JP5641491B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5641491B2
JP5641491B2 JP2008273788A JP2008273788A JP5641491B2 JP 5641491 B2 JP5641491 B2 JP 5641491B2 JP 2008273788 A JP2008273788 A JP 2008273788A JP 2008273788 A JP2008273788 A JP 2008273788A JP 5641491 B2 JP5641491 B2 JP 5641491B2
Authority
JP
Japan
Prior art keywords
flow rate
coefficient
surface roughness
correction coefficient
rate correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008273788A
Other languages
Japanese (ja)
Other versions
JP2010101767A (en
Inventor
聡 福原
聡 福原
信博 請園
信博 請園
明 片岡
明 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008273788A priority Critical patent/JP5641491B2/en
Publication of JP2010101767A publication Critical patent/JP2010101767A/en
Application granted granted Critical
Publication of JP5641491B2 publication Critical patent/JP5641491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波流量計に関し、特に、より正確な流量補正係数を用いて高精度な流量測定を行う技術に関するものである。   The present invention relates to an ultrasonic flow meter, and more particularly to a technique for performing highly accurate flow measurement using a more accurate flow correction coefficient.

化学プラントなどの流量制御に用いられる流量計として超音波流量計が知られている。超音波流量計の中には、伝搬時間差方式による測定と反射相関方式による測定とを組み合わせたものがある(特許文献1参照)。この超音波流量計は、被測定流体中に気泡や微粒子などの超音波反射体が少ない場合には伝搬時間差方式による測定を行い、多い場合には反射相関方式による測定を行うものである。以下、この超音波流量計について図3の構成図を用いて説明する。   An ultrasonic flow meter is known as a flow meter used for flow control in a chemical plant or the like. Some ultrasonic flowmeters combine measurement using a propagation time difference method and measurement using a reflection correlation method (see Patent Document 1). This ultrasonic flowmeter performs measurement by the propagation time difference method when there are few ultrasonic reflectors such as bubbles and fine particles in the fluid to be measured, and performs measurement by the reflection correlation method when there are many ultrasonic flowmeters. Hereinafter, this ultrasonic flowmeter will be described with reference to the block diagram of FIG.

図3において、測定管内径(直径)Dを有する測定管2には、矢印の方向に被測定流体FLD(液体、気体、ガスなど)が流れる。超音波流量計1は、測定管2の外周に設けた超音波を発射するとともに受信する機能も備えた超音波トランスジューサA10と、超音波トランスジューサA10の下流側の外周に設けた超音波トランスジューサA10からの超音波を受信するとともに超音波を発射する機能も備えた超音波トランスジューサB11と、超音波トランスジューサA10、B11から超音波を発射させるトリガー信号を出力する送信回路30と、超音波トランスジューサA10、B11が受信した超音波信号を増幅する受信回路40を備える。   In FIG. 3, a fluid to be measured FLD (liquid, gas, gas, etc.) flows in the direction of the arrow through the measurement tube 2 having the measurement tube inner diameter (diameter) D. The ultrasonic flowmeter 1 includes an ultrasonic transducer A10 that emits and receives ultrasonic waves provided on the outer periphery of the measurement tube 2, and an ultrasonic transducer A10 provided on the outer periphery on the downstream side of the ultrasonic transducer A10. An ultrasonic transducer B11 having a function of receiving ultrasonic waves and emitting ultrasonic waves, a transmission circuit 30 for outputting a trigger signal for emitting ultrasonic waves from the ultrasonic transducers A10 and B11, and ultrasonic transducers A10 and B11. Includes a receiving circuit 40 for amplifying the received ultrasonic signal.

さらに、超音波流量計1は、超音波トランスジューサA10、B11と送信回路30、受信回路40との接続を切換える切換回路20と、受信回路40で受信した超音波信号をデジタル信号に変換するA/D変換回路50と、A/D変換回路50で生成されたデジタル信号に基づいて離散化した相関値を演算する相関演算手段60と、相関演算手段60で算出された相関値から流速を求める流速測定手段80と、送信回路30からの超音波送出のタイミングを制御するとともに切換回路20の切換えを制御する切換判定手段70と、を備える。なお、超音波トランスジューサB11は、超音波トランスジューサA10と同じ側の位置に設けても(実線で図示)、点線で示したように対向する位置に設けてもよい。   Furthermore, the ultrasonic flowmeter 1 includes an A / B that converts ultrasonic signals received by the receiving circuit 40 into a digital signal, a switching circuit 20 that switches connection between the ultrasonic transducers A10 and B11, the transmitting circuit 30, and the receiving circuit 40. A D conversion circuit 50, a correlation calculation means 60 for calculating a discretized correlation value based on the digital signal generated by the A / D conversion circuit 50, and a flow velocity for obtaining a flow velocity from the correlation value calculated by the correlation calculation means 60 Measuring means 80 and switching determination means 70 for controlling the timing of ultrasonic transmission from the transmission circuit 30 and controlling switching of the switching circuit 20 are provided. Note that the ultrasonic transducer B11 may be provided at the same position as the ultrasonic transducer A10 (illustrated by a solid line) or at an opposing position as indicated by a dotted line.

伝搬時間差方式による測定手段(第1流速の測定手段)における切換回路20の接続は、超音波トランスジューサA10、B11を使うように、切換回路20をAS側にして超音波トランスジューサA10と送信回路30とを接続し且つBR側にして超音波トランスジューサB11と受信回路40とを接続し、その後、逆にBS側にして超音波トランスジューサB11と送信回路30とを接続し且つAR側にして超音波トランスジューサA10と受信回路40とを接続する。   The connection of the switching circuit 20 in the measuring means (first flow rate measuring means) using the propagation time difference method is such that the ultrasonic transducer A10 and the transmitting circuit 30 are connected with the switching circuit 20 on the AS side so that the ultrasonic transducers A10 and B11 are used. And the ultrasonic transducer B11 and the receiving circuit 40 are connected to the BR side, and then the ultrasonic transducer B11 and the transmitting circuit 30 are connected to the BS side and the ultrasonic transducer A10 is connected to the AR side. And the receiving circuit 40 are connected.

これによって、超音波トランスジューサA10から発射された超音波信号CTは、被測定流体FLD中を伝搬し、測定管2の内壁で反射して、超音波トランスジューサB11で受信される。その後、逆に超音波トランスジューサB11から発射された超音波信号CTは、被測定流体FLDを伝搬し、測定管2の内壁で反射して、超音波トランスジューサA10で受信される。   Thus, the ultrasonic signal CT emitted from the ultrasonic transducer A10 propagates through the fluid to be measured FLD, is reflected by the inner wall of the measuring tube 2, and is received by the ultrasonic transducer B11. Thereafter, on the contrary, the ultrasonic signal CT emitted from the ultrasonic transducer B11 propagates through the fluid to be measured FLD, is reflected by the inner wall of the measuring tube 2, and is received by the ultrasonic transducer A10.

反射相関方式による測定手段(第2流速の測定手段)における切換回路20の接続は、超音波トランスジューサA10のみを使うように、切換回路20をAS側にして超音波トランスジューサA10と送信回路30とを接続し且つAR側にして超音波トランスジューサA10と受信回路40とを接続する。   The connection of the switching circuit 20 in the measurement means (second flow rate measuring means) by the reflection correlation method is performed by connecting the ultrasonic transducer A10 and the transmission circuit 30 with the switching circuit 20 set to the AS side so that only the ultrasonic transducer A10 is used. The ultrasonic transducer A10 and the receiving circuit 40 are connected to the AR side.

これによって、超音波トランスジューサA10から発射された超音波信号CHは、被測定流体FLD中の超音波反射体PTによって反射され、この反射した超音波信号が同じ超音波トランスジューサA10で受信される。   Thereby, the ultrasonic signal CH emitted from the ultrasonic transducer A10 is reflected by the ultrasonic reflector PT in the fluid to be measured FLD, and the reflected ultrasonic signal is received by the same ultrasonic transducer A10.

相関演算手段60は、伝搬時間差方式による測定の場合、超音波トランスジューサB11および超音波トランスジューサA10で受信された超音波受信信号(以下、「伝搬時間差方式の超音波受信信号」という)のデジタル信号に対し、相互相関演算を行い相関値(以下、「第1相関値」という)を求める。そして、流速測定手段80は、第1相関値が最大になる時間差を求め、この時間差、超音波信号の音速および超音波信号の進行方向の角度を用いて被測定流体FLDの流速(以下、「第1流速」という)を求める。なお、この第1流速は、測定管2内の被測定流体FLDの(第1)平均流速である。   In the case of measurement using the propagation time difference method, the correlation calculation means 60 converts the ultrasonic signal received by the ultrasonic transducer B11 and the ultrasonic transducer A10 (hereinafter, referred to as “propagation time difference type ultrasonic reception signal”) into a digital signal. On the other hand, a cross-correlation operation is performed to obtain a correlation value (hereinafter referred to as “first correlation value”). Then, the flow velocity measuring means 80 obtains a time difference at which the first correlation value is maximized, and uses the time difference, the sound velocity of the ultrasonic signal, and the angle in the traveling direction of the ultrasonic signal (hereinafter referred to as “flow velocity of the fluid under measurement”). 1st flow velocity "). The first flow velocity is the (first) average flow velocity of the fluid to be measured FLD in the measurement tube 2.

また、相関演算手段60は、反射相関方式にによる測定の場合、一定時間の間隔で2回以上超音波トランスジューサA10から超音波信号が発射され、自ら受信した超音波受信信号のデジタル信号に対し、相互相関演算を行い相関値(以下、「第2相関値」という)を求める。そして、流速測定手段80は、第2相関値から被測定流体FLDの流速(以下、「第2流速」という)を求める。なお、この第2流速は、測定管2内の被測定流体FLDの(第2)平均流速である。   Further, in the case of measurement by the reflection correlation method, the correlation calculation means 60 emits an ultrasonic signal from the ultrasonic transducer A10 at a fixed time interval twice or more, and for the digital signal of the ultrasonic reception signal received by itself, A cross-correlation calculation is performed to obtain a correlation value (hereinafter referred to as “second correlation value”). Then, the flow velocity measuring means 80 obtains the flow velocity of the fluid to be measured FLD (hereinafter referred to as “second flow velocity”) from the second correlation value. The second flow velocity is the (second) average flow velocity of the fluid to be measured FLD in the measurement tube 2.

切換判定手段70は、伝搬時間差方式の超音波受信信号の強度または第1相関値が所定値より大きければ、切換回路20を伝搬時間差方式の接続にし、所定値以下であれば、切換回路20を反射相関方式の接続にして、いずれか一方の測定方式で流速を測定する。   The switching determination means 70 sets the switching circuit 20 to the connection of the propagation time difference method if the intensity of the ultrasonic reception signal of the propagation time difference method or the first correlation value is larger than a predetermined value, and switches the switching circuit 20 if the intensity is less than the predetermined value. The flow rate is measured by either one of the measurement methods using the reflection correlation method.

なお、この所定値(以下、「測定方式切換値」という)は、超音波流量測定において、伝搬時間差方式による測定と反射相関方式による測定のうち、適している一方の測定方式に切換えるための閾値である。   The predetermined value (hereinafter referred to as “measurement method switching value”) is a threshold value for switching to one of the measurement methods suitable for the ultrasonic flow rate measurement and the reflection correlation method. It is.

すなわち、超音波反射体PTが少ない場合には伝搬時間差方式による測定が適しており、この場合、伝搬する超音波信号の乱れが少なく超音波受信信号同士の波形は類似するので第1相関値は大きくなり、超音波受信信号の振幅などの強度も大きくなる。   That is, when the number of ultrasonic reflectors PT is small, measurement by the propagation time difference method is suitable. In this case, since the propagation of ultrasonic signals is small and the waveforms of ultrasonic reception signals are similar, the first correlation value is Intensity such as the amplitude of the ultrasonic reception signal increases.

また、超音波反射体PTが多い場合には反射相関方式による測定が適しており、この場合、逆に第1相関値は小さくなり、超音波受信信号の強度も小さくなる。   In addition, when the number of ultrasonic reflectors PT is large, measurement by the reflection correlation method is suitable. In this case, the first correlation value is decreased, and the intensity of the ultrasonic reception signal is also decreased.

特開2005−181268号公報JP 2005-181268 A

伝搬時間差方式で流量を測定する場合、第1流速に流量補正係数と測定管内径Dとを乗算して流量を求める。この流量補正係数は、経験的な値に基づくキビリスの式、ビルゲルの式などから算出された値である。   When the flow rate is measured by the propagation time difference method, the flow rate is obtained by multiplying the first flow rate by the flow rate correction coefficient and the measurement pipe inner diameter D. This flow rate correction coefficient is a value calculated from a millet equation, a Birgel equation, or the like based on empirical values.

測定管2の製造条件の違いによって、測定管2の面粗さに個体差(違い)がある。また、測定管2の腐食や測定管2への付着などによって、測定管2の面粗さが流量測定中に変化することがある。しかしながら、流量補正係数には面粗さが反映されていないため、流量補正係数を用いて求めた伝搬時間差方式による流量は、面粗さの個体差や変化によって誤差が発生する問題がある。   There are individual differences (differences) in the surface roughness of the measurement tube 2 due to differences in manufacturing conditions of the measurement tube 2. Further, the surface roughness of the measuring tube 2 may change during the flow rate measurement due to corrosion of the measuring tube 2 or adhesion to the measuring tube 2. However, since the surface roughness is not reflected in the flow rate correction coefficient, there is a problem that an error occurs in the flow rate by the propagation time difference method obtained using the flow rate correction coefficient due to individual differences or changes in the surface roughness.

また、この誤差によって、伝搬時間差方式と反射相関方式とが相互に切換えられた際、流量出力が変化(シフト)する問題がある。   In addition, due to this error, there is a problem that the flow rate output changes (shifts) when the propagation time difference method and the reflection correlation method are switched to each other.

本発明の目的は、面粗さに対応した、より正確な流量補正係数を求め、これを用いて高精度な流量測定を行う超音波流量計を提供することである。   An object of the present invention is to provide an ultrasonic flowmeter that obtains a more accurate flow rate correction coefficient corresponding to the surface roughness and performs highly accurate flow rate measurement using the coefficient.

このような目的を達成するために、請求項1の発明は、
一方の超音波トランスデューサから他方の超音波トランスデューサへ測定管内の被測定流体を伝搬した超音波信号の第1相関値またはこの伝搬した超音波信号の強度に応じて、前記第1相関値に基づく前記被測定流体の第1流速の測定または超音波反射体によって反射された超音波信号の第2相関値に基づく第2流速の測定のいずれか一方に基づいて流量算出を行う超音波流量計において、
測定された前記第1および第2流速の比率に基づく前記測定管の面粗さ係数から流量補正係数を求める流量補正係数決定手段と、
この流量補正係数決定手段の流量補正係数と前記第1流速とを用いて前記被測定流体の流量を求める流量算出手段と、
を備え、
前記流量補正係数決定手段は、
前記第2流速から求めた第1レイノルズ数と、前記第2流速を前記第1流速で除算した除算結果とに基づいて前記面粗さ係数を求める面粗さ係数算出手段と、
この面粗さ係数算出手段により求められた面粗さ係数と、前記第1流速から求めた第2レイノルズ数とに基づいて前記流量補正係数を求める流量補正係数算出手段と、
具備することを特徴とする。
請求項の発明は、請求項1に記載の発明において、
前記面粗さ係数算出手段は、前記除算結果から前記測定管の第1管摩擦係数を求め、この第1管摩擦係数と前記第1レイノルズ数とから前記面粗さ係数を求めるとともに
前記流量補正係数算出手段は、前記第2レイノルズ数と前記面粗さ係数とから前記測定管の第2管摩擦係数を求め、この第2管摩擦係数から前記流量補正係数を求める、
ことを特徴とする。
請求項の発明は、請求項に記載の発明において、
前記面粗さ係数は前記測定管の面粗さ値と前記測定管の内径との比率であり、前記面粗さ係数算出手段はコールブルックの式を用いて前記面粗さ係数を求めることを特徴とする。
請求項の発明は、請求項1からのいずれか一項に記載の発明において、
予め前記流量補正係数決定手段によって求めた流量補正係数を記憶する記憶手段を備え、
前記流量算出手段は前記記憶手段の流量補正係数を用いることを特徴とする。

In order to achieve such an object, the invention of claim 1
Based on the first correlation value of the ultrasonic signal propagated through the fluid to be measured in the measurement tube from one ultrasonic transducer to the other ultrasonic transducer or the intensity of the propagated ultrasonic signal, the first correlation value is based on the first correlation value. In the ultrasonic flowmeter for calculating the flow rate based on either the measurement of the first flow velocity of the fluid to be measured or the measurement of the second flow velocity based on the second correlation value of the ultrasonic signal reflected by the ultrasonic reflector,
Flow rate correction coefficient determining means for obtaining a flow rate correction coefficient from the surface roughness coefficient of the measurement tube based on the ratio of the measured first and second flow rates;
A flow rate calculating means for determining a flow rate of the fluid under measurement using the flow rate correction coefficient of the flow rate correction coefficient determining means and the first flow velocity;
With
The flow rate correction coefficient determining means includes
A surface roughness coefficient calculating means for determining the surface roughness coefficient based on a first Reynolds number determined from the second flow velocity and a division result obtained by dividing the second flow velocity by the first flow velocity;
Flow rate correction coefficient calculating means for determining the flow rate correction coefficient based on the surface roughness coefficient determined by the surface roughness coefficient calculating means and the second Reynolds number determined from the first flow velocity;
It is characterized by comprising .
The invention of claim 2 is the invention of claim 1,
The surface roughness coefficient calculation means obtains the first pipe friction coefficient of the measuring tube from the division result, along with determining the surface roughness coefficient from said first Reynolds number and the first pipe friction coefficient,
The flow rate correction coefficient calculating means obtains a second pipe friction coefficient of the measuring tube from the second Reynolds number and the surface roughness coefficient, and obtains the flow rate correction coefficient from the second pipe friction coefficient.
It is characterized by that.
The invention of claim 3 is the invention of claim 2 ,
The surface roughness coefficient is a ratio between the surface roughness value of the measuring tube and the inner diameter of the measuring tube, and the surface roughness coefficient calculating means obtains the surface roughness coefficient using the Colebrook equation. Features.
The invention of claim 4 is the invention according to any one of claims 1 to 3 ,
Storage means for storing a flow rate correction coefficient obtained in advance by the flow rate correction coefficient determining means,
The flow rate calculation means uses a flow rate correction coefficient of the storage means.

本発明によれば、流量補正係数決定手段が、第1および第2流速の比率に基づいて測定管の面粗さ係数を求め、この面粗さ係数から流量補正係数を求めることによって、面粗さに対応した、より正確な流量補正係数を求めることができる。   According to the present invention, the flow rate correction coefficient determining means obtains the surface roughness coefficient of the measuring tube based on the ratio between the first and second flow velocities, and obtains the flow rate correction coefficient from the surface roughness coefficient, thereby obtaining the surface roughness. A more accurate flow rate correction coefficient corresponding to the above can be obtained.

さらに、流量算出手段が、この流量補正係数を用いて流量を求めることによって、伝搬時間差方式による流量の誤差の発生を抑制することができ、高精度な流量測定を行うことができる。   Further, the flow rate calculation means obtains the flow rate by using the flow rate correction coefficient, thereby suppressing the occurrence of flow rate error due to the propagation time difference method and performing highly accurate flow rate measurement.

また、誤差の発生を抑制することができるため、伝搬時間差方式と反射相関方式とが相互に切換えられた際、流量出力の変化(シフト)を抑制することができる。   Further, since the occurrence of errors can be suppressed, a change (shift) in the flow rate output can be suppressed when the propagation time difference method and the reflection correlation method are switched between each other.

本発明に係る実施例について図1を用いて説明する。図1は、本発明に係る超音波流量計100の構成図であり、図3(背景技術)と同一の構成要素は同一符号を付し、その説明を省略する。   An embodiment according to the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of an ultrasonic flowmeter 100 according to the present invention, and the same components as those in FIG. 3 (background art) are denoted by the same reference numerals and description thereof is omitted.

図1において、超音波流量計100は、超音波トランスジューサA10、超音波トランスジューサB11、切換回路20、送信回路30、受信回路40、A/D変換回路50、相関演算手段60、切換判定手段70および流速測定手段80を備えており、これらの構成および動作は背景技術と同様である。   In FIG. 1, an ultrasonic flowmeter 100 includes an ultrasonic transducer A10, an ultrasonic transducer B11, a switching circuit 20, a transmission circuit 30, a reception circuit 40, an A / D conversion circuit 50, a correlation calculation means 60, a switching determination means 70, and The flow velocity measuring means 80 is provided, and the configuration and operation thereof are the same as those in the background art.

これらの構成に加えて、本実施例に係る超音波流量計100は、流量補正係数決定手段110、流量算出手段120および記憶手段130を備える。なお、流量補正係数決定手段110は、第1管摩擦係数算出手段112を有する面粗さ係数算出手段111および第2管摩擦係数算出手段116を有する流量補正係数算出手段115を備える。   In addition to these configurations, the ultrasonic flowmeter 100 according to the present embodiment includes a flow rate correction coefficient determination unit 110, a flow rate calculation unit 120, and a storage unit 130. The flow rate correction coefficient determining unit 110 includes a surface roughness coefficient calculating unit 111 having a first pipe friction coefficient calculating unit 112 and a flow rate correction coefficient calculating unit 115 having a second pipe friction coefficient calculating unit 116.

流量補正係数決定手段110は、流速測定手段80から第1流速および第2流速を受け取り、求めた流量補正係数を流量算出手段120および記憶手段130へ出力する。   The flow rate correction coefficient determination unit 110 receives the first flow rate and the second flow rate from the flow rate measurement unit 80 and outputs the obtained flow rate correction coefficient to the flow rate calculation unit 120 and the storage unit 130.

面粗さ係数算出手段111は、第1流速および第2流速を受け取り、求めた面粗さ係数を流量補正係数算出手段115へ出力する。なお、第1管摩擦係数算出手段112は、面粗さ係数算出手段111で用いる測定管2の第1管摩擦係数を算出する。   The surface roughness coefficient calculation unit 111 receives the first flow velocity and the second flow velocity, and outputs the calculated surface roughness coefficient to the flow rate correction coefficient calculation unit 115. The first pipe friction coefficient calculating unit 112 calculates the first pipe friction coefficient of the measuring pipe 2 used by the surface roughness coefficient calculating unit 111.

流量補正係数算出手段115は、第1流速および面粗さ係数を受け取り、求めた流量補正係数を流量算出手段120および記憶手段130へ出力する。なお、第2管摩擦係数算出手段116は、流量補正係数算出手段115で用いる測定管2の第2管摩擦係数を算出する。   The flow rate correction coefficient calculation unit 115 receives the first flow velocity and the surface roughness coefficient, and outputs the obtained flow rate correction coefficient to the flow rate calculation unit 120 and the storage unit 130. The second pipe friction coefficient calculating means 116 calculates the second pipe friction coefficient of the measuring pipe 2 used by the flow rate correction coefficient calculating means 115.

流量算出手段120は、流量補正係数決定手段110または記憶手段130から流量補正係数、および流速測定手段80から第1流速を受け取り、求めた被測定流体FLDの流量を外部へ出力し、表示手段(図示しない)に表示させる。また、記憶手段130は、受け取った流量補正係数を記憶し、記憶した流量補正係数を流量算出手段120へ出力する。   The flow rate calculation unit 120 receives the flow rate correction coefficient from the flow rate correction coefficient determination unit 110 or the storage unit 130 and the first flow rate from the flow rate measurement unit 80, outputs the obtained flow rate of the measured fluid FLD to the outside, and displays the display unit ( (Not shown). In addition, the storage unit 130 stores the received flow rate correction coefficient, and outputs the stored flow rate correction coefficient to the flow rate calculation unit 120.

つぎに、図2の動作フローチャート図を用いて、本実施例の特徴である流量補正係数決定手段110の動作を中心に説明する。なお、第1および第2相関値をSk1、Sk2、第1および第2流速をV1、V2、第1および第2管摩擦係数をfr1、fr2、第1および第2レイノルズ数をRe1、Re2、面粗さ係数をrp、流量補正係数をCorと表す。   Next, the operation of the flow rate correction coefficient determination unit 110, which is a feature of the present embodiment, will be mainly described with reference to the operation flowchart of FIG. The first and second correlation values are Sk1, Sk2, the first and second flow velocities are V1, V2, the first and second pipe friction coefficients are fr1, fr2, the first and second Reynolds numbers are Re1, Re2, The surface roughness coefficient is represented by rp, and the flow rate correction coefficient is represented by Cor.

図2において、切換回路20を伝搬時間差方式の接続にして、相関演算手段60は第1相関値Sk1を求め、流速測定手段80は第1流速V1を求める(ステップS10)。その後、切換回路20を反射相関方式の接続にして、相関演算手段60は第2相関値Sk2を求め、流速測定手段80は第2流速V2を求める(ステップS20)。   In FIG. 2, the switching circuit 20 is connected in the propagation time difference method, the correlation calculating means 60 obtains the first correlation value Sk1, and the flow velocity measuring means 80 obtains the first flow velocity V1 (step S10). Thereafter, the switching circuit 20 is connected in the reflection correlation method, the correlation calculating means 60 obtains the second correlation value Sk2, and the flow velocity measuring means 80 obtains the second flow velocity V2 (step S20).

以下に、流量補正係数決定手段110による流量補正係数決定処理P1の概要を説明する。流量補正係数決定処理P1は、ステップS30、S40、面粗さ係数算出手段111による面粗さ係数算出処理P1aおよび流量補正係数算出手段115による流量補正係数算出処理P1bから構成される。そして、面粗さ係数算出処理P1aはステップS50〜S70、流量補正係数算出処理P1bはステップS80〜S100から構成される。   Below, the outline | summary of the flow volume correction coefficient determination process P1 by the flow volume correction coefficient determination means 110 is demonstrated. The flow rate correction coefficient determination process P1 includes steps S30 and S40, a surface roughness coefficient calculation process P1a by the surface roughness coefficient calculation unit 111, and a flow rate correction coefficient calculation process P1b by the flow rate correction coefficient calculation unit 115. The surface roughness coefficient calculation process P1a includes steps S50 to S70, and the flow rate correction coefficient calculation process P1b includes steps S80 to S100.

流量補正係数決定処理P1のステップS40以降は、伝搬時間差方式および反射相関方式による測定が可能な状態において行われることが好ましい。このため、第1相関値Sk1が第1所定値以上または第1所定値より大きく、かつ、第2相関値Sk2が第2所定値以上または第2所定値より大きい場合(ステップS30の「はい」)、ステップS40に移行する。そうではない場合(ステップS30の「いいえ」)、測定を終了する。   Step S40 and subsequent steps of the flow rate correction coefficient determination process P1 are preferably performed in a state where measurement by the propagation time difference method and the reflection correlation method is possible. Therefore, when the first correlation value Sk1 is greater than or equal to the first predetermined value or greater than the first predetermined value and the second correlation value Sk2 is greater than or equal to the second predetermined value or greater than the second predetermined value (“Yes” in step S30) ), The process proceeds to step S40. If not (“No” in step S30), the measurement is terminated.

なお、第1所定値は、伝搬時間差方式による測定が可能であり適切に動作していることを判別するための閾値である。第2所定値は、反射相関方式による測定が可能であり適切に動作していることを判別するための閾値である。   The first predetermined value is a threshold value for determining that measurement by the propagation time difference method is possible and that the device is operating properly. The second predetermined value is a threshold value for determining that measurement by the reflection correlation method is possible and that the device is operating properly.

ステップS40に移行後、流量補正係数決定手段110は、第1流速V1と第2流速V2との比率(以下、「流速比率」という)を求める(ステップS40)。   After shifting to step S40, the flow rate correction coefficient determination unit 110 obtains a ratio between the first flow velocity V1 and the second flow velocity V2 (hereinafter referred to as “flow velocity ratio”) (step S40).

その後、面粗さ係数算出処理P1aを行って流速比率に基づく面粗さ係数rpを求め、流量補正係数算出処理P1bを行って面粗さ係数rpから流量補正係数Corを求める。   Thereafter, the surface roughness coefficient calculation process P1a is performed to determine the surface roughness coefficient rp based on the flow rate ratio, and the flow rate correction coefficient calculation process P1b is performed to determine the flow rate correction coefficient Cor from the surface roughness coefficient rp.

詳しくは、面粗さ係数算出処理P1aにおいて、面粗さ係数算出手段111は、第1流速V1または第2流速V2から求めた第1レイノルズ数Re1を求め(ステップS60)、第1レイノルズ数Re1と流速比率(第2流速V2を第1流速V1で除算した除算結果)とに基づいて面粗さ係数rpを求める(ステップS70)。   Specifically, in the surface roughness coefficient calculation process P1a, the surface roughness coefficient calculation unit 111 calculates the first Reynolds number Re1 obtained from the first flow velocity V1 or the second flow velocity V2 (step S60), and the first Reynolds number Re1. The surface roughness coefficient rp is obtained based on the flow rate ratio (the division result obtained by dividing the second flow rate V2 by the first flow rate V1) (step S70).

また、流量補正係数算出処理P1bにおいて、流量補正係数算出手段115は、第1流速V1から第2レイノルズ数Re2を求め(ステップS80)、第2レイノルズ数Reと面粗さ係数rpとに基づいて流量補正係数Corを求める(ステップS100)。   In the flow rate correction coefficient calculation process P1b, the flow rate correction coefficient calculation unit 115 obtains the second Reynolds number Re2 from the first flow velocity V1 (step S80), and based on the second Reynolds number Re and the surface roughness coefficient rp. A flow rate correction coefficient Cor is obtained (step S100).

以上、流量補正係数決定処理P1、面粗さ係数算出処理P1aおよび流量補正係数算出処理P1bの概要を説明したが、つぎに、式を用いてさらに詳細に説明する。   The outline of the flow rate correction coefficient determination process P1, the surface roughness coefficient calculation process P1a, and the flow rate correction coefficient calculation process P1b has been described above. Next, a more detailed description will be given using equations.

伝搬時間差方式および反射相関方式より求められる被測定流体FLDの流速の速度分布v(y)は、下記式(1)の対数速度分布の式によって求められる。   The velocity distribution v (y) of the flow velocity of the fluid to be measured FLD obtained by the propagation time difference method and the reflection correlation method is obtained by the logarithmic velocity distribution equation of the following equation (1).

Figure 0005641491
Figure 0005641491

式(1)において、yは測定管2内部の中心から半径方向の座標、vmaxは最大流速、vtは摩擦速度、krはカルマン定数、aは測定管2内部の半径を表す。   In Expression (1), y is a coordinate in the radial direction from the center inside the measurement tube 2, vmax is a maximum flow velocity, vt is a friction velocity, kr is a Kalman constant, and a is a radius inside the measurement tube 2.

ステップS10において、第1流速V1は、式(1)のv(y)を下記式(2)に代入して求められる。第1流速V1は、流速分布v(y)をyで積分して、aで除算したものである(流速分布の平均値に相当)。   In step S10, the first flow velocity V1 is obtained by substituting v (y) in the equation (1) into the following equation (2). The first flow velocity V1 is obtained by integrating the flow velocity distribution v (y) by y and dividing by a (corresponding to the average value of the flow velocity distribution).

Figure 0005641491
Figure 0005641491

ステップS20において、第2流速V2は、式(1)のv(y)を下記式(3)に代入して求められる。第2流速V2は、流速分布v(y)をyで積分したもの(流量に相当)を、測定管2内部の断面積で除算したものである。   In step S20, the second flow velocity V2 is obtained by substituting v (y) in the equation (1) into the following equation (3). The second flow velocity V2 is obtained by integrating the flow velocity distribution v (y) by y (corresponding to the flow rate) and dividing it by the cross-sectional area inside the measurement tube 2.

Figure 0005641491
Figure 0005641491

管摩擦係数をfrとすると、vmax(最大流速)は下記式(4)によって求められる。   When the pipe friction coefficient is fr, vmax (maximum flow velocity) is obtained by the following equation (4).

Figure 0005641491
Figure 0005641491

また、vt(摩擦速度)は下記式(5)によって求められる。   Moreover, vt (friction speed) is calculated | required by following formula (5).

Figure 0005641491
Figure 0005641491

なお、式(1)は対数速度分布の式であるが、指数速度分布などの他の速度分布を用いてもよい。   Note that equation (1) is a logarithmic velocity distribution equation, but other velocity distributions such as an exponential velocity distribution may be used.

ステップS30は前述したので説明を省略する。ステップS40において、流量補正係数決定手段110は流速比率、すなわち第2流速V2を第1流速V1で除算した除算結果Kを、式(1)〜(5)を用いて、下記式(6)によって求めることができる。   Since step S30 has been described above, a description thereof will be omitted. In step S40, the flow rate correction coefficient determination unit 110 calculates the flow rate ratio, that is, the division result K obtained by dividing the second flow rate V2 by the first flow rate V1 by the following equation (6) using equations (1) to (5). Can be sought.

Figure 0005641491
Figure 0005641491

ここで、カルマン定数krを0.4とすると、式(6)は下記式(7)となる。   Here, when the Kalman constant kr is 0.4, the equation (6) becomes the following equation (7).

Figure 0005641491
Figure 0005641491

ステップS50において、面粗さ係数算出手段111の第1管摩擦係数算出手段112は、除算結果Kから第1管摩擦係数fr1を求める。すなわち、式(7)のKに除算結果Kを代入して管摩擦係数frを求め、これを第1管摩擦係数fr1とする。   In step S50, the first pipe friction coefficient calculation means 112 of the surface roughness coefficient calculation means 111 obtains the first pipe friction coefficient fr1 from the division result K. That is, the pipe friction coefficient fr is obtained by substituting the division result K into K in the equation (7), and this is set as the first pipe friction coefficient fr1.

ステップS60において、面粗さ係数算出手段111は、第1流速V1または第2流速V2から第1レイノルズ数Re1を求める。   In step S60, the surface roughness coefficient calculation unit 111 obtains the first Reynolds number Re1 from the first flow velocity V1 or the second flow velocity V2.

ステップS70において、面粗さ係数算出手段111は、例えば、下記式(8)のコールブルック(ColeBlook)の式を用いて、面粗さ係数rpを求める。すなわち、式(8)において、frに第1管摩擦係数fr1を、Reに第1レイノルズ数Re1を代入して面粗さ係数rpを求める。   In step S70, the surface roughness coefficient calculation unit 111 obtains the surface roughness coefficient rp using, for example, the Colebrook equation of the following equation (8). That is, in Equation (8), the surface roughness coefficient rp is obtained by substituting the first pipe friction coefficient fr1 for fr and the first Reynolds number Re1 for Re.

Figure 0005641491
Figure 0005641491

コールブルックの式を用いる場合、面粗さ係数rpは、測定管2の面粗さ値eと測定管内径(直径)Dとの比率、すなわちrp=e/Dである。   When the Colebrook equation is used, the surface roughness coefficient rp is a ratio between the surface roughness value e of the measurement tube 2 and the measurement tube inner diameter (diameter) D, that is, rp = e / D.

ステップS80において、流量補正係数算出手段115は、第1流速V1から第2レイノルズ数Re2を求める。   In step S80, the flow rate correction coefficient calculating unit 115 obtains the second Reynolds number Re2 from the first flow velocity V1.

ステップS90において、流量補正係数算出手段115の第2管摩擦係数算出手段116は、第2レイノルズ数Re2と面粗さ係数rpとから第2管摩擦係数fr2を求める。すなわち、式(8)のReに第2レイノルズ数Re2を、rpに面粗さ係数rpを代入して管摩擦係数frを求め、これを第2管摩擦係数fr2とする。   In step S90, the second pipe friction coefficient calculation means 116 of the flow rate correction coefficient calculation means 115 obtains the second pipe friction coefficient fr2 from the second Reynolds number Re2 and the surface roughness coefficient rp. That is, the pipe friction coefficient fr is obtained by substituting the second Reynolds number Re2 into Re of the equation (8) and the surface roughness coefficient rp into rp, and this is set as the second pipe friction coefficient fr2.

なお、流量補正係数Corは、式(7)の流速比率(除算結果K)に相当する。このため、ステップS100において、流量補正係数算出手段115は、式(7)を用いて、第2管摩擦係数fr2から流量補正係数Cor(K)を求める。すなわち、式(7)のfrに第2管摩擦係数fr2を代入して流量補正係数Cor(K)を求める。以上が、流量補正係数決定処理P1の詳細説明である。   The flow rate correction coefficient Cor corresponds to the flow rate ratio (division result K) in equation (7). For this reason, in step S100, the flow rate correction coefficient calculating means 115 obtains the flow rate correction coefficient Cor (K) from the second pipe friction coefficient fr2 using the equation (7). That is, the flow rate correction coefficient Cor (K) is obtained by substituting the second pipe friction coefficient fr2 into fr of the expression (7). The above is the detailed description of the flow rate correction coefficient determination process P1.

つぎに、ステップS110において、第1相関値Sk1または伝搬時間差方式の超音波受信信号の強度が、測定方式切換値より大きいかどうかを判断する。   Next, in step S110, it is determined whether the intensity of the first correlation value Sk1 or the propagation time difference method ultrasonic wave reception signal is greater than the measurement method switching value.

大きい場合(ステップS110の「はい」)、伝搬時間差方式による測定が適しているので、流量算出処理P2のうちのステップS120へ移行し、流量算出手段120は、流量補正係数Corと第1流速V1とを用いて被測定流体FLDの流量を求める。すなわち、流量補正係数Corと第1流速V1と測定管2内部の断面積とを乗算して流量を求めることができる。   If it is larger (“Yes” in step S110), the measurement by the propagation time difference method is suitable, and therefore the process proceeds to step S120 in the flow rate calculation process P2, and the flow rate calculation means 120 determines the flow rate correction coefficient Cor and the first flow velocity V1. To determine the flow rate of the fluid to be measured FLD. That is, the flow rate can be obtained by multiplying the flow rate correction coefficient Cor, the first flow velocity V1, and the cross-sectional area inside the measurement tube 2.

小さい場合(ステップS110の「いいえ」)、反射相関方式による測定が適しているので、流量算出処理P2のうちのステップS130へ移行し、流量算出手段120は、第2流速V2と測定管2内部の断面積とを乗算して流量を求めることができる。   If it is small (“No” in step S110), the measurement by the reflection correlation method is suitable, and therefore the process proceeds to step S130 in the flow rate calculation process P2, and the flow rate calculation means 120 determines the second flow velocity V2 and the inside of the measurement tube 2 The flow rate can be obtained by multiplying by the cross-sectional area.

本実施例によれば、流量補正係数決定手段110が、第1流速V1と第2流速V2との比率Kに基づいて測定管2の面粗さ係数rpを求め(図2のステップS70)、この面粗さ係数rpから流量補正係数Corを求めることによって(ステップS100)、面粗さに対応した、より正確な流量補正係数Corを求めことができる。   According to the present embodiment, the flow rate correction coefficient determining means 110 obtains the surface roughness coefficient rp of the measuring tube 2 based on the ratio K between the first flow velocity V1 and the second flow velocity V2 (step S70 in FIG. 2). By obtaining the flow rate correction coefficient Cor from the surface roughness coefficient rp (step S100), a more accurate flow rate correction coefficient Cor corresponding to the surface roughness can be obtained.

さらに、流量算出手段120が、この流量補正係数Corを用いて流量を求めることによって(ステップS120)、伝搬時間差方式による流量の誤差の発生を抑制することができ、高精度な流量測定を行うことができる。   Furthermore, the flow rate calculation unit 120 obtains the flow rate using the flow rate correction coefficient Cor (step S120), thereby suppressing the occurrence of flow rate error due to the propagation time difference method, and performing highly accurate flow rate measurement. Can do.

また、誤差の発生を抑制することができるため、伝搬時間差方式と反射相関方式とが相互に切換えられた際、流量出力の変化(シフト)を抑制することができる。   Further, since the occurrence of errors can be suppressed, a change (shift) in the flow rate output can be suppressed when the propagation time difference method and the reflection correlation method are switched between each other.

また、
(1)流量補正係数算出手段115が、第1流速V1から第2レイノルズ数Re2を求め(ステップS80)、第2レイノルズ数Re2と面粗さ係数rpとに基づいて流量補正係数Corを求める(ステップS100)、すなわち、第1流速V1(伝搬時間差方式による流速)が反映した第2レイノルズ数Re2を用いて流量補正係数Corを求めるので、第1流速V1が変化した場合でも、この変化に応答した、さらに正確な流量補正係数Corを求めことができる。
Also,
(1) The flow rate correction coefficient calculating means 115 obtains the second Reynolds number Re2 from the first flow velocity V1 (step S80), and obtains the flow rate correction coefficient Cor based on the second Reynolds number Re2 and the surface roughness coefficient rp ( Step S100), that is, since the flow rate correction coefficient Cor is obtained using the second Reynolds number Re2 reflected by the first flow rate V1 (flow rate by the propagation time difference method), even if the first flow rate V1 changes, it responds to this change. In addition, a more accurate flow rate correction coefficient Cor can be obtained.

(2)面粗さ係数算出手段111は、式(8)のコールブルックの式を用いて、面粗さ係数rpを求めることができる(ステップS70)。この場合、面粗さ係数rpは、測定管2の面粗さ値eと測定管内径(直径)Dとの比率(rp=e/D)であり無次元の量なので、第1管摩擦係数算出手段112によって求めた無次元の量である第1管摩擦係数fr1を式(8)で用いることができる。   (2) The surface roughness coefficient calculation unit 111 can determine the surface roughness coefficient rp using the Colebrook equation of equation (8) (step S70). In this case, the surface roughness coefficient rp is a ratio (rp = e / D) between the surface roughness value e of the measurement tube 2 and the inner diameter (diameter) D of the measurement tube, and is a dimensionless quantity. The first pipe friction coefficient fr1 which is a dimensionless amount obtained by the calculation means 112 can be used in the equation (8).

以上の実施例のほかに、記憶手段130を用いた例として、記憶手段130は、予め流量補正係数決定手段110によって求めた流量補正係数Corを受け取って記憶する。そして、流量算出手段120は、記憶された流量補正係数Corを記憶手段130から受け取り、流量補正係数Corと第1流速V1とを用いて被測定流体FLDの流量を求める(図2のステップS120)。   In addition to the above embodiment, as an example using the storage unit 130, the storage unit 130 receives and stores the flow rate correction coefficient Cor previously obtained by the flow rate correction coefficient determination unit 110. Then, the flow rate calculation unit 120 receives the stored flow rate correction coefficient Cor from the storage unit 130, and obtains the flow rate of the fluid to be measured FLD using the flow rate correction coefficient Cor and the first flow velocity V1 (step S120 in FIG. 2). .

このように、記憶手段130が予め流量補正係数Corを記憶しておくことによって、流速測定のたびに、図2の流量補正係数決定処理P1を行う必要がなく、流量補正係数決定手段110の演算処理の負担を軽減することができる。   As described above, since the storage unit 130 stores the flow rate correction coefficient Cor in advance, it is not necessary to perform the flow rate correction coefficient determination process P1 of FIG. The processing burden can be reduced.

また、相関演算手段60、切換判定手段70、流速測定手段80、流量補正係数決定手段110、面粗さ係数算出手段111、第1管摩擦係数算出手段112、流量補正係数算出手段115、第2管摩擦係数算出手段116および流量算出手段120は、プログラムを実行するCPUなどのプロセッサによって実現されてもよく、論理回路などによって実現されてもよい。   Correlation calculation means 60, switching determination means 70, flow velocity measurement means 80, flow rate correction coefficient determination means 110, surface roughness coefficient calculation means 111, first pipe friction coefficient calculation means 112, flow rate correction coefficient calculation means 115, second The pipe friction coefficient calculating unit 116 and the flow rate calculating unit 120 may be realized by a processor such as a CPU that executes a program, or may be realized by a logic circuit or the like.

なお、本発明は、前述の実施例に限定されることなく、その本質を逸脱しない範囲で、さらに多くの変更および変形を含む。また、前述した各手段の組み合わせ以外の組み合わせを含むことができる。   In addition, this invention is not limited to the above-mentioned Example, In the range which does not deviate from the essence, many change and deformation | transformation are included. Moreover, combinations other than the combination of each means mentioned above can be included.

本発明を適用した超音波流量計の構成図の例である。It is an example of the block diagram of the ultrasonic flowmeter to which this invention is applied. 図1の超音波流量計の動作フローチャート図の例である。It is an example of the operation | movement flowchart figure of the ultrasonic flowmeter of FIG. 背景技術で示した超音波流量計の構成図の例である。It is an example of the block diagram of the ultrasonic flowmeter shown by background art.

符号の説明Explanation of symbols

2 測定管
10 超音波トランスジューサA
11 超音波トランスジューサB
20 切換回路
30 送信回路
40 受信回路
50 A/D変換回路
60 相関演算手段
70 切換判定手段
80 流速測定手段
100 超音波流量計
110 流量補正係数決定手段
111 面粗さ係数算出手段
112 第1管摩擦係数算出手段
115 流量補正係数算出手段
116 第2管摩擦係数算出手段
120 流量算出手段
130 記憶手段
2 Measuring tube 10 Ultrasonic transducer A
11 Ultrasonic transducer B
DESCRIPTION OF SYMBOLS 20 Switching circuit 30 Transmitting circuit 40 Receiving circuit 50 A / D conversion circuit 60 Correlation calculating means 70 Switching determination means 80 Flow velocity measuring means 100 Ultrasonic flow meter 110 Flow rate correction coefficient determining means 111 Surface roughness coefficient calculating means 112 Coefficient calculation means 115 Flow rate correction coefficient calculation means 116 Second pipe friction coefficient calculation means 120 Flow rate calculation means 130 Storage means

Claims (4)

一方の超音波トランスデューサから他方の超音波トランスデューサへ測定管内の被測定流体を伝搬した超音波信号の第1相関値またはこの伝搬した超音波信号の強度に応じて、前記第1相関値に基づく前記被測定流体の第1流速の測定または超音波反射体によって反射された超音波信号の第2相関値に基づく第2流速の測定のいずれか一方に基づいて流量算出を行う超音波流量計において、
測定された前記第1および第2流速の比率に基づく前記測定管の面粗さ係数から流量補正係数を求める流量補正係数決定手段と、
この流量補正係数決定手段の流量補正係数と前記第1流速とを用いて前記被測定流体の流量を求める流量算出手段と、
を備え、
前記流量補正係数決定手段は、
前記第2流速から求めた第1レイノルズ数と、前記第2流速を前記第1流速で除算した除算結果とに基づいて前記面粗さ係数を求める面粗さ係数算出手段と、
この面粗さ係数算出手段により求められた面粗さ係数と、前記第1流速から求めた第2レイノルズ数とに基づいて前記流量補正係数を求める流量補正係数算出手段と、
具備することを特徴とする超音波流量計。
Based on the first correlation value of the ultrasonic signal propagated through the fluid to be measured in the measurement tube from one ultrasonic transducer to the other ultrasonic transducer or the intensity of the propagated ultrasonic signal, the first correlation value is used. In the ultrasonic flowmeter for calculating the flow rate based on either the measurement of the first flow velocity of the fluid to be measured or the measurement of the second flow velocity based on the second correlation value of the ultrasonic signal reflected by the ultrasonic reflector,
Flow rate correction coefficient determining means for obtaining a flow rate correction coefficient from the surface roughness coefficient of the measurement tube based on the ratio of the measured first and second flow rates;
A flow rate calculating means for determining a flow rate of the fluid under measurement using the flow rate correction coefficient of the flow rate correction coefficient determining means and the first flow velocity;
With
The flow rate correction coefficient determining means includes
A surface roughness coefficient calculating means for determining the surface roughness coefficient based on a first Reynolds number determined from the second flow velocity and a division result obtained by dividing the second flow velocity by the first flow velocity;
Flow rate correction coefficient calculating means for determining the flow rate correction coefficient based on the surface roughness coefficient determined by the surface roughness coefficient calculating means and the second Reynolds number determined from the first flow velocity;
An ultrasonic flowmeter comprising:
前記面粗さ係数算出手段は、前記除算結果から前記測定管の第1管摩擦係数を求め、この第1管摩擦係数と前記第1レイノルズ数とから前記面粗さ係数を求めるとともに
前記流量補正係数算出手段は、前記第2レイノルズ数と前記面粗さ係数とから前記測定管の第2管摩擦係数を求め、この第2管摩擦係数から前記流量補正係数を求める、
ことを特徴とする請求項に記載の超音波流量計。
The surface roughness coefficient calculation means obtains the first pipe friction coefficient of the measuring tube from the division result, along with determining the surface roughness coefficient from the the first Reynolds number and the first pipe friction coefficient,
The flow rate correction coefficient calculating means obtains a second pipe friction coefficient of the measuring tube from the second Reynolds number and the surface roughness coefficient, and obtains the flow rate correction coefficient from the second pipe friction coefficient.
The ultrasonic flowmeter according to claim 1 .
前記面粗さ係数は前記測定管の面粗さ値と前記測定管の内径との比率であり、
前記面粗さ係数算出手段はコールブルックの式を用いて前記面粗さ係数を求めることを特徴とする請求項に記載の超音波流量計。
The surface roughness coefficient is a ratio between the surface roughness value of the measuring tube and the inner diameter of the measuring tube,
The ultrasonic flowmeter according to claim 2 , wherein the surface roughness coefficient calculating means obtains the surface roughness coefficient using a Colebrook equation.
予め前記流量補正係数決定手段によって求めた流量補正係数を記憶する記憶手段を備え、
前記流量算出手段は前記記憶手段の流量補正係数を用いることを特徴とする請求項1からのいずれか一項に記載の超音波流量計。
Storage means for storing a flow rate correction coefficient obtained in advance by the flow rate correction coefficient determining means,
Ultrasonic flowmeter according to any one of claims 1 to 3, which comprises using a flow rate correction coefficient of the flow rate calculation means said memory means.
JP2008273788A 2008-10-24 2008-10-24 Ultrasonic flow meter Expired - Fee Related JP5641491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273788A JP5641491B2 (en) 2008-10-24 2008-10-24 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273788A JP5641491B2 (en) 2008-10-24 2008-10-24 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2010101767A JP2010101767A (en) 2010-05-06
JP5641491B2 true JP5641491B2 (en) 2014-12-17

Family

ID=42292536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273788A Expired - Fee Related JP5641491B2 (en) 2008-10-24 2008-10-24 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5641491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942085B2 (en) 2011-12-26 2016-06-29 パナソニックIpマネジメント株式会社 Flow rate correction coefficient setting method and flow rate measuring apparatus using the same
JP5447561B2 (en) * 2012-03-08 2014-03-19 横河電機株式会社 Ultrasonic measuring instrument
CN114814285B (en) * 2022-06-23 2022-09-09 沈阳佳德联益能源科技股份有限公司 Ultrasonic flow measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882540A (en) * 1994-09-12 1996-03-26 Toshiba Corp Ultrasonic flow-rate measuring method and ultrasonic flowmeter
JP2002340644A (en) * 2001-05-15 2002-11-27 Hironari Kikura Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method
JP3669580B2 (en) * 2002-05-24 2005-07-06 学校法人慶應義塾 Ultrasonic flow velocity distribution and flow meter
JP2005181268A (en) * 2003-12-24 2005-07-07 Yokogawa Electric Corp Ultrasonic flowmeter
JP2006058097A (en) * 2004-08-19 2006-03-02 Yokogawa Electric Corp Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2010101767A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4544247B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP5447561B2 (en) Ultrasonic measuring instrument
JP2006030041A (en) Clamp-on type doppler type ultrasonic flow velocity distribution meter
JP2005241546A (en) Doppler ultrasonic flowmeter, processing device thereof and program
JP5321106B2 (en) Ultrasonic measuring instrument
WO2012120984A1 (en) Treatment liquid flow rate meter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP5641491B2 (en) Ultrasonic flow meter
JP2007187506A (en) Ultrasonic flowmeter
EP4053512A1 (en) Propagation time measurement device
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP2017116458A (en) Ultrasonic flowmeter
TWI772111B (en) travel time measuring device
JP5316795B2 (en) Ultrasonic measuring instrument
JP5483192B2 (en) Ultrasonic flow meter
JP2001183200A (en) Flowmeter and flow-rate measuring method
JP3646875B2 (en) Ultrasonic flow meter
JP6064160B2 (en) Flow measuring device
JP7125340B2 (en) ULTRASONIC FLOW METER, FLOW CALCULATION DEVICE, AND METHOD FOR DETERMINING UNFULL WATER STATE
JP2011095030A (en) Ultrasonic current meter and ultrasonic flow velocity measuring method
JP2018059822A (en) Concentration meter
JP2006194634A (en) Doppler-type ultrasonic flowmeter, method for adjusting transmission voltage to ultrasonic vibrator in it, and method for monitoring state in fluid inside piping
JP2023113206A (en) Ultrasonic flow meter and flow rate measurement method
JP3957305B2 (en) Ultrasonic flow meter, ultrasonic flow measurement method and computer program
JP2022034167A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5641491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141019

LAPS Cancellation because of no payment of annual fees