JP5640476B2 - Resin composition for sealing optical semiconductor element and light emitting device - Google Patents

Resin composition for sealing optical semiconductor element and light emitting device Download PDF

Info

Publication number
JP5640476B2
JP5640476B2 JP2010130831A JP2010130831A JP5640476B2 JP 5640476 B2 JP5640476 B2 JP 5640476B2 JP 2010130831 A JP2010130831 A JP 2010130831A JP 2010130831 A JP2010130831 A JP 2010130831A JP 5640476 B2 JP5640476 B2 JP 5640476B2
Authority
JP
Japan
Prior art keywords
resin composition
sealing
optical semiconductor
semiconductor element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010130831A
Other languages
Japanese (ja)
Other versions
JP2011256251A (en
Inventor
克之 今澤
克之 今澤
柏木 努
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010130831A priority Critical patent/JP5640476B2/en
Priority to TW100119819A priority patent/TWI491674B/en
Priority to KR1020110054386A priority patent/KR20110134299A/en
Priority to CN201110265781.3A priority patent/CN102408724B/en
Publication of JP2011256251A publication Critical patent/JP2011256251A/en
Application granted granted Critical
Publication of JP5640476B2 publication Critical patent/JP5640476B2/en
Priority to KR1020170065528A priority patent/KR101979499B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、シリコーン系の光半導体素子封止用樹脂組成物、及び該樹脂組成物の硬化物によって封止された発光装置に関する。   The present invention relates to a silicone-based resin composition for encapsulating an optical semiconductor element, and a light-emitting device sealed with a cured product of the resin composition.

発光ダイオード(LED)等の光半導体素子の被覆保護用樹脂組成物には、その硬化物が透明性を有することが要求されており、該組成物として一般的には、ビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂と酸無水物系硬化剤を含有するエポキシ樹脂組成物が用いられている(特許文献1:特許第3241338号公報、特許文献2:特開平7−25987号公報参照)。   The resin composition for protecting a coating of an optical semiconductor element such as a light emitting diode (LED) is required to have a cured product having transparency, and as the composition, generally, a bisphenol A type epoxy resin or An epoxy resin composition containing an epoxy resin such as an alicyclic epoxy resin and an acid anhydride curing agent is used (Patent Document 1: Japanese Patent No. 3241338, Patent Document 2: Japanese Patent Laid-Open No. 7-25987). reference).

しかし、上記エポキシ樹脂組成物の硬化物は、短波長の光に対する光線透過性が低いために、耐光耐久性が低い、あるいは光劣化により着色するという欠点を有していた。そのため、SiH基と反応性を有する炭素−炭素二重結合を一分子中に少なくとも2個含有する有機化合物、及び一分子中に少なくとも2個のSiH基を含有するケイ素化合物、ヒドロシリル化触媒を含有する光半導体素子の被覆保護用樹脂組成物が提案されている(特許文献3:特開2002−327126号公報、特許文献4:特開2002−338833号公報参照)。   However, the cured product of the epoxy resin composition has a drawback that it has low light resistance or is colored due to light deterioration because of its low light transmittance with respect to light having a short wavelength. Therefore, it contains an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. A resin composition for coating protection of an optical semiconductor element has been proposed (see Patent Document 3: JP 2002-327126 A, Patent Document 4: JP 2002-338833 A).

しかし、このようなシリコーン樹脂組成物の硬化物、特に屈折率が1.45に満たないシリコーン樹脂組成物の硬化物は、従来のエポキシ樹脂組成物の硬化物に比べ、ガス透過性が大きく、保管環境及び使用環境に存在する含硫黄ガスが透過してしまうという欠点を有している。そのため、シリコーン樹脂組成物の硬化物を透過してきた含硫黄ガスによって、LEDパッケージの基板であるリードフレームの銀メッキ表面が硫化され硫化銀に変化し、その結果、銀メッキ表面が黒化してしまうという問題が生じていた。   However, a cured product of such a silicone resin composition, particularly a cured product of a silicone resin composition having a refractive index of less than 1.45, has a larger gas permeability than a cured product of a conventional epoxy resin composition, The sulfur-containing gas existing in the storage environment and the use environment permeates. Therefore, the sulfur-containing gas that has passed through the cured product of the silicone resin composition causes the silver-plated surface of the lead frame, which is the substrate of the LED package, to be sulfided and changed to silver sulfide, resulting in blackening of the silver-plated surface. There was a problem.

一般的に、シリコーン樹脂組成物の硬化物のガス透過性は、20g/m2・24hr以上であり、特に屈折率が1.45に満たないシリコーン樹脂組成物の硬化物のガス透過性は、50g/m2・24hr以上で、外部環境に存在する含硫黄ガスを容易に透過することができる。外部環境に存在する含硫黄ガスとしては、大気中の硫黄酸化物(SOx)、段ボール箱等の梱包資材中に含有される硫黄成分が挙げられる。また、LEDパッケージのリードフレーム表面は、光の反射効率の観点から、一般的に銀メッキ処理が施されている。このような銀メッキリードフレーム上に、屈折率が1.45に満たないシリコーン樹脂組成物の硬化物で封止した発光ダイオードを含硫黄ガスの存在する雰囲気で放置した場合、含硫黄ガスがシリコーン樹脂組成物の硬化物を透過し、銀の硫化反応が進行する。その結果、リードフレーム表面に硫化銀が発生する。この硫化銀の生成により、LEDパッケージ基板表面は黒化し、光の反射効率が著しく低下し、長期信頼性が保てない要因の一つとなっている。 In general, the gas permeability of the cured product of the silicone resin composition is 20 g / m 2 · 24 hr or more, and particularly the gas permeability of the cured product of the silicone resin composition having a refractive index of less than 1.45. At 50 g / m 2 · 24 hr or more, sulfur-containing gas existing in the external environment can be easily permeated. Examples of the sulfur-containing gas existing in the external environment include sulfur oxides (SO x ) in the atmosphere and sulfur components contained in packaging materials such as cardboard boxes. The lead frame surface of the LED package is generally subjected to silver plating from the viewpoint of light reflection efficiency. When a light emitting diode sealed with a cured product of a silicone resin composition having a refractive index of less than 1.45 on such a silver-plated lead frame is left in an atmosphere containing a sulfur-containing gas, the sulfur-containing gas becomes silicone. The cured product of the resin composition passes through and the silver sulfidation reaction proceeds. As a result, silver sulfide is generated on the surface of the lead frame. Due to the formation of silver sulfide, the surface of the LED package substrate is blackened, the light reflection efficiency is remarkably lowered, and this is one of the factors that cannot maintain long-term reliability.

そこで、硫化対策として、近年ではガス透過性の比較的小さい、硬化後の屈折率が1.45以上のシリコーン樹脂組成物を使用することにより、上述の銀メッキ表面の硫化問題を解決することが提案されている。しかし、屈折率1.45以上のシリコーン樹脂組成物の硬化物は、屈折率が1.45に満たないシリコーン樹脂組成物の硬化物に比べて脆く、強度が低いので、吸湿リフロー及び熱衝撃試験等の熱応力試験を行った場合に、樹脂クラックが発生し、信頼性試験を合格することができない状況にあった。   Therefore, as a countermeasure against sulfuration, in recent years, by using a silicone resin composition having a relatively low gas permeability and a refractive index after curing of 1.45 or more, it is possible to solve the above-mentioned silver plating surface sulfurization problem. Proposed. However, a cured product of a silicone resin composition having a refractive index of 1.45 or more is brittle and lower in strength than a cured product of a silicone resin composition having a refractive index of less than 1.45. When a thermal stress test such as the above was performed, a resin crack occurred and the reliability test could not be passed.

一般的に、シリコーン樹脂組成物の硬化物の強度補強のために、シリカフィラーを充填材として使用することが知られている。しかし、シリカフィラーの形状は等方的であり、このようなシリカフィラー含有シリコーン樹脂組成物を、図1に示すようなプレモールドパッケージの封止剤に使用した場合、従来に比べ信頼性試験の不良率は改善されるが、吸湿リフロー及び熱衝撃試験等の熱応力は、封止樹脂に対し複雑に作用し、シリカフィラーの補強効果のみでは、熱応力に耐えられず、樹脂自体が割れるという不良が発生してしまい、不良率をゼロにするのは困難であった。なお、図1は従来型の発光装置の一実施形態を示す断面図であり、1は光半導体素子、2は導電性ワイヤー、3は銀メッキリードフレーム、4は光半導体素子封止用樹脂、5はモールドパッケージ基板、6はシリカフィラーを示す。   In general, it is known to use a silica filler as a filler for reinforcing the strength of a cured product of a silicone resin composition. However, the shape of the silica filler is isotropic, and when such a silica filler-containing silicone resin composition is used as a sealant for a pre-mold package as shown in FIG. Although the defect rate is improved, thermal stress such as moisture absorption reflow and thermal shock test acts on the sealing resin in a complicated manner, and the reinforcing effect of the silica filler alone cannot withstand the thermal stress, and the resin itself breaks. Defects occurred, and it was difficult to make the defect rate zero. FIG. 1 is a cross-sectional view showing an embodiment of a conventional light emitting device. 1 is an optical semiconductor element, 2 is a conductive wire, 3 is a silver-plated lead frame, 4 is an optical semiconductor element sealing resin, Reference numeral 5 denotes a mold package substrate, and 6 denotes a silica filler.

特許第3241338号公報Japanese Patent No. 3241338 特開平7−25987号公報JP 7-25987 A 特開2002−327126号公報JP 2002-327126 A 特開2002−338833号公報JP 2002-338833 A

本発明は、上記問題点を解決するためになされたもので、硬化後の屈折率が1.45以上であって、耐硫化性に優れ、吸湿リフローや熱衝撃試験等の熱応力試験に耐えうる長期信頼性が確保できる光半導体素子封止用樹脂組成物、及び該光半導体素子封止用樹脂組成物の硬化物によって封止された発光装置を提供することを目的とする。   The present invention has been made in order to solve the above problems, and has a refractive index after curing of 1.45 or more, excellent sulfidation resistance, and can withstand thermal stress tests such as moisture absorption reflow and thermal shock tests. It is an object of the present invention to provide a resin composition for encapsulating an optical semiconductor element that can ensure long-term reliability, and a light-emitting device encapsulated with a cured product of the resin composition for encapsulating an optical semiconductor element.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、(A)脂肪族不飽和結合含有一価炭化水素基を有するオルガノポリシロキサン、(B)一分子中にケイ素原子に結合した水素原子を2個以上含有するオルガノハイドロジェンポリシロキサン、(C)白金系触媒、及び(D)アスペクト比が1.1〜50である異方性形状を有するガラスフィラーを含有する光半導体素子封止用樹脂組成物の硬化物を用いて封止された発光装置が、耐硫化性に優れ、吸湿リフローや熱衝撃試験等の熱応力試験に耐えうる長期信頼性が確保できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have (A) an organopolysiloxane having an aliphatic unsaturated bond-containing monovalent hydrocarbon group, and (B) a silicon atom in one molecule. An optical semiconductor containing an organohydrogenpolysiloxane containing two or more bonded hydrogen atoms, (C) a platinum-based catalyst, and (D) a glass filler having an anisotropic shape with an aspect ratio of 1.1 to 50 The light emitting device sealed with a cured product of the element sealing resin composition has excellent sulfidation resistance, and it can be found that long-term reliability that can withstand thermal stress tests such as moisture absorption reflow and thermal shock tests can be secured. The present invention has been completed.

従って、本発明は、下記光半導体素子封止用樹脂組成物及び発光装置を提供する。
請求項1:
(A)脂肪族不飽和結合含有一価炭化水素基を有するオルガノポリシロキサン、
(B)一分子中にケイ素原子に結合した水素原子を2個以上含有するオルガノハイドロジェンポリシロキサン、
(C)白金系触媒、及び
(D)アスペクト比が1.1〜50である異方性形状を有するガラスフィラー
を含有し、硬化物の屈折率が1.45以上であることを特徴とする光半導体素子封止用樹脂組成物。
請求項2:
上記(A)成分が、下記式

Figure 0005640476
(式中、k,mは、≦k+m≦500を満足する整数であり、0≦m/(k+m)≦0.5である。)
から選ばれるオルガノポリシロキサンであることを特徴とする請求項1記載の光半導体素子封止用樹脂組成物。
請求項3:
上記(D)異方性形状を有するガラスフィラーが、アスペクト比が1.1〜50である鱗片状ガラス又はガラスカットファイバーであることを特徴とする請求項1又は2記載の光半導体素子封止用樹脂組成物。
請求項4:
上記(D)異方性形状を有するガラスフィラーを樹脂組成物全体の5〜60質量%含有していることを特徴とする請求項1乃至3のいずれか1項記載の光半導体素子封止用樹脂組成物。
請求項5:
上記(D)異方性形状を有するガラスフィラーの屈折率が1.45〜1.55であり、かつ光半導体素子封止用樹脂組成物の硬化物の屈折率が1.45〜1.55であることを特徴とする請求項1乃至4のいずれか1項記載の光半導体素子封止用樹脂組成物。
請求項6:
請求項1乃至5のいずれか1項記載の光半導体素子封止用樹脂組成物の硬化物で封止された発光装置。
請求項7:
発光素子が搭載されるリードフレームを有するプレモールドパッケージを用い、発光素子をリードフレームに搭載し、封止樹脂組成物の硬化物で封止してなる発光ダイオード装置であって、上記封止樹脂組成物が請求項1乃至5のいずれか1項記載の樹脂組成物である発光ダイオード装置。 Accordingly, the present invention provides the following resin composition for sealing an optical semiconductor element and a light emitting device.
Claim 1:
(A) an organopolysiloxane having an aliphatic unsaturated bond-containing monovalent hydrocarbon group,
(B) an organohydrogenpolysiloxane containing two or more hydrogen atoms bonded to silicon atoms in one molecule;
(C) A platinum-based catalyst and (D) a glass filler having an anisotropic shape with an aspect ratio of 1.1 to 50 are contained, and the refractive index of the cured product is 1.45 or more. A resin composition for sealing an optical semiconductor element.
Claim 2:
The component (A) has the following formula
Figure 0005640476
(In the formula, k and m are integers satisfying 5 ≦ k + m ≦ 500, and 0 ≦ m / (k + m) ≦ 0.5.)
The resin composition for sealing an optical semiconductor element according to claim 1, wherein the composition is an organopolysiloxane selected from the group consisting of:
Claim 3:
3. The optical semiconductor element sealing according to claim 1, wherein the glass filler having the (D) anisotropic shape is a glass flake or a glass cut fiber having an aspect ratio of 1.1 to 50. Resin composition.
Claim 4:
The glass filler having the (D) anisotropic shape is contained in an amount of 5 to 60% by mass of the entire resin composition, for sealing an optical semiconductor element according to any one of claims 1 to 3. Resin composition.
Claim 5:
(D) The refractive index of the glass filler having an anisotropic shape is 1.45 to 1.55, and the refractive index of the cured product of the resin composition for sealing an optical semiconductor element is 1.45 to 1.55. The resin composition for sealing an optical semiconductor element according to any one of claims 1 to 4, wherein the resin composition is for sealing an optical semiconductor element.
Claim 6:
The light-emitting device sealed with the hardened | cured material of the resin composition for optical semiconductor element sealing of any one of Claims 1 thru | or 5.
Claim 7:
A light emitting diode device using a pre-mold package having a lead frame on which a light emitting element is mounted, mounting the light emitting element on a lead frame, and sealing with a cured product of a sealing resin composition, wherein the sealing resin The light emitting diode device whose composition is the resin composition of any one of Claims 1 thru | or 5.

本発明によれば、耐硫化性に優れ、かつ吸湿リフローや熱衝撃試験等の熱応力試験に耐えうる長期信頼性が確保できる光半導体素子封止用樹脂組成物及び該光半導体素子封止用樹脂組成物の硬化物によって封止された発光装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition for optical semiconductor element sealing which is excellent in sulfidation resistance, and can ensure long-term reliability which can endure thermal stress tests, such as moisture absorption reflow and a thermal shock test, and this optical semiconductor element sealing A light emitting device sealed with a cured product of the resin composition can be obtained.

従来型の発光装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the conventional light-emitting device. 本発明の発光装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the light-emitting device of this invention.

以下、本発明について詳細に説明する。
本発明の光半導体素子封止用樹脂組成物は、
(A)脂肪族不飽和結合含有一価炭化水素基を有するオルガノポリシロキサン、
(B)一分子中にケイ素原子に結合した水素原子を2個以上含有するオルガノハイドロジェンポリシロキサン、
(C)白金系触媒、及び
(D)異方性形状を有するガラスフィラー
を含有するものである。
Hereinafter, the present invention will be described in detail.
The resin composition for sealing an optical semiconductor element of the present invention is
(A) an organopolysiloxane having an aliphatic unsaturated bond-containing monovalent hydrocarbon group,
(B) an organohydrogenpolysiloxane containing two or more hydrogen atoms bonded to silicon atoms in one molecule;
It contains (C) a platinum-based catalyst and (D) a glass filler having an anisotropic shape.

(A)成分
本発明の(A)成分は、脂肪族不飽和結合含有炭化水素基を有するオルガノポリシロキサンであり、下記一般式(1)で示されるものが好適に使用できる。

Figure 0005640476
(式中、R1は脂肪族不飽和結合含有一価炭化水素基であり、R2〜R7はそれぞれ同一又は異種の一価炭化水素基であり、このうちR4〜R7は、好ましくは脂肪族不飽和結合を有しない一価炭化水素基であり、また、R6及び/又はR7は芳香族一価炭化水素基である。aは0a≦500、好ましくは10≦a≦500の整数であり、bは0≦b≦250、好ましくは0≦b≦150の整数であり、0a+b≦500、好ましくは10≦a+b≦500である。)。 Component (A) The component (A) of the present invention is an organopolysiloxane having an aliphatic unsaturated bond-containing hydrocarbon group, and those represented by the following general formula (1) can be suitably used.
Figure 0005640476
(In the formula, R 1 is an aliphatic unsaturated bond-containing monovalent hydrocarbon group, and R 2 to R 7 are the same or different monovalent hydrocarbon groups, among which R 4 to R 7 are preferably Is a monovalent hydrocarbon group having no aliphatic unsaturated bond, and R 6 and / or R 7 is an aromatic monovalent hydrocarbon group, a is 0 < a ≦ 500, preferably 10 ≦ a ≦ 500, b is an integer of 0 ≦ b ≦ 250, preferably 0 ≦ b ≦ 150, and 0 < a + b ≦ 500, preferably 10 ≦ a + b ≦ 500.

この場合、R1は脂肪族不飽和結合、特に脂肪族不飽和二重結合を有する、好ましくは炭素数2〜8、より好ましくは2〜6の一価炭化水素基である。R1の脂肪族不飽和結合含有一価炭化水素基として具体的には、ビニル基、アリル基、プロペニル基、ブテニル基等のアルケニル基が好ましく、ビニル基、アリル基が特に好ましい。 In this case, R 1 is a monovalent hydrocarbon group having an aliphatic unsaturated bond, particularly an aliphatic unsaturated double bond, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms. Specifically, the aliphatic unsaturated bond-containing monovalent hydrocarbon group represented by R 1 is preferably an alkenyl group such as a vinyl group, an allyl group, a propenyl group, or a butenyl group, and particularly preferably a vinyl group or an allyl group.

2〜R7は一価炭化水素基であり、炭素数が1〜20、特に1〜10の範囲にあるものが好適である。R2〜R7の一価炭化水素基として具体的には、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;ビニル基、アリル基、プロペニル基、ブテニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基等のアラルキル基等が挙げられるが、このうちR4〜R7は、アルケニル基等の脂肪族不飽和結合を有しない基であることが好ましく、具体的には、アルキル基、アリール基、アラルキル基等であることが好ましい。また、R6及び/又はR7はフェニル基、トリル基等の炭素数が6〜12のアリール基等の芳香族一価炭化水素基であることが好ましい。 R 2 to R 7 are monovalent hydrocarbon groups, and those having 1 to 20 carbon atoms, particularly 1 to 10 carbon atoms are preferred. Specific examples of R 2 to R 7 monovalent hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, and butyl; alkenyl groups such as vinyl, allyl, propenyl, and butenyl; phenyl Group, aryl group such as tolyl group and xylyl group; aralkyl group such as benzyl group, etc., among which R 4 to R 7 are groups having no aliphatic unsaturated bond such as alkenyl group. Specifically, an alkyl group, an aryl group, an aralkyl group, and the like are preferable. R 6 and / or R 7 is preferably an aromatic monovalent hydrocarbon group such as an aryl group having 6 to 12 carbon atoms such as a phenyl group or a tolyl group.

上記一般式(1)で示されるオルガノポリシロキサンは、例えば、環状ジフェニルポリシロキサン、環状メチルフェニルポリシロキサン等の環状ジオルガノポリシロキサンと、末端基を構成するジフェニルテトラビニルジシロキサン、ジビニルテトラフェニルジシロキサン等のジシロキサンとのアルカリ平衡化反応によって得ることができるが、この場合、通常シラノール基及びクロル分は含有されない。   The organopolysiloxane represented by the general formula (1) includes, for example, cyclic diorganopolysiloxanes such as cyclic diphenylpolysiloxane and cyclic methylphenylpolysiloxane, and diphenyltetravinyldisiloxane and divinyltetraphenyldisiloxane constituting the terminal group. Although it can be obtained by alkali equilibration reaction with disiloxane such as siloxane, in this case, silanol groups and chloro components are usually not contained.

上記一般式(1)で示されるオルガノポリシロキサンとしては、具体的には下記構造式で示されるものが例示される。

Figure 0005640476
(上記式において、k,mは、≦k+m≦500を満足する整数であり、好ましくは5≦k+m≦250であり、0≦m/(k+m)≦0.5である。) Specific examples of the organopolysiloxane represented by the general formula (1) include those represented by the following structural formula.
Figure 0005640476
(In the above formula, k and m are integers satisfying 5 ≦ k + m ≦ 500, preferably 5 ≦ k + m ≦ 250, and 0 ≦ m / (k + m) ≦ 0.5.)

(A)成分には、上記一般式(1)で示される直鎖構造を有するオルガノポリシロキサンのほか、必要に応じて、3官能性シロキサン単位、4官能性シロキサン単位等を含む三次元網目構造を有するオルガノポリシロキサンを併用することもできる。   In addition to the organopolysiloxane having the linear structure represented by the general formula (1), the component (A) includes a three-dimensional network structure containing a trifunctional siloxane unit, a tetrafunctional siloxane unit, and the like as necessary. It is also possible to use organopolysiloxanes having

(A)成分中の脂肪族不飽和結合含有一価炭化水素基の含有量は、全一価炭化水素基の1〜50モル%であることが好ましく、より好ましくは2〜40モル%、更に好ましくは5〜30モル%である。脂肪族不飽和結合含有一価炭化水素基の含有量が1モル%よりも少ないと硬化物が得られないことがあり、50モル%よりも多いと機械的特性が悪くなることがある。   The content of the aliphatic unsaturated bond-containing monovalent hydrocarbon group in the component (A) is preferably 1 to 50 mol%, more preferably 2 to 40 mol%, more preferably all monovalent hydrocarbon groups. Preferably it is 5-30 mol%. If the content of the aliphatic unsaturated bond-containing monovalent hydrocarbon group is less than 1 mol%, a cured product may not be obtained, and if it is more than 50 mol%, the mechanical properties may be deteriorated.

また、(A)成分中の芳香族基の含有量は、全一価炭化水素基の0〜95モル%であることが好ましく、より好ましくは10〜90モル%、更に好ましくは20〜80モル%である。芳香族基は樹脂中に適量含まれた方が、機械的特性が良く製造もしやすいという利点がある。また、芳香族基の導入により屈折率を制御できることも利点として挙げられる。   Moreover, it is preferable that content of the aromatic group in (A) component is 0-95 mol% of all the monovalent hydrocarbon groups, More preferably, it is 10-90 mol%, More preferably, it is 20-80 mol%. %. When an appropriate amount of the aromatic group is contained in the resin, there is an advantage that the mechanical properties are good and the production is easy. Another advantage is that the refractive index can be controlled by introducing an aromatic group.

(B)成分
(B)成分は、一分子中にケイ素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサンである。上記オルガノハイドロジェンポリシロキサンは、架橋剤として作用するもので、該オルガノハイドロジェンポリシロキサン中のSiH基と(A)成分の脂肪族不飽和結合含有一価炭化水素基(典型的にはアルケニル基)とが付加反応することにより、硬化物を形成するものである。
Component (B) Component (B) is an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule. The organohydrogenpolysiloxane acts as a cross-linking agent, and the SiH group in the organohydrogenpolysiloxane and the aliphatic unsaturated bond-containing monovalent hydrocarbon group (typically an alkenyl group) of the component (A). ) And an addition reaction to form a cured product.

また、上記オルガノハイドロジェンポリシロキサンは、芳香族炭化水素基を有することで、上記(A)成分の脂肪族不飽和結合含有一価炭化水素基を有する有機ケイ素化合物が高屈折率の場合に相溶性を高め、透明な硬化物を与えることができる。従って、(B)成分のオルガノハイドロジェンポリシロキサンにおいて、フェニル基等の芳香族一価炭化水素基を持ったオルガノハイドロジェンポリシロキサンを、(B)成分の一部又は全部として含ませることができる。   In addition, the organohydrogenpolysiloxane has an aromatic hydrocarbon group, so that the organosilicon compound having an aliphatic unsaturated bond-containing monovalent hydrocarbon group as the component (A) has a high refractive index. The solubility can be increased and a transparent cured product can be provided. Therefore, in the organohydrogenpolysiloxane of the component (B), the organohydrogenpolysiloxane having an aromatic monovalent hydrocarbon group such as a phenyl group can be included as a part or all of the component (B). .

また、(B)成分のオルガノハイドロジェンポリシロキサンにおいて、グリシジル構造を持ったオルガノハイドロジェンポリシロキサンを、(B)成分の一部又は全部として含ませることができ、オルガノハイドロジェンポリシロキサンはグリシジル構造含有基を有することで、基板との接着性の高い光半導体素子封止用樹脂組成物の硬化物を与えることができる。   In addition, in the organohydrogenpolysiloxane of the component (B), the organohydrogenpolysiloxane having a glycidyl structure can be included as part or all of the component (B), and the organohydrogenpolysiloxane has a glycidyl structure. By containing the containing group, a cured product of the resin composition for sealing an optical semiconductor element having high adhesion to the substrate can be provided.

上記オルガノハイドロジェンポリシロキサンとして具体的には、これらに限られるものではないが、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−グリシドキシプロピル−5−トリメトキシシリルエチル−1,3,5,7−テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシラン重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体等が挙げられる。 Specific examples of the organohydrogenpolysiloxane include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris ( Dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, 1-glycidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-glycidoxypropyl-1,3 , 5,7-tetramethylcyclotetrasiloxane, 1-glycidoxypropyl-5-trimethoxysilylethyl-1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane at both ends , Trimethylsiloxy group-blocked dimethyl at both ends Loxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy-blocked dimethylpolysiloxane, both ends dimethylhydrogensiloxy-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends trimethylsiloxy-blocked methylhydrogen Siloxane / diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, trimethoxysilane polymer, (CH 3 ) 2 HSiO 1/2 unit and SiO 4/2 unit And a copolymer composed of (CH 3 ) 2 HSiO 1/2 units, SiO 4/2 units, and (C 6 H 5 ) SiO 3/2 units.

また、下記構造式で示される単位を使用して得られるオルガノハイドロジェンポリシロキサンも用いることができる。

Figure 0005640476
Moreover, the organohydrogenpolysiloxane obtained using the unit shown by the following structural formula can also be used.
Figure 0005640476

上記構造式で示される単位を使用して得られるオルガノハイドロジェンポリシロキサンとしては下記のものが挙げられる。

Figure 0005640476
Examples of the organohydrogenpolysiloxane obtained by using the unit represented by the above structural formula include the following.
Figure 0005640476

このようなオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよく、一分子中のケイ素原子の数(又は重合度)が2個以上、好ましくは2〜1,000、より好ましくは2〜300程度のものを使用することができる。   The molecular structure of such an organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, and the number of silicon atoms (or the degree of polymerization) in one molecule is two. As mentioned above, the thing about 2-1,000, More preferably, about 2-300 can be used.

このようなオルガノハイドロジェンポリシロキサンの配合量は、(A)成分の脂肪族不飽和結合含有一価炭化水素基(典型的にはアルケニル基)1個当たり(B)成分中のケイ素原子結合水素原子(SiH基)を0.75〜2.0個与えるに十分な量であることが好ましい。0.75個となるような量より少ないと硬度が低くなる場合があり、2.0個となるような量より多いとSiH基が残って経時で硬度変化する場合がある。   The compounding amount of such an organohydrogenpolysiloxane is such that (A) component-containing aliphatic unsaturated bond-containing monovalent hydrocarbon group (typically alkenyl group) per (B) component silicon-bonded hydrogen. The amount is preferably sufficient to give 0.75 to 2.0 atoms (SiH groups). If the amount is less than 0.75, the hardness may be low. If the amount is more than 2.0, SiH groups may remain and the hardness may change over time.

(C)成分
(C)成分は、白金系触媒である。白金系触媒としては、塩化白金酸、アルコール変性塩化白金酸、キレート構造を有する白金錯体等が挙げられる。これらは単独でも、2種以上の組み合わせでも使用することができる。
Component (C) The component (C) is a platinum catalyst. Examples of the platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum complexes having a chelate structure, and the like. These can be used alone or in combination of two or more.

これらの触媒成分の配合量は、いわゆる触媒量でよく、通常、上記(A)及び(B)成分の合計量100質量部当り、白金族金属の質量換算で0.1〜500ppmであることが好ましく、特に0.5〜100ppmの範囲で使用されることが好ましい。   The compounding amount of these catalyst components may be a so-called catalyst amount, and is usually 0.1 to 500 ppm in terms of platinum group metal mass per 100 parts by mass of the total amount of the above components (A) and (B). In particular, it is preferable to use in the range of 0.5 to 100 ppm.

(D)成分
(D)成分は、アスペクト比が1.1〜50である異方性形状を有するガラスフィラーである。該異方性形状を有するガラスフィラーのアスペクト比は1.5〜30であることが好ましく、2〜20であることが更に好ましい。アスペクト比が50を超えると、樹脂を封止する際の吐出精度が安定しない場合がある。かかるガラスフィラーとしては、鱗片状ガラス、ガラスカットファイバー等が好適に用いられる。また、上記異方性形状を有するガラスフィラーの長さ又は平均粒径は、好ましくは1mm以下であり、より好ましくは0.005〜0.5mmのものが好適に使用される。1mmを超えると、樹脂を封止する際の吐出精度が安定しない場合がある。また、平均粒径としては、1〜50μm、特に10〜20μmが好ましい。なお、長さ又は平均粒径は、顕微鏡観察によって求めることができ、50個の試片の平均値である。
Component (D) The component (D) is a glass filler having an anisotropic shape with an aspect ratio of 1.1 to 50. The aspect ratio of the glass filler having the anisotropic shape is preferably 1.5 to 30, and more preferably 2 to 20. If the aspect ratio exceeds 50, the ejection accuracy when sealing the resin may not be stable. As such a glass filler, scaly glass, glass cut fiber or the like is preferably used. The length or average particle size of the glass filler having the anisotropic shape is preferably 1 mm or less, and more preferably 0.005 to 0.5 mm. If it exceeds 1 mm, the discharge accuracy when sealing the resin may not be stable. Moreover, as an average particle diameter, 1-50 micrometers, especially 10-20 micrometers are preferable. In addition, length or an average particle diameter can be calculated | required by microscope observation, and is an average value of 50 specimens.

上記異方性形状を有するガラスフィラーの屈折率は、1.45〜1.55であることが好ましい。上記範囲を外れると、シリコーン樹脂との屈折率差が大きくなり、混合物の透明性が損なわれる場合がある。   The refractive index of the glass filler having the anisotropic shape is preferably 1.45 to 1.55. If it is out of the above range, the refractive index difference with the silicone resin becomes large, and the transparency of the mixture may be impaired.

上記異方性形状を有するガラスフィラーとしては市販品を使用することができ、例えば、鱗片状ガラスとして日本板硝子(株)製のガラスフレーク(登録商標)(製品番号:REF−600、REF−160、REF−015等)等が好適に使用できる。また、ガラスカットファイバーとして日東紡績(株)製のミルドファイバー(製品番号:PFE−001、PFE−301等)等も好適に使用できる。   A commercially available product can be used as the glass filler having the anisotropic shape, for example, glass flake (registered trademark) manufactured by Nippon Sheet Glass Co., Ltd. (product numbers: REF-600, REF-160) as scale-like glass. , REF-015, etc.) can be preferably used. Further, milled fibers (product numbers: PFE-001, PFE-301, etc.) manufactured by Nitto Boseki Co., Ltd. can be suitably used as glass cut fibers.

等方性形状を有するフィラーの場合、樹脂の線膨張係数は面内方向及び垂直方向で差は生じない。しかし、異方性形状を有するフィラーを充填した場合、樹脂の面内方向と垂直方向で線膨張係数が異なり、面内方向の線膨張係数は垂直方向より小さくなり、面内方向の応力を緩和することができる。また、プレモールドパッケージの場合、面内方向には金属フレームの線膨張とモールド材の線膨張とが複雑に作用し合うので、封止剤への応力が垂直方向に比べて大きくなる。そのため、上述のような異方性形状を有するフィラーを分散させた硬化性シリコーンを封止樹脂として使用した場合、面内方向の応力を緩和できるため、吸湿リフローや熱衝撃試験等の熱応力試験に対して大きな効果が得られると考えられる。   In the case of a filler having an isotropic shape, there is no difference in the linear expansion coefficient of the resin between the in-plane direction and the vertical direction. However, when fillers with an anisotropic shape are filled, the linear expansion coefficient differs in the direction perpendicular to the in-plane direction of the resin, and the linear expansion coefficient in the in-plane direction is smaller than that in the vertical direction, reducing stress in the in-plane direction. can do. In the case of the pre-mold package, since the linear expansion of the metal frame and the linear expansion of the molding material interact in an in-plane direction, the stress on the sealant becomes larger than that in the vertical direction. Therefore, when curable silicone in which filler having an anisotropic shape as described above is dispersed as a sealing resin, stress in the in-plane direction can be relieved, so thermal stress tests such as moisture absorption reflow and thermal shock tests It is thought that a great effect can be obtained.

(E)その他の成分
本発明に使用する光半導体素子封止用樹脂組成物は、上述した(A)〜(D)成分を必須成分とするが、更に、接着性向上のために必要に応じて各種のシランカップリング剤を添加してもよい。
(E) Other components The resin composition for sealing an optical semiconductor element used in the present invention contains the above-described components (A) to (D) as essential components, and further, if necessary for improving adhesiveness. Various silane coupling agents may be added.

シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシラン、3−メルカプトプロピルトリメトキシシラン等や、トリメトキシシラン、テトラメトキシシラン及びそのオリゴマー等が挙げられる。これらのシランカップリング剤は、単独でも2種以上混合して使用することも可能である。   Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyl. Methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxy Silane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, -Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxylane, 3-mercaptopropyltrimethoxysilane, trimethoxysilane, tetramethoxysilane and oligomers thereof It is done. These silane coupling agents can be used alone or in combination of two or more.

シランカップリング剤の配合量は、組成物全体の10質量%以下(0〜10質量%)、特に5質量%以下(0〜5質量%)であることが好ましい。   It is preferable that the compounding quantity of a silane coupling agent is 10 mass% or less (0-10 mass%) of the whole composition, and especially 5 mass% or less (0-5 mass%).

また、本発明に使用する光半導体素子封止用樹脂組成物には、光半導体装置の性能を悪化させない範囲で、必要に応じて、例えば、BHT、ビタミンB等の酸化防止剤、有機リン系変色防止剤等の変色防止剤、ヒンダードアミン等の光劣化防止剤、ビニルエーテル類、ビニルアミド類、エポキシ樹脂、オキセタン類、アリルフタレート類、アジピン酸ビニル等の反応性希釈剤、ヒュームドシリカや沈降性シリカ等の補強性充填材、難燃性向上剤、蛍光体、有機溶剤等を添加してもよい。また、着色成分により着色しても構わない。 In addition, the resin composition for encapsulating an optical semiconductor element used in the present invention includes, for example, an antioxidant such as BHT and vitamin B, an organic phosphorus type, as long as it does not deteriorate the performance of the optical semiconductor device. Anti-discoloring agents such as anti-discoloring agents, photodegradation preventing agents such as hindered amines, reactive diluents such as vinyl ethers, vinyl amides, epoxy resins, oxetanes, allyl phthalates, vinyl adipate, fumed silica and precipitated silica A reinforcing filler such as a flame retardant, a flame retardant, a phosphor, an organic solvent, or the like may be added. Moreover, you may color with a coloring component.

本発明の光半導体素子封止用樹脂組成物の硬化物は、光半導体素子の封止に用いられるもので、光半導体としては、これらに限定されないが、例えば、発光ダイオード、フォトトランジスタ、フォトダイオード、CCD、太陽電池モジュール、EPROM、フォトカプラ等が挙げられ、特に発光ダイオードの封止に有効である。この場合、封止方法としては、光半導体素子の種類に応じた常法が採用される。   The cured product of the resin composition for sealing an optical semiconductor element of the present invention is used for sealing an optical semiconductor element, and the optical semiconductor is not limited to these. For example, a light emitting diode, a phototransistor, and a photodiode CCD, solar cell module, EPROM, photocoupler, and the like, which are particularly effective for sealing light emitting diodes. In this case, as a sealing method, a conventional method according to the type of the optical semiconductor element is employed.

なお、本発明の光半導体素子封止用樹脂組成物の硬化条件は、室温から200℃程度までの温度範囲で、数十秒から数日間程度の時間範囲を考えることができるが、80〜180℃の温度範囲で1分程度から10時間程度の時間範囲であることが好ましい。   The curing condition of the resin composition for encapsulating an optical semiconductor element of the present invention may be a temperature range from room temperature to about 200 ° C., and a time range of about several tens of seconds to several days may be considered. A time range of about 1 minute to about 10 hours is preferable in the temperature range of ° C.

また、本発明の光半導体素子封止用樹脂組成物の硬化物の屈折率は、1.45以上であり、1.45〜1.55であることが好ましい。1.45未満だと、ガス透過性が低くなり、耐硫化性が低下する場合があり、1.55を超えると、耐熱性が低下し、長期信頼性が低下する場合がある。なお、硬化物の屈折率は、(A)成分や場合によっては(B)成分中のフェニル基等の芳香族一価炭化水素基の含有量を調整することによって所望の値に合わせることができる。一般には、芳香族一価炭化水素基量が増大すると屈折率も上がる。また、硬化物の屈折率と(D)成分の屈折率の差は、0〜0.1、特に0〜0.05であることが好ましい。   Moreover, the refractive index of the hardened | cured material of the resin composition for optical semiconductor element sealing of this invention is 1.45 or more, and it is preferable that it is 1.45-1.55. If it is less than 1.45, the gas permeability may be lowered and the sulfidation resistance may be lowered. If it exceeds 1.55, the heat resistance may be lowered and the long-term reliability may be lowered. In addition, the refractive index of hardened | cured material can be match | combined with a desired value by adjusting content of aromatic monovalent hydrocarbon groups, such as a phenyl group in (A) component and the (B) component depending on the case. . In general, the refractive index increases as the amount of aromatic monovalent hydrocarbon group increases. Moreover, it is preferable that the difference of the refractive index of hardened | cured material and the refractive index of (D) component is 0-0.1, especially 0-0.05.

図2は、本発明の発光装置の一実施形態を模式的に示す断面図である。モールドパッケージ基板5の凹部に光半導体素子1が設置され、導電性ワイヤー2を通じて銀メッキリードフレーム3と光半導体素子1が接続されている。光半導体素子1が設置されたモールドパッケージ基板5の凹部に、異方性形状を有するガラスフィラー7が配合された光半導体素子封止用樹脂組成物4を流し込み、これを硬化させることで本発明の発光装置が製造される。   FIG. 2 is a cross-sectional view schematically showing one embodiment of the light emitting device of the present invention. The optical semiconductor element 1 is installed in the recess of the mold package substrate 5, and the silver-plated lead frame 3 and the optical semiconductor element 1 are connected through the conductive wire 2. The resin composition 4 for sealing an optical semiconductor element in which a glass filler 7 having an anisotropic shape is blended is poured into a concave portion of the mold package substrate 5 on which the optical semiconductor element 1 is installed, and the resin composition 4 is cured by curing the resin composition 4. The light emitting device is manufactured.

本発明の光半導体素子封止用樹脂組成物の硬化物で被覆保護された光半導体装置は、装置の耐熱性、耐湿性、耐光性に優れ、外部環境の影響により基板表面を変色することなく、その結果、信頼性に優れる光半導体装置を提供することが可能となり、産業上のメリットは多大である。   An optical semiconductor device coated and protected with a cured product of the resin composition for encapsulating an optical semiconductor element of the present invention has excellent heat resistance, moisture resistance, and light resistance of the device without discoloring the substrate surface due to the influence of the external environment. As a result, it is possible to provide an optical semiconductor device with excellent reliability, and there are significant industrial advantages.

以下に実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例で部は質量部、Meはメチル基、Etはエチル基を示し、粘度は回転粘度計による測定値である。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, parts represent parts by mass, Me represents a methyl group, Et represents an ethyl group, and the viscosity is a value measured by a rotational viscometer.

[ベースコンパウンドの調製]
(A)成分として、下記式(I)

Figure 0005640476
で示される両末端ジメチルビニルシリル基封鎖ジメチルジフェニルポリシロキサン(粘度3Pa・s)100部、(B)成分として、下記式(II)
Figure 0005640476
で示される両末端ジメチルハイドロジェンシリル基封鎖メチルハイドロジェンポリシロキサン(粘度15mPa・s)2.5部、(C)成分として、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2質量%)0.03部、更にエチニルシクロヘキシルアルコール0.05部、及び3−グリシドキシプロピルトリメトキシシラン7部をよく撹拌して屈折率1.51のベースコンパウンドを調製した。 [Preparation of base compound]
As the component (A), the following formula (I)
Figure 0005640476
100 parts of dimethyldiphenylpolysiloxane (viscosity: 3 Pa · s) blocked at both ends with dimethylvinylsilyl group, represented by the following formula (II)
Figure 0005640476
Dimethylhydrogensilyl group-blocked methylhydrogenpolysiloxane (viscosity 15 mPa · s) represented by the formula: 2.5 parts of (C) component, chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2 mass%) 0 A base compound having a refractive index of 1.51 was prepared by thoroughly stirring 0.03 parts, 0.05 parts of ethynylcyclohexyl alcohol, and 7 parts of 3-glycidoxypropyltrimethoxysilane.

[実施例1]
上記ベースコンパウンドに、(D)成分として、屈折率1.51の日本板硝子(株)製ガラスフレーク(登録商標)(製品番号:REP−015、平均粒径:15μm、アスペクト比:3〜10)を10質量%の濃度になるように分散させたものを、未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Example 1]
Glass flake (registered trademark) manufactured by Nippon Sheet Glass Co., Ltd. having a refractive index of 1.51 (product number: REP-015, average particle size: 15 μm, aspect ratio: 3 to 10) as the component (D) in the base compound. A non-encapsulated light-emitting diode (LED) was filled with a dispersion of 10% by mass, and was finally cured under conditions of 150 ° C. for 4 hours to produce a light-emitting diode for evaluation.

[実施例2]
上記ベースコンパウンドに、(D)成分として、屈折率1.51の日本板硝子(株)製ガラスフレーク(登録商標)(製品番号:REP−015、平均粒径:15μm、アスペクト比:3〜10)を50質量%の濃度になるように分散させたものを、未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Example 2]
Glass flake (registered trademark) manufactured by Nippon Sheet Glass Co., Ltd. having a refractive index of 1.51 (product number: REP-015, average particle size: 15 μm, aspect ratio: 3 to 10) as the component (D) in the base compound. A non-encapsulated light emitting diode (LED) was filled with a dispersion of 50% by mass, and was finally cured at 150 ° C. for 4 hours to produce an evaluation light emitting diode.

[実施例3]
上記ベースコンパウンドに、(D)成分として屈折率1.51の日東紡績(株)製ミルドファイバー(製品番号:PFE−301、微粉末状グラスファイバー、平均粒径10μm、アスペクト比:1.1〜10)を10質量%の濃度になるように分散させたものを、未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Example 3]
To the above base compound, milled fiber manufactured by Nitto Boseki Co., Ltd. having a refractive index of 1.51 as the component (D) (product number: PFE-301, fine powdery glass fiber, average particle size 10 μm, aspect ratio: 1.1 to 10) was dispersed in a concentration of 10% by mass into an unsealed light emitting diode (LED), and was finally cured at 150 ° C. for 4 hours to produce a light emitting diode for evaluation.

[実施例4]
上記ベースコンパウンドに、(D)成分として屈折率1.51の日東紡績(株)製ミルドファイバー(製品番号:PFE−301、微粉末状グラスファイバー、平均粒径10μm、アスペクト比:1.1〜10)を50質量%の濃度になるように分散させたものを、未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Example 4]
To the above base compound, milled fiber manufactured by Nitto Boseki Co., Ltd. having a refractive index of 1.51 as the component (D) (product number: PFE-301, fine powdery glass fiber, average particle size 10 μm, aspect ratio: 1.1 to 10) was dispersed in a concentration of 50% by mass, filled in an unsealed light emitting diode (LED), and finally cured at 150 ° C. for 4 hours to produce a light emitting diode for evaluation.

[比較例1]
上記ベースコンパウンドのみを未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Comparative Example 1]
Only the base compound was filled in an unsealed light emitting diode (LED), and was subjected to main curing at 150 ° C. for 4 hours to produce a light emitting diode for evaluation.

[比較例2]
上記ベースコンパウンドに、(株)龍森製球状シリカフィラー(商品名:高純度FF−L、平均粒径:3μm)を10質量%の濃度になるように分散させたものを、未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Comparative Example 2]
A non-encapsulated luminescent material obtained by dispersing a spherical silica filler (trade name: high-purity FF-L, average particle size: 3 μm) manufactured by Tatsumori Co., Ltd. to a concentration of 10% by mass in the base compound. A light-emitting diode for evaluation was produced by filling a diode (LED) and performing main curing at 150 ° C. for 4 hours.

[比較例3]
上記ベースコンパウンドに、(株)龍森製球状シリカフィラー(商品名:高純度FF−L、平均粒径:3μm)を50質量%の濃度になるように分散させたものを、未封止発光ダイオード(LED)に充填し、150℃、4時間の条件で本硬化させて評価用発光ダイオードを作製した。
[Comparative Example 3]
A non-encapsulated luminescent material in which a spherical silica filler (trade name: high purity FF-L, average particle size: 3 μm) manufactured by Tatsumori Co., Ltd. is dispersed in the above base compound so as to have a concentration of 50% by mass. A light-emitting diode for evaluation was produced by filling a diode (LED) and performing main curing at 150 ° C. for 4 hours.

上記実施例及び比較例において作製した評価用発光ダイオードを85℃/60%RHの高温高湿下に168時間放置した後、260℃でIRリフローに3回通して、樹脂の剥離、割れの不良発生を実体顕微鏡により観察した。続いて−40℃/30分〜120℃/30分の熱衝撃試験を実施し、同様に樹脂の剥離、割れの不良発生を実体顕微鏡により観察した。また、通電試験による点灯試験を実施した。結果を表1に示す。   The evaluation light-emitting diodes prepared in the above examples and comparative examples were left for 168 hours at a high temperature and high humidity of 85 ° C./60% RH, and then passed through IR reflow three times at 260 ° C., resulting in poor resin peeling and cracking. Development was observed with a stereomicroscope. Subsequently, a thermal shock test was performed at −40 ° C./30 minutes to 120 ° C./30 minutes. Similarly, the occurrence of defective resin peeling and cracking was observed with a stereomicroscope. Moreover, the lighting test by an electricity supply test was implemented. The results are shown in Table 1.

Figure 0005640476
Figure 0005640476

実施例1〜4では、吸湿リフロー試験及び熱衝撃試験において樹脂の剥離、割れ等の不良は全く無く、LEDの不点灯不良も発生しなかった。しかし、比較例1では吸湿リフロー試験において、樹脂の割れが発生してしまった。比較例2では、樹脂の割れ、樹脂の剥離が共に発生し、比較例3では、樹脂の割れは発生しなかったが、樹脂の剥離が発生してしまった。その結果、一部のLEDで不点灯不良が発生した。   In Examples 1 to 4, there were no defects such as resin peeling and cracking in the moisture absorption reflow test and thermal shock test, and no LED non-lighting failure occurred. However, in Comparative Example 1, cracking of the resin occurred in the moisture absorption reflow test. In Comparative Example 2, both resin cracking and resin peeling occurred, and in Comparative Example 3, no resin cracking occurred, but resin peeling occurred. As a result, non-lighting failure occurred in some LEDs.

1 光半導体素子
2 導電性ワイヤー
3 銀メッキリードフレーム
4 光半導体素子封止用樹脂
5 モールドパッケージ基板
6 シリカフィラー
7 異方性形状を有するガラスフィラー
DESCRIPTION OF SYMBOLS 1 Optical semiconductor element 2 Conductive wire 3 Silver plating lead frame 4 Resin for optical semiconductor element sealing 5 Mold package board | substrate 6 Silica filler 7 Glass filler which has anisotropic shape

Claims (7)

(A)脂肪族不飽和結合含有一価炭化水素基を有するオルガノポリシロキサン、
(B)一分子中にケイ素原子に結合した水素原子を2個以上含有するオルガノハイドロジェンポリシロキサン、
(C)白金系触媒、及び
(D)アスペクト比が1.1〜50である異方性形状を有するガラスフィラー
を含有し、硬化物の屈折率が1.45以上であることを特徴とする光半導体素子封止用樹脂組成物。
(A) an organopolysiloxane having an aliphatic unsaturated bond-containing monovalent hydrocarbon group,
(B) an organohydrogenpolysiloxane containing two or more hydrogen atoms bonded to silicon atoms in one molecule;
(C) A platinum-based catalyst and (D) a glass filler having an anisotropic shape with an aspect ratio of 1.1 to 50 are contained, and the refractive index of the cured product is 1.45 or more. A resin composition for sealing an optical semiconductor element.
上記(A)成分が、下記式
Figure 0005640476
(式中、k,mは、≦k+m≦500を満足する整数であり、0≦m/(k+m)≦0.5である。)
から選ばれるオルガノポリシロキサンであることを特徴とする請求項1記載の光半導体素子封止用樹脂組成物。
The component (A) has the following formula
Figure 0005640476
(In the formula, k and m are integers satisfying 5 ≦ k + m ≦ 500, and 0 ≦ m / (k + m) ≦ 0.5.)
The resin composition for sealing an optical semiconductor element according to claim 1, wherein the composition is an organopolysiloxane selected from the group consisting of:
上記(D)異方性形状を有するガラスフィラーが、アスペクト比が1.1〜50である鱗片状ガラス又はガラスカットファイバーであることを特徴とする請求項1又は2記載の光半導体素子封止用樹脂組成物。   3. The optical semiconductor element sealing according to claim 1, wherein the glass filler having the (D) anisotropic shape is a glass flake or a glass cut fiber having an aspect ratio of 1.1 to 50. Resin composition. 上記(D)異方性形状を有するガラスフィラーを樹脂組成物全体の5〜60質量%含有していることを特徴とする請求項1乃至3のいずれか1項記載の光半導体素子封止用樹脂組成物。   The glass filler having the (D) anisotropic shape is contained in an amount of 5 to 60% by mass of the entire resin composition, for sealing an optical semiconductor element according to any one of claims 1 to 3. Resin composition. 上記(D)異方性形状を有するガラスフィラーの屈折率が1.45〜1.55であり、かつ光半導体素子封止用樹脂組成物の硬化物の屈折率が1.45〜1.55であることを特徴とする請求項1乃至4のいずれか1項記載の光半導体素子封止用樹脂組成物。 (D) The refractive index of the glass filler having an anisotropic shape is 1.45 to 1.55, and the refractive index of the cured product of the resin composition for sealing an optical semiconductor element is 1.45 to 1.55. The resin composition for sealing an optical semiconductor element according to any one of claims 1 to 4, wherein the resin composition is for sealing an optical semiconductor element. 請求項1乃至5のいずれか1項記載の光半導体素子封止用樹脂組成物の硬化物で封止された発光装置。   The light-emitting device sealed with the hardened | cured material of the resin composition for optical semiconductor element sealing of any one of Claims 1 thru | or 5. 発光素子が搭載されるリードフレームを有するプレモールドパッケージを用い、発光素子をリードフレームに搭載し、封止樹脂組成物の硬化物で封止してなる発光ダイオード装置であって、上記封止樹脂組成物が請求項1乃至5のいずれか1項記載の樹脂組成物である発光ダイオード装置。   A light emitting diode device using a pre-mold package having a lead frame on which a light emitting element is mounted, mounting the light emitting element on a lead frame, and sealing with a cured product of a sealing resin composition, wherein the sealing resin The light emitting diode device whose composition is the resin composition of any one of Claims 1 thru | or 5.
JP2010130831A 2010-06-08 2010-06-08 Resin composition for sealing optical semiconductor element and light emitting device Active JP5640476B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010130831A JP5640476B2 (en) 2010-06-08 2010-06-08 Resin composition for sealing optical semiconductor element and light emitting device
TW100119819A TWI491674B (en) 2010-06-08 2011-06-07 A resin composition for a light-emitting semiconductor element, and a light-emitting device
KR1020110054386A KR20110134299A (en) 2010-06-08 2011-06-07 Resin composition for encapsulating optical semiconductor element and light emitting device
CN201110265781.3A CN102408724B (en) 2010-06-08 2011-06-08 Resin Composition For Encapsulating Optical Semiconductor Element And Light Emitting Device
KR1020170065528A KR101979499B1 (en) 2010-06-08 2017-05-26 Resin composition for encapsulating optical semiconductor element and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130831A JP5640476B2 (en) 2010-06-08 2010-06-08 Resin composition for sealing optical semiconductor element and light emitting device

Publications (2)

Publication Number Publication Date
JP2011256251A JP2011256251A (en) 2011-12-22
JP5640476B2 true JP5640476B2 (en) 2014-12-17

Family

ID=45472798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130831A Active JP5640476B2 (en) 2010-06-08 2010-06-08 Resin composition for sealing optical semiconductor element and light emitting device

Country Status (4)

Country Link
JP (1) JP5640476B2 (en)
KR (2) KR20110134299A (en)
CN (1) CN102408724B (en)
TW (1) TWI491674B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560030B1 (en) 2011-07-22 2015-10-15 주식회사 엘지화학 Curable composition
JP5865216B2 (en) 2012-09-12 2016-02-17 ルネサスエレクトロニクス株式会社 Photo coupler
JP5817937B2 (en) * 2012-10-19 2015-11-18 信越化学工業株式会社 Silicone gel composition for solar cell sealing and solar cell module
JP2014086520A (en) * 2012-10-23 2014-05-12 Sharp Corp Light-emitting device
CN103788660B (en) * 2014-01-16 2016-11-02 上海工程技术大学 A kind of glass fibre/epoxy resin hybrid modification silicone molding rubber and preparation method thereof
JP6018608B2 (en) * 2014-08-08 2016-11-02 日東電工株式会社 Sealing sheet, manufacturing method thereof, optical semiconductor device, and sealing optical semiconductor element
KR101767085B1 (en) 2014-09-30 2017-08-10 삼성에스디아이 주식회사 Curable organo polysiloxane composition, encapsulant, and electronic device
JP6445947B2 (en) 2015-09-04 2018-12-26 株式会社東芝 Optical coupling device
JP6615557B2 (en) * 2015-09-30 2019-12-04 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6470157B2 (en) * 2015-09-30 2019-02-13 関西ペイント株式会社 Resin composition for sealing light emitting device
JP6973360B2 (en) * 2018-11-26 2021-11-24 信越化学工業株式会社 Hygroscopic silicone resin composition, transparent encapsulant for organic EL, transparent desiccant for organic EL, and its usage

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024439B2 (en) * 1993-06-07 2000-03-21 信越化学工業株式会社 Organopolysiloxane composition
JPH0725987A (en) 1993-07-14 1995-01-27 Nitto Denko Corp Epoxy resin composition for sealing optical semiconductor
JP2938340B2 (en) * 1994-03-29 1999-08-23 信越化学工業株式会社 Thermal conductive composite sheet
JP3241338B2 (en) 1998-01-26 2001-12-25 日亜化学工業株式会社 Semiconductor light emitting device
JP3910080B2 (en) 2001-02-23 2007-04-25 株式会社カネカ Light emitting diode
JP3909826B2 (en) 2001-02-23 2007-04-25 株式会社カネカ Light emitting diode
JP3973448B2 (en) 2002-02-25 2007-09-12 松下電工株式会社 Semiconductor device manufacturing method and semiconductor device
JP4908736B2 (en) * 2003-10-01 2012-04-04 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP5021151B2 (en) * 2003-11-19 2012-09-05 株式会社カネカ Curable resin composition for semiconductor package and semiconductor
JP2007081134A (en) * 2005-09-14 2007-03-29 Yazaki Corp Optical communication module
JP5060074B2 (en) * 2006-05-11 2012-10-31 東レ・ダウコーニング株式会社 Adhesion promoter, curable organopolysiloxane composition, and semiconductor device
JP4623322B2 (en) * 2007-12-26 2011-02-02 信越化学工業株式会社 White thermosetting silicone resin composition for forming optical semiconductor case, optical semiconductor case and molding method thereof
EP2265666B1 (en) * 2008-03-04 2015-03-25 Dow Corning Corporation Silicone composition, silicone adhesive, coated and laminated substrates
JP5136963B2 (en) * 2008-03-24 2013-02-06 信越化学工業株式会社 Curable silicone rubber composition and semiconductor device
JP5000566B2 (en) * 2008-03-27 2012-08-15 信越化学工業株式会社 Curable silicone rubber composition and optical semiconductor device using the same as sealing material
JP5972512B2 (en) * 2008-06-18 2016-08-17 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP5471180B2 (en) * 2008-09-11 2014-04-16 信越化学工業株式会社 Silicone laminated substrate, method for producing the same, silicone resin composition for producing silicone laminated substrate, and LED device
JP5623697B2 (en) * 2008-12-22 2014-11-12 株式会社朝日ラバー Sheet member with optical lens, light emitting device, liquid crystal display device using the same, and signboard
JP2010161234A (en) * 2009-01-08 2010-07-22 Showa Denko Kk Method of manufacturing light-emitting device, light-emitting device, and lighting system
JP5912600B2 (en) * 2011-09-16 2016-04-27 東レ・ダウコーニング株式会社 Curable silicone composition, cured product thereof, and optical semiconductor device
JP5943179B2 (en) * 2011-12-05 2016-06-29 京セラ株式会社 Transparent resin composition

Also Published As

Publication number Publication date
CN102408724A (en) 2012-04-11
CN102408724B (en) 2015-06-10
KR20170061655A (en) 2017-06-05
KR20110134299A (en) 2011-12-14
JP2011256251A (en) 2011-12-22
TWI491674B (en) 2015-07-11
KR101979499B1 (en) 2019-05-16
TW201213442A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
JP5640476B2 (en) Resin composition for sealing optical semiconductor element and light emitting device
JP5549568B2 (en) Resin composition for sealing optical semiconductor element and optical semiconductor device sealed with the composition
JP5971835B2 (en) Curable silicone resin composition and light emitting diode device using the same
KR101939408B1 (en) Heat curable silicone resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
KR101723387B1 (en) Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
JP4300418B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
KR101722089B1 (en) Curable organopolysiloxane composition and optical semiconductor device
KR101722123B1 (en) Curable organopolysiloxane composition and optical semiconductor device
KR101948327B1 (en) Heat curable resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
EP2017295A1 (en) Thermosetting composition for optical semiconductor, die bond material for optical semiconductor device, underfill material for optical semiconductor device, sealing agent for optical semiconductor device, and optical semiconductor device
JP5414337B2 (en) Method for sealing optical semiconductor device
KR101252301B1 (en) Epoxy-silicone hybrid resin composition, process for the preparation thereof and light-emitting semiconductor device
KR20120024479A (en) Low gas permeable silicone resin composition and optical semiconductor device
EP3101062B1 (en) Nanoparticle, method for producing nanoparticle, addition curing silicone resin composition, and semiconductor apparatus
TW201533168A (en) Silicone gel composition
KR20140081711A (en) Curable silicone resin composition, cured product thereof and optical semiconductor device
CN106009687A (en) Silicone Material, Curable Silicone Composition, And Optical Device
CN110382625A (en) Curable organopolysiloxane composition and semiconductor devices
JP5725480B2 (en) Composition for sealing light emitting element, light emitting diode and liquid crystal display device
TWI791554B (en) Curable organopolysiloxane composition and optical semiconductor device
KR20160119762A (en) Curable composition, semiconductor device, and ester-bond-containing organic silicon compound
KR101720220B1 (en) Organopolysiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150