材にて発生した熱を当該定着部材から当該磁路形成部材に移動させる熱移動部材とを備え、前記定着手段の前記磁路形成部材は、前記磁界生成部材にて生成された交流磁界により発生する渦電流を分断する渦電流分断部と、前記熱移動部材を介して前記定着部材に対向し熱を長手方向に沿って伝熱する伝熱部とが形成され、前記定着手段の前記熱移動部材は、前記磁路形成部材の前記伝熱部に接触して設けられ、当該磁路形成部材のうち前記定着部材と対向しない側の面には形成されないことを特徴とする画像形成装置である。
請求項6に記載の発明は、前記定着手段の前記磁路形成部材は、前記伝熱部が前記定着部材を通過する前記記録材の中で最小サイズの当該記録材が通過する当該定着部材の幅方向領域よりも端部側の領域と、当該最小サイズの記録材が通過する幅方向領域との双方に跨って形成されたことを特徴とする請求項5記載の画像形成装置である。
請求項7に記載の発明は、前記定着手段の前記熱移動部材は、前記定着部材の温度と前記磁路形成部材の温度との対応関係が維持されるように当該定着部材にて発生した熱を当該磁路形成部材に伝熱させることを特徴とする請求項5記載の画像形成装置である。
請求項8に記載の発明は、前記定着手段の前記熱移動部材は、外周面が前記定着部材の内周面と接触し、内周面が前記磁路形成部材の外周面と接触する層状部材で形成されたことを特徴とする請求項5記載の画像形成装置である。
請求項1の発明によれば、本発明を採用しない場合に比べ、誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制することができる。
請求項2の発明によれば、本発明を採用しない場合に比べ、非通紙領域において発生した熱の通紙領域への拡散をさらに促進することができる。
請求項3の発明によれば、定着部材と磁路形成部材とを略同じ温度となるように設定することができる。
請求項4の発明によれば、本発明を採用しない場合に比べ、定着部材から磁路形成部材への熱の移動を円滑に行うことができる。
請求項5の発明によれば、本発明を採用しない場合に比べ、画像形成装置に搭載した誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制することができる。
請求項6の発明によれば、本発明を採用しない場合に比べ、非通紙領域において発生した熱の通紙領域への拡散をさらに促進することができる。
請求項7の発明によれば、定着部材と磁路形成部材とを略同じ温度となるように設定することができる。
請求項8の発明によれば、本発明を採用しない場合に比べ、定着部材から磁路形成部材への熱の移動を円滑に行うことができる。
本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。 本実施の形態の定着ユニットの構成を示す正面図である。 図2における定着ユニットのXX断面図である。 定着ベルトの断面層構成図である。 (a)がエンドキャップ部材の側面図であり、(b)がZ方向から見たエンドキャップ部材の平面図である。 IHヒータの構成を説明する断面図である。 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。 小サイズ紙を連続して通紙した際の定着ベルトの幅方向の温度分布の概略を示した図である。 非通紙領域での定着ベルトの温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線の状態を説明する図である。 感温磁性部材に形成されるスリットと伝熱路とを示した図である。 定着ユニットでのウォームアップ時における定着ベルトからの伝熱を説明する図である。 定着ユニットが定着動作を行っている場合の定着ベルトからの伝熱を説明する図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は本実施の形態の定着装置(定着ユニット)が適用される画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31を備えている。さらには、例えばパーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し予め定めた画像処理を施す画像処理部33を備えている。
画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成手段の一例である4つの画像形成ユニット11Y,11M,11C,11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定めた電位で一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて略同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。
本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色毎の画像データとなって各画像形成ユニット11に送られる。そして、例えば黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で一様に帯電され、画像処理部33から送信されたK色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上にはK色画像に関する静電潜像が形成される。感光体ドラム12上に形成されたK色静電潜像は現像器15により現像され、感光体ドラム12上にK色トナー像が形成される。同様に、画像形成ユニット11Y,11M,11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。
各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。
その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1での画像形成処理がプリント枚数分のサイクルだけ繰り返し実行される。
<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は本実施の形態の定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるXX断面図である。
まず、断面図である図3に示すように、定着ユニット60は、交流磁界を生成する磁界生成部材の一例としてのIH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61を介して加圧ロール62から押圧される押圧パッド63を備えている。
さらに、定着ユニット60は、押圧パッド63等の構成部材を支持するホルダ65、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する感温磁性部材64、定着ベルト61と感温磁性部材64との間の熱の伝熱を調整する熱調整部材75、感温磁性部材64を通過した磁力線を誘導する誘導部材66、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材70を備えている。
<定着ベルトの説明>
定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば原形(円筒形状)時の直径が30mm、幅方向長が370mmに形成されている。また、図4(定着ベルト61の断面層構成図)に示したように、定着ベルト61は、基材層611、基材層611の上に積層された導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614からなる多層構造のベルト部材である。
基材層611は、薄層の導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を持った材質、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30〜200μm(好ましくは50〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60〜200μmの樹脂材料等が用いられる。
導電発熱層612は、導電層の一例であって、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。すなわち、導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより、渦電流を発生させる層である。
通常、IHヒータ80に交流電流を供給する励磁回路(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20k〜100kHzとなる。それにより、導電発熱層612は、周波数20k〜100kHzの交流磁界が侵入し通過するように構成される。
導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20k〜100kHzの交流磁界が導電発熱層612を侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄層に構成される。また、導電発熱層612を構成する材料として、例えば、Au,Ag,Al,Cu,Zn,Sn,Pb,Bi,Be,Sb等の金属や、これらの金属合金が用いられる。
Figure 0005644054
具体的には、導電発熱層612として、厚さ2〜20μm、固有抵抗2.7×10−8Ω・m以下の例えばCu等の非磁性金属(比透磁率が概ね1の常磁性体)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成するのが好ましい。
次に、弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば厚みが100〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが好適である。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材質が使用される。例えば、PFA(テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体)、PTFE(ポリテトラフルオロエチレン)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さとしては、薄すぎると、耐摩耗性の面で充分でなく、定着ベルト61の寿命を短くする。その一方で、厚すぎると、定着ベルト61の熱容量が大きくなりすぎ、ウォームアップタイムが長くなる。そこで、表面離型層614の厚さとして、耐摩耗性と熱容量とのバランスを考慮し、1〜50μmが好適である。
<押圧パッドの説明>
押圧パッド63は、シリコーンゴム等やフッ素ゴム等の弾性体で構成され、加圧ロール62と対向する位置にてホルダ65に支持される。そして、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
なお、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材70を配置している。剥離補助部材70は、剥離バッフル71が定着ベルト61の回転移動方向と対向する向き(所謂カウンタ方向)に定着ベルト61と近接する状態でホルダ72によって支持される。そして、押圧パッド63の出口にて用紙Pに形成されたカール部分を剥離バッフル71により支持することで、用紙Pが定着ベルト61方向に向かうことを抑制する。
<感温磁性部材の説明>
次に、感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、定着ベルト61の内周面とは熱調整部材75を介して予め定めた間隙を有するように近接して配置される。すなわち、感温磁性部材64は、直接的には定着ベルト61と接触せず、熱調整部材75の厚さ(例えば、0.05〜0.2mm)分の間隙を持って定着ベルト61と近接して配置される。なお、後段で詳述するが、熱調整部材75は、定着ベルト61の内周面と接触して配置される(図3参照)。
感温磁性部材64を定着ベルト61と近接させて配置するのは、感温磁性部材64の温度が定着ベルト61の温度に対応して変化する構成、すなわち、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように構成するためである。また、感温磁性部材64と定着ベルト61との間に熱調整部材75を介在させて、感温磁性部材64を定着ベルト61と非接触に配置するのは、画像形成装置1のメインスイッチがオンされ、定着ベルト61が定着設定温度まで加熱されるウォームアップ時に、定着ベルト61の熱が感温磁性部材64に流入するのを熱調整部材75により抑制して、ウォームアップタイムの短縮を図るためである。
また、感温磁性部材64は、その磁気特性の透磁率が急変する温度である「透磁率変化開始温度」(後段参照)が各色トナー像が溶融する定着設定温度以上であって、定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも低い温度範囲内に設定された材質で構成される。すなわち、感温磁性部材64は、定着設定温度を含む温度領域において強磁性と非磁性(常磁性)との間を可逆的に変化する特性(「感温磁性」)を有する材質で構成される。そして、感温磁性部材64は、磁路形成部材として機能し、強磁性を呈する透磁率変化開始温度以下の温度範囲においてIHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。それにより、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後段の図6参照)とを内部に包み込むような閉磁路を形成する。一方、透磁率変化開始温度を超える温度範囲においては、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。
なお、ここでの「透磁率変化開始温度」とは、透磁率(例えば、JIS C2531で測定される透磁率)が連続的に低下を開始する温度であり、例えば感温磁性部材64等の部材を透過する磁束量(磁力線の数)が変化し始める温度点をいう。したがって、透磁率変化開始温度は、磁性が消失する温度であるキュリー点に近い温度となるが、キュリー点とは異なる概念を有するものである。
感温磁性部材64に用いる材質としては、透磁率変化開始温度が例えば140(定着設定温度)〜240℃の範囲内に設定された例えばFe−Ni合金(パーマロイ)等の二元系整磁鋼やFe−Ni−Cr合金等の三元系の整磁鋼等が用いられる。例えば、Fe−Niの二元系整磁鋼においては約Fe64%、Ni36%(原子数比)とすることで225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや整磁鋼等の金属合金等は、成型性や加工性に優れ、伝熱性も高く安価である等の理由から、感温磁性部材64に適する。その他の材質としては、Fe,Ni,Si,B,Nb,Cu,Zr,Co,Cr,V,Mn,Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも薄い厚さで形成される。具体的には、例えばFe−Ni合金を用いた場合には50〜300μm程度に設定される。なお、感温磁性部材64の構成や機能に関しては、後段でさらに詳述する。
<熱調整部材の説明>
熱調整部材75は、外周面が定着ベルト61の内周面に倣った円弧形状で形成され、内周面が感温磁性部材64の外周面に倣った円弧形状で形成された厚さが例えば、0.05〜0.2mmのシート状部材である。また、熱調整部材75は、内周面が感温磁性部材64の外周面に固定され、外周面が定着ベルト61の内周面と接触して配置される。そして、熱調整部材75は、感温磁性部材64と定着ベルト61との双方に接触して配置されることで、感温磁性部材64と定着ベルト61との間で熱の移動(伝熱)を行う熱移動部材の一例として機能する。
具体的には、熱調整部材75は、定着ベルト61との摺動に対する耐摩耗性が高く、かつ感温磁性部材64(熱伝導率:数10〜100W/mK)よりも熱伝導率が低い例えばポリイミド(熱伝導率:0.2W/mK)等の樹脂材料で構成される。そして、定着ベルト61が定着設定温度まで加熱されるウォームアップ時においては、熱調整部材75は、定着ベルト61から感温磁性部材64への熱の移動を緩やかに行い、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように設定する。すなわち、ウォームアップ時には、熱調整部材75は定着ベルト61の熱が感温磁性部材64に急激に流入するのを抑制して、定着ユニット60でのウォームアップタイムの短縮を図る。
一方、例えば連続して画像形成処理が行われて、熱調整部材75自身および感温磁性部材64の温度が感温磁性部材64の透磁率変化開始温度を超える温度範囲にある場合には、熱調整部材75は定着ベルト61の熱を感温磁性部材64に速やかに移動させる。それにより、感温磁性部材64の温度が定着ベルト61の温度と即時的に略同じ温度となるように設定して、定着ベルト61の温度が定着設定温度から大きく超えて上昇するのを抑制する。
なお、熱調整部材75の機能については、後段でさらに詳述する。
<ホルダの説明>
押圧パッド63を支持するホルダ65は、押圧パッド63が加圧ロール62からの押圧力を受けた状態での撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける長手方向の圧力(ニップ圧N)の均一性を維持している。さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えばAl,Cu,Ag等の常磁性金属材料等が用いられる。
<誘導部材の説明>
誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面とは予め定めた間隙(例えば、1.0〜5.0mm)を有する非接触に配置される。また、誘導部材66は、例えばAg,Cu,Alといった固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導して、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い所定の厚さ(例えば、1.0mm)で形成される。
<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
正面図である図2に示したように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がZ方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌合される固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材166を介して回転自在に結合されたベアリング軸受部67cを備える。そして、上記図2に示したように、ホルダ65の両端部の支持部65aが定着ユニット60の筐体69の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材質としては、機械的強度や耐熱性の高い所謂エンジニアリングプラスチックスが用いられる。例えば、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が適する。
そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91,92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94,95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1〜0.5N・m程度のトルクが作用する。ところが、本実施の形態の定着ベルト61では、基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えているが、その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1〜5N程度の圧縮力が働く。しかし、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態の定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性・フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された例えば厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに例えば厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、押圧バネ68(図2参照)により例えば25kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図である。図6に示したように、IHヒータ80は、例えば耐熱性樹脂等の非磁性体から構成される支持体81、交流磁界を生成する励磁コイル82を備えている。また、励磁コイル82を支持体81上に固定する弾性体で構成された弾性支持部材83、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。さらには、磁界を遮蔽するシールド85、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流を供給する励磁回路88を備えている。
支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81aが定着ベルト61表面と予め定めた間隙(例えば、0.5〜2mm)を保つように形成されている。また、支持体81を構成する材質としては、例えば、耐熱ガラス、ポリカーボネート、ポリエーテルサルフォン、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂、またはこれらにガラス繊維を混合した耐熱性樹脂等の耐熱性のある非磁性材料が用いられる。
励磁コイル82は、相互に絶縁された例えば直径0.17mmの銅線材を例えば90本束ねたリッツ線が長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20k〜100kHzが用いられる。
磁心84は、例えばソフトフェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、整磁鋼等の高透磁率の酸化物や合金材質で構成される強磁性体が用いられ、磁路形成手段として機能する。磁心84は、励磁コイル82にて生成された交流磁界による磁力線(磁束)を内部に誘導し、磁心84から定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して磁心84に戻るといった磁力線の通路(磁路)を形成する。すなわち、励磁コイル82にて生成された交流磁界が磁心84の内部と感温磁性部材64の内部とを通過するように構成して、磁力線が定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線が定着ベルト61の磁心84と対向する領域に集中される。
ここで、磁心84は磁路形成による損失が小さい材料が望ましい。具体的には、磁心84は渦電流損を小さくする形態(スリット等による電流経路遮断や分断化、薄板束ね等)での使用が望ましく、ヒステリシス損の小さい材料で形成されることが望ましい。
また、定着ベルト61の回転方向に沿った磁心84の長さは、感温磁性部材64の定着ベルト61の回転方向に沿った長さよりも小さく構成される。それにより、磁力線のIHヒータ80周辺への漏洩が減り、力率が向上する。さらには、定着ユニット60を構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の透磁率変化開始温度は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定されている。そして、定着ベルト61の温度が透磁率変化開始温度以下の状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、透磁率変化開始温度以下となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
図7は、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線(H)の状態を説明する図である。図7に示したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。
すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1,R2での磁束密度は高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心84に戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、感温磁性部材64内の磁位の低い部分から集中して磁心84に向けて発生する。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心84に向かうこととなり、領域R3での磁束密度も高くなる。
磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図7に示したように、磁束密度の変化量が大きい領域R1,R2および領域R3では、大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、大きな渦電流Iが発生した導電発熱層612では、大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1,R2や領域R3において大きな熱が発生する。それにより、定着ベルト61は加熱される。
ところで、本実施の形態の定着ユニット60では、定着ベルト61の内周面側において定着ベルト61に近接させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。
<定着ベルトの非通紙領域の昇温を抑制する機能の説明>
次に、定着ベルト61の非通紙領域の昇温を抑制する機能について説明する。
ここでまず、定着ユニット60に小サイズの用紙P(小サイズ紙P1)を連続して通紙した場合について述べる。図8は、小サイズ紙P1を連続して通紙した際の定着ベルト61の幅方向の温度分布の概略を示した図である。図8においては、画像形成装置1にて使用される用紙Pの最大サイズ幅(例えば、A3横幅)である最大通紙領域をFf、最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、A4縦送り)が通過する領域(小サイズ紙通紙領域)をFs、小サイズ紙P1が通過しない非通紙領域をFbとする。なお、画像形成装置1では中央位置基準で通紙が行われるものとする。
図8に示したように、小サイズ紙P1が連続して通紙された場合に、小サイズ紙P1が通過する小サイズ紙通紙領域Fsでは定着のための熱が消費される。そのため、制御部31(図1参照)による定着設定温度での温度調整制御が行われ、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。その一方で、非通紙領域Fbにおいても、小サイズ紙通紙領域Fsと同様の温度調整制御が行われる。しかし、非通紙領域Fbでは定着のための熱が消費されない。そのために、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そして、その状態で小サイズ紙P1の連続通紙を続けると、非通紙領域Fbの温度が例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも上昇して、定着ベルト61を損傷させる場合がある。
そこで、上記したように、本実施の形態の定着ユニット60では、感温磁性部材64は、定着設定温度以上であって、例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度以下の温度範囲内に透磁率変化開始温度が設定された例えばFe−Ni合金等で構成されている。すなわち、図8に示したように、感温磁性部材64(図7参照)の透磁率変化開始温度Tcuは、定着設定温度Tf以上であって、例えば弾性層613や表面離型層614の耐熱温度Tlim以下の温度領域に設定されている。
それにより、小サイズ紙P1が連続通紙されると、定着ベルト61の非通紙領域Fbでの温度は、感温磁性部材64の透磁率変化開始温度を超える。それによって、定着ベルト61に近接する感温磁性部材64の非通紙領域Fbでの温度も定着ベルト61の温度に対応して、定着ベルト61と同様に透磁率変化開始温度を超える。そのため、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失する。感温磁性部材64の比透磁率が低下して1に近づくことで、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612を通過した後の磁力線Hは拡散し、導電発熱層612を横切る磁力線Hの磁束密度は低下する。それにより、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)は低減される。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられ、定着ベルト61の損傷が抑制される。
このように、感温磁性部材64は、定着ベルト61の温度を検知する検知部としての機能と、検知した定着ベルト61の温度に応じて定着ベルト61の過度の温度上昇を抑制する昇温抑制部としての機能とを併せ持っている。
感温磁性部材64を通過した後の磁力線Hは、誘導部材66(図3参照)に到達してこの内部に誘導される。磁束が誘導部材66に到達してその内部に誘導されるようになると、導電発熱層612より渦電流Iの流れ易い誘導部材66の方に多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流量はさらに抑制され、非通紙領域Fbでの温度上昇は抑えられる。
その際に、誘導部材66が励磁コイル82からの磁力線Hの殆どを誘導して定着ユニット60からの磁力線Hの漏洩を抑えるように、誘導部材66の厚さ、材質、および形状が選定される。具体的には、誘導部材66を表皮深さδが充分に厚い材料で構成すればよい。それにより、誘導部材66に渦電流Iが流れても発熱量も極力小さくなる。本実施の形態では、誘導部材66を感温磁性部材64に沿う略円形形状の厚さ1mmのAl(アルミニウム)で構成し、感温磁性部材64とは非接触(平均的な距離を例えば4mm)に配置している。その他の材料としては、AgやCuが好適である。
ところで、その後、定着ベルト61の非通紙領域Fbでの温度が感温磁性部材64の透磁率変化開始温度よりも低くなると、感温磁性部材64の非通紙領域Fbでの温度も透磁率変化開始温度よりも低くなる。それにより、感温磁性部材64は再び強磁性に変化して磁力線Hが感温磁性部材64の内部に誘導されるので、導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。
図9は、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線Hの状態を説明する図である。図9に示したように、定着ベルト61の温度が非通紙領域Fbにて透磁率変化開始温度を超えた温度範囲にある場合には、非通紙領域Fbの感温磁性部材64は比透磁率が低下する。そのため、IHヒータ80により生成された交流磁界の磁力線Hは感温磁性部材64を容易に透過するように変化する。それにより、IHヒータ80(励磁コイル82)により生成された交流磁界の磁力線Hは、磁心84から定着ベルト61側に向けて拡散するように放射され、誘導部材66に到達するようになる。
すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2では、磁力線Hが感温磁性部材64に誘導され難いため、放射状に拡散する。それにより、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度(単位面積当たりの磁力線Hの数)が減少する。また、磁力線Hが再び磁心84に戻る際に導電発熱層612を厚さ方向に横切る領域R3でも、拡散した広い領域から磁力線Hが磁心84に戻ることとなるため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少する。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、領域R1,R2や領域R3において導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。それにより、定着ベルト61の温度は低下する。
このように、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度以上の温度範囲にある場合において、非通紙領域Fbでの感温磁性部材64の内部に磁力線Hが誘導され難くなり、励磁コイル82により生成された交流磁界の磁力線Hは、定着ベルト61の導電発熱層612を厚さ方向を拡散しながら横切る。そのため、励磁コイル82により生成された交流磁界の磁路は長いループを形成することとなり、定着ベルト61の導電発熱層612を通過する磁路での磁束密度は減少する。
それにより、例えば小サイズ紙P1が連続通紙されて、温度が上昇した非通紙領域Fbでは、定着ベルト61の導電発熱層612に発生する渦電流Iが減って、定着ベルト61の非通紙領域Fbでの発熱量(ジュール熱W)は低減する。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
<感温磁性部材の昇温を抑制する構成の説明>
感温磁性部材64が上記した非通紙領域Fbでの過剰な温度上昇を抑える機能を果たすには、感温磁性部材64の長手方向の領域毎の温度がそれに対向する定着ベルト61の長手方向の領域毎の温度に対応して変化し、上記した定着ベルト61の温度を検知する検出部としての機能を果たす必要がある。
そのために、感温磁性部材64自身に関しては、磁力線Hによって誘導加熱され難い構成が採用される。すなわち、定着ベルト61の温度が透磁率変化開始温度以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hは存在する。それにより、感温磁性部材64内部には弱い渦電流Iが発生しており、感温磁性部材64自身においても若干の発熱が生じる。そのため、例えば、大量の画像形成が連続して行われた場合等には、感温磁性部材64に自己発熱した熱が蓄積され、通紙領域(図9参照)でも感温磁性部材64の温度が上昇傾向を呈する。このように渦電流損による自己発熱が大きいと温度が上昇して、意図せず透磁率変化開始温度まで到達してしまい、通紙領域と非通紙領域の磁気特性に差がなくなって昇温抑制効果が効かなくなってしてしまうことがある。そこで、感温磁性部材64の温度と定着ベルト61の温度との対応関係が維持され、感温磁性部材64が定着ベルト61の温度を検知する検知部として精度良く機能するために、感温磁性部材64自身に発生するジュール熱Wを抑える必要がある。
そこで、感温磁性部材64での渦電流損やヒステリシス損を小さくするために、まず第1として、感温磁性部材64は、磁力線Hによって誘導加熱され難い物性(固有抵抗値および透磁率)を持った材質が選定される。
また、第2として、感温磁性部材64の厚さは、少なくとも透磁率変化開始温度以下の温度範囲にて磁力線Hが感温磁性部材64の厚さ方向に横切り難いように、強磁性を呈する状態での表皮深さδよりも厚く形成される。
さらに、第3として、感温磁性部材64には、磁力線Hによって発生する渦電流Iの流れを分断する複数のスリット64s(図10参照)が形成される。誘導加熱され難いように感温磁性部材64の材質や厚さを選定しても、感温磁性部材64内部に発生する渦電流Iを0とすることは困難である。そこで、感温磁性部材64に発生した渦電流Iの流れを複数のスリット64sにより分断することで、渦電流Iを減少させて、感温磁性部材64に発生するもジュール熱Wを低く抑えている。
その一方で、感温磁性部材64には、後述する感温磁性部材64内部での長手方向の熱の移動(伝熱)を円滑化するために、伝熱路が感温磁性部材64の長手方向に沿って配置されている。
図10は、感温磁性部材64に形成されるスリット64sと伝熱路64pとを示した図である。図10(a)は、感温磁性部材64がホルダ65に設置された状態の側面図であり、(b)は、(a)の上方(z方向)から見た平面図である。図10に示したように、感温磁性部材64では、磁力線Hによって発生する渦電流Iの流れる方向に直交して複数のスリット64sが形成される。そのため、スリット64sが無い場合には感温磁性部材64の長手方向の全体に亘って大きな渦となって流れる渦電流I(図10(b)破線)が、スリット64sにより分断される。それにより、スリット64sを形成した場合には、感温磁性部材64内を流れる渦電流I(図10(b)実線)は、スリット64sとスリット64sとの間の領域内での小さな渦となり、全体としての渦電流Iの電流量は低減される。その結果、感温磁性部材64での発熱量(ジュール熱W)は減少し、発熱し難い構成が実現する。したがって、複数のスリット64sは、渦電流Iを分断する渦電流分断部として機能する。
一方、感温磁性部材64には、感温磁性部材64の長手方向に沿って伝熱部の一例としての伝熱路64pが形成される。それにより、非通紙領域での感温磁性部材64の熱が伝熱路64pを通って通紙領域に分散され、非通紙領域の感温磁性部材64の温度が低下する。それに伴い、非通紙領域において定着ベルト61から感温磁性部材64への熱の移動量が増加し、定着ベルト61での過度な昇温が抑制される。
なお、図10に例示した感温磁性部材64では、スリット64sを渦電流Iの流れる方向に直交して形成したが、渦電流Iの流れを分断する構成であれば、例えば渦電流Iの流れる方向に対して傾斜したスリットを形成してもよい。また、図10に示したようなスリット64sを感温磁性部材64の幅方向の全域に亘って形成する構成の他に、感温磁性部材64の幅方向の一部に形成してもよい。すなわち、感温磁性部材64に発生する熱量に応じて、スリットの数、位置、傾斜角等が設定される。
また、スリットの傾斜角が最大となった状態として、感温磁性部材64がスリット部で小片に分割された状態となる小片分割群となってもよく、このような形態であっても本発明の効果は同様に得られる。
一方、伝熱路64pは、図10に例示したように、感温磁性部材64の長手方向に沿って形成される。その場合に、伝熱路64pを感温磁性部材64の長手方向全域に亘って形成する形態の他に、伝熱路64pを図8に示した非通紙領域Fbと非通紙領域Fbに近接する小サイズ紙通紙領域Fsとを含む感温磁性部材64の長手方向の一部領域に形成するように構成してもよい。また、伝熱路64pを感温磁性部材64の長手方向に対して傾斜するように形成してもよい。すなわち、感温磁性部材64の非通紙領域に発生する熱量に応じて、感温磁性部材64の非通紙領域から通紙領域への熱の伝熱経路を形成するように、伝熱路64pの数、位置、長さ等が設定される。
<定着ベルトの過昇温を抑制する熱調整部材の機能の説明>
次に、熱調整部材75の機能について説明する。
まず図11は、定着ユニット60でのウォームアップ時における定着ベルト61からの熱の移動(伝熱)を説明する図である。なお、図11および次に示す図12は、非通紙領域と通紙領域との境界領域での定着ベルト61等の断面構成を示している。
ウォームアップ時には、制御部31(図1参照)が定着ベルト61の温度を定着設定温度まで上昇させる温度制御を行う。しかし、ウォームアップ時には定着ユニット60に用紙Pが通紙されないため、通紙領域Fsにおいても定着ベルト61から用紙Pに供給される熱は存在しない。そのため、通紙領域Fsと非通紙領域Fbとは同様の熱状態となり、定着ベルト61の通紙領域Fsの温度(Bs)と非通紙領域Fbの温度(Bb)とは略等しくなる(Bs=Bb:図11の定着ベルト温度グラフ参照)。
その場合に、上記したように、定着ベルト61と熱調整部材75を介して近接して配置された感温磁性部材64は、その温度が定着ベルト61の温度と略同じ温度となる必要がある。そのため、熱調整部材75はウォームアップ時においても定着ベルト61から感温磁性部材64に向けた伝熱を行うが、その際の伝熱が緩やかに行われるように熱調整部材75は構成される。具体的には、熱調整部材75は、ウォームアップ時における定着ベルト61から感温磁性部材64への伝熱が緩やかなものとなるように、感温磁性部材64よりも熱伝導率が低い材質(例えば、ポリイミド)で構成される。さらに、ウォームアップ時においても定着ベルト61から感温磁性部材64に伝熱が行われるように、熱調整部材75の層厚(例えば、0.1mm)が設定される。
それにより、ウォームアップ時には、定着ベルト61から感温磁性部材64に向けた伝熱は行われるが、定着ベルト61の熱が感温磁性部材64に急激に流入するのは抑制され、IHヒータ80からのエネルギは主として定着ベルト61の温度を上昇させるために使用される。それによって、定着ベルト61は効率的に加熱され、ウォームアップタイムの短縮が図られる。
また、それにより、通紙領域Fsでの定着ベルト61の温度(Bs)と感温磁性部材64の温度(Ks)とは、略同じ温度(Bs=Ks)となり、同様に、非通紙領域Fbでも、定着ベルト61の温度(Bb)と感温磁性部材64の温度(Kb)とは、略同じ温度(Bb=Kb)となる。そのため、ウォームアップ時での定着ユニット60に用紙Pが通紙されない状態では、感温磁性部材64の通紙領域Fsの温度(Ks)と非通紙領域Fbの温度(Kb)とは略一定(Ks=Kb)の状態となるので、感温磁性部材64での非通紙領域Fbから通紙領域Fsへの伝熱は殆ど生じない。
このように、熱調整部材75を介在させることにより、ウォームアップ時においては、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるとともに、定着ベルト61から感温磁性部材64への伝熱が緩やかなものとなる。また、感温磁性部材64の通紙領域Fsの温度(Ks)と非通紙領域Fbの温度(Kb)とが略一定(Ks=Kb)の状態となるので、感温磁性部材64において非通紙領域Fbから通紙領域Fsへの伝熱は殆ど生じない。そのため、ウォームアップ時には、非通紙領域Fbおよび通紙領域Fsの双方において、定着ベルト61から感温磁性部材64への緩やか伝熱が行われながら、定着ベルト61の温度は速やかに定着設定温度に設定され、それが維持される。
次に、図12は、定着ユニット60が定着動作を行っている場合の定着ベルト61からの伝熱を説明する図である。
定着ベルト61ではIHヒータ80からの交流磁界によって発熱し(図7参照)、定着動作時には、用紙Pが通過する通紙領域Fsにおいて定着のための熱が消費される。すなわち、図12に示したように、定着ベルト61から用紙Pに熱が流出する。それに対応させて、定着ベルト61の温度は制御部31(図1参照)によって制御され、通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。
ところが、非通紙領域Fbにおいても、通紙領域Fsと同様に温度調整のための制御が行われるが、非通紙領域Fbでは定着のための熱が消費されない。すなわち、図12に示したように、定着ベルト61から用紙Pに熱が流出しない。そのために、定着ベルト61の非通紙領域Fbの温度(Bb)は通紙領域Fsの温度(Bs)よりも高くなる(Bb>Bs:図12の定着ベルト温度グラフ参照)。
その場合にもウォームアップ時と同様に、熱調整部材75は、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように定着ベルト61から感温磁性部材64に向けた伝熱を行う。その際には、熱調整部材75は、感温磁性部材64よりも熱伝導率が低い材質(例えば、ポリイミド)で構成されてはいるが、非通紙領域Fbの定着ベルト61が定着設定温度を超える高温となっているために熱調整部材75自体の温度も高くなっており、熱調整部材75と感温磁性部材64との温度差、さらには、定着ベルト61と感温磁性部材64との温度差が大きくなる(Bb>Kb)。それにより、定着ベルト61から感温磁性部材64への伝熱は速くなる。そして、定着ベルト61の非通紙領域Fbでの温度(Bb)が感温磁性部材64の透磁率変化開始温度を超えると、定着ベルト61からの伝熱により、感温磁性部材64の非通紙領域Fbでの温度(Kb)も定着ベルト61の温度に対応して透磁率変化開始温度を超える。
それにより、上記図9で説明したように、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失し、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)が低減される結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
その際、特に、非通紙領域Fbでの定着ベルト61の温度上昇が急速であった場合や、定着設定温度を大きく超える高温となっている場合等には、感温磁性部材64の非通紙領域Fbでの温度(Kb)と通紙領域Fsでの温度(Ks)との温度差が大きくなる(Ks<Kb)。それにより、感温磁性部材64内部において、例えば感温磁性部材64の長手方向に沿って形成された伝熱路64p(図10参照)を通って、非通紙領域Fbから通紙領域Fsへの熱の移動が発生する。さらには、感温磁性部材64から感温磁性部材64の内部空間への熱の発散量も増加する。そのために、感温磁性部材64の非通紙領域Fbでの温度(Kb)は低下し、非通紙領域Fbにおける定着ベルト61と感温磁性部材64との温度差がさらに大きくなる(Kb<Bb)。それにより、定着ベルト61から感温磁性部材64への伝熱が促進され、非通紙領域Fbでの定着ベルト61の温度上昇に対するさらに大きな抑制作用が働く。それによって、例えば定着設定温度を高く(例えば、180℃)設定した場合においても、非通紙領域Fbでの定着ベルト61の温度が予め定めた範囲内(例えば、定着ベルト61の耐熱温度よりも低い温度範囲内)に抑えられる。
他方、用紙Pが通過する通紙領域Fsにおいては定着ベルト61から用紙Pに熱が流出するため、制御部31(図1参照)による制御によって、通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。それに伴って、熱調整部材75は、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように定着ベルト61から感温磁性部材64に向けた伝熱を行うため、通常は、通紙領域Fsでは定着ベルト61の温度(Bs)と感温磁性部材64の温度(Ks)とは略等しい状態が維持される(Bs≒Ks)。
ところが、例えば、非通紙領域Fbでの定着ベルト61の温度上昇が急速である場合や、定着設定温度を大きく超える高温となった場合等のように、伝熱路64p(図10参照)を通って非通紙領域Fbから通紙領域Fsに熱が流入する状態になると、通紙領域Fsでの感温磁性部材64の温度が上昇する。そのために、通紙領域Fsにおいて感温磁性部材64の温度(Ks)が定着ベルト61の温度(Bs)以上に高くなる状態も発生する(Ks≧Bs)。特に、非通紙領域Fbに近い通紙領域Fsでは、このような状態(Ks≧Bs)が発生し易い。
その際には、熱調整部材75は、感温磁性部材64の温度と定着ベルト61の温度とが略同じ温度となるように、感温磁性部材64から定着ベルト61に向けた伝熱を行い、通紙領域Fsにおける感温磁性部材64の温度(Ks)を低下させるように機能する。そして、熱調整部材75を介して感温磁性部材64から定着ベルト61に伝熱された熱は、定着ベルト61にて定着のための熱として消費される。
このように、例えば、非通紙領域Fbでの定着ベルト61の温度上昇が急速である場合や、定着設定温度を大きく超える高温となった場合等には、特に非通紙領域Fbに近い通紙領域Fsにおいて、非通紙領域Fbの定着ベルト61→熱調整部材75→非通紙領域Fbの感温磁性部材64→通紙領域Fsの感温磁性部材64→熱調整部材75→通紙領域Fsの定着ベルト61といった熱循環経路が形成される。それにより、非通紙領域Fbでの定着ベルト61の温度上昇に対する大きな抑制作用が働くこととなる。
また、この場合に、熱調整部材75は感温磁性部材64よりも熱伝導率が低く構成されているため、この熱循環経路において、感温磁性部材64から熱調整部材75への伝熱よりも感温磁性部材64内部での伝熱が起こり易くなる。それにより、非通紙領域Fbと通紙領域Fsとの境界領域での感温磁性部材64から定着ベルト61への熱の移動は抑えられ、非通紙領域Fbの感温磁性部材64から通紙領域Fsの感温磁性部材64に至る経路における伝熱が効率的に行われる。
すなわち、非通紙領域Fbでは、定着ベルト61が定着設定温度を超える高温となっているために定着ベルト61と感温磁性部材64との温度差が大きくなり(Bb>Kb)、定着ベルト61から感温磁性部材64に熱が伝熱する。この場合に、定着ベルト61において非通紙領域Fbから通紙領域Fsへの熱の移動も生じるが、その熱の移動は非通紙領域Fbと通紙領域Fsとの境界領域に限定される。非通紙領域Fbと通紙領域Fsとの境界領域よりも定着ベルト61におけるより端部側の領域では、定着ベルト61内部の温度差よりも定着ベルト61と感温磁性部材64との温度差の方が大きいため、定着ベルト61から感温磁性部材64への熱の伝熱が行われる。
そして、感温磁性部材64に熱が伝熱されると、熱調整部材75が感温磁性部材64よりも熱伝導率が低く構成されていることから、感温磁性部材64に伝熱された熱は、熱調整部材75を介して定着ベルト61に移動するよりも、感温磁性部材64の通紙領域Fsに向けて移動し易い状態となる。そのために、感温磁性部材64内部では、通紙領域Fsに向けて熱が拡散される。
通紙領域Fsに向けて熱が拡散されると、特に非通紙領域Fbに近接する通紙領域Fsにおいては、感温磁性部材64の温度(Ks)が定着ベルト61の温度(Bs)以上に高くなる状態(Ks≧Bs)となる。その結果、上記した熱循環経路が形成されて、非通紙領域Fbでの定着ベルト61の温度上昇に対する大きな抑制作用が働く。それにより、例えば定着設定温度を高く(例えば、180℃)設定した場合においても、非通紙領域Fbでの定着ベルト61の温度が予め定めた範囲内(例えば、定着ベルト61の耐熱温度よりも低い温度範囲内)に抑えられる。
なお、通紙領域Fsにおける非通紙領域Fbから離れた感温磁性部材64の内部領域では、非通紙領域Fbからの熱は感温磁性部材64内部に広く拡散される。そのため、非通紙領域Fbから離れた通紙領域Fsでは、感温磁性部材64の温度上昇は少なく、定着ベルト61の温度(Bs)と感温磁性部材64の温度(Ks)とは略等しい状態が維持される(Bs≒Ks)。それにより、通紙領域Fsの感温磁性部材64→熱調整部材75→通紙領域Fsの定着ベルト61といった熱循環経路よりも、通紙領域Fsの感温磁性部材64→感温磁性部材64の内部空間といった熱発散経路による熱伝達が主に行われる。
以上説明したように、本実施の形態の画像形成装置1に備えられる定着ユニット60では、定着ベルト61の内周面に近接させて感温磁性部材64を配置している。それにより、非通紙領域が過剰に昇温するのを抑制する。
さらには、感温磁性部材64は、定着ベルト61の内周面と接触して配置される熱調整部材75を介して配置される。それにより、非通紙領域Fbでの定着ベルト61の温度上昇に対する大きな抑制作用が働き、定着設定温度を高く設定した場合においても、非通紙領域Fbでの定着ベルト61の温度が予め定めた範囲内に抑えられる。
1…画像形成装置、60…定着ユニット、61…定着ベルト、62…加圧ロール、64…感温磁性部材、75…熱調整部材、80…IHヒータ、82…励磁コイル、84…磁心、611…基材層、612…導電発熱層

Claims (8)

  1. 導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
    前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
    前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、
    前記定着部材と前記磁路形成部材との間において当該定着部材および当該磁路形成部材に接して設けられ、熱伝導率が当該磁路形成部材よりも小さく形成され、当該定着部材にて発生した熱を当該定着部材から当該磁路形成部材に移動させる熱移動部材とを備え、
    前記磁路形成部材は、前記磁界生成部材にて生成された交流磁界により発生する渦電流を分断する渦電流分断部と、前記熱移動部材を介して前記定着部材に対向し熱を長手方向に沿って伝熱する伝熱部とが形成され、
    前記熱移動部材は、前記磁路形成部材の前記伝熱部に接触して設けられ、当該磁路形成部材のうち前記定着部材と対向しない側の面には形成されないことを特徴とする定着装置。
  2. 前記磁路形成部材の前記伝熱部は、前記定着部材を通過する前記記録材の中で最小サイズの当該記録材が通過する当該定着部材の幅方向領域よりも端部側の領域と、当該最小サイズの記録材が通過する幅方向領域との双方に跨って形成されたことを特徴とする請求項1記載の定着装置。
  3. 前記熱移動部材は、前記定着部材の温度と前記磁路形成部材の温度との対応関係が維持されるように当該定着部材にて発生した熱を当該磁路形成部材に伝熱させることを特徴とする請求項1記載の定着装置。
  4. 前記熱移動部材は、外周面が前記定着部材の内周面と接触し、内周面が前記磁路形成部材の外周面と接触する層状部材で形成されたことを特徴とする請求項1記載の定着装置。
  5. トナー像を形成するトナー像形成手段と、
    前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
    前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
    前記定着手段は、
    導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
    前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
    前記定着部材を挟んで前記磁界生成部材と対向して配置され、透磁率が減少を開始する透磁率変化開始温度までの温度範囲にて当該磁界生成部材で生成された交流磁界の磁路を形成し、当該透磁率変化開始温度を超える温度範囲にて当該磁界生成部材で生成された交流磁界を透過させる磁路形成部材と、
    前記定着部材と前記磁路形成部材との間において当該定着部材および当該磁路形成部材に接して設けられ、熱伝導率が当該磁路形成部材よりも小さく形成され、当該定着部材にて発生した熱を当該定着部材から当該磁路形成部材に移動させる熱移動部材とを備え、
    前記定着手段の前記磁路形成部材は、前記磁界生成部材にて生成された交流磁界により発生する渦電流を分断する渦電流分断部と、前記熱移動部材を介して前記定着部材に対向し熱を長手方向に沿って伝熱する伝熱部とが形成され、
    前記定着手段の前記熱移動部材は、前記磁路形成部材の前記伝熱部に接触して設けられ、当該磁路形成部材のうち前記定着部材と対向しない側の面には形成されないことを特徴とする画像形成装置。
  6. 前記定着手段の前記磁路形成部材は、前記伝熱部が前記定着部材を通過する前記記録材の中で最小サイズの当該記録材が通過する当該定着部材の幅方向領域よりも端部側の領域と、当該最小サイズの記録材が通過する幅方向領域との双方に跨って形成されたことを特徴とする請求項5記載の画像形成装置。
  7. 前記定着手段の前記熱移動部材は、前記定着部材の温度と前記磁路形成部材の温度との対応関係が維持されるように当該定着部材にて発生した熱を当該磁路形成部材に伝熱させることを特徴とする請求項5記載の画像形成装置。
  8. 前記定着手段の前記熱移動部材は、外周面が前記定着部材の内周面と接触し、内周面が前記磁路形成部材の外周面と接触する層状部材で形成されたことを特徴とする請求項5記載の画像形成装置。
JP2009049574A 2009-03-03 2009-03-03 定着装置、および画像形成装置 Active JP5644054B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049574A JP5644054B2 (ja) 2009-03-03 2009-03-03 定着装置、および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049574A JP5644054B2 (ja) 2009-03-03 2009-03-03 定着装置、および画像形成装置

Publications (2)

Publication Number Publication Date
JP2010204371A JP2010204371A (ja) 2010-09-16
JP5644054B2 true JP5644054B2 (ja) 2014-12-24

Family

ID=42965923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049574A Active JP5644054B2 (ja) 2009-03-03 2009-03-03 定着装置、および画像形成装置

Country Status (1)

Country Link
JP (1) JP5644054B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956975B2 (ja) * 2005-12-05 2012-06-20 パナソニック株式会社 定着装置、および画像形成装置
JP5141204B2 (ja) * 2006-11-24 2013-02-13 富士ゼロックス株式会社 定着装置、及び画像形成装置

Also Published As

Publication number Publication date
JP2010204371A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4793467B2 (ja) 定着装置および画像形成装置
JP5691370B2 (ja) 定着装置および画像形成装置
JP2009258453A (ja) 定着装置および画像形成装置
JP4821873B2 (ja) 定着装置、および画像形成装置
JP5359362B2 (ja) 定着装置、および画像形成装置
JP5369958B2 (ja) 定着装置および画像形成装置
JP4711003B2 (ja) 定着装置、および画像形成装置
JP4788789B2 (ja) 定着装置、画像形成装置、および磁界生成装置
JP4807427B2 (ja) 定着装置及び画像形成装置
JP5532646B2 (ja) 定着装置、および画像形成装置
JP5765135B2 (ja) 定着装置および画像形成装置
JP2010224342A (ja) 定着装置、および画像形成装置
JP2010224370A (ja) 定着装置、および画像形成装置
JP4715942B2 (ja) 定着装置、画像形成装置及び磁界生成装置
JP2011022446A (ja) 定着装置、画像形成装置、および磁界生成装置
JP4893763B2 (ja) 定着装置、および画像形成装置
JP5375393B2 (ja) 定着装置、画像形成装置、および磁界生成装置
JP2010231106A (ja) 定着装置および画像形成装置
JP2016212214A (ja) 定着装置および画像形成装置
JP5644054B2 (ja) 定着装置、および画像形成装置
JP2010224032A (ja) 定着装置および画像形成装置
JP2012194429A (ja) 定着装置、画像形成装置およびプログラム
JP4873035B2 (ja) 定着装置及び画像形成装置
JP4947222B2 (ja) 定着装置、および画像形成装置
JP5532651B2 (ja) 定着装置、および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350