JP5641393B2 - Lens system and optical equipment - Google Patents

Lens system and optical equipment Download PDF

Info

Publication number
JP5641393B2
JP5641393B2 JP2010039676A JP2010039676A JP5641393B2 JP 5641393 B2 JP5641393 B2 JP 5641393B2 JP 2010039676 A JP2010039676 A JP 2010039676A JP 2010039676 A JP2010039676 A JP 2010039676A JP 5641393 B2 JP5641393 B2 JP 5641393B2
Authority
JP
Japan
Prior art keywords
lens
lens system
group
object side
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010039676A
Other languages
Japanese (ja)
Other versions
JP2011175124A (en
Inventor
久美子 石田
久美子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010039676A priority Critical patent/JP5641393B2/en
Publication of JP2011175124A publication Critical patent/JP2011175124A/en
Application granted granted Critical
Publication of JP5641393B2 publication Critical patent/JP5641393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、一眼レフカメラ用交換レンズや複写用レンズなどに好適なレンズ系及び光学機器に関する。 The present invention relates to a lens system and an optical apparatus suitable for an interchangeable lens for a single lens reflex camera, a copying lens, and the like.

従来、一眼レフカメラ用交換レンズや複写用レンズなどに用いられるレンズ系は、所謂ガウス型レンズ系が用いられ、数多く提案されている。   Conventionally, many so-called Gaussian lens systems have been proposed as lens systems used for interchangeable lenses for single-lens reflex cameras, copying lenses, and the like.

特開平2−230208号公報JP-A-2-230208

従来のレンズ系では十分に高い光学性能を有しているとは言えなかった。 In the conventional lens system, not be said to have a sufficiently high optical performance.

本発明は、このような問題に鑑みてなされたものであり諸収差が良好に補正された、高い光学性能を持つレンズ系及び光学機器を提供することを目的とする。 The present invention has been made in view of such problems, various aberrations are favorably corrected, and an object thereof is to provide a lens system and an optical apparatus having a high optical performance.

上記目的を達成するため、本発明に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群と、正の屈折力を持つ第2レンズ群とを有し、前記第1レンズ群と前記第2レンズ群との間に絞りを配置し、非球面レンズを少なくとも1枚有し、前記第2レンズ群は、この第2レンズ群中で最も物体側に形成された空気間隔を挟んで、物体側に位置する負の屈折力を有する第1のレンズ成分と、像側に位置する正の屈折力を有する第2のレンズ成分とを有し、前記第1のレンズ成分は、負レンズと正レンズとからなる接合レンズであり、前記第1のレンズ成分の像側レンズ面の曲率半径をr21Rとし、前記第2のレンズ成分の物体側レンズ面の曲率半径をr22Fとし、前記第2のレンズ成分の焦点距離をf22とし、前記レンズ系全体の焦点距離をfとしたとき(但し、該当する面が非球面を成す場合は、近軸曲率半径で計算する)、次式 1.169 ≦ (r21R+r22F)/(r21R−r22F) < 12.0 及び 1.121 ≦ f22/f < 2.0 の条件を満足する。 In order to achieve the above object, a lens system according to the present invention includes a first lens group having a positive refractive power and a second lens group having a positive refractive power arranged in order from the object side along the optical axis. A stop is disposed between the first lens group and the second lens group, and there is at least one aspherical lens, and the second lens group is the most object in the second lens group. A first lens component having a negative refractive power located on the object side and a second lens component having a positive refractive power located on the image side, with an air gap formed on the side interposed therebetween, The first lens component is a cemented lens composed of a negative lens and a positive lens, the radius of curvature of the image-side lens surface of the first lens component is r21R, and the object-side lens surface of the second lens component The curvature radius of r2F is r22F, and the focal length of the second lens component is f22. When the focal length of the entire lens system is f (however, when the corresponding surface is an aspherical surface, it is calculated by a paraxial radius of curvature), the following formula 1.169 ≦ (r21R + r22F) / (r21R−r22F ) <12.0 and 1.121 ≦ f22 / f <2.0.

なお、本発明のレンズ系において、前記第2レンズ群の最も像側に配置されたレンズの焦点距離をf2Lとし、前記レンズ系全体の焦点距離をfとしたとき、次式 0.5 < f2L/f < 1.5 の条件を満足することが好ましい。   In the lens system of the present invention, when the focal length of the lens disposed closest to the image side of the second lens group is f2L and the focal length of the entire lens system is f, the following expression 0.5 <f2L It is preferable to satisfy the condition of /f<1.5.

また、本発明のレンズ系において、前記非球面レンズは、前記第2レンズ群に少なくとも1枚設けられていることが好ましい。   In the lens system of the present invention, it is preferable that at least one aspherical lens is provided in the second lens group.

また、本発明のレンズ系において、前記非球面レンズは、ガラス材料と樹脂材料との複合からなる複合型非球面レンズであることが好ましい。   In the lens system of the present invention, it is preferable that the aspheric lens is a composite aspheric lens made of a composite of a glass material and a resin material.

また、本発明のレンズ系において、前記複合型非球面レンズを構成する樹脂材料のd線における屈折率をnaとしたとき、次式 1.450 < na < 1.800 の条件を満足することが好ましい。   In the lens system of the present invention, when the refractive index at the d-line of the resin material constituting the composite aspherical lens is na, the following formula 1.450 <na <1.800 is satisfied. preferable.

また、本発明の光学機器は、上記いずれかに記載のレンズ系を有する。   An optical apparatus of the present invention has any of the lens systems described above.

本発明によれば諸収差が良好に補正された、高い光学性能を持つレンズ系及び光学機器を提供することができる。 According to the present invention, it is possible to provide a lens system and an optical apparatus having high optical performance in which various aberrations are favorably corrected.

第1実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 1st Example. 第1実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 4A is a diagram illustrating various aberrations of the lens system according to Example 1. FIG. 9A is a diagram illustrating various aberrations in an infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第2実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 2nd Example. 第2実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 6A is a diagram illustrating various aberrations of the lens system according to Example 2. FIG. 9A is a diagram illustrating various aberrations in an infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第3実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 3rd Example. 第3実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 6A is a diagram illustrating various aberrations of the lens system according to Example 3, wherein FIG. 9A illustrates various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第4実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 4th Example. 第4実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 6A is a diagram illustrating various aberrations of the lens system according to Example 4, wherein FIG. 9A illustrates various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第5実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 5th Example. 第5実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 9A is a diagram illustrating various aberrations of the lens system according to Example 5, wherein FIG. 9A illustrates various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第6実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 6th Example. 第6実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 9A is a diagram illustrating various aberrations of the lens system according to Example 6, wherein FIG. 9A illustrates various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第7実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 7th Example. 第7実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 9A is a diagram illustrating various aberrations of the lens system according to Example 7, wherein FIG. 9A illustrates various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 第8実施例に係るレンズ系の断面図を示した図である。It is the figure which showed sectional drawing of the lens system which concerns on 8th Example. 第8実施例に係るレンズ系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)における諸収差図、(b)は近距離合焦状態(撮影距離β=-1/30)における諸収差図をそれぞれ示した図である。FIG. 9A is a diagram illustrating various aberrations of the lens system according to Example 8, wherein FIG. 9A illustrates various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. -1/30) is a diagram showing various aberration diagrams. 本実施形態に係るレンズ系を備えた光学機器(カメラ)の構成を示した図である。It is the figure which showed the structure of the optical apparatus (camera) provided with the lens system which concerns on this embodiment. 本実施形態に係るレンズ系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the lens system which concerns on this embodiment.

以下、本実施形態に係るレンズ系について、図面を用いて説明する。本実施形態に係るレンズ系は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、絞りSと、正の屈折力を持つ第2レンズ群G2とを有する構成とすることで、所謂ガウス型の屈折力配置を実現し、歪曲収差を良好に補正すると共に、球面収差と像面湾曲を補正している。   Hereinafter, the lens system according to the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the lens system according to the present embodiment includes a first lens group G1 having a positive refractive power, an aperture S, and a positive refractive power, which are arranged in order from the object side along the optical axis. The configuration having the second lens group G2 has a so-called Gaussian refractive power arrangement, which corrects distortion aberration well, and corrects spherical aberration and curvature of field.

非球面を持たないガウス型レンズ系では、負の球面収差は良好に補正されているものの、サジタルコマ収差の補正が不足していた。そこで、本実施形態のレンズ系では、レンズ端ほどの幅を持つ非球面レンズを少なくとも1枚有することにより、負の球面収差の補正を効率的に行うことが可能であると同時に、サジタルコマ収差を抑えることが可能となっている。   In a Gauss type lens system having no aspherical surface, negative spherical aberration is corrected well, but sagittal coma aberration is not sufficiently corrected. Therefore, in the lens system of the present embodiment, by having at least one aspheric lens having a width as large as the lens end, it is possible to efficiently correct negative spherical aberration, and at the same time, sagittal coma aberration is reduced. It is possible to suppress.

さらに、本実施形態に係るレンズ系においては、第2レンズ群G2は、この第2レンズ群G2中で最も物体側に形成された空気間隔を挟んで、物体側に位置する第1のレンズ成分(図1ではレンズL21が該当)と、像側に位置する第2のレンズ成分(図1ではレンズL22が該当)とを有し、第1のレンズ成分の像側レンズ面の曲率半径をr21Rとし、第2のレンズ成分の物体側レンズ面の曲率半径をr22Fとし、第2のレンズ成分の焦点距離をf22とし、レンズ系全体の焦点距離をfとしたとき(但し、該当する面が非球面を成す場合は、近軸曲率半径で計算する)、以下の条件式(1)及び(2)を満足する。   Furthermore, in the lens system according to the present embodiment, the second lens group G2 includes a first lens component located on the object side with an air gap formed closest to the object side in the second lens group G2. (Corresponding to the lens L21 in FIG. 1) and a second lens component located on the image side (corresponding to the lens L22 in FIG. 1), and the radius of curvature of the image side lens surface of the first lens component is r21R. Where the radius of curvature of the object-side lens surface of the second lens component is r22F, the focal length of the second lens component is f22, and the focal length of the entire lens system is f (provided that the corresponding surface is not In the case of forming a spherical surface, it is calculated by the paraxial radius of curvature), and the following conditional expressions (1) and (2) are satisfied.

1.0≦(r21R+r22F)/(r21R−r22F)<12.0 …(1)
0.8 < f22/f < 2.0 …(2)
1.0 ≦ (r21R + r22F) / (r21R−r22F) <12.0 (1)
0.8 <f22 / f <2.0 (2)

上記条件式(1)は、コマ収差、像面湾曲、非点収差に関係する条件式である。この条件式(1)が上限値を上回ると、ペッツバール和が減少し、非点隔差が増大する。また、コマ収差の形状が外コマ傾向になり、結像性能が劣化する。逆に、条件式(1)が下限値を下回ると、ペッツバール和が増大し、非点収差及び像面湾曲が補正しきれなくなる。また、コマ収差の形状が内コマ傾向になり、結像性能が劣化する。   The conditional expression (1) is a conditional expression related to coma aberration, field curvature, and astigmatism. If this conditional expression (1) exceeds the upper limit value, the Petzval sum decreases and the astigmatic difference increases. Further, the shape of the coma aberration tends to be an outer coma, and the imaging performance is deteriorated. Conversely, if conditional expression (1) is below the lower limit, the Petzval sum increases, and astigmatism and field curvature cannot be corrected. In addition, the shape of the coma aberration tends to be an inner coma, and the imaging performance deteriorates.

なお、本実施形態の効果をより確実にするためには、条件式(1)の上限値を7.0とすることが望ましい。   In order to secure the effect of the present embodiment, it is desirable to set the upper limit value of conditional expression (1) to 7.0.

上記条件式(2)は、像面湾曲に関する条件式である。この条件式(2)が上限値を上回ると、ペッツバール和が正に増大し、非点収差及び像面湾曲が補正しきれなくなり、結像性能が劣化する。逆に、条件式(2)が下限値を下回ると、良好なペッツバール和が得られるが、非点隔差が増大し、結像性能が劣化する。   The conditional expression (2) is a conditional expression related to field curvature. When this conditional expression (2) exceeds the upper limit value, the Petzval sum increases positively, and astigmatism and field curvature cannot be corrected, and the imaging performance deteriorates. On the contrary, when the conditional expression (2) is below the lower limit value, a good Petzval sum can be obtained, but the astigmatism difference increases and the imaging performance deteriorates.

なお、本実施形態の効果をより確実にするためには、条件式(2)の上限値を1.5とすることが望ましい。また、本実施形態の効果をより確実にするためには、条件式(2)の下限値を1.0とすることが望ましい。   In order to secure the effect of the present embodiment, it is desirable to set the upper limit value of conditional expression (2) to 1.5. In order to further secure the effect of the present embodiment, it is desirable to set the lower limit value of conditional expression (2) to 1.0.

また、本実施形態に係るレンズ系において、第2レンズ群G2の最も像側に配置されたレンズの焦点距離をf2Lとし、レンズ系全体の焦点距離をfとしたとき、以下の条件式(3)を満足することが好ましい。   In the lens system according to the present embodiment, when the focal length of the lens arranged closest to the image side of the second lens group G2 is f2L and the focal length of the entire lens system is f, the following conditional expression (3 ) Is preferably satisfied.

0.5 < f2L/f < 1.5 …(3)   0.5 <f2L / f <1.5 (3)

上記条件式(3)は、好適なバックフォーカスを確保し、且つ高い光学性能を実現するための条件式である。この条件式(3)が上限値を上回ると、レンズ系全体の焦点距離に対してバックフォーカスが相対的に長くなり、レンズ系の対称性から離れるため、歪曲収差を補正することが困難になり、光学性能が劣化する。逆に、条件式(3)が下限値を下回ると、レンズ系の焦点距離に対してバックフォーカスが相対的に短くなり、好適なレンズ系を得ることができない。また、像面湾曲を補正することが困難になる。   The conditional expression (3) is a conditional expression for securing a suitable back focus and realizing high optical performance. If this conditional expression (3) exceeds the upper limit value, the back focus becomes relatively long with respect to the focal length of the entire lens system, and the lens system is separated from the symmetry, making it difficult to correct distortion. The optical performance deteriorates. Conversely, if conditional expression (3) is below the lower limit, the back focus is relatively short with respect to the focal length of the lens system, and a suitable lens system cannot be obtained. In addition, it becomes difficult to correct curvature of field.

なお、本実施形態の効果をより確実にするためには、条件式(3)の上限値を1.0とすることが望ましい。また、本実施形態の効果をより確実にするためには、条件式(3)の下限値を0.7とすることが望ましい。   In order to secure the effect of this embodiment, it is desirable to set the upper limit value of conditional expression (3) to 1.0. In order to further secure the effect of the present embodiment, it is desirable to set the lower limit value of conditional expression (3) to 0.7.

また、本実施形態のレンズ系において、非球面レンズは、第2レンズ群G2に少なくとも1枚設けられていることが好ましい。この構成により、負の球面収差の補正やサジタルコマ収差の補正を行い、高い光学性能を実現することができる。   In the lens system of the present embodiment, it is preferable that at least one aspheric lens is provided in the second lens group G2. With this configuration, it is possible to correct negative spherical aberration and sagittal coma and to achieve high optical performance.

また、本実施形態のレンズ系において、非球面レンズは、ガラス材料と樹脂材料との複合からなる複合型非球面レンズであることが好ましい。この構成により、球面収差及びコマ収差を良好に補正することができる。   In the lens system of this embodiment, the aspherical lens is preferably a composite aspherical lens made of a composite of a glass material and a resin material. With this configuration, spherical aberration and coma can be favorably corrected.

また、本実施形態のレンズ系において、複合型非球面レンズを構成する樹脂材料のd線における屈折率をnaとしたとき、以下の条件式(4)を満足することが好ましい。   In the lens system of the present embodiment, it is preferable that the following conditional expression (4) is satisfied, where na is the refractive index at the d-line of the resin material constituting the composite aspherical lens.

1.450 < na < 1.800 …(4)   1.450 <na <1.800 (4)

上記条件式(4)は、高い光学性能を得るため、複合型非球面レンズの樹脂材料の屈折率の適切な範囲を規定する条件式である。この条件式(4)の上限値を上回ると、複合型非球面レンズの樹脂材料の屈折率が過度に高くなり、温度変化や吸湿変化をしやすい樹脂材料において、温度や湿度などの影響を過剰に受けやすくなり、これら変化に伴い収差が大きく変動し、球面収差及びコマ収差の補正が困難となり、高い光学性能を実現できなくなる。逆に、条件式(4)の下限値を下回ると、複合型非球面レンズの樹脂材料の屈折率が過度に小さくなり、非球面による効果を十分に得るために母球面からの非球面乖離量を大きくする必要がある。すると、温度変化や吸湿変化をしやすい樹脂材料において、非球面乖離量に比例して複合型非球面レンズの樹脂材料の厚さが光軸付近とレンズ周辺部で大きく異なることになり、温度変化や湿度変化に伴い収差が大きく変動し、球面収差及びコマ収差の補正が困難となり、高い光学性能を実現できなくなる。   The conditional expression (4) is a conditional expression that defines an appropriate range of the refractive index of the resin material of the composite aspherical lens in order to obtain high optical performance. If the upper limit of conditional expression (4) is exceeded, the refractive index of the resin material of the composite aspherical lens becomes excessively high, and the resin material that easily changes in temperature and moisture absorbs excessive effects such as temperature and humidity. Accordingly, the aberration greatly fluctuates with these changes, it becomes difficult to correct spherical aberration and coma aberration, and high optical performance cannot be realized. On the other hand, if the lower limit of conditional expression (4) is not reached, the refractive index of the resin material of the composite aspherical lens becomes excessively small, and the amount of aspherical deviation from the mother sphere in order to sufficiently obtain the effect of the aspherical surface. Need to be larger. As a result, in resin materials that are subject to temperature changes and moisture absorption changes, the thickness of the resin material of the composite aspherical lens varies greatly between the optical axis and the lens periphery in proportion to the amount of aspherical deviation. As the humidity changes, the aberration fluctuates greatly, making it difficult to correct spherical aberration and coma, making it impossible to achieve high optical performance.

なお、本実施形態の効果をより確実にするためには、条件式(4)の上限値を1.650とすることが望ましい。また、本実施形態の効果をより確実にするためには、条件式(4)の下限値を1.500とすることが望ましい。   In order to secure the effect of the present embodiment, it is desirable to set the upper limit of conditional expression (4) to 1.650. In order to further secure the effect of the present embodiment, it is desirable to set the lower limit of conditional expression (4) to 1.500.

図17に、上記構成のレンズ系を撮影レンズ1として備えたデジタル一眼レフカメラCAM(光学機器)の略断面図を示す。図17に示すデジタル一眼レフカメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズ1で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。   FIG. 17 is a schematic cross-sectional view of a digital single-lens reflex camera CAM (optical apparatus) provided with the lens system having the above configuration as a photographic lens 1. In the digital single-lens reflex camera CAM shown in FIG. 17, light from an object (subject) (not shown) is collected by the photographing lens 1 and focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ1で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラCAMによる物体(被写体)の撮影を行うことができる。なお、図17に記載のカメラCAMは、撮影レンズ1を着脱可能に保持するものでもよく、撮影レンズ1と一体に成形されるものでもよい。また、カメラCAMは、いわゆる一眼レフカメラでもよく、クイックリターンミラー等を有さないコンパクトカメラでもよい。   Further, when a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 1 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can photograph an object (subject) with the camera CAM. Note that the camera CAM illustrated in FIG. 17 may be one that holds the photographing lens 1 in a detachable manner or may be molded integrally with the photographing lens 1. The camera CAM may be a so-called single-lens reflex camera or a compact camera that does not have a quick return mirror or the like.

続いて、図18を参照しながら、上記構成のレンズ系の製造方法について説明する。まず、円筒状の鏡筒内に各レンズ(例えば、図1ではレンズL11〜L23)を組み込む(ステップS1)。レンズを鏡筒内に組み込む際、光軸に沿った順にレンズを1つずつ鏡筒内に組み込んでもよく、一部または全てのレンズを保持部材で一体保持してから鏡筒部材と組み立ててもよい。次に、鏡筒内に各レンズが組み込まれた後、鏡筒内に各レンズが組み込まれた状態で物体の像が形成されるか、すなわち各レンズの中心が揃っているかを確認する(ステップS2)。続いて、レンズ系の各種動作を確認する(ステップS3)。各種動作の一例としては、無限遠物体から近距離物体への合焦を行うレンズ(例えば、図1ではレンズ全系)が光軸方向に沿って移動する合焦動作、少なくとも一部のレンズ(例えば、図1では第2レンズ群G2の少なくとも一部)を光軸と垂直方向の成分を持つように移動させる手ぶれ補正動作などが挙げられる。なお、各種動作の確認順番は任意である。   Next, a manufacturing method of the lens system having the above configuration will be described with reference to FIG. First, each lens (for example, lenses L11 to L23 in FIG. 1) is assembled in a cylindrical barrel (step S1). When assembling the lenses into the lens barrel, the lenses may be incorporated into the lens barrel one by one in the order along the optical axis, or a part or all of the lenses may be integrally held by the holding member and then assembled with the lens barrel member. Good. Next, after each lens is incorporated in the lens barrel, it is confirmed whether an object image is formed in a state where each lens is incorporated in the lens barrel, that is, whether the centers of the lenses are aligned (step) S2). Subsequently, various operations of the lens system are confirmed (step S3). Examples of various operations include a focusing operation in which a lens (for example, the entire lens system in FIG. 1) that focuses from an object at infinity to a short-distance object moves along the optical axis direction, at least some of the lenses ( For example, a camera shake correction operation for moving at least a part of the second lens group G2 in FIG. 1 so as to have a component in a direction perpendicular to the optical axis may be mentioned. Note that the order of confirming the various operations is arbitrary.

以下、本実施形態に係る各実施例について、図面を参照しつつ説明する。以下に、表1〜表8を示すが、これらは第1〜第8実施例における各諸元の表である。[全体諸元]において、fはレンズ系全体の焦点距離を、FNOはFナンバーを、ωは半画角(単位:度)を、TLは最も物体側に配置されたレンズの物体側の面から像面Iまでのレンズ全長を示す。[レンズデータ]においては、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、rは各レンズ面の曲率半径を、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔を、ndはd線(波長587.6nm)に対する屈折率を、νdはd線を基準とするアッベ数を示す。なお、表中において、空気の屈折率「1.00000」の記載は省略している。[可変間隔データ]において、Rは撮影距離すなわち物体から像面Iまでの距離(単位:m)を、βは撮影倍率を、Bfはバックフォーカスを示す。[各群焦点距離データ]において、各群の初面及び焦点距離を示す。[条件式]において、上記の条件式(1)〜(4)に対応する値を示す。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 8 are shown below, but these are tables of specifications in the first to eighth examples. In [Overall specifications], f is the focal length of the entire lens system, FNO is the F number, ω is the half angle of view (unit: degree), and TL is the object side surface of the lens arranged closest to the object side. The total lens length from the first to the image plane I is shown. In [Lens data], the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels, r is the radius of curvature of each lens surface, and d is the next optical surface from each optical surface (or The distance between surfaces on the optical axis to the image plane), nd represents the refractive index with respect to the d-line (wavelength 587.6 nm), and νd represents the Abbe number with respect to the d-line. In the table, the description of the refractive index “1.00000” of air is omitted. In [Variable interval data], R represents a photographing distance, that is, a distance (unit: m) from the object to the image plane I, β represents a photographing magnification, and Bf represents a back focus. In [Each Group Focal Length Data], the initial surface and focal length of each group are shown. In [Conditional Expression], values corresponding to the conditional expressions (1) to (4) are shown.

[非球面データ]には、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。すなわち、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐係数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で示している。また、E-nは、×10-nを表す。例えば、1.234E-05=1.234×10-5である。 In [Aspherical data], the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). That is, y is the height in the direction perpendicular to the optical axis, and S (y) is the distance (sag amount) along the optical axis from the tangent plane at the apex of the aspheric surface to the position on the aspheric surface at height y. When the radius of curvature of the reference spherical surface (paraxial radius of curvature) is r, the conic coefficient is κ, and the n-th aspherical coefficient is An, the following equation (a) is given. E-n represents x10 -n. For example, 1.234E-05 = 1.234 × 10 −5 .

S(y)=(y2/r)/{1+(1−κ・y2/r21/2
+A4×y4+A6×y6 …(a)
S (y) = (y 2 / r) / {1+ (1−κ · y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 (a)

なお、表中において、焦点距離f、曲率半径r、面間隔d、その他の長さの単位は、一般に「mm」が使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   In the table, “mm” is generally used as the focal length f, radius of curvature r, surface interval d, and other length units. However, since the optical system can obtain the same optical performance even if it is proportionally enlarged or reduced, the unit is not limited to “mm”, and other appropriate units can be used.

以上の表の説明は、他の実施例においても同様とし、その説明を省略する。   The description of the above table is the same in other examples, and the description thereof is omitted.

(第1実施例)
第1実施例について、図1、図2及び表1を用いて説明する。図1に示すように、第1実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(First embodiment)
A first embodiment will be described with reference to FIGS. 1 and 2 and Table 1. FIG. As shown in FIG. 1, the lens system according to the first example includes a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、像側に凹面を向けた負メニスカスレンズL13とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L11 having a convex surface on the object side, a positive meniscus lens L12 having a convex surface on the object side, and a concave surface on the image side. And a negative meniscus lens L13 directed.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、像側に凸面を向けた正メニスカス形状のガラスレンズと、このガラスレンズの物体側レンズ面に設けられ、該レンズとは反対側の面に非球面が形成された樹脂層とからなる複合型非球面レンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23とを有して構成される。   The second lens group G2 has a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b arranged in order from the object side along the optical axis, and a convex surface on the image side. A compound aspherical lens L22 comprising a positive meniscus glass lens facing and a resin layer provided on the object side lens surface of the glass lens and having an aspheric surface on the surface opposite to the lens. The second lens component in Item 1) and a biconvex lens L23.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成されている。(像面Iの説明については、以降の実施例についても同様である。)   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like. (The description of the image plane I is the same in the following embodiments.)

以下の表1に、第1実施例に係るレンズ系の諸元値を掲げる。なお、表1における面番号1〜15は、図1に示す面1〜15に対応している。   Table 1 below lists specifications of the lens system according to the first example. In addition, the surface numbers 1-15 in Table 1 respond | correspond to the surfaces 1-15 shown in FIG.

(表1)
[全体諸元]
f=51.60
FNo=1.85
ω=23.07
TL=76.16397(無限時)〜77.90701(投影時)

[レンズデータ]
面番号 r d nd νd
1 40.0000 4.7000 1.83481 42.73
2 381.8864 0.3000
3 24.1500 2.9000 1.80400 46.60
4 33.0000 1.5000
5 79.4297 1.4000 1.67270 32.19
6 18.6247 5.9000
7 0.0000 5.3000 (開口絞り)
8 -21.0783 1.1000 1.69895 30.13
9 48.0712 3.2000 1.80400 46.60
10 -160.0000 1.9000
*11 -115.0000 0.1000 1.55389 38.09 (非球面、樹脂層)
12 -115.0000 3.6000 1.77250 49.62
13 -34.3596 0.1000
14 435.5383 4.0000 1.80400 46.60
15 -40.1003 (Bf)

[非球面データ]
第11面
κ=0.0000 , A4=-4.1755E-06 , A6=-2.0235E-09

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.72
β 0.0 1/30
Bf 40.16397 41.90701

[各群焦点距離データ]
群 始面 焦点距離
G1 1 130.24595
G2 8 49.74685

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 6.111
条件式(2) f22/f = 1.205
条件式(3) f2L/f = 0.888
条件式(4) na = 1.55389
(Table 1)
[Overall specifications]
f = 51.60
FNo = 1.85
ω = 23.07
TL = 76.16397 (when infinite) to 77.90701 (when projected)

[Lens data]
Surface number r d nd νd
1 40.0000 4.7000 1.83481 42.73
2 381.8864 0.3000
3 24.1500 2.9000 1.80400 46.60
4 33.0000 1.5000
5 79.4297 1.4000 1.67270 32.19
6 18.6247 5.9000
7 0.0000 5.3000 (Aperture stop)
8 -21.0783 1.1000 1.69895 30.13
9 48.0712 3.2000 1.80400 46.60
10 -160.0000 1.9000
* 11 -115.0000 0.1000 1.55389 38.09 (Aspherical surface, resin layer)
12 -115.0000 3.6000 1.77250 49.62
13 -34.3596 0.1000
14 435.5383 4.0000 1.80400 46.60
15 -40.1003 (Bf)

[Aspherical data]
11th surface κ = 0.0000, A4 = -4.1755E-06, A6 = -2.0235E-09

[Variable interval data]
Infinite focus state Short range focus state R ∞ 1.72
β 0.0 1/30
Bf 40.16397 41.90701

[Each group focal length data]
Group Start surface Focal length G1 1 130.24595
G2 8 49.74685

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R-r22F) = 6.111
Conditional expression (2) f22 / f = 1.205
Conditional expression (3) f2L / f = 0.888
Conditional expression (4) na = 1.55389

表1に示す諸元の表から、第1実施例に係るレンズ系では、上記条件式(1)〜(4)を満たすことが分かる。   It can be seen from the table of specifications shown in Table 1 that the conditional expressions (1) to (4) are satisfied in the lens system according to the first example.

図2は、第1実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the first embodiment. FIG. 2A is a diagram showing various aberrations in an infinite focus state (shooting magnification β = 0.0), and FIG. 2B is a close-up focus state (shooting magnification). Each aberration diagram at β = -1 / 30) is shown.

なお、各収差図において、FNOはFナンバーを、Aは光線入射角(単位:度)を、NAは開口数を、HOは物体高(単位:mm)をそれぞれ示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差を、記載のないものはd線に対する諸収差をそれぞれ示す。また、非点収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示す。コマ収差図は、各入射角又は物体高において実線はd線及びg線に対するメリディオナルコマ収差、原点より右側の破線はd線に対してメリディオナル方向に発生するサジタルコマ収差、原点より左側の破線はd線に対してサジタル方向に発生するサジタルコマ収差を表す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO represents an F number, A represents a light incident angle (unit: degree), NA represents a numerical aperture, and HO represents an object height (unit: mm). Further, d indicates various aberrations with respect to the d-line (wavelength 587.6 nm), g indicates various aberrations with respect to the g-line (wavelength 435.8 nm), and those not described indicate various aberrations with respect to the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The coma diagram shows the meridional coma aberration for the d-line and the g-line at each incident angle or the object height, the broken line on the right side from the origin indicates the sagittal coma generated in the meridional direction with respect to the d-line, and the broken line on the left side from the origin. Represents the sagittal coma generated in the sagittal direction with respect to the d-line. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

各収差図から明らかなように、第1実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it can be seen that the lens system according to Example 1 has various optical aberrations corrected and high optical performance.

(第2実施例)
第2実施例について、図3、図4及び表2を用いて説明する。図3に示すように、第2実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(Second embodiment)
The second embodiment will be described with reference to FIGS. 3 and 4 and Table 2. FIG. As shown in FIG. 3, the lens system according to the second example includes a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction, which are arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、像側に凹面を向けた負メニスカスレンズL13とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L11 having a convex surface on the object side, a positive meniscus lens L12 having a convex surface on the object side, and a concave surface on the image side. And a negative meniscus lens L13 directed.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、像側に凸面を向けた正メニスカス形状のガラスレンズと、このガラスレンズの物体側レンズ面に設けられ、該レンズとは反対側の面に非球面が形成された樹脂層とからなる複合型非球面レンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23とを有して構成される。   The second lens group G2 has a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b arranged in order from the object side along the optical axis, and a convex surface on the image side. A compound aspherical lens L22 comprising a positive meniscus glass lens facing and a resin layer provided on the object side lens surface of the glass lens and having an aspheric surface on the surface opposite to the lens. The second lens component in Item 1) and a biconvex lens L23.

以下の表2に、第2実施例に係るレンズ系の諸元値を掲げる。なお、表2における面番号1〜15は、図3に示す面1〜15に対応している。   Table 2 below lists specifications of the lens system according to the second example. In addition, the surface numbers 1-15 in Table 2 respond | correspond to the surfaces 1-15 shown in FIG.

(表2)
[全体諸元]
f=51.60
FNo=1.85
ω=23.06
TL=75.46398(無限時)〜77.18384(投影時)

[レンズデータ]
面番号 r d nd νd
1 41.4455 4.4000 1.83481 42.72
2 436.2147 0.1000
3 23.5000 3.0000 1.80400 46.58
4 31.9799 1.6000
5 72.5066 1.3000 1.67270 32.11
6 18.6402 5.9000
7 0.0000 5.3000 (開口絞り)
8 -21.3881 1.1000 1.69895 30.13
9 41.4568 3.2000 1.80400 46.58
10 -352.2422 1.8000
*11 -113.8699 0.1000 1.55389 38.09 (非球面、樹脂層)
12 -113.8699 3.5000 1.80400 46.58
13 -35.9305 0.1000
14 312.3862 3.9000 1.80400 46.58
15 -38.2693 (Bf)

[非球面データ]
第11面
κ=0.0000 , A4=-4.4243E-06 , A6=-3.2750E-09

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.72
β 0.0 1/30
Bf 40.16398 41.88384

[各群焦点距離データ]
群 始面 焦点距離
G1 1 122.89764
G2 8 50.91118

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 1.955
条件式(2) f22/f = 1.240
条件式(3) f2L/f = 0.826
条件式(4) na = 1.55389
(Table 2)
[Overall specifications]
f = 51.60
FNo = 1.85
ω = 23.06
TL = 75.46398 (when infinite) to 77.18384 (when projected)

[Lens data]
Surface number r d nd νd
1 41.4455 4.4000 1.83481 42.72
2 436.2147 0.1000
3 23.5000 3.0000 1.80400 46.58
4 31.9799 1.6000
5 72.5066 1.3000 1.67270 32.11
6 18.6402 5.9000
7 0.0000 5.3000 (Aperture stop)
8 -21.3881 1.1000 1.69895 30.13
9 41.4568 3.2000 1.80400 46.58
10 -352.2422 1.8000
* 11 -113.8699 0.1000 1.55389 38.09 (Aspherical surface, resin layer)
12 -113.8699 3.5000 1.80400 46.58
13 -35.9305 0.1000
14 312.3862 3.9000 1.80400 46.58
15 -38.2693 (Bf)

[Aspherical data]
11th surface κ = 0.0000, A4 = -4.4243E-06, A6 = -3.2750E-09

[Variable interval data]
Infinite focus state Short range focus state R ∞ 1.72
β 0.0 1/30
Bf 40.16398 41.88384

[Each group focal length data]
Group Start surface Focal length G1 1 122.89764
G2 8 50.91118

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R−r22F) = 1.955
Conditional expression (2) f22 / f = 1.240
Conditional expression (3) f2L / f = 0.826
Conditional expression (4) na = 1.55389

表2に示す諸元の表から、第2実施例に係るレンズ系では、上記条件式(1)〜(4)を満たすことが分かる。   From the table of specifications shown in Table 2, it can be seen that the conditional expressions (1) to (4) are satisfied in the lens system according to the second example.

図4は、第2実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   4A and 4B are graphs showing various aberrations of the second example. FIG. 4A is a diagram showing various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. 4B is a short-range focus state (shooting magnification). Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第2実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it can be seen that the lens system according to Example 2 has various optical aberrations corrected and high optical performance.

(第3実施例)
第3実施例について、図5、図6及び表3を用いて説明する。図5に示すように、第3実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 5 and 6 and Table 3. FIG. As shown in FIG. 5, the lens system according to the third example includes a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction, which are arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、像側に凹面を向けた負メニスカスレンズL13とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L11 having a convex surface on the object side, a positive meniscus lens L12 having a convex surface on the object side, and a concave surface on the image side. And a negative meniscus lens L13 directed.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、像側に凸面を向けた正メニスカス形状のガラスレンズと、このガラスレンズの物体側レンズ面に設けられ、該レンズとは反対側の面に非球面が形成された樹脂層とからなる複合型非球面レンズL22(請求項1における第2のレンズ成分)と、像側のレンズ面に非球面が形成された両凸レンズL23とを有して構成される。   The second lens group G2 has a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b arranged in order from the object side along the optical axis, and a convex surface on the image side. A compound aspherical lens L22 comprising a positive meniscus glass lens facing and a resin layer provided on the object side lens surface of the glass lens and having an aspheric surface on the surface opposite to the lens. And a biconvex lens L23 in which an aspherical surface is formed on the image side lens surface.

以下の表3に、第3実施例に係るレンズ系の諸元値を掲げる。なお、表3における面番号1〜15は、図5に示す面1〜15に対応している。   Table 3 below lists specifications of the lens system according to the third example. In addition, the surface numbers 1-15 in Table 3 respond | correspond to the surfaces 1-15 shown in FIG.

(表3)
[全体諸元]
f=51.60
FNo=1.85
ω=22.99
TL=75.26421(無限時)〜76.98419(投影時)

[レンズデータ]
面番号 r d nd νd
1 42.0000 4.5000 1.83481 42.72
2 447.9130 0.1000
3 23.5000 3.0000 1.80400 46.58
4 32.5000 1.2500
5 65.7613 1.3000 1.67270 32.11
6 18.7699 5.9000
7 0.0000 5.3000 (開口絞り)
8 -21.1460 1.1000 1.69895 30.13
9 48.5018 2.7500 1.80400 46.58
10 -1539.0914 1.8000
*11 -120.0000 0.1000 1.55389 38.09 (非球面、樹脂層)
12 -120.0000 3.8000 1.77250 49.61
13 -33.0270 0.1000
*14 303.4237 4.1000 1.80400 46.58 (非球面)
15 -39.3434 (Bf)

[非球面データ]
第11面
κ=0.0000 , A4=-3.4030E-06 , A6=-1.2487E-09

第14面
κ=0.0000 , A6=-1.1491E-11

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.72
β 0.0 1/30
Bf 40.16421 41.88419

[各群焦点距離データ]
群 始面 焦点距離
G1 1 111.08380
G2 8 53.13000

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 1.169
条件式(2) f22/f = 1.121
条件式(3) f2L/f = 0.844
条件式(4) na = 1.55389
(Table 3)
[Overall specifications]
f = 51.60
FNo = 1.85
ω = 22.99
TL = 75.26421 (when infinite) to 76.98419 (when projected)

[Lens data]
Surface number r d nd νd
1 42.0000 4.5000 1.83481 42.72
2 447.9130 0.1000
3 23.5000 3.0000 1.80400 46.58
4 32.5000 1.2500
5 65.7613 1.3000 1.67270 32.11
6 18.7699 5.9000
7 0.0000 5.3000 (Aperture stop)
8 -21.1460 1.1000 1.69895 30.13
9 48.5018 2.7500 1.80400 46.58
10 -1539.0914 1.8000
* 11 -120.0000 0.1000 1.55389 38.09 (Aspherical surface, resin layer)
12 -120.0000 3.8000 1.77250 49.61
13 -33.0270 0.1000
* 14 303.4237 4.1000 1.80400 46.58 (Aspherical)
15 -39.3434 (Bf)

[Aspherical data]
11th surface κ = 0.000, A4 = -3.4030E-06, A6 = -1.2487E-09

14th surface κ = 0.000, A6 = -1.1491E-11

[Variable interval data]
Infinite focus state Short range focus state R ∞ 1.72
β 0.0 1/30
Bf 40.16421 41.88419

[Each group focal length data]
Group Start surface Focal length G1 1 111.08380
G2 8 53.13000

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R−r22F) = 1.169
Conditional expression (2) f22 / f = 1.121
Conditional expression (3) f2L / f = 0.844
Conditional expression (4) na = 1.55389

表3に示す諸元の表から、第3実施例に係るレンズ系では、上記条件式(1)〜(4)を満たすことが分かる。   It can be seen from the table of specifications shown in Table 3 that the conditional expressions (1) to (4) are satisfied in the lens system according to the third example.

図6は、第3実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   FIGS. 6A and 6B are graphs showing various aberrations of the third example. FIG. 6A is a diagram showing various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第3実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it can be seen that the lens system according to the third example has various optical aberrations corrected and high optical performance.

(第4実施例)
第4実施例について、図7、図8及び表4を用いて説明する。図7に示すように、第4実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. 7 and 8 and Table 4. FIG. As shown in FIG. 7, the lens system according to the fourth example includes a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、像側に凹面を向けた負メニスカスレンズL13とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L11 having a convex surface on the object side, a positive meniscus lens L12 having a convex surface on the object side, and a concave surface on the image side. And a negative meniscus lens L13 directed.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、像側に凸面を向けた正メニスカス形状のガラスレンズと、このガラスレンズの物体側レンズ面に設けられ、該レンズとは反対側の面に非球面が形成された樹脂層とからなる複合型非球面レンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23とを有して構成される。   The second lens group G2 has a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b arranged in order from the object side along the optical axis, and a convex surface on the image side. A compound aspherical lens L22 comprising a positive meniscus glass lens facing and a resin layer provided on the object side lens surface of the glass lens and having an aspheric surface on the surface opposite to the lens. The second lens component in Item 1) and a biconvex lens L23.

以下の表4に、第4実施例に係るレンズ系の諸元値を掲げる。なお、表4における面番号1〜15は、図7に示す面1〜15に対応している。   Table 4 below lists specifications of the lens system according to the fourth example. In addition, the surface numbers 1-15 in Table 4 respond | correspond to the surfaces 1-15 shown in FIG.

(表4)
[全体諸元]
f=51.60
FNo=1.79
ω=23.04
TL=74.26413(無限時)〜75.98397(投影時)

[レンズデータ]
面番号 r d nd νd
1 35.3612 4.4000 1.88300 40.77
2 180.3711 0.1000
3 25.7131 3.0000 1.83481 42.72
4 35.7739 1.3000
5 66.7298 1.2000 1.71736 29.52
6 18.3543 6.0000
7 0.0000 5.3000 (開口絞り)
8 -20.0000 1.1000 1.75520 27.51
9 99.6345 2.5000 1.80400 46.58
10 -138.9486 2.0000
*11 -76.7808 0.1000 1.55389 38.09 (非球面、樹脂層)
12 -76.7808 3.0000 1.78800 47.38
13 -30.4743 0.1000
14 274.8017 4.0000 1.83481 42.72
15 -38.0635 (Bf)

[非球面データ]
第11面
κ=0.0000 , A4=-3.8621E-06 , A6=1.2233E-10

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.72
β 0.0 1/30
Bf 40.16413 41.88397

[各群焦点距離データ]
群 始面 焦点距離
G1 1 113.18227
G2 8 51.94840

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 3.470
条件式(2) f22/f = 1.207
条件式(3) f2L/f = 0.781
条件式(4) na = 1.55389
(Table 4)
[Overall specifications]
f = 51.60
FNo = 1.79
ω = 23.04
TL = 74.26413 (when infinite) to 75.98397 (when projected)

[Lens data]
Surface number r d nd νd
1 35.3612 4.4000 1.88300 40.77
2 180.3711 0.1000
3 25.7131 3.0000 1.83481 42.72
4 35.7739 1.3000
5 66.7298 1.2000 1.71736 29.52
6 18.3543 6.0000
7 0.0000 5.3000 (Aperture stop)
8 -20.0000 1.1000 1.75520 27.51
9 99.6345 2.5000 1.80400 46.58
10 -138.9486 2.0000
* 11 -76.7808 0.1000 1.55389 38.09 (Aspherical surface, resin layer)
12 -76.7808 3.0000 1.78800 47.38
13 -30.4743 0.1000
14 274.8017 4.0000 1.83481 42.72
15 -38.0635 (Bf)

[Aspherical data]
11th surface κ = 0.0000, A4 = -3.8621E-06, A6 = 1.2233E-10

[Variable interval data]
Infinite focus state Short range focus state R ∞ 1.72
β 0.0 1/30
Bf 40.16413 41.88397

[Each group focal length data]
Group Start surface Focal length G1 1 113.18227
G2 8 51.94840

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R-r22F) = 3.470
Conditional expression (2) f22 / f = 1.207
Conditional expression (3) f2L / f = 0.781
Conditional expression (4) na = 1.55389

表4に示す諸元の表から、第4実施例に係るレンズ系では、上記条件式(1)〜(4)を満たすことが分かる。   It can be seen from the table of specifications shown in Table 4 that the conditional expressions (1) to (4) are satisfied in the lens system according to the fourth example.

図8は、第4実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   8A and 8B are graphs showing various aberrations of the fourth example. FIG. 8A is a diagram showing various aberrations in the infinitely focused state (shooting magnification β = 0.0), and FIG. 8B is a short-range focused state (shooting magnification). Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第4実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it can be seen that the lens system according to the fourth example has various optical aberrations corrected and high optical performance.

(第5実施例)
第5実施例について、図9、図10及び表5を用いて説明する。図9に示すように、第5実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(5th Example)
The fifth embodiment will be described with reference to FIGS. 9 and 10 and Table 5. FIG. As shown in FIG. 9, the lens system according to the fifth example includes a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction, which are arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、像側に凹面を向けた負メニスカスレンズL13とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L11 having a convex surface on the object side, a positive meniscus lens L12 having a convex surface on the object side, and a concave surface on the image side. And a negative meniscus lens L13 directed.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、物体側レンズ面が非球面である、像側に凸面を向けた正メニスカスレンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23と、両凸レンズL24とを有して構成される。   The second lens group G2 includes a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b, which are arranged in order from the object side along the optical axis, and an object side lens surface. A positive meniscus lens L22 (second lens component in claim 1) which is an aspherical surface and has a convex surface facing the image side, a biconvex lens L23, and a biconvex lens L24 are configured.

以下の表5に、第5実施例に係るレンズ系の諸元値を掲げる。なお、表5における面番号1〜16は、図9に示す面1〜16に対応している。   Table 5 below lists specifications of the lens system according to Example 5. In addition, the surface numbers 1-16 in Table 5 respond | correspond to the surfaces 1-16 shown in FIG.

(表5)
[全体諸元]
f=51.60
FNo=1.85
ω=23.05
TL=77.06402(無限時)〜78.80311(投影時)

[レンズデータ]
面番号 r d nd νd
1 37.3000 4.4000 1.83481 42.72
2 300.5542 0.1000
3 24.5000 2.9000 1.83481 42.72
4 30.9227 1.3000
5 64.2355 1.3000 1.68893 31.06
6 18.9457 5.9000
7 0.0000 5.3000 (開口絞り)
8 -20.6094 1.1000 1.69895 30.13
9 38.5017 2.9000 1.77250 49.61
10 -269.9764 1.9000
*11 -97.2397 3.6000 1.85135 40.04 (非球面)
12 -33.8205 0.1000
13 407.6013 2.6000 1.80400 46.58
14 -5362.1017 0.5000
15 1158.2078 3.0000 1.77250 49.61
16
-38.4663 (Bf)

[非球面データ]
第11面
κ=0.0000 , A4=-2.7883E-06 , A6=-3.8369E-09

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.74
β 0.0 1/30
Bf 40.16402 41.90311

[各群焦点距離データ]
群 始面 焦点距離
G1 1 116.97308
G2 8 51.19371

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 2.126
条件式(2) f22/f = 1.150
条件式(3) f2L/f = 0.935
(Table 5)
[Overall specifications]
f = 51.60
FNo = 1.85
ω = 23.05
TL = 77.06402 (when infinite) to 78.80311 (when projected)

[Lens data]
Surface number r d nd νd
1 37.3000 4.4000 1.83481 42.72
2 300.5542 0.1000
3 24.5000 2.9000 1.83481 42.72
4 30.9227 1.3000
5 64.2355 1.3000 1.68893 31.06
6 18.9457 5.9000
7 0.0000 5.3000 (Aperture stop)
8 -20.6094 1.1000 1.69895 30.13
9 38.5017 2.9000 1.77250 49.61
10 -269.9764 1.9000
* 11 -97.2397 3.6000 1.85135 40.04 (Aspherical)
12 -33.8205 0.1000
13 407.6013 2.6000 1.80400 46.58
14 -5362.1017 0.5000
15 1158.2078 3.0000 1.77250 49.61
16
-38.4663 (Bf)

[Aspherical data]
11th surface κ = 0.000, A4 = -2.7883E-06, A6 = -3.8369E-09

[Variable interval data]
Infinite focusing state Short focusing state R ∞ 1.74
β 0.0 1/30
Bf 40.16402 41.90311

[Each group focal length data]
Group Start surface Focal length G1 1 116.97308
G2 8 51.19371

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R-r22F) = 2.126
Conditional expression (2) f22 / f = 1.150
Conditional expression (3) f2L / f = 0.935

表5に示す諸元の表から、第5実施例に係るレンズ系では、上記条件式(1)〜(3)を満たすことが分かる。   From the table of specifications shown in Table 5, it can be seen that the conditional expressions (1) to (3) are satisfied in the lens system according to the fifth example.

図10は、第5実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   10A and 10B are graphs showing various aberrations of the fifth example. FIG. 10A is a diagram showing various aberrations in the infinitely focused state (shooting magnification β = 0.0), and FIG. 10B is a short-range focused state (shooting magnification). Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第5実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it can be seen that the lens system according to Example 5 has various optical aberrations corrected and high optical performance.

(第6実施例)
第6実施例について、図11、図12及び表6を用いて説明する。図11に示すように、第6実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIGS. 11 and 12 and Table 6. FIG. As shown in FIG. 11, the lens system according to the sixth example has a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction, which are arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凸レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、像側に凹面を向けた負メニスカスレンズL14とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, a biconvex lens L11, a negative meniscus lens L12 having a convex surface on the image side, a positive meniscus lens L13 having a convex surface on the object side, And a negative meniscus lens L14 having a concave surface facing the image side.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、物体側レンズ面が非球面である、像側に凸面を向けた正メニスカスレンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23とを有して構成される。   The second lens group G2 includes a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b, which are arranged in order from the object side along the optical axis, and an object side lens surface. A positive meniscus lens L22 (second lens component in claim 1) which is an aspherical surface and has a convex surface directed to the image side, and a biconvex lens L23.

以下の表6に、第6実施例に係るレンズ系の諸元値を掲げる。なお、表6における面番号1〜16は、図11に示す面1〜16に対応している。   Table 6 below provides specification values of the lens system according to Example 6. In addition, the surface numbers 1-16 in Table 6 respond | correspond to the surfaces 1-16 shown in FIG.

(表6)
[全体諸元]
f=51.60
FNo=1.80
ω=23.02
TL=77.06418(無限時)〜78.77765(投影時)

[レンズデータ]
面番号 r d nd νd
1 43.6955 4.4000 1.88300 40.77
2 -880.0755 0.7000
3 -147.9752 2.0000 1.88300 40.77
4 -235.4993 0.1000
5 25.0406 3.0000 1.83481 42.72
6 31.4071 1.5000
7 77.3387 1.2000 1.71736 29.52
8 20.4873 6.0000
9 0.0000 5.3000 (開口絞り)
10 -20.0000 1.1000 1.75520 27.51
11 58.2122 2.5000 1.80400 46.58
12 -146.5114 2.0000
*13 -89.1564 3.0000 1.85135 40.04 (非球面)
14 -32.6904 0.1000
15 299.5251 4.0000 1.83481 42.72
16 -36.9303 (Bf)

[非球面データ]
第13面
κ=0.0000 , A4=-3.2500E-06 , A6=-6.2453E-10

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.71
β 0.0 1/30
Bf 40.16418 41.87765

[各群焦点距離データ]
群 始面 焦点距離
G1 1 129.42495
G2 10 48.82961

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 4.109
条件式(2) f22/f = 1.147
条件式(3) f2L/f = 0.767
(Table 6)
[Overall specifications]
f = 51.60
FNo = 1.80
ω = 23.02
TL = 77.06418 (when infinite) to 78.77765 (when projected)

[Lens data]
Surface number r d nd νd
1 43.6955 4.4000 1.88300 40.77
2 -880.0755 0.7000
3 -147.9752 2.0000 1.88300 40.77
4 -235.4993 0.1000
5 25.0406 3.0000 1.83481 42.72
6 31.4071 1.5000
7 77.3387 1.2000 1.71736 29.52
8 20.4873 6.0000
9 0.0000 5.3000 (Aperture stop)
10 -20.0000 1.1000 1.75520 27.51
11 58.2122 2.5000 1.80400 46.58
12 -146.5114 2.0000
* 13 -89.1564 3.0000 1.85135 40.04 (Aspherical)
14 -32.6904 0.1000
15 299.5251 4.0000 1.83481 42.72
16 -36.9303 (Bf)

[Aspherical data]
13th surface κ = 0.000, A4 = -3.2500E-06, A6 = -6.2453E-10

[Variable interval data]
Infinity focusing state Short-distance focusing state R ∞ 1.71
β 0.0 1/30
Bf 40.16418 41.87765

[Each group focal length data]
Group Start surface Focal length G1 1 129.42495
G2 10 48.82961

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R−r22F) = 4.109
Conditional expression (2) f22 / f = 1.147
Conditional expression (3) f2L / f = 0.767

表6に示す諸元の表から、第6実施例に係るレンズ系では、上記条件式(1)〜(3)を満たすことが分かる。   It can be seen from the table of specifications shown in Table 6 that the conditional expressions (1) to (3) are satisfied in the lens system according to the sixth example.

図12は、第6実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   12A and 12B are graphs showing various aberrations of the sixth example. FIG. 12A is a diagram showing various aberrations in the infinitely focused state (shooting magnification β = 0.0), and FIG. 12B is a short-range focused state (shooting magnification). Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第6実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it can be seen that the lens system according to Example 6 has various optical aberrations corrected and high optical performance.

(第7実施例)
第7実施例について、図13、図14及び表7を用いて説明する。図13に示すように、第7実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIGS. 13 and 14 and Table 7. FIG. As shown in FIG. 13, the lens system according to the seventh example includes a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、像側に凹面を向けた負メニスカスレンズL13とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L11 having a convex surface on the object side, a positive meniscus lens L12 having a convex surface on the object side, and a concave surface on the image side. And a negative meniscus lens L13 directed.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとからなる接合レンズL21(請求項1における第1のレンズ成分)と、物体側レンズ面が非球面である、像側に凸面を向けた正メニスカスレンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23とを有して構成される。   The second lens group G2 includes a cemented lens L21 (first lens component in claim 1) composed of a biconcave lens L21a and a biconvex lens L21b, which are arranged in order from the object side along the optical axis, and an object side lens surface. A positive meniscus lens L22 (second lens component in claim 1) which is an aspherical surface and has a convex surface directed to the image side, and a biconvex lens L23.

以下の表7に、第7実施例に係るレンズ系の諸元値を掲げる。なお、表7における面番号1〜14は、図13に示す面1〜14に対応している。   Table 7 below provides specification values of the lens system according to Example 7. The surface numbers 1 to 14 in Table 7 correspond to the surfaces 1 to 14 shown in FIG.

(表7)
[全体諸元]
f=51.60
FNo=1.86
ω=23.06
TL=70.86471(無限時)〜72.56010(投影時)

[レンズデータ]
面番号 r d nd νd
1 40.0000 4.7000 1.83481 42.73
2 320.2167 0.3000
3 24.1500 2.9000 1.80400 46.60
4 33.0000 1.5000
5 75.2087 1.4000 1.67270 32.19
6 18.4804 5.9000
7 0.0000 d7(可変) (開口絞り)
8 -21.4080 1.1000 1.69895 30.13
9 32.9830 3.2000 1.80400 46.60
10 -154.0000 2.0000
*11 -125.0000 3.6000 1.85135 40.04 (非球面)
12 -37.8007 0.1000
13 1843.2441 4.0000 1.80400 46.60
14 -39.1647 (Bf)

[非球面データ]
第11面
κ=0.0000 , A4=-3.6998E-06 , A6=-1.7387E-09

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
d7 5.30 5.70
R ∞ 1.70
β 0.0 1/30
Bf 40.16471 41.86010

[各群焦点距離データ]
群 始面 焦点距離
G1 1 135.26038
G2 8 49.55684

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 9.621
条件式(2) f22/f = 1.211
条件式(3) f2L/f = 0.925
(Table 7)
[Overall specifications]
f = 51.60
FNo = 1.86
ω = 23.06
TL = 70.86471 (when infinite) to 72.56010 (when projected)

[Lens data]
Surface number r d nd νd
1 40.0000 4.7000 1.83481 42.73
2 320.2167 0.3000
3 24.1500 2.9000 1.80400 46.60
4 33.0000 1.5000
5 75.2087 1.4000 1.67270 32.19
6 18.4804 5.9000
7 0.0000 d7 (variable) (aperture stop)
8 -21.4080 1.1000 1.69895 30.13
9 32.9830 3.2000 1.80400 46.60
10 -154.0000 2.0000
* 11 -125.0000 3.6000 1.85135 40.04 (Aspherical)
12 -37.8007 0.1000
13 1843.2441 4.0000 1.80400 46.60
14 -39.1647 (Bf)

[Aspherical data]
11th surface κ = 0.0000, A4 = -3.6998E-06, A6 = -1.7387E-09

[Variable interval data]
Infinite focus state Short range focus state
d7 5.30 5.70
R ∞ 1.70
β 0.0 1/30
Bf 40.16471 41.86010

[Each group focal length data]
Group Start surface Focal length G1 1 135.26038
G2 8 49.55684

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R−r22F) = 9.621
Conditional expression (2) f22 / f = 1.211
Conditional expression (3) f2L / f = 0.925

表7に示す諸元の表から、第7実施例に係るレンズ系では、上記条件式(1)〜(3)を満たすことが分かる。   From the table of specifications shown in Table 7, it can be seen that the conditional expressions (1) to (3) are satisfied in the lens system according to the seventh example.

図14は、第7実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   FIGS. 14A and 14B are graphs showing various aberrations of the seventh example. FIG. 14A is a diagram showing various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. 14B is a close-up focus state (shooting magnification). Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第7実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from each aberration diagram, it is understood that the lens system according to Example 7 has various optical aberrations corrected and high optical performance.

(第8実施例)
第8実施例について、図15、図16及び表8を用いて説明する。図15に示すように、第8実施例に係るレンズ系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、開口絞りSと、正の屈折力を持つ第2レンズ群G2とを有して構成される。
(Eighth embodiment)
The eighth embodiment will be described with reference to FIGS. 15 and 16 and Table 8. FIG. As shown in FIG. 15, the lens system according to the eighth example has a first lens group G1 having a positive refractive power, an aperture stop S, and a positive refraction, which are arranged in order from the object side along the optical axis. And a second lens group G2 having power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、像側に凹面を向けた負メニスカスレンズL14とを有して構成される。   The first lens group G1 is arranged in order from the object side along the optical axis, a positive meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. It has a positive meniscus lens L13 directed to it and a negative meniscus lens L14 having a concave surface directed to the image side.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹レンズL21aと両凸レンズL21bとかる接合レンズL21(請求項1における第1のレンズ成分)と、像側に凸面を向けた正メニスカス形状のガラスレンズと、このガラスレンズの物体側レンズ面に設けられ、該レンズとは反対側の面に非球面が形成された樹脂層とからなる複合型非球面レンズL22(請求項1における第2のレンズ成分)と、両凸レンズL23とを有して構成される。   The second lens group G2 has a cemented lens L21 (first lens component in claim 1), which is arranged in order from the object side along the optical axis, and includes a biconcave lens L21a and a biconvex lens L21b, and a convex surface facing the image side. A compound aspherical lens L22 comprising a positive meniscus glass lens and a resin layer provided on the object side lens surface of the glass lens and having an aspherical surface formed on the surface opposite to the lens. 2) and a biconvex lens L23.

以下の表8に、第8実施例に係るレンズ系の諸元値を掲げる。なお、表8における面番号1〜17は、図15に示す面1〜17に対応している。   Table 8 below lists specifications of the lens system according to Example 8. The surface numbers 1 to 17 in Table 8 correspond to the surfaces 1 to 17 shown in FIG.

(表8)
[全体諸元]
f=51.60
FNo=1.86
ω=22.97
TL=75.36324(無限時)〜77.10462(投影時)

[レンズデータ]
面番号 r d nd νd
1 351.5819 1.0000 1.83481 42.72
2 417.5699 0.1000
3 37.8725 4.0000 1.83481 42.72
4 275.0973 0.1000
5 23.9000 2.8000 1.83481 42.72
6 31.2851 1.4000
7 65.8376 1.3000 1.68893 31.06
8 18.6190 5.9000
9 0.0000 5.3000 (開口絞り)
10 -20.7925 1.1000 1.69895 30.13
11 44.6623 2.8000 1.80400 46.58
12 -191.3408 1.8000
*13 -97.7291 0.1000 1.55389 38.09 (非球面、樹脂層)
14 -97.7291 3.8000 1.80400 46.58
15 -34.3000 0.1000
16 733.5980 3.6000 1.80400 46.58
17 -37.9712 (Bf)

[非球面データ]
第13面
κ=0.0000 , A4=-5.0532E-06 , A6=-1.3389E-09

[可変間隔データ]
無限遠合焦状態 近距離合焦状態
R ∞ 1.74
β 0.0 1/30
Bf 40.16324 41.90462

[各群焦点距離データ]
群 始面 焦点距離
G1 1 115.96322
G2 10 52.49924

[条件式]
条件式(1) (r21R+r22F)/(r21R−r22F) = 3.088
条件式(2) f22/f = 1.240
条件式(3) f2L/f = 0.872
条件式(4) na = 1.55389
(Table 8)
[Overall specifications]
f = 51.60
FNo = 1.86
ω = 22.97
TL = 75.36324 (when infinite) to 77.10462 (when projected)

[Lens data]
Surface number r d nd νd
1 351.5819 1.0000 1.83481 42.72
2 417.5699 0.1000
3 37.8725 4.0000 1.83481 42.72
4 275.0973 0.1000
5 23.9000 2.8000 1.83481 42.72
6 31.2851 1.4000
7 65.8376 1.3000 1.68893 31.06
8 18.6190 5.9000
9 0.0000 5.3000 (Aperture stop)
10 -20.7925 1.1000 1.69895 30.13
11 44.6623 2.8000 1.80400 46.58
12 -191.3408 1.8000
* 13 -97.7291 0.1000 1.55389 38.09 (Aspherical surface, resin layer)
14 -97.7291 3.8000 1.80400 46.58
15 -34.3000 0.1000
16 733.5980 3.6000 1.80400 46.58
17 -37.9712 (Bf)

[Aspherical data]
13th surface κ = 0.0000, A4 = -5.0532E-06, A6 = -1.3389E-09

[Variable interval data]
Infinite focusing state Short focusing state R ∞ 1.74
β 0.0 1/30
Bf 40.16324 41.90462

[Each group focal length data]
Group Start surface Focal length G1 1 115.96322
G2 10 52.49924

[Conditional expression]
Conditional expression (1) (r21R + r22F) / (r21R-r22F) = 3.088
Conditional expression (2) f22 / f = 1.240
Conditional expression (3) f2L / f = 0.872
Conditional expression (4) na = 1.55389

表8に示す諸元の表から、第8実施例に係るレンズ系では、上記条件式(1)〜(4)を満たすことが分かる。   From the table of specifications shown in Table 8, it can be seen that the conditional expressions (1) to (4) are satisfied in the lens system according to Example 8.

図16は、第8実施例の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.0)での諸収差図を、(b)は近距離合焦状態(撮影倍率β=-1/30)での諸収差図をそれぞれ示す。   FIGS. 16A and 16B are graphs showing various aberrations of the eighth embodiment. FIG. 16A is a diagram showing various aberrations in the infinite focus state (shooting magnification β = 0.0), and FIG. Each aberration diagram at β = -1 / 30) is shown.

各収差図から明らかなように、第8実施例に係るレンズ系は、諸収差が良好に補正され、高い光学性能を有していることが分かる。   As is apparent from the respective aberration diagrams, it is understood that the lens system according to Example 8 has various optical aberrations corrected and high optical performance.

なお、上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   In the above-described embodiment, the following description can be appropriately adopted as long as the optical performance is not impaired.

上記実施例では2群構成を示したが、3群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although the two-group configuration is shown in the above embodiment, the present invention can also be applied to other group configurations such as a third group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、全系を合焦レンズ群とするのが好ましい。   In addition, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that the entire system is a focusing lens group.

また、レンズ群または部分レンズ群を光軸に垂直の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第2レンズ群G2の少なくとも一部を防振レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake. An anti-vibration lens group may be used. In particular, it is preferable that at least a part of the second lens group G2 is a vibration-proof lens group.

また、各レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。なお、レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。一方、レンズ面が非球面の場合、この非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、各レンズ面は、回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   Each lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. In addition, it is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. On the other hand, when the lens surface is aspherical, this aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface made of glass with an aspherical shape, and a composite type in which resin is formed on the glass surface in an aspherical shape Any aspherical surface may be used. Each lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズ枠でその役割を代用してもよい。   The aperture stop S is preferably arranged between the first lens group G1 and the second lens group G2. However, the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop.

また、各レンズ面には、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態においては、第1レンズ群G1が、正レンズ成分を2つと、負レンズ成分を1つ有するのが好ましい。また、物体側から順に、正正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the present embodiment, it is preferable that the first lens group G1 has two positive lens components and one negative lens component. In addition, in order from the object side, it is preferable to arrange the lens components in the order of positive and negative with an air gap interposed.

また、本実施形態においては、第2レンズ群G2が、正レンズ成分を2つと、負レンズ成分を1つ有するのが好ましい。また、物体側から順に、負正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the present embodiment, it is preferable that the second lens group G2 has two positive lens components and one negative lens component. In addition, in order from the object side, it is preferable to dispose the lens components in the order of negative and positive with an air gap interposed.

なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In addition, in order to make this invention intelligible, although demonstrated with the component requirement of embodiment, it cannot be overemphasized that this invention is not limited to this.

以上のように、本発明によれば、コマ収差を含む諸収差が良好に補正された、高い光学性能を持つレンズ系、これを備えた光学機器及び製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a lens system having high optical performance in which various aberrations including coma are corrected well, an optical apparatus including the lens system, and a manufacturing method.

G1 第1レンズ群
G2 第2レンズ群
S 開口絞り
I 像面
CAM デジタル一眼レフカメラ(光学機器)
G1 First lens group G2 Second lens group S Aperture stop I Image plane CAM Digital SLR camera (optical equipment)

Claims (6)

光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群と、正の屈折力を持つ第2レンズ群とを有するレンズ系において、
前記第1レンズ群と前記第2レンズ群との間に絞りを配置し、
非球面レンズを少なくとも1枚有し、
前記第2レンズ群は、この第2レンズ群中で最も物体側に形成された空気間隔を挟んで、物体側に位置する負の屈折力を有する第1のレンズ成分と、像側に位置する正の屈折力を有する第2のレンズ成分とを有し、
前記第1のレンズ成分は、負レンズと正レンズとからなる接合レンズであり、
前記第1のレンズ成分の像側レンズ面の曲率半径をr21Rとし、前記第2のレンズ成分の物体側レンズ面の曲率半径をr22Fとし、前記第2のレンズ成分の焦点距離をf22とし、前記レンズ系全体の焦点距離をfとしたとき(但し、該当する面が非球面を成す場合は、近軸曲率半径で計算する)、次式
1.169 ≦ (r21R+r22F)/(r21R−r22F) < 12.0
1.121 ≦ f22/f < 2.0
の条件を満足することを特徴とするレンズ系。
In a lens system having a first lens group having a positive refractive power and a second lens group having a positive refractive power, arranged in order from the object side along the optical axis,
A diaphragm is disposed between the first lens group and the second lens group;
Having at least one aspheric lens,
The second lens group is located on the image side with a first lens component having a negative refractive power located on the object side with an air gap formed closest to the object side in the second lens group. A second lens component having a positive refractive power,
The first lens component is a cemented lens composed of a negative lens and a positive lens,
The radius of curvature of the image side lens surface of the first lens component is r21R, the radius of curvature of the object side lens surface of the second lens component is r22F, and the focal length of the second lens component is f22, When the focal length of the entire lens system is f (however, when the corresponding surface is aspherical, it is calculated by the paraxial radius of curvature). 12.0
1.121 ≦ f22 / f <2.0
A lens system that satisfies the following conditions.
前記第2レンズ群の最も像側に配置されたレンズの焦点距離をf2Lとし、前記レンズ系全体の焦点距離をfとしたとき、次式
0.5 < f2L/f < 1.5
の条件を満足することを特徴とする請求項1に記載のレンズ系。
When the focal length of the lens disposed closest to the image side of the second lens group is f2L, and the focal length of the entire lens system is f, the following expression 0.5 <f2L / f <1.5
The lens system according to claim 1, wherein the following condition is satisfied.
前記非球面レンズは、前記第2レンズ群に少なくとも1枚設けられていることを特徴とする請求項1又は2に記載のレンズ系。   The lens system according to claim 1, wherein at least one aspheric lens is provided in the second lens group. 前記非球面レンズは、ガラス材料と樹脂材料との複合からなる複合型非球面レンズであることを特徴とする請求項1〜3のいずれか一項に記載のレンズ系。   The lens system according to claim 1, wherein the aspheric lens is a composite aspheric lens made of a composite of a glass material and a resin material. 前記複合型非球面レンズを構成する樹脂材料のd線における屈折率をnaとしたとき、次式
1.450 < na < 1.800
の条件を満足することを特徴とする請求項4に記載のレンズ系。
When the refractive index at the d-line of the resin material constituting the composite aspheric lens is defined as na, the following formula 1.450 <na <1.800
The lens system according to claim 4, wherein the following condition is satisfied.
請求項1〜5のいずれか一項に記載のレンズ系を有する光学機器。   An optical apparatus having the lens system according to claim 1.
JP2010039676A 2010-02-25 2010-02-25 Lens system and optical equipment Active JP5641393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039676A JP5641393B2 (en) 2010-02-25 2010-02-25 Lens system and optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039676A JP5641393B2 (en) 2010-02-25 2010-02-25 Lens system and optical equipment

Publications (2)

Publication Number Publication Date
JP2011175124A JP2011175124A (en) 2011-09-08
JP5641393B2 true JP5641393B2 (en) 2014-12-17

Family

ID=44688023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039676A Active JP5641393B2 (en) 2010-02-25 2010-02-25 Lens system and optical equipment

Country Status (1)

Country Link
JP (1) JP5641393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10310239B2 (en) 2016-12-07 2019-06-04 Fujifilm Corporation Imaging lens and optical apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016092B2 (en) * 2012-09-07 2016-10-26 株式会社リコー Imaging lens, imaging device, and information device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849849B2 (en) * 1973-04-10 1983-11-07 オリンパス光学工業株式会社 Shashikenbikiyo Taibutsu Lens
JPS6370818A (en) * 1986-09-12 1988-03-31 Minolta Camera Co Ltd Magnifying closeup lens
JPH0833512B2 (en) * 1987-09-18 1996-03-29 株式会社ニコン Gauss type rear focus lens
JPH0820596B2 (en) * 1989-11-14 1996-03-04 大日本スクリーン製造株式会社 Projection lens
JPH03288112A (en) * 1990-04-04 1991-12-18 Dainippon Screen Mfg Co Ltd Achromatic lens system
JP3261716B2 (en) * 1992-01-16 2002-03-04 株式会社ニコン Reverse telephoto large aperture wide angle lens
JPH08220424A (en) * 1995-02-10 1996-08-30 Nikon Corp Gauss type lens having vibration proof function
JPH10170818A (en) * 1996-10-08 1998-06-26 Canon Inc Optical system, and optical equipment using it
JP5422895B2 (en) * 2008-02-18 2014-02-19 株式会社ニコン Lens system and optical apparatus having the same
JP2010079252A (en) * 2008-09-01 2010-04-08 Fujinon Corp Small projection lens and projection display using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10310239B2 (en) 2016-12-07 2019-06-04 Fujifilm Corporation Imaging lens and optical apparatus

Also Published As

Publication number Publication date
JP2011175124A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5115102B2 (en) Lens system and optical device
JP5510634B2 (en) Wide angle lens and optical apparatus having the wide angle lens
JP5510113B2 (en) Photographic lens, optical apparatus equipped with photographic lens, and method of manufacturing photographic lens
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5458830B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, OPTICAL SYSTEM MANUFACTURING METHOD
JP5891912B2 (en) Optical system, optical device
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5428775B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5712751B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2010176015A (en) Wide-angle lens, imaging apparatus, and method for manufacturing the wide angle-lens
JP5716995B2 (en) Optical system and imaging apparatus having this optical system
JP5434447B2 (en) Wide-angle lens and optical equipment
JP4624744B2 (en) Wide angle zoom lens
JP5423299B2 (en) Wide-angle lens and optical equipment
JP6299261B2 (en) Optical system and optical apparatus
JP5839062B2 (en) Zoom lens, optical device
JP2013025157A (en) Optical system, optical device having the same, and method for manufacturing optical system
JP5544845B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5716986B2 (en) Lens system and optical equipment
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5703930B2 (en) OPTICAL SYSTEM, IMAGING DEVICE HAVING THE OPTICAL SYSTEM, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5641393B2 (en) Lens system and optical equipment
JP5224192B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5224193B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5224191B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5641393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250