JP5634081B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5634081B2
JP5634081B2 JP2010044174A JP2010044174A JP5634081B2 JP 5634081 B2 JP5634081 B2 JP 5634081B2 JP 2010044174 A JP2010044174 A JP 2010044174A JP 2010044174 A JP2010044174 A JP 2010044174A JP 5634081 B2 JP5634081 B2 JP 5634081B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature sensor
indoor heat
indoor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010044174A
Other languages
Japanese (ja)
Other versions
JP2011179746A (en
JP2011179746A5 (en
Inventor
和英 山本
和英 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010044174A priority Critical patent/JP5634081B2/en
Publication of JP2011179746A publication Critical patent/JP2011179746A/en
Publication of JP2011179746A5 publication Critical patent/JP2011179746A5/ja
Application granted granted Critical
Publication of JP5634081B2 publication Critical patent/JP5634081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機に関し、特に空気調和機の熱交換器に流れる冷媒流量を制御することで暖房運転時の高圧圧力の上昇を保護する制御に関するものである。 The present invention relates to control related to the air conditioner, in particular protects the rise of high pressure in the heating operation by controlling the flow rate of refrigerant flowing through the heat exchanger of the air conditioner.

従来の空気調和機において、暖房運転時(暖房時ともいう)の高圧圧力の上昇を保護する制御は、室内側熱交換器の暖房時入り口と出口の中間部近傍に取り付けられた温度センサーの検出値に基づいて圧縮機または減圧装置(電子制御式膨張弁)を制御している(例えば、特許文献1参照)。
また、室内側熱交換器の暖房時入り口部に取り付けられた温度センサーと、室内側熱交換器の暖房時入り口と出口の中間部近傍に取り付けられた温度センサーとの温度を比較し、高い方の温度に基づき圧縮機または減圧装置(電子制御式膨張弁)を制御しているものもある(例えば、特許文献2参照)。
In conventional air conditioners, the control to protect the rise in high pressure during heating operation (also called heating) is performed by detecting the temperature sensor installed near the middle of the entrance and exit of the indoor heat exchanger. The compressor or the pressure reducing device (electronically controlled expansion valve) is controlled based on the value (see, for example, Patent Document 1).
Also, compare the temperature of the temperature sensor installed at the entrance of the indoor heat exchanger with the temperature sensor installed near the middle of the entrance and exit of the indoor heat exchanger. Some control a compressor or a decompression device (an electronically controlled expansion valve) based on the temperature of (see, for example, Patent Document 2).

特開2006−234295号公報(第3−4頁、図1)JP 2006-234295 A (page 3-4, FIG. 1) 特開2003−207215号公報(第2−4頁、図1、図4)JP 2003-207215 A (page 2-4, FIGS. 1 and 4)

ところで、近年においては、室内側熱交換器の多パス化が進み、また再熱除湿用の電磁弁が搭載されることがある。そのため、室内側熱交換器に搭載する温度センサーの取り付け位置が制約される場合がある。そのような場合において、暖房時入り口と出口の中間部近傍に取り付けられた中間部温度センサーで高圧圧力の上昇を保護する制御を行うと、中間部温度センサーの位置を流れる冷媒が過冷却状態になることがあり、従来の高圧圧力の上昇を保護する制御では保護にかかるタイミングが遅れるという課題があった。   By the way, in recent years, the number of indoor heat exchangers has increased, and an electromagnetic valve for reheat dehumidification is sometimes mounted. Therefore, the attachment position of the temperature sensor mounted in the indoor heat exchanger may be restricted. In such a case, if control is performed to protect the increase in high pressure with an intermediate temperature sensor attached near the intermediate portion of the heating inlet and outlet, the refrigerant flowing through the position of the intermediate temperature sensor will be in a supercooled state. In the conventional control for protecting the increase of the high pressure, there is a problem that the protection timing is delayed.

また、室内側熱交換器の暖房時入り口部に取り付けられた入り口温度センサーで温度上昇を保護する制御を行うと、入り口温度センサーの位置を流れる冷媒が吐出スーパーヒート(加熱蒸気)になることがあり、従来の高圧圧力の上昇を保護する制御では保護にかかるタイミングが早くなり、最適な制御や信頼性の高い高圧圧力の上昇を抑制する保護制御ができないという課題があった。   In addition, if control is performed to protect the temperature rise with the entrance temperature sensor attached to the entrance of the indoor heat exchanger during heating, the refrigerant flowing through the entrance temperature sensor may become superheated (heated steam). In the conventional control for protecting the increase of the high pressure, the timing for the protection is advanced, and there is a problem that the optimal control and the protection control for suppressing the increase of the high pressure with high reliability cannot be performed.

本発明は、上記のような課題を解決するためになされたもので、暖房時の高圧圧力の上昇を抑制する保護制御を正確に行うことを実現させる空気調和機を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that realizes accurate protection control that suppresses an increase in high pressure during heating. Is.

本発明に係る空気調和機は、圧縮機、四方弁、室外側熱交換器、減圧装置、室内側熱交換器を含む冷媒回路と、
前記室内側熱交換器に設置された複数の温度センサーと、
前記温度センサーにより検出された温度に基づいて前記圧縮機または減圧装置を制御する制御装置とを備えた空気調和機において、
前記温度センサーは、
前記室内側熱交換器の暖房時入り口と出口の中間部近傍に設置された中間部温度センサーと、
前記室内側熱交換器の暖房時入り口部に設置された入り口温度センサーと、
を備え、
前記制御装置は、前記入り口温度センサーの検出値によって前記圧縮機または減圧装置を制御している状態において、前記入り口温度センサーの位置を流れる冷媒が吐出スーパーヒート領域に入っており、かつ、前記中間部温度センサーの位置を流れる冷媒がサブクール領域に入っていないと判断した場合には、前記中間部温度センサーの検出値によって前記圧縮機または減圧装置を制御することにより、暖房時の高圧圧力の上昇を抑制する保護制御を行うことを特徴とするものである。
An air conditioner according to the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, a refrigerant circuit including an indoor heat exchanger,
A plurality of temperature sensors installed in the indoor heat exchanger;
In an air conditioner comprising a control device that controls the compressor or the decompression device based on the temperature detected by the temperature sensor,
The temperature sensor is
An intermediate temperature sensor installed in the vicinity of the intermediate portion between the entrance and exit of the indoor heat exchanger during heating,
An entrance temperature sensor installed at the entrance of the indoor heat exchanger during heating;
With
It said controller, in a state where the detection value of the inlet temperature sensor controls the compressor or decompressor, the refrigerant flowing through a position of the inlet temperature sensor are contained in the discharge superheat region, the intermediate When it is determined that the refrigerant flowing through the temperature sensor is not in the subcool region, the compressor or the pressure reducing device is controlled by the detected value of the intermediate temperature sensor to increase the high pressure during heating. It is characterized by performing protection control for suppressing the above.

本発明によれば、室内側熱交換器の暖房時入り口部に設置された入り口温度センサーの検出値で、室内側熱交換器の暖房時入り口と出口の中間部近傍に設置された中間部温度センサーの検出値に補正を加えた値により圧縮機または減圧装置を制御し、暖房時の高圧圧力の上昇を抑制するように構成したので、中間部温度センサーの位置を流れる冷媒が過冷却状態になっても暖房時の高圧圧力の上昇を抑制するという効果がある。   According to the present invention, the detected temperature value of the inlet temperature sensor installed at the heating entrance of the indoor heat exchanger, the intermediate temperature installed near the middle of the heating inlet and outlet of the indoor heat exchanger. Since the compressor or pressure reducing device is controlled by a value obtained by adding correction to the detected value of the sensor so that the increase in the high pressure during heating is suppressed, the refrigerant flowing through the position of the intermediate temperature sensor is brought into a supercooled state. Even if it becomes, there exists an effect of suppressing the raise of the high pressure pressure at the time of heating.

本発明の実施の形態1における空気調和機の冷媒回路と制御系を示す図である。It is a figure which shows the refrigerant circuit and control system of the air conditioner in Embodiment 1 of this invention. 室内側熱交換器の多パス化及び再熱除湿用電磁弁が搭載されている場合の温度センサーの設置例を示した図である。It is the figure which showed the example of installation of the temperature sensor in case the multi-pass | path of an indoor side heat exchanger and the solenoid valve for reheat dehumidification are mounted. 室内側熱交換器中間部温度センサーで高圧保護制御を行っているときの従来保護点と理想保護点を示した図である。It is the figure which showed the conventional protection point and ideal protection point when performing high pressure protection control with the indoor side heat exchanger intermediate part temperature sensor. 室内側熱交換器入り口温度センサーで高圧保護制御を行っているときの従来保護点と理想保護点を示した図である。It is the figure which showed the conventional protection point and the ideal protection point when performing high pressure protection control with the indoor side heat exchanger entrance temperature sensor. 本発明の実施の形態1における空気調和機の制御方法を示す制御フロー図である。It is a control flowchart which shows the control method of the air conditioner in Embodiment 1 of this invention.

実施の形態1.
図1乃至図4は本発明の実施の形態1を示す図で、図1は本発明の実施の形態1における空気調和機の冷媒回路と制御系を示す図、図2は室内側熱交換器の多パス化及び再熱除湿用電磁弁が搭載されている場合の温度センサーの設置例を示した図、図3は室内側熱交換器の暖房時入り口と出口の中間部近傍に設置された温度センサーの検出値で高圧保護制御を行っているときの従来保護点と理想保護点を示した図、図4は室内側熱交換器の暖房時入り口部に設置された温度センサーの検出値で高圧保護制御を行っているときの従来保護点と理想保護点を示した図、図5は本発明の実施の形態1における空気調和機の制御方法を示す制御フロー図である。
Embodiment 1 FIG.
1 to 4 are diagrams showing Embodiment 1 of the present invention, FIG. 1 is a diagram showing a refrigerant circuit and a control system of an air conditioner according to Embodiment 1 of the present invention, and FIG. 2 is an indoor heat exchanger The figure which showed the example of installation of the temperature sensor when the solenoid valve for multi-pass and reheat dehumidification is mounted, FIG. 3 was installed in the middle part of the entrance and exit of the indoor heat exchanger during heating Fig. 4 shows the conventional protection point and ideal protection point when high-pressure protection control is performed using the detection value of the temperature sensor. Fig. 4 shows the detection value of the temperature sensor installed at the entrance of the indoor heat exchanger during heating. FIG. 5 is a control flow diagram showing a control method for the air conditioner according to Embodiment 1 of the present invention, and FIG. 5 is a diagram showing a conventional protection point and an ideal protection point when performing high-pressure protection control.

図1に示すように、本実施の形態1における空気調和機の冷媒回路は、冷媒を圧縮する圧縮機1、冷房運転と暖房運転とで冷媒の循環方向を切り替える四方弁11、冷房運転時には凝縮器、暖房運転時には蒸発器として動作する室外側熱交換器3、高圧の液冷媒を減圧して低圧の気液二相冷媒にする電子制御式膨張弁からなる減圧装置4、冷房運転時には蒸発器、暖房運転時には凝縮器として動作する室内側熱交換器2を順次接続して冷凍サイクルが構成されている。   As shown in FIG. 1, the refrigerant circuit of the air conditioner according to the first embodiment includes a compressor 1 that compresses refrigerant, a four-way valve 11 that switches a refrigerant circulation direction between cooling operation and heating operation, and condensation during cooling operation. An outdoor heat exchanger 3 that operates as an evaporator during heating operation, a decompression device 4 that includes an electronically controlled expansion valve that decompresses high-pressure liquid refrigerant into a low-pressure gas-liquid two-phase refrigerant, and an evaporator during cooling operation The refrigeration cycle is configured by sequentially connecting the indoor heat exchangers 2 that operate as a condenser during heating operation.

図1において、破線で示す矢印は、冷房運転時の冷媒の流れる方向を示し、実線で示す矢印は、暖房運転時の冷媒の流れる方向を示す。   In FIG. 1, an arrow indicated by a broken line indicates a direction in which the refrigerant flows during cooling operation, and an arrow indicated by a solid line indicates the direction in which the refrigerant flows during heating operation.

室外側熱交換器3にはプロペラファン等からなる室外側送風機16が設けられ、室内側熱交換器2には横流ファン等からなる室内側送風機15が設けられている。   The outdoor heat exchanger 3 is provided with an outdoor fan 16 made of a propeller fan or the like, and the indoor heat exchanger 2 is provided with an indoor fan 15 made of a cross flow fan or the like.

ここで、冷房運転時および暖房運転時における動作について簡単に説明する。
冷房運転時には、圧縮機1で圧縮された高温高圧のガス冷媒が圧縮機1より吐出し、四方弁11を介して室外側熱交換器3に流入する。この室外側熱交換器3では、その風路に設けられた室外側送風機16により室外の空気が室外側熱交換器3のフィンとチューブ(伝熱管)の間を通過しながら冷媒と熱交換し、室外側空気に凝縮潜熱を放出することで冷媒は冷却されて高圧の液状態になり、室外側熱交換器3は凝縮器として作用する。室外側熱交換器3を出た液冷媒は、減圧装置4を通過して減圧され低圧の気液二相冷媒となり室内側熱交換器2に流入する。室内側熱交換器2では、その風路に設けられた室内側送風機15により室内空気が室内側熱交換器2のフィンとチューブ(伝熱管)の間を通過しながら冷媒と熱交換することにより、室内に吹き出される空気は冷やされ、一方冷媒は蒸発潜熱の形で室内空気から吸熱することで蒸発して気体状態となり(室内側熱交換器2は蒸発器として作用する)、冷媒は再び圧縮機1に吸入される。以下同様の工程を繰り返すことで冷媒は状態変化を繰り返しながら、室内側熱交換器2で冷却された空気により室内空間を空調(冷房)する。
Here, operations during the cooling operation and the heating operation will be briefly described.
During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 and flows into the outdoor heat exchanger 3 through the four-way valve 11. In this outdoor heat exchanger 3, the outdoor air blower 16 provided in the air passage exchanges heat between the outdoor air and the refrigerant while passing between the fins and the tubes (heat transfer tubes) of the outdoor heat exchanger 3. By releasing the condensation latent heat to the outdoor air, the refrigerant is cooled to a high pressure liquid state, and the outdoor heat exchanger 3 acts as a condenser. The liquid refrigerant exiting the outdoor heat exchanger 3 passes through the decompression device 4 and is decompressed to become a low-pressure gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 2. In the indoor heat exchanger 2, the indoor air is exchanged with the refrigerant while the indoor air passes between the fins and the tubes (heat transfer tubes) of the indoor heat exchanger 2 by the indoor blower 15 provided in the air passage. The air blown into the room is cooled, while the refrigerant absorbs heat from the room air in the form of latent heat of vaporization to evaporate into a gaseous state (the indoor heat exchanger 2 acts as an evaporator), and the refrigerant is again It is sucked into the compressor 1. Thereafter, the same process is repeated, so that the refrigerant air-conditions (cools) the indoor space with the air cooled by the indoor heat exchanger 2 while repeating the state change.

また、暖房運転時には、四方弁11が反転することにより、冷凍サイクルにおいて上記冷房運転時の冷媒の流れと逆向きに冷媒が流れ、室内側熱交換器2が凝縮器として、室外側熱交換器3が蒸発器として作用し、室内側熱交換器2で暖められた空気により室内空間を空調(暖房)する。   Further, during the heating operation, the four-way valve 11 is inverted, so that the refrigerant flows in the opposite direction to the refrigerant flow during the cooling operation in the refrigeration cycle, and the indoor heat exchanger 2 serves as a condenser and the outdoor heat exchanger. 3 acts as an evaporator, and air-conditions (heats) the indoor space with the air heated by the indoor heat exchanger 2.

また、図1に示す制御装置12には、室内側ユニット13内の再熱除湿用電磁弁8、室内側熱交換器2の暖房時入り口と出口の中間部近傍に設置され、その設置位置を流れる冷媒の温度を検出する室内側熱交換器中間部温度センサー5、室内側熱交換器2の暖房時入り口部に設置され、その設置位置を流れる冷媒の温度を検出する室内側熱交換器入り口温度センサー6、室内側送風機15、室内側吸い込み空気温度を検出する室内側吸い込み空気温度センサー17、室外側ユニット14内の圧縮機1、圧縮機吐出冷媒温度を検出する圧縮機吐出温度センサー7、四方弁11、減圧装置4、室外側吸い込み空気温度を検出する室外側吸い込み空気温度センサー9、室外側熱交換器3の暖房時入り口部に設置され、その設置位置を流れる冷媒の温度を検出する室外側熱交換器入り口温度センサー10、室外側送風機16が各々接続されており、制御装置12はこれらを独立して制御または温度信号を受信することができる。   In addition, the control device 12 shown in FIG. 1 is installed in the vicinity of the intermediate portion between the reheating dehumidification electromagnetic valve 8 in the indoor unit 13 and the heating inlet and outlet of the indoor heat exchanger 2, The indoor side heat exchanger intermediate temperature sensor 5 for detecting the temperature of the flowing refrigerant and the indoor side heat exchanger entrance for detecting the temperature of the refrigerant flowing through the installed position of the indoor side heat exchanger 2 at the heating entrance. A temperature sensor 6, an indoor fan 15, an indoor intake air temperature sensor 17 for detecting indoor intake air temperature, a compressor 1 in the outdoor unit 14, a compressor discharge temperature sensor 7 for detecting compressor discharge refrigerant temperature, The four-way valve 11, the pressure reducing device 4, the outdoor intake air temperature sensor 9 for detecting the outdoor intake air temperature, and the temperature of the refrigerant flowing at the installation position of the outdoor heat exchanger 3 at the heating entrance. Outdoor heat exchanger inlet temperature sensor 10 for detecting the outdoor blower 16 are respectively connected, the control unit 12 can receive the control or temperature signals them separately.

室内側ユニット13内の室内側熱交換器2には再熱除湿用電磁弁8が設けられており、再熱除湿用電磁弁8の前後の任意の位置に室内側熱交換器中間部温度センサー5と室内側熱交換器入り口温度センサー6が設置されている。   The indoor heat exchanger 2 in the indoor unit 13 is provided with a reheat dehumidifying electromagnetic valve 8, and an indoor heat exchanger intermediate temperature sensor at an arbitrary position before and after the reheat dehumidifying electromagnetic valve 8. 5 and an indoor side heat exchanger entrance temperature sensor 6 are installed.

冷房運転時には、室内側熱交換器2に設置された室内側熱交換器中間部温度センサー5の検出値と、室内側熱交換器入り口温度センサー6の検出値を制御装置12で常に読み込み、各々の検出値の温度差によって圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで室内側熱交換器2の出口温度が加熱蒸気域に入り過ぎないように保護制御(乾き保護制御)を行っている。前記冷房運転時の乾き保護制御を行うために、室内側熱交換器入り口温度センサー6は冷房時室内側熱交換器2の出口付近に設置する。   During the cooling operation, the control device 12 always reads the detected value of the indoor side heat exchanger intermediate temperature sensor 5 installed in the indoor side heat exchanger 2 and the detected value of the indoor side heat exchanger entrance temperature sensor 6. Protective control (dry protection) so that the outlet temperature of the indoor heat exchanger 2 does not enter the heating steam region by controlling the compressor 1 or the pressure reducing device 4 according to the temperature difference between the detected values of the refrigerant and adjusting the refrigerant circulation rate. Control). In order to perform dry protection control during the cooling operation, the indoor heat exchanger inlet temperature sensor 6 is installed in the vicinity of the outlet of the indoor indoor heat exchanger 2 during cooling.

また、再熱除湿運転時には、室内側熱交換器中間部温度センサー5の検出値と、室内側熱交換器入り口温度センサー6の検出値と、室内側吸い込み空気温度センサー17の検出値とを制御装置12で常に読み込み、各々の検出値の比較から再熱除湿用電磁弁8の内部にコンタミ(ごみ)等が詰まって冷媒が流れない状態になるのを防止する制御を行っている。そのため、室内側熱交換器中間部温度センサー5と室内側熱交換器入り口温度センサー6は再熱除湿用電磁弁8の前後に設置する。   Further, during the reheat dehumidifying operation, the detection value of the indoor heat exchanger intermediate temperature sensor 5, the detection value of the indoor heat exchanger inlet temperature sensor 6, and the detection value of the indoor intake air temperature sensor 17 are controlled. The apparatus 12 always reads and performs control for preventing contamination (dust) or the like from being clogged in the reheat dehumidifying electromagnetic valve 8 and preventing refrigerant from flowing from the comparison of the detected values. Therefore, the indoor side heat exchanger middle temperature sensor 5 and the indoor side heat exchanger entrance temperature sensor 6 are installed before and after the reheat dehumidifying electromagnetic valve 8.

室内側熱交換器の多パス化を図り、並びに上記二つの制御を行うため、室内側熱交換器中間部温度センサー5、及び室内側熱交換器入り口温度センサー6は、例えば図2に示すような位置に設置される。図2はあくまでも一例を示すものであり、室内側熱交換器2の形状、フィンやチューブ(伝熱管)の形状、再熱除湿用電磁弁8の取り付け位置によって、室内側熱交換器中間部温度センサー5及び室内側熱交換器入り口温度センサー6の設置位置は任意に選択される。   In order to increase the number of passes in the indoor heat exchanger and perform the above two controls, the indoor heat exchanger intermediate temperature sensor 5 and the indoor heat exchanger inlet temperature sensor 6 are, for example, as shown in FIG. It is installed in a proper position. FIG. 2 is merely an example, and the temperature of the indoor heat exchanger intermediate part depends on the shape of the indoor heat exchanger 2, the shape of the fins and tubes (heat transfer tubes), and the mounting position of the reheat dehumidifying electromagnetic valve 8. The installation positions of the sensor 5 and the indoor heat exchanger entrance temperature sensor 6 are arbitrarily selected.

このように設置された室内側熱交換器中間部温度センサー5、及び室内側熱交換器入り口温度センサー6を搭載した室内側熱交換器を含む冷凍サイクルにおいて、本発明の暖房運転時の高圧圧力の上昇を抑制する保護制御について図5の制御方法を示す制御フロー図に沿って説明する。   In the refrigeration cycle including the indoor side heat exchanger having the indoor side heat exchanger intermediate temperature sensor 5 and the indoor side heat exchanger entrance temperature sensor 6 installed in this way, the high pressure during heating operation of the present invention The protection control that suppresses the increase of the control will be described with reference to the control flow chart showing the control method of FIG.

まず、ステップ1(S1)において制御がスタートする。制御がスタートすると、室内側熱交換器中間部温度センサー5の検出値(T1)と、室内側熱交換器入り口温度センサー6の検出値(T2)を制御装置12で常に読み込むことで、制御装置12の演算部が両検出値の差分(T3=T2−T1)を算出する。   First, control starts in step 1 (S1). When the control starts, the control device 12 always reads the detection value (T1) of the indoor side heat exchanger intermediate temperature sensor 5 and the detection value (T2) of the indoor heat exchanger entrance temperature sensor 6 so that the control device Twelve arithmetic units calculate a difference (T3 = T2-T1) between the two detection values.

次に、ステップ2(S2)において、室内側熱交換器中間部温度センサー5の検出値(T1)で圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで高圧圧力の上昇を抑制する保護制御を行っているかどうかを判断する。   Next, in step 2 (S2), the compressor 1 or the pressure reducing device 4 is controlled by the detection value (T1) of the indoor side heat exchanger intermediate temperature sensor 5, and the high pressure is increased by adjusting the refrigerant circulation amount. It is determined whether or not protection control is performed to suppress this.

ステップ2(S2)でYESの場合は、ステップ3(S3)において、室内側熱交換器中間部温度センサー5の検出値(T1)がサブクール領域(過冷却)に入っているか否かを判断する。この判断のためのステップは以下に述べる理由から必要となるものである。
例えば図3に示すように、室内側熱交換器中間部温度センサー5の位置を流れる冷媒が二相域の場合はTi(高圧温度保護点)に達するタイミングが最適で、理想保護点での高圧圧力の上昇を抑制する保護制御ができるが、室内側熱交換器中間部温度センサー5の位置を流れる冷媒がサブクール領域(過冷却)になった場合には、従来保護点の位置が示すように、Ti(高圧温度保護点)に達するまでの時間が遅くなり、保護にかかるタイミングが遅くなるため、最適な制御や信頼性の高い高圧圧力の上昇を抑制する保護制御ができないからである。
If YES in step 2 (S2), it is determined in step 3 (S3) whether or not the detected value (T1) of the indoor heat exchanger intermediate part temperature sensor 5 is in the subcooling region (supercooling). . This determination step is necessary for the following reasons.
For example, as shown in FIG. 3, when the refrigerant flowing through the position of the indoor side heat exchanger middle temperature sensor 5 is in a two-phase region, the timing to reach Ti (high pressure protection point) is optimal, and the high pressure at the ideal protection point Although protection control that suppresses the rise in pressure can be performed, when the refrigerant flowing through the position of the indoor heat exchanger intermediate temperature sensor 5 enters the subcool region (supercooling), the position of the conventional protection point indicates This is because the time to reach Ti (high pressure temperature protection point) is delayed and the timing for protection is delayed, so that optimal control and highly reliable protection control that suppresses an increase in high pressure pressure cannot be performed.

ステップ2(S2)でNOの場合は、室内側熱交換器入り口温度センサー6の検出値(T2)で圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで高圧圧力の上昇を抑制する保護制御を行っている。そしてさらにステップ6(S6)において、室内側熱交換器入り口温度センサー6の検出値(T2)が吐出スーパーヒート領域(加熱蒸気)に入っているか否かを判断する。この判断のためのステップは以下に述べる理由から必要となるものである。
例えば図4に示すように、前記室内側熱交換器入り口温度センサー6の位置を流れる冷媒が二相域の場合は、Ti(高圧温度保護点)に達するタイミングが最適で、理想保護点での高圧圧力の上昇を抑制する保護制御ができるが、前記室内側熱交換器入り口温度センサー6の位置を流れる冷媒が吐出スーパーヒート領域(加熱蒸気)になった場合には、従来保護点の位置が示すように、Ti(高圧温度保護点)に達するまでの時間が早くなり、保護にかかるタイミングが早いため、最適な制御や信頼性の高い高圧圧力の上昇を抑制する保護制御ができないからである。
In the case of NO in step 2 (S2), the compressor 1 or the pressure reducing device 4 is controlled by the detected value (T2) of the indoor heat exchanger inlet temperature sensor 6, and the high pressure is increased by adjusting the refrigerant circulation amount. Protection control is performed to suppress this. In step 6 (S6), it is determined whether the detected value (T2) of the indoor heat exchanger entrance temperature sensor 6 is in the discharge superheat region (heated steam). This determination step is necessary for the following reasons.
For example, as shown in FIG. 4, when the refrigerant flowing through the indoor heat exchanger entrance temperature sensor 6 is in a two-phase region, the timing to reach Ti (high pressure protection point) is optimal, and the ideal protection point is reached. Although protection control that suppresses an increase in high-pressure pressure can be performed, when the refrigerant flowing through the indoor heat exchanger inlet temperature sensor 6 enters the discharge superheat region (heated steam), the position of the conventional protection point is As shown, the time to reach Ti (high temperature temperature protection point) is faster, and the timing for protection is faster, so optimal control and highly reliable protection control that suppresses the increase in high pressure pressure cannot be performed. .

ステップ3(S3)でYESの場合は、室内側熱交換器中間部温度センサー5の位置を流れる冷媒がサブクール領域(過冷却)になっているため、室内側熱交換器中間部温度センサー5の検出値(T1)に補正を加えた値(T4=T1+T3−α)によって圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで暖房時の高圧圧力の上昇を抑制する保護制御を行う(S4)。αの値は所定値とする。なお、図3の破線直線部は、この補正後の値(T4)を示すものである。   In the case of YES in step 3 (S3), the refrigerant flowing through the position of the indoor side heat exchanger intermediate temperature sensor 5 is in the subcool region (supercooling), so that the indoor heat exchanger intermediate temperature sensor 5 Protection control that suppresses an increase in high pressure during heating by controlling the compressor 1 or the pressure reducing device 4 by adjusting the detection value (T1) with a correction (T4 = T1 + T3-α) and adjusting the refrigerant circulation rate. (S4). The value of α is a predetermined value. In addition, the broken line straight line portion in FIG. 3 indicates the corrected value (T4).

ステップ3(S3)でNOの場合は、室内側熱交換器中間部温度センサー5の位置を流れる冷媒が二相域になっているため、室内側熱交換器中間部温度センサー5の検出値によって圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで暖房時の高圧圧力の上昇を抑制する保護制御を行う(S5)。   In the case of NO in step 3 (S3), since the refrigerant flowing through the position of the indoor heat exchanger intermediate temperature sensor 5 is in a two-phase region, the detection value of the indoor heat exchanger intermediate temperature sensor 5 Protection control which controls the increase in the high pressure pressure at the time of heating by controlling the compressor 1 or the decompression device 4 and adjusting the refrigerant circulation amount is performed (S5).

ステップ6(S6)でYESの場合は、室内側熱交換器入り口温度センサー6の位置を流れる冷媒が吐出スーパーヒート領域(加熱蒸気)に入っているため、ステップ3(S3)に移行し室内側熱交換器中間部温度センサー5の検出値(T1)がサブクール領域(過冷却)に入っているか否かを判断する。   In the case of YES in step 6 (S6), since the refrigerant flowing through the position of the indoor heat exchanger entrance temperature sensor 6 is in the discharge superheat region (heated steam), the process proceeds to step 3 (S3) and the indoor side It is determined whether or not the detection value (T1) of the heat exchanger middle temperature sensor 5 is in the subcooling region (supercooling).

ステップ6(S6)でNOの場合は、室内側熱交換器入り口温度センサー6の位置を流れる冷媒が二相域になっているため、室内側熱交換器入り口温度センサー6の検出値(T2)によって圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで暖房時の高圧圧力の上昇を抑制する保護制御を行う(S7)。   In the case of NO in step 6 (S6), since the refrigerant flowing through the position of the indoor heat exchanger inlet temperature sensor 6 is in a two-phase region, the detected value (T2) of the indoor heat exchanger inlet temperature sensor 6 Thus, the compressor 1 or the pressure reducing device 4 is controlled to adjust the refrigerant circulation amount, thereby performing protection control for suppressing an increase in the high pressure during heating (S7).

以上のように、室内側熱交換器入り口温度センサー6の位置を流れる冷媒が吐出スーパーヒート領域(加熱蒸気)に入っている場合は室内側熱交換器中間部温度センサー5の位置を流れる冷媒がサブクール領域(過冷却)に入っているか否かを判断し、室内側熱交換器中間部温度センサー5の位置を流れる冷媒がサブクール領域(過冷却)に入っている場合は、室内側熱交換器入り口温度センサー6の検出値(T2)で、室内側熱交換器中間部温度センサー5の検出値(T1)に補正を加えた値(T4)によって圧縮機1または減圧装置4を制御し、冷媒循環量を調整することで最適なタイミングでの高圧圧力の上昇を抑制することが可能となる。   As described above, when the refrigerant flowing through the indoor heat exchanger entrance temperature sensor 6 enters the discharge superheat region (heating steam), the refrigerant flowing through the indoor heat exchanger intermediate temperature sensor 5 flows. It is determined whether or not the refrigerant is in the subcool region (supercooling), and if the refrigerant flowing through the position of the indoor heat exchanger middle temperature sensor 5 is in the subcool region (supercooling), the indoor heat exchanger The compressor 1 or the pressure reducing device 4 is controlled by a value (T4) obtained by correcting the detected value (T1) of the indoor heat exchanger intermediate temperature sensor 5 with the detected value (T2) of the inlet temperature sensor 6, and the refrigerant By adjusting the amount of circulation, it is possible to suppress an increase in the high pressure at an optimal timing.

1 圧縮機、2 室内側熱交換器、3 室外側熱交換器、4 減圧装置(電子制御式膨張弁)、5 室内側熱交換器中間部温度センサー、6 室内側熱交換器入り口温度センサー、7 圧縮機吐出温度センサー、8 再熱除湿用電磁弁、9 室外側吸い込み空気温度センサー、10 室外側熱交換器入り口温度センサー、11 四方弁、12 制御装置、13 室内側ユニット、14 室外側ユニット、15 室内側送風機、16 室外側送風機、17 室内側吸い込み空気温度センサー。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Indoor side heat exchanger, 3 Outdoor side heat exchanger, 4 Pressure-reduction apparatus (electronic control type expansion valve), 5 Indoor side heat exchanger intermediate temperature sensor, 6 Indoor side heat exchanger entrance temperature sensor, 7 Compressor discharge temperature sensor, 8 Reheat dehumidification solenoid valve, 9 Outdoor outside intake air temperature sensor, 10 Outdoor heat exchanger inlet temperature sensor, 11 Four-way valve, 12 Controller, 13 Indoor unit, 14 Outdoor unit , 15 indoor side blower, 16 outdoor side blower, 17 indoor side intake air temperature sensor.

Claims (1)

圧縮機、四方弁、室外側熱交換器、減圧装置、室内側熱交換器を含む冷媒回路と、
前記室内側熱交換器に設置された複数の温度センサーと、
前記温度センサーにより検出された温度に基づいて前記圧縮機または減圧装置を制御する制御装置とを備えた空気調和機において、
前記温度センサーは、
前記室内側熱交換器の暖房時入り口と出口の中間部近傍に設置された中間部温度センサーと、
前記室内側熱交換器の暖房時入り口部に設置された入り口温度センサーと、
を備え、
前記制御装置は、前記入り口温度センサーの検出値によって前記圧縮機または減圧装置を制御している状態において、前記入り口温度センサーの位置を流れる冷媒が吐出スーパーヒート領域に入っており、かつ、前記中間部温度センサーの位置を流れる冷媒がサブクール領域に入っていないと判断した場合には、前記中間部温度センサーの検出値によって前記圧縮機または減圧装置を制御することにより、暖房時の高圧圧力の上昇を抑制する保護制御を行うことを特徴とする空気調和機。
A refrigerant circuit including a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger;
A plurality of temperature sensors installed in the indoor heat exchanger;
In an air conditioner comprising a control device that controls the compressor or the decompression device based on the temperature detected by the temperature sensor,
The temperature sensor is
An intermediate temperature sensor installed in the vicinity of the intermediate portion between the entrance and exit of the indoor heat exchanger during heating,
An entrance temperature sensor installed at the entrance of the indoor heat exchanger during heating;
With
In the state where the control device controls the compressor or the decompression device based on the detection value of the inlet temperature sensor, the refrigerant flowing through the inlet temperature sensor is in the discharge superheat region, and the intermediate When it is determined that the refrigerant flowing through the temperature sensor is not in the subcool region, the compressor or the pressure reducing device is controlled by the detected value of the intermediate temperature sensor to increase the high pressure during heating. The air conditioner characterized by performing the protection control which suppresses.
JP2010044174A 2010-03-01 2010-03-01 Air conditioner Expired - Fee Related JP5634081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044174A JP5634081B2 (en) 2010-03-01 2010-03-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044174A JP5634081B2 (en) 2010-03-01 2010-03-01 Air conditioner

Publications (3)

Publication Number Publication Date
JP2011179746A JP2011179746A (en) 2011-09-15
JP2011179746A5 JP2011179746A5 (en) 2012-09-13
JP5634081B2 true JP5634081B2 (en) 2014-12-03

Family

ID=44691434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044174A Expired - Fee Related JP5634081B2 (en) 2010-03-01 2010-03-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP5634081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047832A1 (en) * 2022-09-01 2024-03-07 三菱電機株式会社 Refrigeration cycle device and air conditioning device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039941B2 (en) * 1989-12-13 2000-05-08 株式会社日立製作所 Refrigeration equipment
JP2508347B2 (en) * 1990-02-28 1996-06-19 ダイキン工業株式会社 Heat pump system
JP4572454B2 (en) * 2000-08-07 2010-11-04 三菱電機株式会社 Air conditioner
JP4583114B2 (en) * 2004-09-03 2010-11-17 三洋電機株式会社 Air conditioning apparatus and control method thereof
JP4848210B2 (en) * 2006-06-05 2011-12-28 三菱重工業株式会社 Air conditioning system and operation control method thereof

Also Published As

Publication number Publication date
JP2011179746A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5446064B2 (en) Heat exchange system
JP6693312B2 (en) Air conditioner
US10527330B2 (en) Refrigeration cycle device
JP5333365B2 (en) Air conditioner
JP5447499B2 (en) Refrigeration equipment
US8020395B2 (en) Air conditioning apparatus
JP6320639B2 (en) Air conditioner
JP4978659B2 (en) Air conditioner outdoor unit
JP6878612B2 (en) Refrigeration cycle equipment
JP4849095B2 (en) Air conditioner
JP5979112B2 (en) Refrigeration equipment
JP2010159926A (en) Air conditioner
JP4712910B1 (en) Precision air conditioner
KR101706840B1 (en) An air conditioning system and a method for controlling the same
CN104380002A (en) Radiation-type air conditioner
JP2005076933A (en) Refrigeration cycle system
JP4966742B2 (en) Air conditioner
KR20060036363A (en) A method and device to detect air humidity, and air conditioner
JP2006250440A (en) Air conditioning system
WO2015087423A1 (en) Outside air handler and air conditioner
JP5634081B2 (en) Air conditioner
JP2006250480A (en) Refrigeration device
JP5404231B2 (en) Air conditioner
JP2016020784A (en) Air conditioning device
JP2005291553A (en) Multiple air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees