JP5544845B2 - OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD - Google Patents

OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD Download PDF

Info

Publication number
JP5544845B2
JP5544845B2 JP2009270543A JP2009270543A JP5544845B2 JP 5544845 B2 JP5544845 B2 JP 5544845B2 JP 2009270543 A JP2009270543 A JP 2009270543A JP 2009270543 A JP2009270543 A JP 2009270543A JP 5544845 B2 JP5544845 B2 JP 5544845B2
Authority
JP
Japan
Prior art keywords
lens group
optical system
focusing
object side
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009270543A
Other languages
Japanese (ja)
Other versions
JP2011112955A (en
Inventor
悟 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009270543A priority Critical patent/JP5544845B2/en
Publication of JP2011112955A publication Critical patent/JP2011112955A/en
Application granted granted Critical
Publication of JP5544845B2 publication Critical patent/JP5544845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学系、撮像装置、光学系の製造方法に関する。   The present invention relates to an optical system, an imaging device, and an optical system manufacturing method.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適したインナーフォーカス式の光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, an inner focus type optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (for example, see Patent Document 1).

特開平3−200909号公報JP-A-3-200909

しかしながら、従来のインナーフォーカス式の光学系やリアフォーカス式の光学系は、合焦レンズ群で発生する収差のため、近距離物体合焦時に良好な光学性能を維持することが困難であった。
そこで本発明は上記問題点に鑑みてなされたものであり、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を有する光学系、撮像装置、光学系の製造方法を提供することを目的とする。
However, the conventional inner focus type optical system and rear focus type optical system are difficult to maintain good optical performance when focusing on a short-distance object due to the aberration generated in the focusing lens group.
Accordingly, the present invention has been made in view of the above problems, and provides an optical system, an imaging apparatus, and an optical system manufacturing method having good optical performance from when an object at infinity is focused to when focusing on a close object. For the purpose.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系を提供する。
2.00 < fP/fF < 3.70
ただし、
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
また本発明は、
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系を提供する。
1.76 ≦ fP/f < 2.80
ただし、
fP:前記正レンズ群の焦点距離
f :前記光学系全体の焦点距離
また本発明は、
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系を提供する。
0.50 < (k・fF)/fP < 2.80 (単位:mm)
1.80 < fP/fF < 3.70
ただし、
k :前記可変絞りの無限遠物体合焦時の絞り径と近距離物体合焦時の絞り径との差
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
また本発明は、
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系を提供する。
0.50 < (k・fF)/fP < 2.80 (単位:mm)
1.40 < fP/f < 2.80
ただし、
k :前記可変絞りの無限遠物体合焦時の絞り径と近距離物体合焦時の絞り径との差
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
f :前記光学系全体の焦点距離
また本発明は、
前記光学系を備えたことを特徴とする撮像装置を提供する。
また本発明は、
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有する光学系の製造方法であって、
前記光学系が以下の条件式を満足するようにし、
前記光学系中に開口絞りを配置し、前記物体側に凹のレンズ面よりも物体側に前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りを配置し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行うようにすることを特徴とする光学系の製造方法を提供する。
2.00 < fP/fF < 3.70
ただし、
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
In order to solve the above problems, the present invention
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
Possess an aperture stop, a variable stop and the aperture diameter with the movement of the concave lens surface lens focus the alloy is disposed on the object side of the object side changes,
An optical system characterized by satisfying the following conditional expression is provided.
2.00 <fP / fF <3.70
However,
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
The present invention also provides
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
An aperture stop, and a variable stop that is disposed closer to the object side than the concave lens surface on the object side and whose aperture diameter changes as the focusing lens group moves,
An optical system characterized by satisfying the following conditional expression is provided.
1.76 ≦ fP / f <2.80
However,
fP: focal length of the positive lens group
f: Focal length of the entire optical system
The present invention also provides
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
An aperture stop, and a variable stop that is disposed closer to the object side than the concave lens surface on the object side and whose aperture diameter changes as the focusing lens group moves,
An optical system characterized by satisfying the following conditional expression is provided.
0.50 <(k · fF) / fP <2.80 (unit: mm)
1.80 <fP / fF <3.70
However,
k: Difference between the aperture diameter of the variable aperture when an object at infinity is in focus and the aperture diameter when an object at a short distance is in focus.
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
The present invention also provides
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
An aperture stop, and a variable stop that is disposed closer to the object side than the concave lens surface on the object side and whose aperture diameter changes as the focusing lens group moves,
An optical system characterized by satisfying the following conditional expression is provided.
0.50 <(k · fF) / fP <2.80 (unit: mm)
1.40 <fP / f <2.80
However,
k: Difference between the aperture diameter of the variable aperture when an object at infinity is in focus and the aperture diameter when an object at a short distance is in focus.
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
f: focal length of the entire optical system or the present invention
An imaging apparatus comprising the optical system is provided.
The present invention also provides
In order from the object side, a manufacturing method of an optical system having a positive lens group having a positive refractive power and a focusing lens group having at least one concave lens surface on the object side,
The optical system satisfies the following conditional expression,
An aperture stop is disposed in the optical system, and a variable stop whose aperture diameter changes with the movement of the focusing lens group on the object side rather than a concave lens surface on the object side,
A method of manufacturing an optical system is provided, wherein focusing is performed from an object at infinity to an object at a short distance by moving the focusing lens group along an optical axis.
2.00 <fP / fF <3.70
However,
fP: focal length of the positive lens group
fF: focal length of the focusing lens group

本発明によれば、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を有する光学系、撮像装置、光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide an optical system, an imaging apparatus, and an optical system manufacturing method having good optical performance from the time of focusing on an object at infinity to the time of focusing on an object at a short distance.

本願の第1実施例に係る光学系の無限遠物体合焦時のレンズ断面図である。It is a lens sectional view at the time of infinity object focusing of the optical system concerning the 1st example of this application. (a)、(b)はそれぞれ、第1実施例に係る光学系の無限遠物体合焦時の諸収差図、近距離物体合焦時(β=-0.11197)の諸収差図である。(A) and (b) are various aberration diagrams when focusing on an object at infinity of the optical system according to the first example, and various aberration diagrams when focusing on a short distance object (β = −0.11197). 本願の第2実施例に係る光学系の無限遠物体合焦時のレンズ断面図である。It is lens sectional drawing at the time of an infinite object focusing of the optical system which concerns on 2nd Example of this application. (a)、(b)はそれぞれ、第2実施例に係る光学系の無限遠物体合焦時の諸収差図、近距離物体合焦時(β=-0.11291)の諸収差図である。(A) and (b) are various aberration diagrams when focusing on an object at infinity of the optical system according to Example 2, and various aberration diagrams when focusing on a short distance object (β = −0.11291). 本願の第3実施例に係る光学系の無限遠物体合焦時のレンズ断面図である。It is a lens sectional view at the time of infinity object focusing of the optical system concerning the 3rd example of this application. (a)、(b)はそれぞれ、第3実施例に係る光学系の無限遠物体合焦時の諸収差図、近距離物体合焦時(β=-0.13080)の諸収差図である。(A), (b) is an aberration diagram when focusing on an object at infinity of the optical system according to the third example, and various aberration diagrams when focusing on a short distance object (β = −0.13080). 本願の光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system of this application. 本願の光学系の製造方法を示す図である。It is a figure which shows the manufacturing method of the optical system of this application.

以下、本願の光学系、撮像装置、光学系の製造方法について説明する。
本願の光学系は、物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有することを特徴とする。
このような構成により、合焦時に本願の光学系に余分に入射する光線によって生じるコマ収差を補正することができ、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を実現することができる。また本願の光学系は、開口絞りとは別に可変絞りを有する構成であるため、可変絞りをより物体側に配置することができるため、近距離物体合焦時のコマ収差を良好に補正することができる。
Hereinafter, an optical system, an imaging apparatus, and a manufacturing method of the optical system of the present application will be described.
The optical system of the present application includes, in order from the object side, a positive lens group having a positive refractive power, and a focusing lens group having at least one concave lens surface on the object side. Focusing from an infinitely distant object to a close object by moving along the axis, and moving the focusing lens group is arranged on the object side of the aperture stop and the concave lens surface on the object side And a variable aperture whose aperture diameter changes accordingly.
With this configuration, it is possible to correct coma caused by extra light incident on the optical system of this application at the time of focusing, and achieve good optical performance from focusing on an object at infinity to focusing on a short distance object. can do. In addition, since the optical system of the present application has a variable diaphragm apart from the aperture diaphragm, the variable diaphragm can be arranged closer to the object side, so that coma aberration at the time of focusing on a short distance object can be corrected well. Can do.

また本願の光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.50 < (k・fF)/fP < 3.00 (単位:mm)
ただし、
k :前記可変絞りの無限遠物体合焦時の絞り径と近距離物体合焦時の絞り径との差
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
It is desirable that the optical system of the present application satisfies the following conditional expression (1).
(1) 0.50 <(k · fF ) / fP <3.00 (unit: mm)
However,
k: difference between the aperture diameter of the variable aperture when focusing on an object at infinity and the aperture diameter when focusing on a short distance object fP: focal length of the positive lens group fF: focal length of the focusing lens group

条件式(1)は、可変絞りの絞り径を規定するための条件式である。
本願の光学系の条件式(1)の対応値が下限値を下回ると、無限遠物体から近距離物体への合焦に際して像面湾曲の変動が大きくなる。また、可変絞りの絞り径の変化が小さくなり、コマ収差を可変絞りで適切にカットすることができなくなってしまうため好ましくない。なお、条件式(1)の下限値を0.80に設定することで、本願の効果をより確実なものとすることができる。
一方、本願の光学系の条件式(1)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦に際して球面収差の変動が大きくなる。また、軸外の光量が減少してしまうため好ましくない。なお、条件式(1)の上限値を2.80に設定することで、本願の効果をより確実なものとすることができる。
Conditional expression (1) is a conditional expression for defining the aperture diameter of the variable aperture.
When the corresponding value of the conditional expression (1) of the optical system of the present application is less than the lower limit value, the variation of the field curvature becomes large when focusing from an object at infinity to a near object. In addition, the change in the aperture diameter of the variable diaphragm becomes small, and the coma aberration cannot be appropriately cut by the variable diaphragm. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (1) to 0.80.
On the other hand, when the corresponding value of the conditional expression (1) of the optical system of the present application exceeds the upper limit value, the variation in spherical aberration becomes large when focusing from an object at infinity to a near object. In addition, the amount of off-axis light is undesirably reduced. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (1) to 2.80.

また本願の光学系は、前記物体側に凹のレンズ面が空気と接していることが望ましい。この構成により、本願の光学系において像面湾曲を良好に補正することができる。
また本願の光学系は、前記正レンズ群中の最も物体側のレンズ面が物体側に凸であることが望ましい。この構成により、無限遠物体から近距離物体への合焦に際してコマ収差を補正し、良好な光学性能を得ることができる。
また本願の光学系は、前記正レンズ群が少なくとも2つの正レンズを有することが望ましい。この構成により、無限遠物体から近距離物体への合焦に際してコマ収差を補正し、良好な光学性能を得ることができる。
In the optical system of the present application, it is desirable that the concave lens surface on the object side is in contact with air. With this configuration, it is possible to satisfactorily correct field curvature in the optical system of the present application.
In the optical system of the present application, it is desirable that the most object side lens surface in the positive lens group is convex toward the object side. With this configuration, coma can be corrected when focusing from an object at infinity to an object at a short distance, and good optical performance can be obtained.
In the optical system of the present application, it is desirable that the positive lens group has at least two positive lenses. With this configuration, coma can be corrected when focusing from an object at infinity to an object at a short distance, and good optical performance can be obtained.

また本願の光学系は、以下の条件式(2)を満足することが望ましい。
(2) 1.80 < fP/fF < 3.70
ただし、
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
Moreover, it is desirable that the optical system of the present application satisfies the following conditional expression (2).
(2) 1.80 <fP / fF <3.70
However,
fP: focal length of the positive lens group fF: focal length of the focusing lens group

条件式(2)は、正レンズ群の焦点距離と合焦レンズ群の焦点距離を規定するための条件式である。本願の光学系が条件式(2)を満足することにより、無限遠物体から近距離物体への合焦に際する像面湾曲の変動を小さくすることができ、また合焦レンズ群の移動量を小さくすることができる。
本願の光学系の条件式(2)の対応値が下限値を下回ると、無限遠物体から近距離物体への合焦に際して合焦レンズ群の移動量が大きくなり過ぎるため好ましくない。また、球面収差が悪化するため好ましくない。なお、条件式(2)の下限値を2.00に設定することで、当該合焦レンズ群の移動量がより小さくなり、本願の効果をより確実なものとすることができる。
一方、本願の光学系の条件式(2)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦に際して像面湾曲の変動が大きくなってしまうため好ましくない。なお、条件式(2)の上限値を3.50に設定することで、当該像面湾曲の変動がより小さくなり、本願の効果をより確実なものとすることができる。
Conditional expression (2) is a conditional expression for defining the focal length of the positive lens group and the focal length of the focusing lens group. When the optical system of the present application satisfies the conditional expression (2), it is possible to reduce the fluctuation of the field curvature when focusing from an object at infinity to an object at a short distance, and the amount of movement of the focusing lens group Can be reduced.
If the corresponding value of conditional expression (2) of the optical system of the present application is less than the lower limit value, the amount of movement of the focusing lens group becomes too large when focusing from an object at infinity to a near object, which is not preferable. Moreover, since spherical aberration deteriorates, it is not preferable. Note that by setting the lower limit of conditional expression (2) to 2.00, the amount of movement of the focusing lens group becomes smaller, and the effect of the present application can be made more reliable.
On the other hand, if the corresponding value of the conditional expression (2) of the optical system of the present application exceeds the upper limit value, the fluctuation of the field curvature becomes large at the time of focusing from an object at infinity to a near object, which is not preferable. In addition, by setting the upper limit value of conditional expression (2) to 3.50, the fluctuation of the field curvature is further reduced, and the effect of the present application can be made more reliable.

また本願の光学系は、以下の条件式(3)を満足することが望ましい。
(3) 1.40 < fP/f < 2.80
ただし、
fP:前記正レンズ群の焦点距離
f :前記光学系全体の焦点距離
Moreover, it is desirable that the optical system of the present application satisfies the following conditional expression (3).
(3) 1.40 <fP / f <2.80
However,
fP: focal length of the positive lens group f: focal length of the entire optical system

条件式(3)は、正レンズ群の焦点距離と本願の光学系全体の焦点距離を規定するための条件式である。本願の光学系が条件式(3)を満足することにより、本願の光学系の焦点距離を所定値に設定したとき、像面湾曲や球面収差等の諸収差を良好に補正することができ、高い結像性能を達成することができる。
本願の光学系の条件式(3)の対応値が下限値を下回ると、無限遠物体から近距離物体への合焦に際して合焦レンズ群の移動量が大きくなり過ぎる。また、球面収差の変動を良好に補正することができなくなってしまうため好ましくない。なお、条件式(3)の下限値を1.60に設定することで、当該合焦レンズ群の移動量がより小さくなる。また、球面収差の変動をより良好に補正することができ、本願の効果をより確実なものとすることができる。
一方、本願の光学系の条件式(3)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦に際して像面湾曲の変動が大きくなってしまうため好ましくない。なお、条件式(3)の上限値を2.60に設定することで、本願の効果をより確実なものとすることができる。
Conditional expression (3) is a conditional expression for defining the focal length of the positive lens group and the focal length of the entire optical system of the present application. When the optical system of the present application satisfies the conditional expression (3), when the focal length of the optical system of the present application is set to a predetermined value, various aberrations such as field curvature and spherical aberration can be favorably corrected, High imaging performance can be achieved.
If the corresponding value of the conditional expression (3) of the optical system of the present application is below the lower limit value, the amount of movement of the focusing lens group becomes too large when focusing from an object at infinity to a near object. Further, it is not preferable because fluctuations in spherical aberration cannot be corrected satisfactorily. By setting the lower limit value of conditional expression (3) to 1.60, the amount of movement of the focusing lens group becomes smaller. In addition, the variation in spherical aberration can be corrected more favorably, and the effect of the present application can be made more reliable.
On the other hand, if the corresponding value of the conditional expression (3) of the optical system of the present application exceeds the upper limit value, the fluctuation of the field curvature becomes large at the time of focusing from an object at infinity to a near object, which is not preferable. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (3) to 2.60.

また本願の光学系は、前記開口絞りが、前記正レンズ群と前記合焦レンズ群との間、又は前記合焦レンズ群中に備えられていることが望ましい。この構成により、球面収差を良好に補正することができる。
以上、本願によれば、高い結像性能を有するインナーフォーカス式の光学系を実現することができる。
また本願の撮像装置は、上述した構成の光学系を備えたことを特徴とする。これにより、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を有する撮像装置を実現することができる。
In the optical system of the present application, it is desirable that the aperture stop is provided between the positive lens group and the focusing lens group or in the focusing lens group. With this configuration, spherical aberration can be corrected satisfactorily.
As described above, according to the present application, an inner focus optical system having high imaging performance can be realized.
Further, the imaging apparatus of the present application includes the optical system having the above-described configuration. Thereby, it is possible to realize an imaging apparatus having good optical performance from when an object at infinity is focused to when focusing on a short-range object.

また本願の光学系の製造方法は、物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有する光学系の製造方法であって、前記光学系中に開口絞りを配置し、前記物体側に凹のレンズ面よりも物体側に前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りを配置し、前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行うようにすることを特徴とする。
これにより、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を有する光学系を製造することができる。
The optical system manufacturing method according to the present application includes, in order from the object side, a positive lens group having a positive refractive power, and a focusing lens group having at least one concave lens surface on the object side. An aperture stop is disposed in the optical system, and a variable stop whose aperture diameter changes with the movement of the focusing lens group on the object side relative to the concave lens surface on the object side, The focusing lens group is moved along the optical axis to perform focusing from an object at infinity to an object at a short distance.
As a result, an optical system having good optical performance can be manufactured from the time of focusing on an object at infinity to the time of focusing on an object at a short distance.

以下、本願の数値実施例に係る光学系を添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係る光学系の無限遠物体合焦時のレンズ断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、可変絞りSと、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13とからなる。ここで、可変絞りSは合焦時に第2レンズ群G2の移動に伴って絞り径が変化する。
Hereinafter, optical systems according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a lens cross-sectional view of the optical system according to the first example of the present application when focusing on an object at infinity.
The optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a negative refractive power. And G3.
The first lens group G1, in order from the object side, has a positive meniscus lens L11 having a convex surface directed toward the object side, a variable aperture S, a positive meniscus lens L12 having a convex surface directed toward the object side, and a convex surface directed toward the object side. And a negative meniscus lens L13. Here, the aperture of the variable stop S changes as the second lens group G2 moves during focusing.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL21と、開口絞りASと、両凹形状の負レンズL22と、両凹形状の負レンズL23と両凸形状の正レンズL24との接合レンズと、非球面を備えた両凸形状の正レンズL25とからなる。
第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31のみからなる。
本実施例に係る光学系において、無限遠物体から近距離物体への合焦は、第2レンズ群G2を光軸に沿って物体側へ移動させることによって行われる。
The second lens group G2 includes, in order from the object side, a positive meniscus lens L21 having a convex surface directed toward the object side, an aperture stop AS, a biconcave negative lens L22, a biconcave negative lens L23, and a biconvex shape. A positive lens L24 and a biconvex positive lens L25 having an aspherical surface.
The third lens group G3 comprises solely a negative meniscus lens L31 with the concave surface facing the object side.
In the optical system according to the present embodiment, focusing from an infinitely distant object to a close object is performed by moving the second lens group G2 to the object side along the optical axis.

以下の表1に、本願の第1実施例に係る光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカスを示す。
[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、(絞りS)は可変絞りS、(絞りAS)は開口絞りAS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示し、空気の屈折率nd=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に*印を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists values of specifications of the optical system according to the first example of the present application.
In Table 1, f indicates the focal length, and BF indicates the back focus.
In [Surface data], the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surfaces, d is the distance between the lens surfaces, nd is the refractive index with respect to the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). The object plane is the object plane, the variable is the variable plane spacing, the (aperture S) is the variable aperture S, the (aperture AS) is the aperture stop AS, and the image plane is the image plane I. The radius of curvature r = ∞ indicates a plane, and the description of the refractive index nd of air = 1.000 is omitted. When the lens surface is an aspheric surface, the surface number is marked with * and the paraxial radius of curvature is shown in the column of the radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−K(h/r)1/2
+A4h+A6h+A8h+A10h10
ここで、xは光軸から垂直方向の高さhにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)、Kを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。また、「E−n」(n:整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−K (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, x is a distance (sag amount) along the optical axis direction from the tangent plane of each aspherical surface at a height h in the vertical direction from the optical axis, K is a conic constant, and A4, A6, A8, and A10 are non- The spherical coefficient r is defined as the radius of curvature of the reference spherical surface (paraxial radius of curvature). “E−n” (n: integer) represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”.

[各種データ]において、FNOはFナンバー、2ωは画角(単位:「°」)、Yは像高、TLは光学系全長、di(i:整数)は第i面の可変の面間隔、βは倍率をそれぞれ示す。
ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
In [various data], FNO is the F number, 2ω is the angle of view (unit: “°”), Y is the image height, TL is the total length of the optical system, di (i: integer) is the variable surface spacing of the i-th surface, β indicates the magnification.
Here, “mm” is generally used as a unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 45.99366 11.40 1.61800 63.38
2 966.3776 4.10
3(絞りS) ∞ -4.00
4 44.8865 7.60 1.79500 45.30
5 68.7000 3.60
6 399.9117 2.30 1.68893 31.06
7 30.0330 可変
8 48.8379 3.00 1.80400 46.58
9 67.9752 3.50
10(絞りAS) ∞ 5.40
11 -32.7637 1.50 1.62000 36.30
12 504.9462 2.30
13 -63.0686 1.40 1.60342 38.00
14 68.3429 7.90 1.80400 46.58
15 -39.7425 0.10
16 78.3106 3.50 1.77250 49.61
*17 -234.8642 可変
18 -200.0000 1.50 1.79500 45.30
19 -270.5104 BF
像面 ∞

[非球面データ]
第17面
K = 1
A4 = 1.22380E-06
A6 = -3.45170E-10
A8 = 2.45990E-12
A10 = -2.02760E-15

[各種データ]
f 85.0
FNO 1.46
2ω 28.38
Y 21.60
TL 115.45
BF 38.12

無限遠物体合焦時 近距離物体合焦時
f又はβ 85.00 -0.11197
d0 ∞ 734.55
d7 20.66 10.66
d17 1.57 11.58
BF 38.12 38.12
可変絞り径 φ53.9 φ49.6

[レンズ群データ]
群 始面 f
1 1 184.9586
2 8 63.1877
3 18 -974.3274

[条件式対応値]
(1) (k・fF)/fP = 1.47
(2) fP/fF = 2.93
(3) fP/f = 2.18
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
1 45.99366 11.40 1.61800 63.38
2 966.3776 4.10
3 (Aperture S) ∞ -4.00
4 44.8865 7.60 1.79500 45.30
5 68.7000 3.60
6 399.9117 2.30 1.68893 31.06
7 30.0330 Variable
8 48.8379 3.00 1.80400 46.58
9 67.9752 3.50
10 (Aperture AS) ∞ 5.40
11 -32.7637 1.50 1.62000 36.30
12 504.9462 2.30
13 -63.0686 1.40 1.60342 38.00
14 68.3429 7.90 1.80400 46.58
15 -39.7425 0.10
16 78.3106 3.50 1.77250 49.61
* 17 -234.8642 Variable
18 -200.0000 1.50 1.79500 45.30
19 -270.5104 BF
Image plane ∞

[Aspherical data]
17th surface K = 1
A4 = 1.22380E-06
A6 = -3.45170E-10
A8 = 2.45990E-12
A10 = -2.02760E-15

[Various data]
f 85.0
FNO 1.46
2ω 28.38
Y 21.60
TL 115.45
BF 38.12

When focusing on an object at infinity When focusing on a near object f or β 85.00 -0.11197
d0 ∞ 734.55
d7 20.66 10.66
d17 1.57 11.58
BF 38.12 38.12
Variable aperture diameter φ53.9 φ49.6

[Lens group data]
Group start surface f
1 1 184.9586
2 8 63.1877
3 18 -974.3274

[Conditional expression values]
(1) (k · fF) / fP = 1.47
(2) fP / fF = 2.93
(3) fP / f = 2.18

図2(a)、(b)はそれぞれ、第1実施例に係る光学系の無限遠物体合焦時の諸収差図、近距離物体合焦時(β=-0.11197)の諸収差図である。
各諸収差図において、FNOはFナンバー、Aは半画角(単位:「°」)、NAは開口数、H0は物体高をそれぞれ示す。また、dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図の実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の諸収差図においても、本実施例と同様の符号を用いる。
図2(a)、(b)より、本実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
2A and 2B are diagrams showing various aberrations when the optical system according to Example 1 is focused on an object at infinity and various aberrations when focusing on a short distance object (β = −0.11197), respectively. .
In each aberration diagram, FNO is an F number, A is a half angle of view (unit: “°”), NA is a numerical aperture, and H0 is an object height. D represents the d-line (λ = 587.6 nm), and g represents the g-line (λ = 435.8 nm). The solid line in the astigmatism diagram indicates the sagittal image plane, and the broken line indicates the meridional image plane. In addition, in the various aberration diagrams of the following examples, the same reference numerals as those of the present example are used.
2 (a) and 2 (b), it can be seen that the optical system according to the present example has excellent imaging performance with various aberrations corrected well.

(第2実施例)
図3は、本願の第2実施例に係る光学系の無限遠物体合焦時のレンズ断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、開口絞りASと、正の屈折力を有する第2レンズ群G2とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、可変絞りSと、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13とからなる。ここで、可変絞りSは合焦時に第2レンズ群G2の移動に伴って絞り径が変化する。
(Second embodiment)
FIG. 3 is a lens cross-sectional view of the optical system according to Example 2 of the present application when focusing on an object at infinity.
The optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, an aperture stop AS, and a second lens group G2 having a positive refractive power.
The first lens group G1, in order from the object side, has a positive meniscus lens L11 having a convex surface directed toward the object side, a variable aperture S, a positive meniscus lens L12 having a convex surface directed toward the object side, and a convex surface directed toward the object side. And a negative meniscus lens L13. Here, the aperture of the variable stop S changes as the second lens group G2 moves during focusing.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、両凹形状の負レンズL22と、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合レンズと、物体側に凹面を向けた正メニスカスレンズL25と、両凸形状の正レンズL26とからなる。
本実施例に係る光学系において、無限遠物体から近距離物体への合焦は、第2レンズ群G2を光軸に沿って物体側へ移動させることによって行われる。
以下の表2に、本願の第2実施例に係る光学系の諸元の値を掲げる。
The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a biconcave negative lens L22, a biconcave negative lens L23, and a positive meniscus lens L24 having a convex surface facing the object side. A cemented lens, a positive meniscus lens L25 having a concave surface facing the object side, and a biconvex positive lens L26.
In the optical system according to the present embodiment, focusing from an infinitely distant object to a close object is performed by moving the second lens group G2 to the object side along the optical axis.
Table 2 below lists values of specifications of the optical system according to the second example of the present application.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 46.6182 11.80 1.61800 63.38
2 514.6767 3.10
3(絞りS) ∞ -3.00
4 43.6381 7.65 1.88300 40.77
5 65.2791 4.88
6 243.6870 2.20 1.71736 29.52
7 27.6140 可変
8(絞りAS) ∞ 1.50
9 77.8547 3.10 1.75500 52.29
10 -550.8253 1.90
11 -73.4239 1.50 1.60342 38.00
12 6132.3651 4.20
13 -33.8218 1.50 1.62004 36.30
14 48.6492 2.90 1.77250 49.61
15 113.7820 2.80
16 -355.5077 3.70 1.80400 46.58
17 -48.2338 0.10
18 119.1128 4.20 1.79500 45.30
20 -76.7503 BF
像面 ∞

[各種データ]
f 85.0
FNO 1.45
2ω 28.56
Y 21.60
TL 114.86
BF 40.79263

無限遠物体合焦時 近距離物体合焦時
f又はβ 85.00 -0.11291
d0 ∞ 735.14
d7 20.03 9.31
BF 40.79 51.51
可変絞り径 φ58.8 φ50.8

[レンズ群データ]
群 始面 f
1 1 202.76470
2 9 63.77360

[条件式対応値]
(1) (k・fF)/fP = 2.50
(2) fP/fF = 3.18
(3) fP/f = 2.39
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
1 46.6182 11.80 1.61800 63.38
2 514.6767 3.10
3 (Aperture S) ∞ -3.00
4 43.6381 7.65 1.88300 40.77
5 65.2791 4.88
6 243.6870 2.20 1.71736 29.52
7 27.6140 Variable
8 (Aperture AS) ∞ 1.50
9 77.8547 3.10 1.75500 52.29
10 -550.8253 1.90
11 -73.4239 1.50 1.60342 38.00
12 6132.3651 4.20
13 -33.8218 1.50 1.62004 36.30
14 48.6492 2.90 1.77250 49.61
15 113.7820 2.80
16 -355.5077 3.70 1.80400 46.58
17 -48.2338 0.10
18 119.1128 4.20 1.79500 45.30
20 -76.7503 BF
Image plane ∞

[Various data]
f 85.0
FNO 1.45
2ω 28.56
Y 21.60
TL 114.86
BF 40.79263

When focusing on an object at infinity When focusing on a near object f or β 85.00 -0.11291
d0 ∞ 735.14
d7 20.03 9.31
BF 40.79 51.51
Variable aperture diameter φ58.8 φ50.8

[Lens group data]
Group start surface f
1 1 202.76470
2 9 63.77360

[Conditional expression values]
(1) (k · fF) / fP = 2.50
(2) fP / fF = 3.18
(3) fP / f = 2.39

図4(a)、(b)はそれぞれ、第2実施例に係る光学系の無限遠物体合焦時の諸収差図、近距離物体合焦時(β=-0.11291)の諸収差図である。
図4(a)、(b)より、本実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
FIGS. 4A and 4B are graphs showing various aberrations when the optical system according to Example 2 is focused on an object at infinity and various aberrations when focusing on a short distance object (β = −0.11291). .
4 (a) and 4 (b), it can be seen that the optical system according to the present example has excellent imaging performance with various aberrations corrected well.

(第3実施例)
図5は、本願の第3実施例に係る光学系の無限遠物体合焦時のレンズ断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、開口絞りASと、正の屈折力を有する第2レンズ群G2とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、可変絞りSと、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13とからなる。ここで、可変絞りSは合焦時に第2レンズ群G2の移動に伴って絞り径が変化する。
(Third embodiment)
FIG. 5 is a lens cross-sectional view of the optical system according to the third example of the present application when focusing on an object at infinity.
The optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, an aperture stop AS, and a second lens group G2 having a positive refractive power.
The first lens group G1, in order from the object side, has a positive meniscus lens L11 having a convex surface directed toward the object side, a variable aperture S, a positive meniscus lens L12 having a convex surface directed toward the object side, and a convex surface directed toward the object side. And a negative meniscus lens L13. Here, the aperture of the variable stop S changes as the second lens group G2 moves during focusing.

第2レンズ群G2は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL21と、物体側に凹面を向けた正メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24とからなる。
本実施例に係る光学系において、無限遠物体から近距離物体への合焦は、第2レンズ群G2を光軸に沿って物体側へ移動させることによって行われる。
以下の表3に、本願の第3実施例に係る光学系の諸元の値を掲げる。
The second lens group G2, in order from the object side, includes a negative meniscus lens L21 having a concave surface directed toward the object side, a positive meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and a biconvex shape. Positive lens L24.
In the optical system according to the present embodiment, focusing from an infinitely distant object to a close object is performed by moving the second lens group G2 to the object side along the optical axis.
Table 3 below lists values of specifications of the optical system according to the third example of the present application.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 46.4680 10.00 1.67000 57.36
2 706.2372 2.00
3(絞りS) ∞ 3.00
4 38.2666 7.50 1.67790 55.43
5 65.3212 2.50
6 540.1950 3.00 1.68893 31.06
7 26.2226 10.00
8(絞りAS) ∞ 可変
9 -30.5392 3.00 1.71736 29.52
10 -74.7485 4.00
11 -60.2865 4.50 1.79500 45.30
12 -39.5989 0.20
13 138.8166 4.50 1.77250 49.61
14 -115.6586 0.20
15 300.0000 3.00 1.69680 55.52
16 -1947.7371 BF
像面 ∞

[各種データ]
f 104.02
FNO 1.98
2ω 23.48
Y 21.60
TL 127.09
BF 44.44

無限遠物体合焦時 近距離物体合焦時
f又はβ 104.02 -0.13080
d0 ∞ 753.1246
d8 25.25 8.25
BF 44.44 61.44
可変絞り径 φ50.3 φ47.6

[レンズ群データ]
群 始面 f
1 1 182.9317
2 9 78.1637

[条件式対応値]
(1) (k・fF)/fP = 1.15
(2) fP/fF = 2.34
(3) fP/f = 1.76
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞
1 46.4680 10.00 1.67000 57.36
2 706.2372 2.00
3 (Aperture S) ∞ 3.00
4 38.2666 7.50 1.67790 55.43
5 65.3212 2.50
6 540.1950 3.00 1.68893 31.06
7 26.2226 10.00
8 (Aperture AS) ∞ Variable
9 -30.5392 3.00 1.71736 29.52
10 -74.7485 4.00
11 -60.2865 4.50 1.79500 45.30
12 -39.5989 0.20
13 138.8166 4.50 1.77250 49.61
14 -115.6586 0.20
15 300.0000 3.00 1.69680 55.52
16 -1947.7371 BF
Image plane ∞

[Various data]
f 104.02
FNO 1.98
2ω 23.48
Y 21.60
TL 127.09
BF 44.44

When focusing on an object at infinity When focusing on an object at close distance f or β 104.02 -0.13080
d0 ∞ 753.1246
d8 25.25 8.25
BF 44.44 61.44
Variable aperture diameter φ50.3 φ47.6

[Lens group data]
Group start surface f
1 1 182.9317
2 9 78.1637

[Conditional expression values]
(1) (k · fF) / fP = 1.15
(2) fP / fF = 2.34
(3) fP / f = 1.76

図6(a)、(b)はそれぞれ、第3実施例に係る光学系の無限遠物体合焦時の諸収差図、近距離物体合焦時(β=-0.13080)の諸収差図である。
図6(a)、(b)より、本実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
FIGS. 6A and 6B are graphs showing various aberrations of the optical system according to Example 3 when focusing on an object at infinity and various aberrations when focusing on a short distance object (β = −0.13080). .
6 (a) and 6 (b), it can be seen that the optical system according to the present example has excellent imaging performance with various aberrations corrected well.

上記各実施例によれば、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を有する光学系を実現することができる。ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
なお、以下の内容は、本願の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の光学系の数値実施例として2群又は3群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群等)の光学系を構成することもできる。具体的には、本願の光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、空気間隔で分離された少なくとも1枚のレンズを有する部分を示す。
According to each of the above embodiments, it is possible to realize an optical system having good optical performance from the time of focusing on an object at infinity to the time of focusing on a short distance object. Here, each said Example has shown one specific example of this invention, and this invention is not limited to these.
In addition, the following content can be suitably employ | adopted in the range which does not impair the optical performance of the optical system of this application.
The numerical example of the optical system of the present application is shown as a two-group or three-group configuration, but the present application is not limited to this, and an optical system of other group configurations (for example, four groups) can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the optical system of the present application may be used. The lens group indicates a portion having at least one lens separated by an air interval.

また、本願の光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、又は複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、本願の光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に垂直な成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることで、手ブレによって生じる像ブレを補正する構成とすることもできる。特に、本願の光学系では第2レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
In addition, the optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group in order to perform focusing from an object at infinity to a near object in the optical axis direction. It is good also as a structure moved to. In particular, it is preferable that at least a part of the second lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
In the optical system of the present application, either the entire lens group or a part thereof is moved so as to include a component perpendicular to the optical axis as an anti-vibration lens group, or rotated in an in-plane direction including the optical axis ( The image blur caused by the camera shake can be corrected by swinging). In particular, in the optical system of the present application, it is preferable that at least a part of the second lens group is an anti-vibration lens group.

また、本願の光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願の光学系は、第1レンズ群が正のレンズ成分を2つと負のレンズ成分を1つ有することが好ましい。また、第1レンズ群はこれらのレンズ成分を、物体側から正正負の順に空気間隔を介在させて配置することが好ましい。
また、本願の光学系は、第2レンズ群が正のレンズ成分を2つと負のレンズ成分を1つ有することが好ましい。
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
In the optical system of the present application, it is preferable that the first lens group has two positive lens components and one negative lens component. In the first lens group, it is preferable to dispose these lens components in the order of positive and negative from the object side with an air gap therebetween.
In the optical system of the present application, it is preferable that the second lens group has two positive lens components and one negative lens component.

次に、本願の光学系を備えたカメラを図7に基づいて説明する。
図7は、本願の光学系を備えたカメラの構成を示す図である。
本カメラ1は、図7に示すように撮影レンズ2として上記第1実施例に係る光学系を備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera equipped with the optical system of the present application will be described with reference to FIG.
FIG. 7 is a diagram illustrating a configuration of a camera including the optical system of the present application.
The camera 1 is a digital single-lens reflex camera provided with the optical system according to the first embodiment as a photographing lens 2 as shown in FIG.
In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and imaged on the focusing screen 4 through the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
以上の構成により、上記第1実施例に係る光学系を撮影レンズ2として搭載した本カメラ1は、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を実現することができる。なお、上記第2、第3実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。
When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
With the above configuration, the present camera 1 equipped with the optical system according to the first embodiment as the photographic lens 2 can achieve good optical performance from the time of focusing on an object at infinity to the time of focusing on a short distance object. . It should be noted that the same effect as that of the camera 1 can be obtained even if a camera in which the optical system according to the second and third embodiments is mounted as the photographing lens 2 is configured.

以下、本願の光学系の製造方法の概略を図8に基づいて説明する。
図8は、本願の光学系の製造方法を示す図である。
本願の光学系の製造方法は、物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有する光学系の製造方法であって、図8に示す各ステップS1,S2を含むものである。
ステップS1:物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを配置した円筒状の鏡筒内に、開口絞りを配置し、前記物体側に凹のレンズ面よりも物体側に合焦レンズ群の移動に伴って絞り径が変化する可変絞りを配置する。
ステップS2:合焦レンズ群に公知の移動機構を設ける等することで、合焦レンズ群を光軸に沿って移動させて無限遠物体から近距離物体への合焦を行うようにする。
斯かる本願の光学系の製造方法によれば、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を有する光学系を製造することができる。
Hereinafter, the outline of the manufacturing method of the optical system of this application is demonstrated based on FIG.
FIG. 8 is a diagram showing a method for manufacturing the optical system of the present application.
The optical system manufacturing method of the present application is a manufacturing method of an optical system having, in order from the object side, a positive lens group having positive refractive power and a focusing lens group having at least one concave lens surface on the object side. Thus, the steps S1 and S2 shown in FIG. 8 are included.
Step S1: In order from the object side, an aperture stop is placed in a cylindrical lens barrel in which a positive lens group having positive refractive power and a focusing lens group having at least one concave lens surface on the object side are arranged. And a variable aperture whose aperture diameter changes with the movement of the focusing lens group on the object side relative to the concave lens surface on the object side.
Step S2: By providing a known moving mechanism in the focusing lens group, the focusing lens group is moved along the optical axis so that focusing from an object at infinity to a near object is performed.
According to such an optical system manufacturing method of the present application, an optical system having good optical performance can be manufactured from the time of focusing on an object at infinity to the time of focusing on an object at a short distance.

G1 第1レンズ群
G2 第2レンズ群(合焦レンズ群)
G3 第3レンズ群
AS 開口絞り
S 可変絞り
I 像面
G1 First lens group G2 Second lens group (focusing lens group)
G3 Third lens group AS Aperture stop S Variable stop I Image surface

Claims (13)

物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系。
2.00 < fP/fF < 3.70
ただし、
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
Possess an aperture stop, a variable stop and the aperture diameter with the movement of the concave lens surface lens focus the alloy is disposed on the object side of the object side changes,
An optical system satisfying the following conditional expression:
2.00 <fP / fF <3.70
However,
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系。
1.76 ≦ fP/f < 2.80
ただし、
fP:前記正レンズ群の焦点距離
f :前記光学系全体の焦点距離
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
Possess an aperture stop, a variable stop and the aperture diameter with the movement of the concave lens surface lens focus the alloy is disposed on the object side of the object side changes,
An optical system satisfying the following conditional expression:
1.76 ≦ fP / f <2.80
However,
fP: focal length of the positive lens group
f: Focal length of the entire optical system
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系。
0.50 < (k・fF)/fP < 2.80 (単位:mm)
1.80 < fP/fF < 3.70
ただし、
k :前記可変絞りの無限遠物体合焦時の絞り径と近距離物体合焦時の絞り径との差
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
Possess an aperture stop, a variable stop and the aperture diameter with the movement of the concave lens surface lens focus the alloy is disposed on the object side of the object side changes,
An optical system satisfying the following conditional expression:
0.50 <(k · fF) / fP <2.80 (unit: mm)
1.80 <fP / fF <3.70
However,
k: Difference between the aperture diameter of the variable aperture when an object at infinity is in focus and the aperture diameter when an object at a short distance is in focus.
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行い、
開口絞りと、前記物体側に凹のレンズ面よりも物体側に配置されており前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りとを有し、
以下の条件式を満足することを特徴とする光学系。
0.50 < (k・fF)/fP < 2.80 (単位:mm)
1.40 < fP/f < 2.80
ただし、
k :前記可変絞りの無限遠物体合焦時の絞り径と近距離物体合焦時の絞り径との差
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
f :前記光学系全体の焦点距離
In order from the object side, a positive lens group having positive refractive power, and a focusing lens group having at least one concave lens surface on the object side,
Focusing from an object at infinity to a near object by moving the focusing lens group along the optical axis,
Possess an aperture stop, a variable stop and the aperture diameter with the movement of the concave lens surface lens focus the alloy is disposed on the object side of the object side changes,
An optical system satisfying the following conditional expression:
0.50 <(k · fF) / fP <2.80 (unit: mm)
1.40 <fP / f <2.80
However,
k: Difference between the aperture diameter of the variable aperture when an object at infinity is in focus and the aperture diameter when an object at a short distance is in focus.
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
f: Focal length of the entire optical system
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の光学系。
0.50 < (k・fF)/fP < 3.00 (単位:mm)
ただし、
k :前記可変絞りの無限遠物体合焦時の絞り径と近距離物体合焦時の絞り径との差
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
The optical system of claim 1 or claim 2, characterized by satisfying the following conditional expression.
0.50 <(k · fF ) / fP <3.00 (unit: mm)
However,
k: difference between the aperture diameter of the variable aperture when focusing on an object at infinity and the aperture diameter when focusing on a short distance object fP: focal length of the positive lens group fF: focal length of the focusing lens group
以下の条件式を満足することを特徴とする請求項2又は請求項4に記載の光学系。
1.80 < fP/fF < 3.70
ただし、
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
Optical system according to claim 2 or claim 4, characterized by satisfying the following conditional expression.
1.80 <fP / fF <3.70
However,
fP: focal length of the positive lens group fF: focal length of the focusing lens group
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
1.40 < fP/f < 2.80
ただし、
fP:前記正レンズ群の焦点距離
f :前記光学系全体の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
1.40 <fP / f <2.80
However,
fP: focal length of the positive lens group f: focal length of the entire optical system
前記物体側に凹のレンズ面が空気と接していることを特徴とする請求項1から請求項7のいずれか一項に記載の光学系。 The optical system as claimed in any one of claims 1 to 7 in which the lens surface of concave on the object side is equal to or in contact with air. 前記正レンズ群中の最も物体側のレンズ面が物体側に凸であることを特徴とする請求項1から請求項のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to claim 8 in which the lens surface on the most object side in the positive lens group is characterized by a convex surface on the object side. 前記正レンズ群が少なくとも2つの正レンズを有することを特徴とする請求項1から請求項のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 9 , wherein the positive lens group includes at least two positive lenses. 前記開口絞りは、前記正レンズ群と前記合焦レンズ群との間、又は前記合焦レンズ群中に備えられていることを特徴とする請求項1から請求項10のいずれか一項に記載の光学系。 The aperture stop, wherein between the positive lens group and the focusing lens group, or according to any one of claims 1 to 10, characterized in that said are provided in the focusing lens Optical system. 請求項1から請求項11のいずれか一項に記載の光学系を備えたことを特徴とする撮像装置。 An imaging apparatus comprising the optical system according to any one of claims 1 to 11 . 物体側から順に、正の屈折力を有する正レンズ群と、物体側に凹のレンズ面を少なくとも1つ有する合焦レンズ群とを有する光学系の製造方法であって、
前記光学系が以下の条件式を満足するようにし、
前記光学系中に開口絞りを配置し、前記物体側に凹のレンズ面よりも物体側に前記合焦レンズ群の移動に伴って絞り径が変化する可変絞りを配置し、
前記合焦レンズ群を光軸に沿って移動させることによって無限遠物体から近距離物体への合焦を行うようにすることを特徴とする光学系の製造方法。
2.00 < fP/fF < 3.70
ただし、
fP:前記正レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
In order from the object side, a manufacturing method of an optical system having a positive lens group having a positive refractive power and a focusing lens group having at least one concave lens surface on the object side,
The optical system satisfies the following conditional expression,
An aperture stop is disposed in the optical system, and a variable stop whose aperture diameter changes with the movement of the focusing lens group on the object side rather than a concave lens surface on the object side,
A method of manufacturing an optical system, wherein the focusing lens group is moved along an optical axis to perform focusing from an object at infinity to an object at a short distance.
2.00 <fP / fF <3.70
However,
fP: focal length of the positive lens group
fF: focal length of the focusing lens group
JP2009270543A 2009-11-27 2009-11-27 OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD Expired - Fee Related JP5544845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270543A JP5544845B2 (en) 2009-11-27 2009-11-27 OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270543A JP5544845B2 (en) 2009-11-27 2009-11-27 OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2011112955A JP2011112955A (en) 2011-06-09
JP5544845B2 true JP5544845B2 (en) 2014-07-09

Family

ID=44235309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270543A Expired - Fee Related JP5544845B2 (en) 2009-11-27 2009-11-27 OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5544845B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580382B1 (en) * 2013-10-14 2015-12-24 삼성전기주식회사 Lens module
US10018805B2 (en) 2013-10-14 2018-07-10 Samsung Electro-Mechanics Co., Ltd. Lens module
JP6454968B2 (en) * 2014-03-05 2019-01-23 株式会社リコー Imaging optical system, stereo camera device, and in-vehicle camera device
JP6818546B2 (en) * 2016-12-28 2021-01-20 キヤノン株式会社 Zoom lens and imaging device with it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404862B2 (en) * 1994-01-17 2003-05-12 株式会社ニコン Optical system with flare stopper
JP5004725B2 (en) * 2007-09-05 2012-08-22 キヤノン株式会社 Imaging lens and imaging apparatus having the same
JP5142823B2 (en) * 2008-05-28 2013-02-13 キヤノン株式会社 Imaging lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP2011112955A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5458830B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, OPTICAL SYSTEM MANUFACTURING METHOD
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5510113B2 (en) Photographic lens, optical apparatus equipped with photographic lens, and method of manufacturing photographic lens
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5821698B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5428775B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5110127B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5333906B2 (en) Zoom lens and optical equipment
JP4624744B2 (en) Wide angle zoom lens
JP5544845B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5691854B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP6268792B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5716986B2 (en) Lens system and optical equipment
JP5578412B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP2015118187A (en) Optical system, optical instrument, and method for manufacturing optical system
JP5224193B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2012008271A (en) Zoom lens, imaging device, method for manufacturing zoom lens
JP5224192B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5641393B2 (en) Lens system and optical equipment
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5110128B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5224191B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees