JP5638887B2 - Method for producing copper alloy material and copper alloy part - Google Patents

Method for producing copper alloy material and copper alloy part Download PDF

Info

Publication number
JP5638887B2
JP5638887B2 JP2010203227A JP2010203227A JP5638887B2 JP 5638887 B2 JP5638887 B2 JP 5638887B2 JP 2010203227 A JP2010203227 A JP 2010203227A JP 2010203227 A JP2010203227 A JP 2010203227A JP 5638887 B2 JP5638887 B2 JP 5638887B2
Authority
JP
Japan
Prior art keywords
copper alloy
mold
alloy material
atm
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010203227A
Other languages
Japanese (ja)
Other versions
JP2012055947A (en
Inventor
千綱 鎌田
千綱 鎌田
義弘 山本
義弘 山本
高橋 功
高橋  功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010203227A priority Critical patent/JP5638887B2/en
Publication of JP2012055947A publication Critical patent/JP2012055947A/en
Application granted granted Critical
Publication of JP5638887B2 publication Critical patent/JP5638887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子機器、精密機械、自動車等に使用される部品、特に切削加工により製造される部品と、これに使用する銅合金材料および銅合金部品に関するものである。   The present invention relates to parts used in electronic equipment, precision machines, automobiles, etc., in particular, parts manufactured by cutting, and copper alloy materials and copper alloy parts used therefor.

銅合金中の化合物(晶出物、析出物)のサイズ・数(密度)は、特に時効析出型合金において、その性能に大きな影響を与える。例えば特許文献1は、所定のサイズや数(密度)の晶出物及び/又は析出物を有する銅合金を用いることを提案する。この合金に対し切削加工を行うとその切削屑が分断されやすくなり、切削性が向上するとされる。また特許文献2では鋳造温度から凝固温度まで鋳型内での冷却速度を規定することで、化合物サイズを制御できるとしている。   The size and number (density) of the compounds (crystallized substances, precipitates) in the copper alloy have a great influence on the performance, particularly in an aging precipitation type alloy. For example, Patent Document 1 proposes to use a copper alloy having crystallized substances and / or precipitates having a predetermined size and number (density). When cutting is performed on this alloy, the cutting waste is likely to be cut and the machinability is improved. In Patent Document 2, the compound size can be controlled by defining the cooling rate in the mold from the casting temperature to the solidification temperature.

特開2010−106363号公報JP 2010-106363 A 特開平10−219374号公報JP-A-10-219374

晶出物ないし析出物をなす化合物を構成する成分量を規定すれば銅合金中の化合物量がきまるので、サイズを制御できれば結果として個々の化合物の数(密度)も制御できる。これまでそういった化合物(晶出物、析出物)サイズの制御の方法がいくつか提案されている。特許文献1の内容も検討してみると、DAS(デンドライトアームスペーシング):dまたは鋳造時の冷却速度:Rを制御することにより晶出物サイズを決定できることを意味している。dおよびRは下記式を満たす関係があり、どちらを制御しても同様の意味を成す。
d(μ)=a×R(℃/sec)−b
(a,bは材質によって決まる定数。たとえば7%りん青銅の場合、a=68.3,b=0.33)
The amount of the compound in the copper alloy can be determined if the amount of the component constituting the crystallized product or the compound forming the precipitate is defined. Therefore, if the size can be controlled, the number (density) of individual compounds can be controlled as a result. Several methods for controlling the size of such compounds (crystals and precipitates) have been proposed so far. Examining the contents of Patent Document 1 also means that the crystallized material size can be determined by controlling DAS (Dendrite Arm Spacing): d or cooling rate at casting: R. d and R have a relationship satisfying the following formula, and controlling either has the same meaning.
d (μ) = a × R (° C./sec)−b
(A and b are constants determined by the material. For example, in the case of 7% phosphor bronze, a = 68.3, b = 0.33)

しかし本発明者の確認によれば、特許文献1に記載されている方法では、溶融状態から冷却をしていくと化合物(Ni−Si−Ti系晶出物、Ti−C系晶出物)が発生し、その後、銅など他の成分が凝固することがあることが分かってきた。これは、母相が溶融状態から固体へと変態し、固体のマトリックスが形成されることによるものと考えられる。
また特許文献2に記載の方法においては、鋳造温度が明確でないため、鋳型内に銅合金が注湯されてからどの程度の時間、溶融状態となっているかが不明である。そのため鋳型内で発生した化合物が成長、合体、凝集などで粗大化する可能性があり、(凝固した後の)銅合金材料中の化合物サイズを制御できない。
以上の従来技術に包含される課題に鑑み、本発明は、固体マトリックス形成(凝固)前に発生する化合物のサイズを制御し、切削性に優れた銅合金材料を提供することを目的とする。さらに本発明は前記銅合金材料を切削加工して得られる銅合金部品を提供することを目的とする。
However, according to the confirmation of the present inventor, in the method described in Patent Document 1, when cooling is performed from a molten state, a compound (Ni—Si—Ti based crystallized product, Ti—C based crystallized product) is obtained. It has been found that other components such as copper may solidify thereafter. This is thought to be due to the transformation of the parent phase from a molten state to a solid and the formation of a solid matrix.
Moreover, in the method of patent document 2, since casting temperature is not clear, it is unclear how long it has been in a molten state after the copper alloy is poured into the mold. Therefore, the compound generated in the mold may be coarsened by growth, coalescence, aggregation, etc., and the size of the compound in the copper alloy material (after solidification) cannot be controlled.
In view of the problems included in the above-described conventional technology, an object of the present invention is to provide a copper alloy material excellent in machinability by controlling the size of a compound generated before solid matrix formation (solidification). A further object of the present invention is to provide a copper alloy part obtained by cutting the copper alloy material.

本発明者らは鋭意検討した結果、特定の時効析出型銅合金を用い、溶融された銅合金が鋳型に注湯される時の温度、注湯されてから鋳型内で凝固完了するまでに要する時間である鋳型内滞留時間を規定することにより、所望の化合物サイズ、数密度を有し、切削性に優れ、さらに強度および導電性に優れる銅合金材料が得られることを見出し、この知見に基づき本発明をなすに至った。   As a result of intensive studies, the present inventors have used a specific aging precipitation type copper alloy, the temperature at which the molten copper alloy is poured into the mold, and it is necessary to complete solidification in the mold after pouring. By defining the residence time in the mold, which is the time, a copper alloy material having a desired compound size and number density, excellent machinability, and excellent strength and conductivity can be obtained. It came to make this invention.

すなわち上記課題は以下の手段により解決された。
(1)Ni、Si、Ti、及びCを含み、残部が不可避的不純物及び銅からなる銅合金材料の製造方法であって、
下記条件A,Bのもとに、溶融された銅合金が鋳型に注湯されてから鋳型内で凝固完了するまでに要する鋳型内滞留時間を制御して溶解鋳造しNi−Si−Ti晶出物とNi−Si晶出物を生成させた後、熱間押し出、水中焼入、冷間引抜きを行うとともに前記Ni―Si晶出物をマトリックスに固溶させさらに時効熱処理を行うことで析出物を生成させ
前記溶解鋳造後の銅合金において下記Cの組織的特徴を得るとともに下記D、Eの特性を得ることを特徴とする銅合金材料の製造方法。
A:前記溶融された銅合金におけるNi、Si、Tiの含有量が下式(1)を満たすこと
B:前記溶解鋳造では、銅合金材料中の化合物の融点以上の温度で鋳造され、その鋳型に注湯されたときの前記鋳型内滞留時間tが式(2)を満たすこと
C:前記溶解鋳造後の銅合金には、平均径1ミクロン以上の晶出物及び/又は析出物が1500個/mm以上存在すること
D:前記時効熱処理後の銅合金材料の引張強さが500MPa以上であること
E:前記時効熱処理後の銅合金材料の導電率が25%IACS以上であること
<式(1)>
(i)1.5≦{[Ni]-15/6×[Ti]}/{[Si]-7/6×[Ti]}≦2.5
(ii)[Ni]-15/6[Ti]>1.5atm%
(iii)[Ni]<7.4atm%
(iv)0.05≦(Ti)≦2.0mass%
[*]…元素*のatm%、(*):元素*のmass%
<式(2)>
(i)t(秒)<{1500/N}(1/0.19)
(ii)N=α+β×[Ti(atm%)]+10000γ×[C(atm%)]
(iii)α=−300、β=4000、γ=10
(2)前記溶融された銅合金にはSnを0.05〜1.5mass%含有することを特徴とする(1)に記載の銅合金材料の製造方法。
)(1)または(2)に記載の銅合金材料の製造方法で作製された銅合金材料が切削加工されて形成される銅合金部品。
That is, the said subject was solved by the following means.
(1) A method for producing a copper alloy material containing Ni, Si, Ti, and C, the balance being inevitable impurities and copper,
Under the conditions A and B below, Ni—Si—Ti crystallization is performed by controlling the residence time in the mold from the time when the molten copper alloy is poured into the mold until solidification is completed in the mold. after generating the objects and Ni-Si crystallized products were pushed out hot, water quenching is, performs cold drawing is dissolved the Ni-Si crystallized products to the matrix rows further aging To produce precipitates ,
A method for producing a copper alloy material characterized by obtaining the following structural characteristics of C in the copper alloy after melting and casting and obtaining the characteristics of D and E below .
A: The content of Ni, Si, Ti in the molten copper alloy satisfies the following formula (1) B: In the melting casting, the casting is performed at a temperature equal to or higher than the melting point of the compound in the copper alloy material, and the mold said mold residence time t when poured into satisfies the equation (2) C: the copper alloy after the melting and casting, eutectic compounds and / or precipitate over an average diameter of 1 micron is 1500 / mm 2 may be present or D: tensile strength of the copper alloy material after the aging heat treatment is not less than 500 MPa E: that the conductivity of the copper alloy material after the aging heat treatment is 25% IACS or more <formula (1)>
(I) 1.5 ≦ {[Ni] -15 / 6 × [Ti]} / {[Si] -7 / 6 × [Ti]} ≦ 2.5
(Ii) [Ni] -15/6 [Ti]> 1.5atm%
(Iii) [Ni] <7.4 atm%
(Iv) 0.05 ≦ (Ti) ≦ 2.0 mass%
[*] ... atm% of element *, (*): mass% of element *
<Formula (2)>
(I) t (seconds) <{1500 / N} (1 / 0.19)
(Ii) N = α + β × [Ti (atm%)] + 10000γ × [C (atm%)]
(Iii) α = −300, β = 4000, γ = 10
(2) The method for producing a copper alloy material according to (1), wherein the molten copper alloy contains 0.05 to 1.5 mass% of Sn.
( 3 ) A copper alloy part formed by cutting a copper alloy material produced by the method for producing a copper alloy material according to (1) or (2) .

本発明の銅合金材料は、時効析出型銅合金は強度および導電性に優れ、切削性に優れる。また、本発明の銅合金材料は、切削加工により製造される電子機器等の部品用材料として好適に利用することができる。   In the copper alloy material of the present invention, an aging precipitation type copper alloy is excellent in strength and conductivity, and is excellent in machinability. Moreover, the copper alloy material of the present invention can be suitably used as a material for parts such as electronic equipment manufactured by cutting.

は鋳型内滞留時間の定義を説明するためにその変化を模式的に示したグラフである。FIG. 3 is a graph schematically showing the change in order to explain the definition of the residence time in the mold. は実施例及び比較例の結果をプロットしたグラフであり、図2A及びBは式<1>の関係を示し、図2Cは式<3>の関係を示し、図2Dは式<2>の関係を示すFIG. 2A is a graph plotting the results of Examples and Comparative Examples, FIGS. 2A and 2B show the relationship of the formula <1>, FIG. 2C shows the relationship of the formula <3>, and FIG. 2D shows the relationship of the formula <2>. Indicate

本発明の好ましい実施形態の析出硬化型銅合金においては、溶融状態から冷却しNi−Si−Ti晶出物を特定の状態で形成させる。このNi−Si−Ti晶出物により、切削加工を行った時に切削屑が細かく分断され易くなり切削性が向上する。さらに冷却していくと固体のマトリックスが形成されるとともにNiとSiの含有比を制御した場合にマトリックス中にNi−Si晶出物(NiSi)が発生する。この晶出物は鋳造後の熱処理において一旦、マトリックスに固溶した後に析出して、析出強化によって銅合金の強度および導電性を向上させる。なお、このNi−Si析出物(NiSi:析出強化のための析出物)は、切削性の向上にはあまり寄与しない。
ここで、晶出物とは銅合金の鋳造の際に溶融金属が凝固する過程で生じる化合物であり、析出物とは鋳造後の熱処理においてマトリックスが固体状態で生じる化合物である。本明細書では、これらの総称として、晶出物及び/又は析出物もしくは単に化合物ということがある。
In the precipitation hardening type copper alloy according to a preferred embodiment of the present invention, the Ni—Si—Ti crystallized product is formed in a specific state by cooling from a molten state. With this Ni-Si-Ti crystallized product, the cutting waste is easily finely divided when cutting is performed, and the machinability is improved. When further cooled, a solid matrix is formed, and when the content ratio of Ni and Si is controlled, a Ni—Si crystallized product (Ni 2 Si) is generated in the matrix. In the heat treatment after casting, the crystallized material is once dissolved in the matrix and then precipitated, and the strength and conductivity of the copper alloy are improved by precipitation strengthening. Incidentally, the Ni-Si precipitate (Ni 2 Si: precipitate for precipitation strengthening) does not contribute to improvement of the machinability.
Here, the crystallized product is a compound generated in the process of solidification of the molten metal during the casting of the copper alloy, and the precipitate is a compound generated in a solid state of the matrix in the heat treatment after casting. In the present specification, these generic names may be referred to as crystallized substances and / or precipitates or simply compounds.

晶出物を微細に分散させる方法として、別の化合物の周りに晶出物を形成させる方法がある。これは目的とする晶出物(本実施形態においては、Ni−Si−Ti系晶出物)が形成される前に、溶湯内に別の化合物を投入あるいは形成させ、その化合物を核として晶出物を形成させる方法である。本実施形態において、別の化合物は目的とする晶出物より高融点である必要があり、具体的には炭化物、硫化物、硼化物、酸化物、窒化物などの非金属元素含有化合物が有効である。この非金属元素含有化合物は、本発明においてはTi−C化合物である。このTi−C化合物を形成させる方法としては、化合物を粉末などで溶湯内に直接投入する、炭素をそのまま添加する方法(例えば炭素の棒を浸漬する)などがある。Ti−C化合物が溶湯内に多く形成されると、それを核として晶出物は形成し、核の数が多ければ晶出物の数が増加して微細になる。   As a method of finely dispersing a crystallized product, there is a method of forming a crystallized product around another compound. This is because before the desired crystallized product (Ni-Si-Ti-based crystallized product in this embodiment) is formed, another compound is charged or formed in the molten metal, and the crystal is used as the nucleus. This is a method of forming a product. In the present embodiment, the other compound needs to have a higher melting point than the target crystallization product, and specifically, a non-metal element-containing compound such as carbide, sulfide, boride, oxide, or nitride is effective. It is. This nonmetallic element-containing compound is a Ti—C compound in the present invention. As a method for forming this Ti—C compound, there are a method in which the compound is directly charged into a molten metal as a powder, or a method in which carbon is added as it is (for example, a carbon rod is immersed). When a large amount of Ti—C compound is formed in the molten metal, a crystallized product is formed using the Ti—C compound as a nucleus.

Ti−C化合物周辺に形成したNi−Si−Ti系晶出物は溶融状態であるマトリックス中を滞留するが、その間に凝集・合体などにより粗大化する。この粗大化はマトリックスの凝固が完了するまで進行し、その凝固に有した時間に比例して晶出物サイズが大きくなる。   The Ni-Si-Ti-based crystallized product formed around the Ti-C compound stays in the molten matrix, but in the meantime, becomes coarse due to agglomeration and coalescence. This coarsening proceeds until the solidification of the matrix is complete, and the crystallized size increases in proportion to the time it takes for the solidification.

[条件A] 本発明においては、切削性に寄与するNi−Si−Ti系晶出物の構成元素であるTiの含有量は0.05mass%以上2.0mass%以下含有させ(下記式(iv)参照)、0.1〜1.5mass%であることがより好ましい。上記下限値以上であれば形成される晶出物の個数が多く、切削性が改善される。また上記上限値以下であると切削性向上の効果が飽和せず、導電率が低下しないため好ましい。 [Condition A] In the present invention, the content of Ti which is a constituent element of the Ni-Si-Ti-based crystallized substance contributing to the machinability is 0.05 mass% or more and 2.0 mass% or less (the following formula (iv )), And more preferably 0.1 to 1.5 mass%. If it is more than the said lower limit, the number of the crystallized matter formed will be large and machinability will be improved. Moreover, since it is not saturated and the electrical conductivity does not fall that the effect of a machinability improvement is below the said upper limit, it is preferable.

本発明において、Niの含有量は下記のように設定される。
(i)1.5≦{[Ni]-15/6×[Ti]}/{[Si]-7/6×[Ti]}≦2.5
(ii)[Ni]-15/6[Ti]>1.5atm%
(iii)[Ni]<7.4atm%
(iv)0.05mass%≦(Ti)≦2.0mass%
[*]…元素*のatm%、(*):元素*のmass%
In the present invention, the Ni content is set as follows.
(I) 1.5 ≦ {[Ni] -15 / 6 × [Ti]} / {[Si] -7 / 6 × [Ti]} ≦ 2.5
(Ii) [Ni] -15/6 [Ti]> 1.5atm%
(Iii) [Ni] <7.4 atm%
(Iv) 0.05 mass% ≦ (Ti) ≦ 2.0 mass%
[*] ... atm% of element *, (*): mass% of element *

まず(ii)(iii)式についていうと、[Ni]−15/6[Ti]>1.5atm%(原子%、後述の図2参照。)、かつ、[Ni]<7.4atm%(原子%)である。[Ni]−15/6[Ti]なる量は、Ni−Si−Ti系晶出物生成後にマトリックスに残存しているNi量であり、この量が上記下限値を超えると、Ni−Si析出物による析出硬化量が大きく強度が十分に確保される。Ni量が上記上限値を下回ると、熱処理時に粒界反応型析出が生じず、粗大な晶出物の量が多くなり過ぎず、強度が十分な高さで維持され好ましい。   First, regarding the formula (ii) and (iii), [Ni] -15/6 [Ti]> 1.5 atm% (atomic%, see FIG. 2 described later) and [Ni] <7.4 atm% ( Atomic%). The amount of [Ni] -15/6 [Ti] is the amount of Ni remaining in the matrix after the formation of the Ni-Si-Ti-based crystallized product, and when this amount exceeds the lower limit, Ni-Si precipitates. The amount of precipitation hardening due to the material is large and sufficient strength is ensured. When the amount of Ni is less than the above upper limit value, grain boundary reaction type precipitation does not occur during heat treatment, the amount of coarse crystallized material does not increase excessively, and the strength is preferably maintained at a sufficiently high level.

式(i)についていうと、後述の実施例ように実験的に導出したものであり、この範囲とすることで所望の効果が得られる。この技術的意義について推定を含めて説明すると、式(1)中の[Si]−7/6[Ti]なる量は、Ni−Si−Ti系晶出物(Ni15Si7Ti6)生成後にマトリックスに残存しているSi量であり、{[Ni]−15/6[Ti]}/{[Si]−7/6[Ti]}なる値は、その際のマトリックス中にある[Ni]、[Si]比である。この[Ni]、[Si]は鋳造中にNi2Siとして晶出物を形成し、熱処理によって一旦固溶後に、析出し、強度および導電率の向上に寄与する。したがって{[Ni]−15/6[Ti]}/{[Si]−7/6[Ti]}なる値が、2に近い1.5〜2.5の範囲のとき、所望の強度、導電率がえられる。 Regarding formula (i), it is derived experimentally as in the examples described later, and a desired effect can be obtained by setting this range. Explaining this technical significance, including estimation, the amount of [Si] -7/6 [Ti] in the formula (1) is a Ni—Si—Ti-based crystallized product (Ni 15 Si 7 Ti 6 ). The amount of Si remaining in the matrix later, and the value {[Ni] -15/6 [Ti]} / {[Si] -7/6 [Ti]} is the [Ni] in the matrix at that time. ], [Si] ratio. The [Ni] and [Si] form a crystallized product as Ni 2 Si during casting, and once precipitated by solid solution by heat treatment, it precipitates and contributes to improvement of strength and conductivity. Therefore, when the value {[Ni] -15/6 [Ti]} / {[Si] -7/6 [Ti]} is in the range of 1.5 to 2.5 close to 2, the desired strength and conductivity Get a rate.

なお、Siの含有量は上記条件に沿って定めればよいが、切削性に寄与するNi−Si−Ti系晶出物の原子比率が15:7:6、強度および導電性に寄与するNi−Si系析出物の原子比率が2:1で最もその寄与が大きくなることが知られており、これを考慮してきめられることが好ましい。上記のような点を考慮し、具体的には、Siを0.3〜1.8mass%で含有させることが好ましく、0.35〜1.7mass%で含有させることがより好ましい。   The Si content may be determined in accordance with the above conditions, but the atomic ratio of Ni-Si-Ti-based crystallized substances contributing to machinability is 15: 7: 6, Ni contributing to strength and conductivity. It is known that the contribution is the largest when the atomic ratio of the Si-based precipitate is 2: 1, and it is preferable to take this into consideration. Considering the above points, specifically, Si is preferably contained at 0.3 to 1.8 mass%, and more preferably 0.35 to 1.7 mass%.

Snは任意の添加元素であり、マトリックスに固溶することによって強度を向上させる。その含有量を0.05〜1.5mass%に規定する理由は、0.05mass%未満ではその効果が十分に得られず、1.5mass%を超えると導電率が低下するためである。   Sn is an optional additive element, and improves the strength by dissolving in a matrix. The reason why the content is specified to be 0.05 to 1.5 mass% is that the effect is not sufficiently obtained when the content is less than 0.05 mass%, and the conductivity is decreased when the content exceeds 1.5 mass%.

[条件B]
本発明においては、銅合金材料中の化合物の融点以上の温度で鋳造されており、その鋳型に注湯されたときの鋳型内滞留時間tが式(2)を満たすことが条件とされる。ここで、鋳型内滞留時間とは、溶融された銅合金が鋳型に注湯されてから鋳型内で凝固完了するまでに要する時間である。
<式(2)>
(i)t(秒)<{1500/N}(1/0.19)
(ii)N=α+β×[Ti(atm%)]+10000γ×[C(atm%)]
(iii)α=−300、β=4000、γ=10
[Condition B]
In the present invention, casting is performed at a temperature equal to or higher than the melting point of the compound in the copper alloy material, and the condition is that the residence time t in the mold when poured into the mold satisfies the formula (2). Here, the residence time in the mold is the time required from when the molten copper alloy is poured into the mold until solidification is completed in the mold.
<Formula (2)>
(I) t (seconds) <{1500 / N} (1 / 0.19)
(Ii) N = α + β × [Ti (atm%)] + 10000γ × [C (atm%)]
(Iii) α = −300, β = 4000, γ = 10

ここで式(2)の意味について説明する。式(2)についても、後記実施例で示したように実験的に導出した関係式である(図2Dを併せて参照)。その関係式と、合金材料ないしその組織的な挙動を考慮して考察すると、推定を含めて言えば、以下のような技術的意義を有するものと考えられる。すなわち、上述のとおり、溶湯が鋳型に供給され冷却されると、Ti−C系化合物の周辺にNi−Si−Ti系晶出物が生成する。式(ii)中のNは、Ni−Si−Ti系晶出物の生成直後における晶出物の数密度である。この数密度は、晶出物の生成サイトであるTi−C系化合物量にともなって増加することから、Nなる値はTi量、C量に比例すると考えられ、発明者が実験的に調査したところ、式(ii)、(iii)を導出した。また、上述のとおり、晶出物が生成後から鋳型内に滞留している間に晶出物同士の合体を減るため、晶出物の数密度は鋳型滞留時間にともなって減少していくが、鋳型内滞留時間がt秒であった鋳塊の数密度を実験的に求めたところ、N/t^0.19であった。この値によって切削性が影響を受け、切削性が良好となるためには1500個/mm2以上となる必要があり、式(i)を導出した。 Here, the meaning of the expression (2) will be described. Expression (2) is also a relational expression derived experimentally as shown in the examples described later (see also FIG. 2D). Considering the relational expression and the alloy material or its structural behavior, it is considered that the following technical significance is obtained including the estimation. That is, as described above, when the molten metal is supplied to the mold and cooled, a Ni—Si—Ti based crystallized product is generated around the Ti—C based compound. N in the formula (ii) is the number density of the crystallization product immediately after the formation of the Ni—Si—Ti-based crystallization product. This number density increases with the amount of Ti-C compound, which is the crystallized product generation site. Therefore, the value of N is considered to be proportional to the amount of Ti and the amount of C, and the inventor investigated experimentally. However, equations (ii) and (iii) were derived. In addition, as described above, the number density of crystallized substances decreases with the mold residence time in order to reduce the coalescence of the crystallized substances while the crystallized substances are retained in the mold after generation. When the number density of the ingot having an internal residence time of t seconds was experimentally determined, it was N / t ^ 0.19. This value affected the machinability, and in order to improve the machinability, it was necessary to be 1500 pieces / mm 2 or more, and the formula (i) was derived.

[条件C]
本発明においては、その合金材料に、平均径1ミクロン以上の晶出物及び/又は析出物が1500個/mm以上存在することが条件とされ、30000個/mm未満であることがより好ましい。上記上限値以下とすることにより、材料の強度低下を回避することができる。
[条件D]
本発明においては、その合金材料において、切削加工に適する所定形状に成形された後の引張強さが500MPa以上であることが条件とされ、550〜1200MPaであることがより好ましい。上記下限値以上とすることにより、電気電子部品として好的に利用することができる。上記上限値を越えると材料が硬すぎて切削時の切削工具の磨耗を早める場合がある。
[Condition C]
In the present invention, the alloy material is required to have 1,500 / mm 2 or more of crystallization and / or precipitates having an average diameter of 1 micron or more, and more preferably less than 30000 / mm 2. preferable. By setting the upper limit value or less, it is possible to avoid a decrease in the strength of the material.
[Condition D]
In the present invention, the alloy material is required to have a tensile strength of 500 MPa or more, more preferably 550 to 1200 MPa, after being formed into a predetermined shape suitable for cutting. By setting it to the above lower limit value or more, it can be preferably used as an electric / electronic component. If the above upper limit is exceeded, the material may be too hard and wear of the cutting tool during cutting may be accelerated.

[条件E]
本発明においては、その合金材料の導電率が25%IACS以上であることが条件とされ、27%IACS以上であることがより好ましい。上記下限値以上とすることにより、電気電子部品として好適に利用することができる。なお、本発明において導電率は特に断らない限り、後記実施例で採用した測定方法により求めた値をいう。
[Condition E]
In the present invention, it is a condition that the conductivity of the alloy material is 25% IACS or more, and more preferably 27% IACS or more. By using more than the said lower limit, it can utilize suitably as an electrical / electronic component. In the present invention, unless otherwise specified, the conductivity means a value obtained by the measurement method employed in Examples described later.

その他、本発明の好ましい実施形態として考慮される事項として以下の点が挙げられる。
CはTi−C化合物を形成してNi−Si−Ti系晶出物を細かく分散させる作用をもつ。C量が多いほど、Ti−C化合物が増加しNi−Si−Ti系晶出物が細かくなる。鋳造中の滞留時間によって必要なC量が決まる。この点について上記式<1>を変形した下記式<3>を参照することができる(後述の図2Cを併せて参照)。
式<3>
10000[C(atm%)] < {1500*[t(秒)]-0.19 −α−β×[Ti(atm%)]}/γ
α=−300、β=4000、γ=10
たとえば、t=1秒ならば、
10000[C(atm%)] < 180−400×[Ti(atm%)]
In addition, the following points can be mentioned as matters considered as a preferred embodiment of the present invention.
C has a function of forming a Ti—C compound and finely dispersing a Ni—Si—Ti crystallized product. As the amount of C increases, the Ti—C compound increases and the Ni—Si—Ti-based crystallized product becomes finer. The required amount of C is determined by the residence time during casting. In this regard , reference can be made to the following formula <3> obtained by modifying the above formula <1> (see also FIG. 2C described later).
Formula <3>
10000 [C (atm%)] <{1500 * [t (seconds)] -0.19 −α−β × [Ti (atm%)]} / γ
α = −300, β = 4000, γ = 10
For example, if t = 1 second,
10000 [C (atm%)] <180−400 × [Ti (atm%)]

本発明の銅合金材料の一実施形態としてさらに説明すると、これを溶融状態で鋳型に注湯すると、固体マトリックスが形成される温度(液相線温度)直上まで冷却(急冷)され、Ti−C化合物とともにその周辺にNi−Si−Ti系晶出物が発生する。この時点においてのNi−Si−Ti系晶出物の分布(サイズ、数)は、Ni、Si、Ti、Cの量によってきまるが、マトリックスの温度が凝固完了するまでの時間(=鋳型内滞留時間、図1参照)にも影響をうける。溶融状態のマトリックス中を滞留する間に晶出物の凝集・合体が進行し、粗大化(サイズが大きく、数は減少)するためである。粗大化が過度に進行すると、Ni−Si−Ti系晶出物の切削性への寄与がなくなる(少なくなる)ので、発生するNi−Si−Ti系晶出物の分布に応じて許容される滞留時間がきまる(発生したNi−Si−Ti系晶出物数がすくない場合は速やかに凝固を完了させる必要がある。一方、Ni−Si−Ti系晶出物数が多く、しかも微細な場合には凝固をすぐに完了させる必要がなくなる。)。凝固完了時間を制御する方法としては、製出する鋳塊のサイズを変化させることが簡便な方法1つである。なお、上記の説明により本発明が限定して解釈されるものではない。   When further described as one embodiment of the copper alloy material of the present invention, when this is poured into a mold in a molten state, it is cooled (rapidly cooled) just above the temperature (liquidus temperature) at which a solid matrix is formed, and Ti—C A Ni-Si-Ti-based crystallized substance is generated around the compound. The distribution (size, number) of Ni-Si-Ti-based crystals at this point depends on the amount of Ni, Si, Ti, and C, but the time until the matrix temperature is completely solidified (= residence in the mold) Time, see Fig. 1). This is because the agglomeration and coalescence of the crystallized substances proceed and stay coarse in the molten matrix (the size is large and the number is reduced). If the coarsening proceeds excessively, the contribution of the Ni—Si—Ti based crystallized product to the machinability is lost (decreased), which is allowed depending on the distribution of the generated Ni—Si—Ti based crystallized product. The residence time is determined (if the number of Ni-Si-Ti-based crystallized products generated is not enough, solidification must be completed quickly. Does not require immediate completion of clotting.) As a method for controlling the solidification completion time, one simple method is to change the size of the ingot to be produced. The present invention is not construed as being limited by the above description.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

表1の合金成分で示される組成の合金を高周波溶解炉にて溶解し、鋳型内滞留時間を変化させて各ビレットを鋳造した。ここで鋳型の内寸は25φ〜150φ×750mmとし、ヒーター加熱および空冷、または水冷が可能な鋳型を用いて、鋳型内滞留時間を制御した。前記ビレットを900℃で熱間押出して、直ちに水中焼入れを行い、丸棒を得た。次いで前記丸棒に対し冷間にて引抜きを行い、直径10mmの丸棒を製造し、さらに450℃で2時間時効熱処理を行った。   Alloys having the compositions shown in Table 1 were melted in a high-frequency melting furnace, and each billet was cast while changing the residence time in the mold. Here, the inner dimension of the mold was set to 25φ to 150φ × 750 mm, and the residence time in the mold was controlled using a mold capable of heating with heater and air cooling or water cooling. The billet was hot extruded at 900 ° C. and immediately quenched in water to obtain a round bar. Next, the round bar was drawn out cold to produce a round bar having a diameter of 10 mm, and further subjected to aging heat treatment at 450 ° C. for 2 hours.

このようにして得られた各々の丸棒(合金材料)について、[1]引張強度、[2]導電率、[3]切削性を下記方法により調べた。各評価項目の測定方法は以下の通りである。
[1]引張強度
JIS Z 2241に準じて3本測定しその平均値(MPa)を示した。
[2]導電率
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試料について2本ずつ測定し、その平均値(%IACS)を示した。
[1]で調査した引っ張り強度が500MPa以上、かつ[2]で調査した導電率が25%IACS以上ならば性能評価を○、それ以外ならば×とした。
[3]切削性
汎用旋盤を用いて切削実験を行い、切削屑の形態を観察した。切削屑が長さ10mm以下に分断されるものは良、切削屑が分断されるがその長さが10mmを超えて20mm以下のものは可、切削屑が分断されるがその長さが20mmを超えるもの(切削屑が分断されないものを含む)は不可とした。実用上問題が生じないのは良および可である。なお切削条件は、切削速度を30m/分、送り速度を1回転あたり0.1mm、切り込み代を0.2mm、とした。バイトは超硬製のものを用い、切削油は不使用とした。
For each round bar (alloy material) thus obtained, [1] tensile strength, [2] conductivity, and [3] machinability were examined by the following methods. The measurement method for each evaluation item is as follows.
[1] Tensile strength Three were measured according to JIS Z 2241 and the average value (MPa) was shown.
[2] Conductivity Using a four-terminal method, two samples were measured for each sample in a thermostatic chamber controlled at 20 ° C. (± 1 ° C.), and the average value (% IACS) was shown.
When the tensile strength investigated in [1] is 500 MPa or more and the conductivity investigated in [2] is 25% IACS or more, the performance evaluation is “good”, and otherwise the evaluation is “poor”.
[3] Cutting performance A cutting experiment was performed using a general-purpose lathe, and the form of the cutting waste was observed. It is good if the cutting waste is divided to a length of 10 mm or less, and the cutting waste is divided, but the length is more than 10 mm and 20 mm or less, the cutting waste is divided, but the length is 20 mm. Exceeded items (including those in which the cutting waste is not divided) were not allowed. It is good and good that there is no practical problem. The cutting conditions were a cutting speed of 30 m / min, a feed speed of 0.1 mm per rotation, and a cutting allowance of 0.2 mm. The tool was made of cemented carbide and no cutting oil was used.

結果を表1、2に示す。表1−1〜1−4は本発明例、表2は比較例であり、比較例1〜29は成分が本発明の範囲外、または鋳型内滞留時間が閾値を超える例である。図2は、実施例3−1〜40、比較例1〜29の成分とともに、式<1>〜<3>で示した閾値を図示したものである。   The results are shown in Tables 1 and 2. Tables 1-1 to 1-4 are examples of the present invention, and Table 2 is a comparative example. Comparative examples 1 to 29 are examples in which the components are outside the scope of the present invention or the residence time in the mold exceeds the threshold value. FIG. 2 illustrates the threshold values represented by the formulas <1> to <3> together with the components of Examples 3-1 to 40 and Comparative Examples 1 to 29.

Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887
Figure 0005638887

実施例の合金材料は性能評価(強度、導電率)、切削性評価が“○”、および良となっている。一方比較例1〜11においては成分が本発明の範囲内となっており性能が満足されているものの、成分(Ni、Si、Ti、C量)から規定される閾値にくらべ、鋳型内滞留時間の実際の値が大となって、(晶出物が粗大化して)切削評価が不可となっている例である。また比較例12〜29は成分が本発明の範囲外のため性能が“×”となっている例である。   The alloy materials of the examples have a performance evaluation (strength, electrical conductivity), a machinability evaluation of “◯”, and good. On the other hand, in Comparative Examples 1 to 11, although the components are within the scope of the present invention and the performance is satisfied, the residence time in the mold is compared with the threshold value defined from the components (Ni, Si, Ti, C amount). This is an example where the actual value of becomes large and the cutting evaluation becomes impossible (the crystallized material becomes coarse). Comparative Examples 12 to 29 are examples in which the performance is “x” because the components are outside the scope of the present invention.

Claims (3)

Ni、Si、Ti、及びCを含み、残部が不可避的不純物及び銅からなる銅合金材料の製造方法であって、
下記条件A,Bのもとに、溶融された銅合金が鋳型に注湯されてから鋳型内で凝固完了するまでに要する鋳型内滞留時間を制御して溶解鋳造しNi−Si−Ti晶出物とNi−Si晶出物を生成させた後、熱間押し出、水中焼入、冷間引抜きを行うとともに前記Ni―Si晶出物をマトリックスに固溶させさらに時効熱処理を行うことで析出物を生成させ
前記溶解鋳造後の銅合金において下記Cの組織的特徴を得るとともに下記D、Eの特性を得ることを特徴とする銅合金材料の製造方法。
A:前記溶融された銅合金におけるNi、Si、Tiの含有量が下式(1)を満たすこと
B:前記溶解鋳造では、銅合金材料中の化合物の融点以上の温度で鋳造され、その鋳型に注湯されたときの前記鋳型内滞留時間tが式(2)を満たすこと
C:前記溶解鋳造後の銅合金には、平均径1ミクロン以上の晶出物及び/又は析出物が1500個/mm以上存在すること
D:前記時効熱処理後の銅合金材料の引張強さが500MPa以上であること
E:前記時効熱処理後の銅合金材料の導電率が25%IACS以上であること
<式(1)>
(i)1.5≦{[Ni]-15/6×[Ti]}/{[Si]-7/6×[Ti]}≦2.5
(ii)[Ni]-15/6[Ti]>1.5atm%
(iii)[Ni]<7.4atm%
(iv)0.05≦(Ti)≦2.0mass%
[*]…元素*のatm%、(*):元素*のmass%
<式(2)>
(i)t(秒)<{1500/N}(1/0.19)
(ii)N=α+β×[Ti(atm%)]+10000γ×[C(atm%)]
(iii)α=−300、β=4000、γ=10
A method for producing a copper alloy material containing Ni, Si, Ti, and C, the balance being inevitable impurities and copper,
Under the conditions A and B below, Ni—Si—Ti crystallization is performed by controlling the residence time in the mold from the time when the molten copper alloy is poured into the mold until solidification is completed in the mold. after generating the objects and Ni-Si crystallized products were pushed out hot, water quenching is, performs cold drawing is dissolved the Ni-Si crystallized products to the matrix rows further aging To produce precipitates ,
A method for producing a copper alloy material characterized by obtaining the following structural characteristics of C in the copper alloy after melting and casting and obtaining the characteristics of D and E below .
A: The content of Ni, Si, Ti in the molten copper alloy satisfies the following formula (1) B: In the melting casting, the casting is performed at a temperature equal to or higher than the melting point of the compound in the copper alloy material, and the mold The residence time t in the mold when poured into the mold satisfies the formula (2) C: The copper alloy after melting and casting has 1500 crystallization and / or precipitates having an average diameter of 1 micron or more. / mm 2 may be present or D: tensile strength of the copper alloy material after the aging heat treatment is not less than 500 MPa E: that the conductivity of the copper alloy material after the aging heat treatment is 25% IACS or more <formula (1)>
(I) 1.5 ≦ {[Ni] -15 / 6 × [Ti]} / {[Si] -7 / 6 × [Ti]} ≦ 2.5
(Ii) [Ni] -15/6 [Ti]> 1.5atm%
(Iii) [Ni] <7.4 atm%
(Iv) 0.05 ≦ (Ti) ≦ 2.0 mass%
[*] ... atm% of element *, (*): mass% of element *
<Formula (2)>
(I) t (seconds) <{1500 / N} (1 / 0.19)
(Ii) N = α + β × [Ti (atm%)] + 10000γ × [C (atm%)]
(Iii) α = −300, β = 4000, γ = 10
前記溶融された銅合金にはSnを0.05〜1.5mass%含有することを特徴とする請求項1に記載の銅合金材料の製造方法。 The method for producing a copper alloy material according to claim 1, wherein the molten copper alloy contains 0.05 to 1.5 mass% of Sn. 請求項1または2に記載の銅合金材料の製造方法で作製された銅合金材料が切削加工されて形成される銅合金部品。 Copper alloy parts copper alloy material produced by the production method of the copper alloy material according to claim 1 or 2 is formed by cutting.
JP2010203227A 2010-09-10 2010-09-10 Method for producing copper alloy material and copper alloy part Expired - Fee Related JP5638887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203227A JP5638887B2 (en) 2010-09-10 2010-09-10 Method for producing copper alloy material and copper alloy part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203227A JP5638887B2 (en) 2010-09-10 2010-09-10 Method for producing copper alloy material and copper alloy part

Publications (2)

Publication Number Publication Date
JP2012055947A JP2012055947A (en) 2012-03-22
JP5638887B2 true JP5638887B2 (en) 2014-12-10

Family

ID=46053684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203227A Expired - Fee Related JP5638887B2 (en) 2010-09-10 2010-09-10 Method for producing copper alloy material and copper alloy part

Country Status (1)

Country Link
JP (1) JP5638887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652136B (en) * 2022-10-31 2023-12-15 宁波金田铜业(集团)股份有限公司 Free-cutting copper-nickel-silicon bar and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503119B2 (en) * 1991-03-29 1996-06-05 日本碍子株式会社 Beryllium copper alloy casting method
JP2002294363A (en) * 2001-03-30 2002-10-09 Kobe Steel Ltd High strength and highly conductive copper alloy
JP3999676B2 (en) * 2003-01-22 2007-10-31 Dowaホールディングス株式会社 Copper-based alloy and method for producing the same
JP4568092B2 (en) * 2004-11-17 2010-10-27 Dowaホールディングス株式会社 Cu-Ni-Ti copper alloy and heat sink
JP4754930B2 (en) * 2005-10-14 2011-08-24 Jx日鉱日石金属株式会社 Cu-Ni-Si based copper alloy for electronic materials
JP5546196B2 (en) * 2008-10-03 2014-07-09 古河電気工業株式会社 Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material

Also Published As

Publication number Publication date
JP2012055947A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
TWI607093B (en) Metal alloy composite material and method for making the same
JP6439683B2 (en) Flame retardant magnesium alloy and method for producing the same
JP5326114B2 (en) High strength copper alloy
JP5376604B2 (en) Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
CN105088033A (en) Aluminium alloy and preparation method thereof
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
JP2007211310A (en) Raw material brass alloy for casting half-melted alloy
JP6209986B2 (en) Cu-Fe alloy
CN104152769A (en) Heat conduction magnesium alloy and manufacturing method thereof
TWI586819B (en) Sliding contact material and manufacturing method thereof
JP2016505713A (en) Heat resistant aluminum base alloy and manufacturing method
JP6736869B2 (en) Copper alloy material
JP7167478B2 (en) Aluminum alloy wire rod and manufacturing method thereof
JP7167479B2 (en) Aluminum alloy wire rod and manufacturing method thereof
JP5638887B2 (en) Method for producing copper alloy material and copper alloy part
JP2016153516A (en) Aluminum alloy processed material and manufacturing method therefor
JP5699774B2 (en) Aluminum alloy material and manufacturing method thereof
WO2007094265A1 (en) Raw material phosphor bronze alloy for casting of semi-molten alloy
JP7187864B2 (en) Alloy manufacturing method
JP5168069B2 (en) Method for producing aluminum alloy
JP5283522B2 (en) Temperature-sensitive material and method for manufacturing the same, thermal fuse, circuit protection element
JPH1150172A (en) Carbide-dispersion strengthened copper alloy material
JP6354391B2 (en) Continuous casting method of Cu-Zn-Sn alloy
JP2020125527A (en) Aluminum alloy casting material
JP7111073B2 (en) Aluminum alloy wire rod and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R151 Written notification of patent or utility model registration

Ref document number: 5638887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees