JP5630397B2 - Rotating electric machine stator core - Google Patents

Rotating electric machine stator core Download PDF

Info

Publication number
JP5630397B2
JP5630397B2 JP2011168285A JP2011168285A JP5630397B2 JP 5630397 B2 JP5630397 B2 JP 5630397B2 JP 2011168285 A JP2011168285 A JP 2011168285A JP 2011168285 A JP2011168285 A JP 2011168285A JP 5630397 B2 JP5630397 B2 JP 5630397B2
Authority
JP
Japan
Prior art keywords
stator core
eddy current
core
magnetic flux
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011168285A
Other languages
Japanese (ja)
Other versions
JP2013034285A (en
Inventor
佳純 北原
佳純 北原
田中 直樹
直樹 田中
裕章 梶浦
裕章 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011168285A priority Critical patent/JP5630397B2/en
Publication of JP2013034285A publication Critical patent/JP2013034285A/en
Application granted granted Critical
Publication of JP5630397B2 publication Critical patent/JP5630397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は、圧紛磁心を用いたステータコアであって、圧紛磁心に発生する渦電流損を低減可能な回転電機のステータコアに関する。   The present invention relates to a stator core using a powder magnetic core, and relates to a stator core for a rotating electrical machine capable of reducing eddy current loss generated in a powder magnetic core.

従来、回転電機のステータコアは薄板状の鋼板を積層した珪素鋼板、又は、潤滑成分や樹脂バインダー等と共に軟磁性粉末を含む圧粉体製造材料を金型内で所定形状に圧縮成形して作成される圧紛磁心によって形成される。しかし、珪素鋼板に対して圧粉磁心では、当該圧紛磁心に発生する渦電流損が大きく、圧紛磁心によるステータコアでは、特に高速回転領域での使用が困難である。   Conventionally, a stator core of a rotating electrical machine has been produced by compressing a silicon steel plate in which thin steel plates are laminated, or a green compact manufacturing material containing soft magnetic powder together with a lubricating component and a resin binder into a predetermined shape in a mold. Formed by a magnetic core. However, in a dust core with respect to a silicon steel plate, the eddy current loss generated in the dust core is large, and it is difficult to use a stator core with a dust core particularly in a high-speed rotation region.

そこで特許文献1に記載の圧紛磁心では、図18のステータコアの一部切断斜視図に示すように、ステータコアである圧粉磁心100を加圧成型で作成する際に、双方向矢印H1で示す起磁力が発生する方向の途中部分である中間部100aの鉄粉密度を、表面100bに比べて小さくなるように成形する。この成形により、中間部100aの比抵抗が表面100bに比べ高くなり、渦電流が流れる経路(渦電流経路)の抵抗値が上がる。この結果、渦電流損が低減される。   Therefore, in the powder magnetic core described in Patent Document 1, as shown in the partially cut perspective view of the stator core in FIG. 18, when the powder magnetic core 100 as the stator core is formed by pressure molding, it is indicated by a bidirectional arrow H1. The iron powder density of the intermediate part 100a, which is an intermediate part in the direction in which the magnetomotive force is generated, is formed to be smaller than that of the surface 100b. By this molding, the specific resistance of the intermediate portion 100a becomes higher than that of the surface 100b, and the resistance value of the path through which the eddy current flows (eddy current path) increases. As a result, eddy current loss is reduced.

また、圧粉磁心100を絶縁層101を挟んで積層した場合は、絶縁層101により、渦電流経路の抵抗に対して起磁力H1を小さくすることができるので、渦電流損が低減される。   Further, when the dust core 100 is laminated with the insulating layer 101 sandwiched therebetween, the insulating layer 101 can reduce the magnetomotive force H1 with respect to the resistance of the eddy current path, thereby reducing eddy current loss.

特開2010−263042号公報JP 2010-263042 A

ところで、上記の特許文献1の圧紛磁心では、中間部100aの鉄粉密度が表面100bに比べて小さくなるように成形することで、中間部100aの比抵抗を表面100bに比べ高くして渦電流損を低減している。しかし、この渦電流損が低減されるように中間部100aの比抵抗を高くすると、鉄粉密度が下がり磁化特性が悪化することが多く、この場合、電動機や発電機の回転電機における回転トルクが低下するという問題が生じる。   By the way, in the above-described powder magnetic core of Patent Document 1, by forming the iron powder density of the intermediate portion 100a to be smaller than that of the surface 100b, the specific resistance of the intermediate portion 100a is made higher than that of the surface 100b and the vortex. Current loss is reduced. However, if the specific resistance of the intermediate portion 100a is increased so as to reduce this eddy current loss, the iron powder density is often lowered and the magnetization characteristics are deteriorated. In this case, the rotational torque in the rotating electric machine of the electric motor or generator is increased. The problem of deteriorating arises.

本発明は、このような事情に鑑みてなされたものであり、鉄粉の密度が下がって回転トルクが低下するという欠点が生じることなく、渦電流に起因する渦電流損を低減することができる回転電機のステータコアを提供することを目的とする。   This invention is made | formed in view of such a situation, and can reduce the eddy current loss resulting from an eddy current, without producing the fault that the density of iron powder falls and a rotational torque falls. It aims at providing the stator core of a rotary electric machine.

上記目的を達成するためになされた請求項1に記載の発明は、圧紛磁心により形成され、回転軸に固定されて回転する回転子の周囲に間隙を介して配設され、周方向に所定間隔で配置された複数のスロット及び当該スロット間のティース並びに当該ティースの外周側のコアバックから成る回転電機のステータコアにおいて、前記コアバックの外周に、周方向に溝部又は凸部の少なくとも一方を備えることを特徴とする。 In order to achieve the above-mentioned object, the invention according to claim 1 is formed by a compacted magnetic core, and is disposed around a rotor that is fixed to a rotating shaft and rotates with a gap therebetween. In a stator core of a rotating electrical machine comprising a plurality of slots arranged at intervals, teeth between the slots, and a core back on the outer peripheral side of the teeth, at least one of a groove portion or a convex portion in the circumferential direction is provided on the outer peripheral surface of the core back. It is characterized by providing.

この構成によれば、コアバックに周方向に発生する磁束φ1を中心に時計回り又は反時計周りに流れる渦電流i1が、凹凸形状に沿って流れる。このため、渦電流i1が通過する経路(渦電流経路)が長くなって渦電流経路の抵抗値が高くなり、渦電流i1が流れ難くなるので渦電流損が減少する。また、上記構成によれば本発明では、圧紛磁心の比抵抗を高くする処理を行う従来技術のように鉄粉の密度が下がって回転トルクが低下するという欠点が生じることなく、渦電流i1に起因する渦電流損を低減することができる。   According to this configuration, the eddy current i1 that flows clockwise or counterclockwise around the magnetic flux φ1 generated in the circumferential direction in the core back flows along the uneven shape. For this reason, the path (eddy current path) through which the eddy current i1 passes becomes longer, the resistance value of the eddy current path becomes higher, and the eddy current i1 becomes difficult to flow, so the eddy current loss is reduced. Further, according to the above configuration, in the present invention, the eddy current i1 does not occur without the disadvantage that the density of the iron powder is reduced and the rotational torque is reduced as in the prior art in which the specific resistance of the powder magnetic core is increased. The eddy current loss caused by can be reduced.

請求項2に記載の発明は、前記溝部又は凸部は、前記コアバックの外周面に前記回転軸方向に所定間隔で複数形成されることを特徴とする。   The invention according to claim 2 is characterized in that a plurality of the groove portions or convex portions are formed on the outer peripheral surface of the core back at a predetermined interval in the rotation axis direction.

この構成によれば、コアバックの外周面に複数の凹凸形状が形成されるので、渦電流i1が、複数の凹凸形状を直交状態に横切って流れる。このため、渦電流経路がより長くなって渦電流経路の抵抗値が高くなり、より渦電流i1が流れ難くなるので、渦電流損が更に減少する。   According to this configuration, since a plurality of uneven shapes are formed on the outer peripheral surface of the core back, the eddy current i1 flows across the plurality of uneven shapes in an orthogonal state. For this reason, the eddy current path becomes longer, the resistance value of the eddy current path becomes higher, and the eddy current i1 becomes more difficult to flow, so that the eddy current loss is further reduced.

請求項に記載の発明は、前記溝部に、冷媒が通過する冷却管が配設されていることを特徴とする。 The invention described in claim 3 is characterized in that a cooling pipe through which the refrigerant passes is disposed in the groove portion.

この構成によれば、冷却管を冷媒が通過することによりステータコアを冷却することができるので、ステータコアの発熱を抑制することが出来る。   According to this configuration, since the stator core can be cooled by the refrigerant passing through the cooling pipe, heat generation of the stator core can be suppressed.

実施形態に係る圧紛磁心によるステータコアが適用された回転電機の構成を示す回転軸方向の断面図である。It is sectional drawing of the rotating shaft direction which shows the structure of the rotary electric machine to which the stator core by the powder magnetic core which concerns on this embodiment was applied. (a)図1に示すステータコアを回転軸方向から見た平面図、(b)(a)に示すX1−Y1断面図である。(A) The top view which looked at the stator core shown in FIG. 1 from the rotating shaft direction, (b) It is X1-Y1 sectional drawing shown to (a). (a)実施形態のステータコアに発生する磁束φ1及び渦電流i1の流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) It is a figure which shows the flow direction of magnetic flux (phi) 1 and eddy current i1 which generate | occur | produce in the stator core of this embodiment, (b) It is a figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)一般形状のステータコアに発生する磁束φ1及び渦電流i1aの流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) The figure which shows the flow direction of magnetic flux (phi) 1 and eddy current i1a which generate | occur | produce in the stator core of a general shape, (b) The figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)一般形状のステータコアの回転軸方向の厚み寸法を示す一部断面斜視図、(b)実施形態のステータコアの外周面の凹部及び凸部の回転軸方向の寸法を示す一部断面斜視図である。(A) Partial cross-sectional perspective view showing the thickness dimension of the general-shaped stator core in the rotational axis direction, (b) Partial cross-sectional perspective view showing the dimensions of the concave and convex portions of the outer peripheral surface of the stator core of the present embodiment in the rotational axis direction. FIG. ステータコイルに200Hzの電流を供給した際に、一般形状のステータコアと本発明のステータコア全体に流れる渦電流損比を示す図である。It is a figure which shows the eddy current loss ratio which flows through the stator core of a general shape, and the stator core of this invention when a 200-Hz electric current is supplied to a stator coil. (a)ステータコアに円環状に沿って断続的に凹部が形成される軌跡を示す図、(b)半円形に凹部が形成される軌跡を示す図である。(A) The figure which shows the locus | trajectory in which a recessed part is intermittently formed along a ring shape in a stator core, (b) The figure which shows the locus | trajectory in which a recessed part is formed in a semicircle. 実施形態のステータコアの凹部に冷却管を嵌合した冷却機構の構成を示す図である。It is a figure which shows the structure of the cooling mechanism which fitted the cooling pipe to the recessed part of the stator core of this embodiment. (a)は第1参考例に係る圧紛磁心によるステータコアを回転軸方向から見た平面図、(b)(a)に示すX2−Y2断面図である。(A) is the top view which looked at the stator core by the powder magnetic core which concerns on a 1st reference example from the rotating shaft direction, (b) It is X2-Y2 sectional drawing shown to (a). (a)第1参考例のステータコアに発生する磁束φ1及び渦電流i1の流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) The figure which shows the flow direction of magnetic flux (phi) 1 and eddy current i1 which generate | occur | produce in the stator core of a 1st reference example , (b) It is a figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)一般形状のステータコアに発生する磁束φ1及び渦電流i1aの流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) The figure which shows the flow direction of magnetic flux (phi) 1 and eddy current i1a which generate | occur | produce in the stator core of a general shape, (b) The figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)第2参考例に係る圧紛磁心によるステータコアを回転軸方向から見た平面図、(b)(a)に示すX3−Y3断面図、(c)(a)に矢印Y1で示す方向から視たティース内周面の図である。(A) The top view which looked at the stator core by the powder magnetic core which concerns on a 2nd reference example from the rotating shaft direction, (b) X3-Y3 sectional drawing shown to (a), (c) The direction shown by arrow Y1 to (a) It is the figure of the teeth internal peripheral surface seen from. (a)第2参考例のステータコアのティースに発生する磁束φ2及び渦電流i2の流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) It is a figure which shows the flow direction of magnetic flux (phi) 2 and eddy current i2 which generate | occur | produce in the teeth of the stator core of a 2nd reference example , (b) It is a figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)一般形状のステータコアに発生する磁束φ2及び渦電流i2aの流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) The figure which shows the flow direction of magnetic flux (phi) 2 and eddy current i2a which generate | occur | produce in the stator core of a general shape, (b) It is a figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)は第3参考例に係る圧紛磁心によるステータコアを回転軸方向から見た平面図、(b)は(a)に示す破線枠で囲んだ1つのティース部分の拡大図、(c)は(a)に矢印Y1で示す方向から視たティース内周面の図である。(A) is the top view which looked at the stator core by the powder magnetic core which concerns on a 3rd reference example from the rotating shaft direction, (b) is an enlarged view of one teeth part enclosed with the broken-line frame shown to (a), (c). These are figures of the teeth internal peripheral surface seen from the direction shown by arrow Y1 in (a). (a)第2参考例のステータコアのティースに発生する磁束φ2及び渦電流i2の流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) It is a figure which shows the flow direction of magnetic flux (phi) 2 and eddy current i2 which generate | occur | produce in the teeth of the stator core of a 2nd reference example , (b) It is a figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. (a)一般形状のステータコアに発生する磁束φ2及び渦電流i2aの流れ方向を示す図、(b)ステータコアの凹凸形状付近の抵抗値を示す図である。(A) The figure which shows the flow direction of magnetic flux (phi) 2 and eddy current i2a which generate | occur | produce in the stator core of a general shape, (b) It is a figure which shows the resistance value of the uneven | corrugated shape vicinity of a stator core. 一般的形状のステータコアに従来技術を適用したときの中間部及び絶縁層を示す一部断面斜視図である。It is a partial cross section perspective view which shows an intermediate part and an insulating layer when a prior art is applied to the stator core of a general shape.

以下、本発明の実施形態及び参考例を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
実施形態)
図1は実施形態に係る圧紛磁心によるステータコアが適用された回転電機の構成を示す回転軸方向の断面図、図2(a)は図1に示すステータコアを回転軸方向から見た平面図、図2(b)は図2(a)に示すX1−Y1断面図である。つまり、図2(b)は図1と同様なステータコアの回転軸方向の断面図となる。
Embodiments and reference examples of the present invention will be described below with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
( Embodiment)
FIG. 1 is a cross-sectional view in the direction of a rotating shaft showing a configuration of a rotating electrical machine to which a stator core by a magnetic powder core according to the present embodiment is applied, and FIG. 2A is a plan view of the stator core shown in FIG. FIG. 2B is an X1-Y1 cross-sectional view shown in FIG. That is, FIG. 2B is a cross-sectional view in the direction of the rotation axis of the stator core similar to FIG.

図1に示す回転電機10は、例えばハイブリッド車両や電気自動車等の車両に搭載されて使用されるものであって、圧紛磁心によるステータコア17及びステータコイル16を有するステータ18と、珪素鋼板によるロータコア12及びエンドプレート14を有し界磁として働くロータ15と、ステータ18及びロータ15を収容し、締結ボルト(図示せず)によって連結、固定されたフロントハウジング10a及びリアハウジング10b等を含んで構成されている。   A rotating electrical machine 10 shown in FIG. 1 is used by being mounted on a vehicle such as a hybrid vehicle or an electric vehicle, for example. The rotating electrical machine 10 includes a stator core 17 formed of a compressed magnetic core and a stator coil 16, and a rotor core formed of a silicon steel plate. 12 and end plate 14, and includes a front housing 10a, a rear housing 10b, etc., which accommodate the stator 18 and the rotor 15, and are connected and fixed by fastening bolts (not shown). Has been.

ステータ18は、図2(a)に示すように円環状を成し、この周方向に配列された複数のスロット17a及び、スロット17a間のティース17b並びにスロット17aの外周側のコアバック17cを有するステータコア17と、ステータコア17のスロット17aに巻装され電力変換用のインバータ(図示せず)に接続された三相のコイル16とを有する。コイル16は例えば銅線である。このステータ18は、フロントハウジング10a及びリアハウジング10b間で挟持されることにより固定されており、ロータ15の外周側に径方向に所定の隙間を介して配置されている。   The stator 18 has an annular shape as shown in FIG. 2A, and has a plurality of slots 17a arranged in the circumferential direction, teeth 17b between the slots 17a, and a core back 17c on the outer peripheral side of the slots 17a. The stator core 17 and a three-phase coil 16 wound around a slot 17a of the stator core 17 and connected to an inverter (not shown) for power conversion. The coil 16 is a copper wire, for example. The stator 18 is fixed by being sandwiched between the front housing 10a and the rear housing 10b, and is disposed on the outer peripheral side of the rotor 15 via a predetermined gap in the radial direction.

ロータ15は、フロントハウジング10a及びリアハウジング10bに軸受け10cを介して回転自在に支承された回転軸11と一体になって回転するもので、回転軸11の外周面に嵌合固定されている。ロータ15は、ステータ18の内周側に径方向に所定の隙間を介して対向するよう配置されたロータコア12と、ロータコア12の内部にそれぞれ円周方向に所定間隔を空けて配置された複数の永久磁石13と、回転軸11の外周面に嵌合固定されてロータコア12の回転軸方向両端面に当接した状態に配設された円環状の一対のエンドプレート14,14とを有する。一対のエンドプレート14,14は、例えばアルミやSUSなどの非磁性体により形成されている。   The rotor 15 rotates integrally with the rotary shaft 11 rotatably supported by the front housing 10a and the rear housing 10b via the bearing 10c, and is fitted and fixed to the outer peripheral surface of the rotary shaft 11. The rotor 15 includes a rotor core 12 disposed to face the inner peripheral side of the stator 18 via a predetermined gap in the radial direction, and a plurality of rotor cores 12 disposed at predetermined intervals in the circumferential direction inside the rotor core 12. The permanent magnet 13 has a pair of annular end plates 14 and 14 that are fitted and fixed to the outer peripheral surface of the rotating shaft 11 and are in contact with both end surfaces of the rotor core 12 in the rotating shaft direction. The pair of end plates 14 and 14 are formed of a nonmagnetic material such as aluminum or SUS, for example.

本実施形態の特徴は、ステータコア17のコアバック17cの外周面に溝部(凹部)21を設けて、凹部21及び凸部22を形成した点にある。詳細には、図2(b)に示す断面長方形状のコアバック17cの外周面に、当該外周方向に沿った円環状に凹溝(又は凹部)21を形成し、更に凹溝21を起磁力方向H1に所定間隔で複数(本例では2つ)形成することにより凸部22を形成した点にある。但し、上記コアバック17cの外周面に、外周方向に沿って円環状に凸部22としての凸条22を形成し、この凸条22を起磁力方向H1に所定間隔で複数(本例では3つ)形成することにより凹部21を形成してもよい。なお、凹部21及び凸部22を、凹凸形状21,22ともいう。また、凹部21又は凸部22は1つでも良い。   A feature of the present embodiment is that a groove (concave portion) 21 is provided on the outer peripheral surface of the core back 17c of the stator core 17, and the concave portion 21 and the convex portion 22 are formed. Specifically, a concave groove (or a concave portion) 21 is formed in an annular shape along the outer peripheral direction on the outer peripheral surface of the core back 17c having a rectangular cross section shown in FIG. The convex portion 22 is formed by forming a plurality (two in this example) at predetermined intervals in the direction H1. However, on the outer peripheral surface of the core back 17c, convex ridges 22 as the convex portions 22 are formed in an annular shape along the outer peripheral direction, and a plurality (three in this example) of the convex ridges 22 are formed in the magnetomotive force direction H1. The recess 21 may be formed by forming. The concave portion 21 and the convex portion 22 are also referred to as concave and convex shapes 21 and 22. Moreover, the number of the recessed part 21 or the convex part 22 may be one.

このような凹凸形状21,22とした場合、図3(a)に示すように、ステータコア17に図面の表から裏側に向かう周回方向に磁束φ1が流れており、磁束φ1の磁束量が減少している場合を想定すると、渦電流i1は、その磁束φ1の変化を妨げるようにφ1の周りを時計回り方向にステータコア17の断面長方形の周辺を周回し、この周回途中に凹部21及び凸部22に沿って流れる。   In the case of such concavo-convex shapes 21 and 22, as shown in FIG. 3A, the magnetic flux φ1 flows in the circumferential direction from the front to the back of the drawing in the stator core 17, and the magnetic flux amount of the magnetic flux φ1 decreases. Assuming that the eddy current i1 circulates around the periphery of the rectangular cross section of the stator core 17 in the clockwise direction around φ1 so as to prevent the change of the magnetic flux φ1, the concave portion 21 and the convex portion 22 are in the middle of the circulation. Flowing along.

ここで、図4(a)に示す形状のステータコア100に図3(a)と同方向に磁束φ1が発生し、磁束量が減少している場合には、その磁束φ1の周りを時計回り方向に渦電流i1aは流れる。この渦電流i1aが流れる外周面の経路(渦電流経路)の抵抗値は、例えば図4(b)にR1,R2,R3,R4,R5で示す値となる。   Here, when the magnetic flux φ1 is generated in the stator core 100 having the shape shown in FIG. 4A in the same direction as in FIG. 3A and the amount of magnetic flux is reduced, the direction around the magnetic flux φ1 is clockwise. Eddy current i1a flows. The resistance value of the path (eddy current path) on the outer peripheral surface through which this eddy current i1a flows is, for example, a value indicated by R1, R2, R3, R4, and R5 in FIG.

これに対して、本実施形態のステータコア17では、その外周面が凹凸形状21,22となっているため、渦電流i1が流れる外周面の渦電流経路の抵抗値は、図3(b)にR1,R1a,R2,R2a,R3,R3a,R4,R4a,R5で示すように、図4(a)のステータコア100よりもR1a,R2a,R3a,R4a分増加する。   On the other hand, in the stator core 17 of the present embodiment, since the outer peripheral surfaces thereof are concave and convex shapes 21 and 22, the resistance value of the eddy current path on the outer peripheral surface through which the eddy current i1 flows is shown in FIG. As indicated by R1, R1a, R2, R2a, R3, R3a, R4, R4a, and R5, it is increased by R1a, R2a, R3a, and R4a as compared with the stator core 100 of FIG.

つまり、本実施形態のステータコア17によれば、外周面が凹凸形状21,22なので、図4(a)の外周面が平坦なステータコア100よりも、渦電流i1が流れる経路が長くなって渦電流経路の抵抗値が高くなる。このように渦電流経路の抵抗値が高くなると、渦電流i1が流れ難くなるので渦電流損が減少する。この渦電流損の低減効果は、回転電機10の高速回転時には表皮効果で表面により電流が集中するので、より効果がある。   That is, according to the stator core 17 of the present embodiment, since the outer peripheral surfaces are 21 and 22, the path through which the eddy current i1 flows becomes longer than that of the stator core 100 having a flat outer peripheral surface in FIG. The resistance value of the path becomes high. Thus, when the resistance value of the eddy current path becomes high, the eddy current i1 becomes difficult to flow, so the eddy current loss is reduced. This effect of reducing the eddy current loss is more effective because the current concentrates on the surface due to the skin effect when the rotating electrical machine 10 rotates at high speed.

ここで、図5(a)に示す回転軸方向の厚み寸法L1が20mmのステータコアに発生する渦電流損と、図5(b)に示すステータコア17の外周面に凹部21の回転軸方向の寸法L2が6mm、凸部22の回転軸方向の寸法L3が4mmとなる凹凸形状21,22が形成されているステータコアに発生する渦電流損とを比較したシミュレーション結果を図6に示す。尚、図5(a)、図5(b)のステータコアの材料特性は同じにしてシミュレーションしている。   Here, the eddy current loss generated in the stator core having a thickness dimension L1 of 20 mm in the rotation axis direction shown in FIG. 5A and the dimension in the rotation axis direction of the recess 21 on the outer peripheral surface of the stator core 17 shown in FIG. FIG. 6 shows a simulation result comparing eddy current loss generated in the stator core formed with the concave and convex shapes 21 and 22 in which L2 is 6 mm and the convex portion 22 has a dimension L3 in the rotation axis direction of 4 mm. In addition, it simulated by making the material characteristic of the stator core of Fig.5 (a) and FIG.5 (b) the same.

ステータコイル16に周波数200Hzの電流を流した場合、図6に示すように、ステータコア全体の渦電流損比は、図5(a)のステータコア100の渦電流損を1とした場合、図5(b)のステータコア17の渦電流損は0.8〜0.9の間と減少する。   When a current of 200 Hz is passed through the stator coil 16, as shown in FIG. 6, the eddy current loss ratio of the entire stator core is as shown in FIG. 5 (1) when the eddy current loss of the stator core 100 in FIG. The eddy current loss of the stator core 17 of b) decreases between 0.8 and 0.9.

ところで、圧紛磁心の中間部の比抵抗を高くして渦電流損を低減していたステータコアでは、鉄粉の密度が下がり磁化特性が悪化して回転電機における回転トルクが低下していた。しかし、本実施形態のステータコア17では、当該ステータコア17の外周面に凹凸形状21,22を形成することにより渦電流経路を長くしてその抵抗値を上げ、これにより渦電流損を低減するので、圧紛磁心の中間部の比抵抗を高くしたステータコアのように磁化特性が悪化することは無く、回転電機10の回転トルクが低下するといったことは生じない。従って、鉄粉の密度が下がって回転トルクが低下するという欠点が生じることなく、渦電流i1に起因する渦電流損を低減することができる。   By the way, in the stator core in which the specific resistance of the intermediate portion of the powder magnetic core is increased to reduce the eddy current loss, the density of the iron powder is lowered, the magnetization characteristics are deteriorated, and the rotational torque in the rotating electrical machine is reduced. However, in the stator core 17 of the present embodiment, by forming the concave and convex shapes 21 and 22 on the outer peripheral surface of the stator core 17, the eddy current path is lengthened to increase its resistance value, thereby reducing the eddy current loss. Unlike the stator core in which the specific resistance of the intermediate portion of the powder magnetic core is increased, the magnetization characteristics do not deteriorate, and the rotating torque of the rotating electrical machine 10 does not decrease. Therefore, the eddy current loss caused by the eddy current i1 can be reduced without causing the disadvantage that the density of the iron powder decreases and the rotational torque decreases.

また、ステータコア17の外周面の凹凸形状21,22は、上記のように連続した円環状でなく、図7(a)に線分C1で示すように、ステータコア17の外周面に沿って断続的に形成されるものであってもよく、図7(b)に線分C2で示すように半円形状に形成されるものであっても良い。この半円形状は半円に近い円弧状であっても良い。これらの場合も、ステータコア17の外周面の一部分が凹凸形状21,22となっているので、渦電流損を低減することが出来る。   Further, the concave and convex shapes 21 and 22 on the outer peripheral surface of the stator core 17 are not continuous annular as described above, but intermittently along the outer peripheral surface of the stator core 17 as indicated by a line segment C1 in FIG. It may be formed in a semicircular shape as indicated by a line segment C2 in FIG. The semicircular shape may be an arc shape close to a semicircle. Also in these cases, since a part of the outer peripheral surface of the stator core 17 has the uneven shapes 21 and 22, eddy current loss can be reduced.

更に、図8に示すように、ステータコア17の凹部21に冷却管30を嵌合し、この嵌合された冷却管30に、冷媒貯留部31に貯留された冷媒をポンプ32によって循環させる冷却機構33を設けても良い。ポンプ32は回転電機10によって駆動され、その吐出口32aが冷却管30の入口30aに配管34aによって接続され、吸入口32bが冷却管30の出口30bに配管34bによって接続されている。   Further, as shown in FIG. 8, a cooling pipe 30 is fitted into the recess 21 of the stator core 17, and a cooling mechanism that circulates the refrigerant stored in the refrigerant storage part 31 by a pump 32 in the fitted cooling pipe 30. 33 may be provided. The pump 32 is driven by the rotating electrical machine 10, the discharge port 32 a is connected to the inlet 30 a of the cooling pipe 30 by a pipe 34 a, and the suction port 32 b is connected to the outlet 30 b of the cooling pipe 30 by a pipe 34 b.

このような冷却機構33によって、ポンプ32で冷却管30に冷媒を循環させれば、ステータコア17を冷却することができ、これによりステータコア17の発熱を抑制することが出来る。
(第1参考例
図9(a)は第1参考例に係る圧紛磁心によるステータコアを回転軸方向から見た平面図、図9(b)は図9(a)に示すX2−Y2断面図である。
With such a cooling mechanism 33, if the refrigerant is circulated through the cooling pipe 30 by the pump 32, the stator core 17 can be cooled, and thereby heat generation of the stator core 17 can be suppressed.
(First Reference Example )
FIG. 9A is a plan view of a stator core formed of a powder magnetic core according to the first reference example as viewed from the direction of the rotation axis, and FIG. 9B is a cross-sectional view taken along the line X2-Y2 shown in FIG.

図9に示す第1参考例のステータコア17−1の特徴は、コアバック17cの回転軸方向から見た両側(又は片側)の円環状端面に溝部(凹部)31を設けて、円環状に凹部31及び凸部32を形成した点にある。詳細には、図9(b)に示す断面長方形状のコアバック17cの円環状端面に、回転軸11を中心とする同心円状に少なくとも1つ以上(本例では2つ)の溝部(又は凹部)31を形成した点にある。さらには、溝部を2つ以上形成し、これにより凸部を形成した点にある。なお、上記コアバック17cの円環状端面に、回転軸11を中心とする同心円状に少なくとも1つ以上の突部(凸部)32を形成するようにしてもよい。さらには、突部(凸部)32を2つ以上形成し、これにより凹部32を形成するようにしても良い。また、ここでは、凹部31及び凸部32をあわせて凹凸形状31,32ともいう。 The stator core 17-1 of the first reference example shown in FIG. 9 is characterized in that grooves (recesses) 31 are provided on the annular end surfaces on both sides (or one side) viewed from the rotational axis direction of the core back 17c, and the recesses are formed in an annular shape. 31 and the convex part 32 are formed. Specifically, at least one (two in this example) grooves (or recesses) concentrically around the rotation shaft 11 are formed on the annular end surface of the core back 17c having a rectangular cross section shown in FIG. 9B. ) 31 is formed. Furthermore, two or more groove portions are formed, thereby forming a convex portion. Note that at least one or more protrusions (convex portions) 32 may be formed concentrically around the rotation shaft 11 on the annular end surface of the core back 17c. Furthermore, two or more protrusions (convex parts) 32 may be formed, and thereby the concave part 32 may be formed. Here, the concave portion 31 and the convex portion 32 are also referred to as the concave and convex shapes 31 and 32.

このような凹凸形状31,32とした場合、図10(a)に示すように、ステータコア17−1に図面の表から裏側に向かう周回方向に磁束φ1が流れており、磁束φ1の磁束量が減少している場合を想定すると、渦電流i1が、その磁束φ1の変化を妨げるようにφ1の周りを時計回り方向にステータコア17の断面長方形の周辺を周回し、この周回途中に凹部31及び凸部32に沿って流れる。   In the case of such concavo-convex shapes 31 and 32, as shown in FIG. 10A, the magnetic flux φ1 flows through the stator core 17-1 in the circumferential direction from the front side to the back side of the drawing, and the magnetic flux amount of the magnetic flux φ1 is Assuming that the eddy current i1 is decreasing, the eddy current i1 circulates around the rectangular section of the stator core 17 in the clockwise direction around φ1 so as to prevent the change of the magnetic flux φ1. It flows along the part 32.

ここで、図11(a)に示すようなステータコア100に図10(a)と同方向に磁束φ1が発生し、磁束量が減少している場合には、その磁束φ1の周りを時計回り方向に渦電流i1aが流れる。この渦電流i1aが流れるコアバック17cの円環状端面の経路の抵抗値は、例えば図11(b)にR11,R12,R13,R14,R15で示す値となる。   Here, when the magnetic flux φ1 is generated in the stator core 100 as shown in FIG. 11A in the same direction as in FIG. 10A and the amount of magnetic flux decreases, the direction around the magnetic flux φ1 is clockwise. Eddy current i1a flows through For example, the resistance value of the path of the annular end surface of the core back 17c through which the eddy current i1a flows is a value indicated by R11, R12, R13, R14, and R15 in FIG.

これに対して、本参考例のステータコア17−1では、その回転軸方向端面が凹凸形状31,32となっているため、渦電流i1が流れるコアバック17cの回転軸方向端面の経路の抵抗値は、図10(b)にR11,R11a,R12,R12a,R13,R13a,R14,R14a,R15で示すように、一般形状のステータコア100よりもR11a,R12a,R13a,R14a分増加する。 On the other hand, in the stator core 17-1 of the present reference example, the end surface in the rotation axis direction has the irregular shapes 31 and 32, and therefore the resistance value of the path of the end surface in the rotation axis direction of the core back 17c through which the eddy current i1 flows. As shown by R11, R11a, R12, R12a, R13, R13a, R14, R14a, and R15 in FIG. 10B, it increases by R11a, R12a, R13a, and R14a than the stator core 100 having a general shape.

つまり、本参考例のステータコア17−1によれば、回転軸方向端面が凹凸形状31,32となっているので、図11(a)に示すような軸方向端面が平坦なステータコア100よりも、渦電流i1が流れる経路が長くなって渦電流経路の抵抗値が高くなる。従って、渦電流経路の抵抗値が高くなって渦電流i1が流れ難くなるので渦電流損が減少する。 That is, according to the stator core 17-1 of the present reference example, the end surfaces in the rotation axis direction are concave and convex shapes 31 and 32, so that the axial end surfaces as shown in FIG. The path through which the eddy current i1 flows becomes longer and the resistance value of the eddy current path becomes higher. Therefore, since the resistance value of the eddy current path becomes high and the eddy current i1 hardly flows, the eddy current loss is reduced.

このように第1参考例の圧紛磁心によるステータコア17−1では、実施形態と同様に、圧紛磁心の中間部の比抵抗を高くしたステータコアのように鉄粉の密度が下がって回転トルクが低下するという欠点が生じることなく、渦電流i1に起因する渦電流損を低減することができる。 In the stator core 17-1 Thus by compressed powder magnetic core of the first reference example, as in the present embodiment, the rotational torque down the density of iron powder as higher the stator core resistivity of the intermediate portion of the compressed powder magnetic core The eddy current loss caused by the eddy current i1 can be reduced without causing the disadvantage of lowering.

また、ステータコア17−1の円環状の軸方向端面の凹凸形状31,32は、実施形態で説明したと同様に、連続した円環状でなく、図7(a)に線分C1で示したように、ステータコア17−1の円環状端面の内周に断続的に形成されるものであってもよく、また、図7(b)に線分C2で示したように、ステータコア17−1の円環状端面の内周に円弧状に形成されるものであっても、渦電流損を低減することが出来る。 Further, the concave and convex shapes 31 and 32 of the annular axial end face of the stator core 17-1 are not continuous annular shapes as described in the present embodiment, and are indicated by a line segment C1 in FIG. Thus, it may be formed intermittently on the inner periphery of the annular end surface of the stator core 17-1, and as indicated by the line C2 in FIG. Even if it is formed in an arc shape on the inner periphery of the annular end face, eddy current loss can be reduced.

更に、ステータコア17−1の凹部31に、実施形態と同様に、図8に示したように冷却管30を嵌合した冷却機構33を設けても良く、この場合もステータコア17−1の発熱を抑制することが出来る。 Further, as in the present embodiment, a cooling mechanism 33 fitted with the cooling pipe 30 may be provided in the concave portion 31 of the stator core 17-1, and in this case, the heat generation of the stator core 17-1 may be provided. Can be suppressed.

更には、ステータコア17−1の外周面に実施形態の凹凸形状21,22を追加してもよい、この場合、ステータコア17−1の外周面及びコアバック17cの軸方向端面に凹凸形状21,22及び凹凸形状31,32の双方が設けられるので、より渦電流損を低減できる効果がある。
(第2参考例
図12(a)は第2参考例に係る圧紛磁心によるステータコアを回転軸方向から見た平面図、図12(b)は図12(a)に示すX3−Y3断面図、図12(c)は図12(a)に矢印Y1で示す方向から視たティース内周面の図である。
Furthermore, the uneven shapes 21 and 22 of the present embodiment may be added to the outer peripheral surface of the stator core 17-1. In this case, the uneven shapes 21 and 22 are formed on the outer peripheral surface of the stator core 17-1 and the axial end surface of the core back 17c. 22 and the concavo-convex shapes 31 and 32 are provided, so that the eddy current loss can be further reduced.
( Second reference example )
12A is a plan view of a stator core formed of a magnetic powder core according to a second reference example as viewed from the direction of the rotation axis, FIG. 12B is a cross-sectional view taken along the line X3-Y3 shown in FIG. 12A, and FIG. ) Is a view of the inner peripheral surface of the tooth viewed from the direction indicated by the arrow Y1 in FIG.

図12に示す第2参考例のステータコア17−2の特徴は、ステータコア17−2のティース17b−1のスロット17a側の面に、凹部41及び凸部42を形成した点にある。詳細には、図12(b)及び図12(c)に示すように、ティース17b−1のスロット17a側の面に、径方向に沿って延びる溝部(又は凹部)41を形成し、更に溝部41を回転軸方向に所定間隔で複数(本例では2つ)形成することにより凸部42を形成した点にある。但し、上記ティース17b−1のスロット17a側の面に、径方向に沿って延びる凸部42としての凸条を形成し、この凸条42を回転軸方向に所定間隔で複数(本例では2つ)形成することにより凹部41を形成してもよい。なお、凹部41及び凸部42を、凹凸形状41,42ともいう。また、凹部41又は凸部42は1つでも良い。 The feature of the stator core 17-2 of the second reference example shown in FIG. 12 is that a concave portion 41 and a convex portion 42 are formed on the surface of the teeth 17b-1 of the stator core 17-2 on the slot 17a side. Specifically, as shown in FIGS. 12B and 12C, a groove (or recess) 41 extending in the radial direction is formed on the surface of the teeth 17b-1 on the slot 17a side, and the groove is further formed. The convex portion 42 is formed by forming a plurality of 41 (two in this example) at predetermined intervals in the rotation axis direction. However, protrusions 42 are formed as protrusions 42 extending in the radial direction on the surface of the teeth 17b-1 on the slot 17a side, and a plurality of protrusions 42 (2 in this example) are formed at predetermined intervals in the rotation axis direction. The recess 41 may be formed by forming. In addition, the recessed part 41 and the convex part 42 are also called uneven | corrugated shape 41,42. Moreover, the number of the recessed part 41 or the convex part 42 may be one.

このような凹凸形状41,42を備えた場合、図13(a)に示すように、磁束φ2がティース17b−1の内周面へ入って径方向に流れており、磁束φ2の磁束量が減少している場合(図面の表から裏方向へ流れる場合)を想定すると、その磁束φ2の変化を妨げるようにφ2の周りを渦電流i2は時計回り方向に流れる。この流れは、磁束φ2の発生方向と直交するティース17b−1の軸方向断面の内周を周回する経路となり、渦電流は、この周回途中に設けられた凹部41及び凸部42に沿って流れることになる。   When such uneven shapes 41 and 42 are provided, as shown in FIG. 13A, the magnetic flux φ2 enters the inner peripheral surface of the teeth 17b-1 and flows in the radial direction, and the magnetic flux amount of the magnetic flux φ2 is Assuming a decrease (when flowing from the front to the back of the drawing), the eddy current i2 flows in the clockwise direction around φ2 so as to prevent the change of the magnetic flux φ2. This flow becomes a path that goes around the inner circumference of the cross section in the axial direction of the teeth 17b-1 orthogonal to the direction in which the magnetic flux φ2 is generated, and the eddy current flows along the concave portion 41 and the convex portion 42 provided in the middle of the round. It will be.

ここで、図14(a)に示すステータコア100のティース117bに図13(a)と同方向に磁束φ2、磁束量が減少している場合は、その磁束φ2の周りを時計回り方向に渦電流i2aが流れる。即ち、ティース117bの軸方向断面の内周を周回する方向に渦電流i2aが流れる。この渦電流i2aが流れる渦電流経路の抵抗のうち、ティース117bの左右対称の内周面の右側経路の抵抗値は、例えば図14(b)に示されるようにR21,R22,R23,R24,R25となる。   Here, when the magnetic flux φ2 and the magnetic flux amount are reduced in the teeth 117b of the stator core 100 shown in FIG. 14A in the same direction as FIG. 13A, the eddy current is clockwise around the magnetic flux φ2. i2a flows. That is, the eddy current i2a flows in a direction that goes around the inner circumference of the cross section in the axial direction of the tooth 117b. Of the resistance of the eddy current path through which the eddy current i2a flows, the resistance value of the right path of the symmetrical inner peripheral surface of the teeth 117b is, for example, R21, R22, R23, R24, as shown in FIG. R25.

これに対して、本参考例のティース17b−1では、その軸方向断面が凹凸形状41,42となっているため、右側経路の抵抗値は、図13(b)に示されるようにR21,R21a,R22,R22a,R23,R23a,R24,R24a,R25となり,図14(a)のステータコア100よりもR21a,R22a,R23a,R24a分抵抗が増加する。 On the other hand, in the tooth 17b-1 of the present reference example , since the axial cross section has the concave and convex shapes 41 and 42, the resistance value of the right path is R21, as shown in FIG. R21a, R22, R22a, R23, R23a, R24, R24a, R25, and the resistance is increased by R21a, R22a, R23a, R24a compared to the stator core 100 of FIG.

つまり、本参考例のステータコア17−2によれば、ティース17b−1のスロット17a側の面が凹凸形状41,42なので、ティース117bの同面が平坦なステータコア100よりも、渦電流i2が流れる経路が長くなって渦電流経路の抵抗値が高くなる。これによって、磁束φ2に起因する渦電流i2が流れ難くなるので渦電流損が減少する。このように第2参考例の圧紛磁心によるステータコア17−2では、鉄粉の密度が下がって回転トルクが低下するという欠点が生じることなく、渦電流i2に起因する渦電流損を低減することができる。
(第3参考例
図15(a)は第3参考例に係る圧紛磁心によるステータコアを回転軸方向から見た平面図、図15(b)は図15(a)に示す破線枠で囲んだ1つのティース部分の拡大図、図15(c)は図15(a)に矢印Y1で示す方向から視たティース内周面の図である。
In other words, according to the stator core 17-2 of the present reference example , the surface on the slot 17a side of the teeth 17b-1 has the concave and convex shapes 41 and 42. Therefore, the eddy current i2 flows more than the stator core 100 having the flat surface of the teeth 117b. The path becomes longer and the resistance value of the eddy current path becomes higher. This makes it difficult for the eddy current i2 caused by the magnetic flux φ2 to flow, so that the eddy current loss is reduced. As described above, in the stator core 17-2 using the powder magnetic core of the second reference example , the eddy current loss caused by the eddy current i2 is reduced without causing the disadvantage that the density of the iron powder decreases and the rotational torque decreases. Can do.
( Third reference example )
FIG. 15A is a plan view of a stator core formed of a powder magnetic core according to the third reference example as seen from the direction of the rotation axis, and FIG. 15B is a view of one tooth portion surrounded by a broken line frame shown in FIG. FIG. 15C is an enlarged view and FIG. 15C is a view of the inner peripheral surface of the tooth viewed from the direction indicated by the arrow Y1 in FIG.

図15に示す第3参考例のステータコア17−3の特徴は、ティース17b−2の回転軸方向から見た両側(又は片側)の端面(ティース端面)に溝部(凹部)51を設けて、凹部51及び凸部52を形成した点にある。詳細には、図15(b)及び図15(c)に示すように、ティース17b−2の端面に、径方向に沿って延びる溝部(又は凹部)51を形成し、この溝部51を少なくとも1つ以上(本例では1つ)円周方向に所定間隔で形成することにより凸部52を形成した点にある。但し、上記ティース17b−2の端面に、径方向に沿って延びる凸部52としての凸条を形成し、この凸条52を少なくとも1つ円周方向に設けるようにしても良い。さらに、凸部を2つ以上所定間隔で形成することにより凹部51を形成してもよい。なお、凹部51及び凸部52を、凹凸形状51,52ともいう。 The feature of the stator core 17-3 of the third reference example shown in FIG. 15 is that grooves (recesses) 51 are provided on the end surfaces (tooth end surfaces) on both sides (or one side) viewed from the rotation axis direction of the teeth 17b-2. 51 and the convex part 52 are formed. Specifically, as shown in FIGS. 15B and 15C, a groove (or recess) 51 extending along the radial direction is formed on the end surface of the teeth 17 b-2, and the groove 51 is at least one. One or more (one in this example) is that the convex portions 52 are formed by forming them at predetermined intervals in the circumferential direction. However, it is also possible to form protrusions as protrusions 52 extending along the radial direction on the end face of the tooth 17b-2 and to provide at least one protrusion 52 in the circumferential direction. Further, the concave portion 51 may be formed by forming two or more convex portions at a predetermined interval. In addition, the recessed part 51 and the convex part 52 are also called uneven | corrugated shape 51,52.

このような凹凸形状51,52とした場合、図16(a)に示すように、磁束φ2がティース17b−2の内周面へ入って径方向に流れ(図面の表から裏方向へ流れる場合)、磁束φ2の磁束量が減少している場合を想定すると、その磁束φ2の変化を妨げるようにφ2の周りを渦電流i2は時計回り方向に流れる。この流れは、磁束φ2の発生方向と直交するティース17b−1の軸方向断面の内周を周回する経路となり、渦電流は、周回途中に凹部51及び凸部52に沿って流れることになる。   In the case of such uneven shapes 51 and 52, as shown in FIG. 16A, the magnetic flux φ2 enters the inner peripheral surface of the teeth 17b-2 and flows in the radial direction (when flowing from the front to the back of the drawing). ), Assuming that the magnetic flux amount of the magnetic flux φ2 is decreasing, the eddy current i2 flows clockwise around φ2 so as to prevent the change of the magnetic flux φ2. This flow becomes a path that goes around the inner circumference of the cross section in the axial direction of the tooth 17b-1 orthogonal to the direction in which the magnetic flux φ2 is generated, and the eddy current flows along the concave portion 51 and the convex portion 52 in the middle of the round.

ここで、図17(a)に示すステータコア100のティース117bに図16(a)と同方向に磁束φ2が発生し、磁束量が減少している場合は、その磁束φ2の周りを時計回り方向に渦電流i2aが流れる。即ち、ティース117bの軸方向断面の内周を周回する方向に渦電流i2aが流れる。この渦電流i2aが流れる渦電流経路の抵抗のうち、ティース117bの上下対称の軸方向断面内周面の上側端部における経路の抵抗値は、例えば図17(b)に示すようにR31,R32,R33となる。   Here, when the magnetic flux φ2 is generated in the teeth 117b of the stator core 100 shown in FIG. 17A in the same direction as in FIG. 16A and the amount of the magnetic flux is reduced, the direction around the magnetic flux φ2 is clockwise. An eddy current i2a flows through. That is, the eddy current i2a flows in a direction that goes around the inner circumference of the cross section in the axial direction of the tooth 117b. Of the resistance of the eddy current path through which the eddy current i2a flows, the resistance value of the path at the upper end of the axially symmetric axial cross section of the teeth 117b is, for example, R31 and R32 as shown in FIG. , R33.

これに対して、本参考例のティース17b−2では、その上下対称の軸方向断面において軸方向両端面の形状が凹凸形状51,52となっているため、例えば、上側経路の抵抗値は、図16(b)に示すようにR31,R31a,R32,R32a,R33となり図17(a)に示すステータコア100よりもR31a,R32a分抵抗が増加する。 On the other hand, in the teeth 17b-2 of the present reference example , the shape of both end surfaces in the axial direction is the concave and convex shapes 51 and 52 in the vertically symmetric axial cross section. For example, the resistance value of the upper path is As shown in FIG. 16B, R31, R31a, R32, R32a, and R33 are obtained, and the resistance increases by R31a and R32a as compared with the stator core 100 shown in FIG.

つまり、本参考例のステータコア17−3によれば、ティース17b−2の端面が凹凸形状51,52なので、ティース117bの同面が平坦なステータコア100よりも、渦電流i2が流れる経路が長くなって渦電流経路の抵抗値が高くなる。これによって、磁束φ2に起因する渦電流i2が流れ難くなるので渦電流損が減少する。このように第3参考例の圧紛磁心によるステータコア17−3では、鉄粉の密度が下がって回転トルクが低下するという欠点が生じることなく、渦電流i2に起因する渦電流損を低減することができる。 That is, according to the stator core 17-3 of the present reference example , the end surfaces of the teeth 17b-2 are uneven shapes 51 and 52. Therefore, the path through which the eddy current i2 flows is longer than the stator core 100 having the same surface of the teeth 117b. As a result, the resistance value of the eddy current path increases. This makes it difficult for the eddy current i2 caused by the magnetic flux φ2 to flow, so that the eddy current loss is reduced. As described above, in the stator core 17-3 using the powder magnetic core of the third reference example , the eddy current loss caused by the eddy current i2 is reduced without causing the disadvantage that the density of the iron powder decreases and the rotational torque decreases. Can do.

更に、ティース17b−2のスロット17a側の面に第2参考例の凹凸形状41,42を追加してもよい、この場合、ティース17b−2のスロット17a側の面及び端面に凹凸形状41,42及び凹凸形状51,52の双方が設けられるので、より渦電流損を低減できる効果がある。 Furthermore, the uneven shape 41, 42 of the second reference example may be added to the surface of the tooth 17b-2 on the slot 17a side. In this case, the uneven shape 41, 42 is provided on the surface and end surface of the tooth 17b-2 on the slot 17a side. Since both 42 and the concavo-convex shapes 51 and 52 are provided, the eddy current loss can be further reduced.

なお、上述した凹凸形状21,22,31,32,41,42,51,52の角は面取りされていてもよく、R状の凸曲面となっていてもよい。   Note that the corners of the above-described uneven shapes 21, 22, 31, 32, 41, 42, 51, 52 may be chamfered or may be R-shaped convex curved surfaces.

10 回転電機
11 回転軸
12 ロータコア
13 永久磁石
14 エンドプレート
15 ロータ
16 コイル
17,17−1,17−2,17−3 ステータコア
17a スロット
17b,17b−1,17b−2 ティース
17c コアバック
18 ステータ
21,31,41,51 凹部(凹溝)
22,32,42,52 凸部
30 冷却管
31 冷媒貯留部
32 ポンプ
33 冷却機構
34a,34b 配管
φ1,φ2 磁束
i1,i1a,i2,i2a 渦電流
DESCRIPTION OF SYMBOLS 10 Rotating electric machine 11 Rotating shaft 12 Rotor core 13 Permanent magnet 14 End plate 15 Rotor 16 Coil 17, 17-1, 17-2, 17-3 Stator core 17a Slot 17b, 17b-1, 17b-2 Teeth 17c Core back 18 Stator 21 , 31, 41, 51 Recess (concave groove)
22, 32, 42, 52 Convex part 30 Cooling pipe 31 Refrigerant storage part 32 Pump 33 Cooling mechanism 34a, 34b Piping φ1, φ2 Magnetic flux i1, i1a, i2, i2a Eddy current

Claims (3)

圧紛磁心により形成され、回転軸に固定されて回転する回転子の周囲に間隙を介して配設され、周方向に所定間隔で配置された複数のスロット及び当該スロット間のティース並びに当該ティースの外周側のコアバックから成る回転電機のステータコアにおいて、
前記コアバックの外周に、周方向に溝部又は凸部の少なくとも一方を備えることを特徴とする回転電機のステータコア。
A plurality of slots, which are formed by a powder magnetic core, are arranged around a rotor that is fixed to a rotating shaft and rotates with a gap therebetween, and are arranged at predetermined intervals in the circumferential direction, and teeth of the teeth. In the stator core of a rotating electrical machine consisting of a core back on the outer peripheral side,
A stator core for a rotating electrical machine, comprising at least one of a groove portion or a convex portion in a circumferential direction on an outer peripheral surface of the core back.
前記溝部又は凸部は、前記コアバックの外周面に前記回転軸方向に所定間隔で複数形成されることを特徴とする請求項1に記載の回転電機のステータコア。   2. The stator core of a rotating electrical machine according to claim 1, wherein a plurality of the groove portions or the convex portions are formed at predetermined intervals in the rotation axis direction on the outer peripheral surface of the core back. 前記溝部に、冷媒が通過する冷却管が配設されていることを特徴とする請求項1又は2に記載の回転電機のステータコア。 The stator core of a rotary electric machine according to claim 1 or 2 in the groove, characterized in that the cooling pipes which refrigerant passes are provided.
JP2011168285A 2011-08-01 2011-08-01 Rotating electric machine stator core Expired - Fee Related JP5630397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168285A JP5630397B2 (en) 2011-08-01 2011-08-01 Rotating electric machine stator core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168285A JP5630397B2 (en) 2011-08-01 2011-08-01 Rotating electric machine stator core

Publications (2)

Publication Number Publication Date
JP2013034285A JP2013034285A (en) 2013-02-14
JP5630397B2 true JP5630397B2 (en) 2014-11-26

Family

ID=47789701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168285A Expired - Fee Related JP5630397B2 (en) 2011-08-01 2011-08-01 Rotating electric machine stator core

Country Status (1)

Country Link
JP (1) JP5630397B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994101U (en) * 1972-08-25 1974-08-14
JPS5949781B2 (en) * 1976-10-21 1984-12-05 株式会社東芝 rotating electric machine
JPS62191343U (en) * 1986-05-26 1987-12-05
JP2001103691A (en) * 1999-09-30 2001-04-13 Densei Lambda Kk Stator core and motor
JP2001333559A (en) * 2000-05-19 2001-11-30 Nissan Motor Co Ltd Motor stator
JP2007074852A (en) * 2005-09-08 2007-03-22 Toyota Motor Corp Stator for motor, motor, and process for manufacturing stator for motor
DE102006005316B4 (en) * 2006-02-06 2020-03-26 Siemens Aktiengesellschaft Cooling device for an electrical machine, electrical machines with such a cooling device, dynamo sheet and manufacturing processes for such electrical machines
JP2008278551A (en) * 2007-04-25 2008-11-13 Toyota Motor Corp Stator core and motor
JP5244363B2 (en) * 2007-10-11 2013-07-24 トヨタ自動車株式会社 Split stator and motor
JP2009142095A (en) * 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Stator core for axial-gap motor
JP2010178520A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Stator and motor
JP2011125141A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Stator core and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013034285A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US7705503B2 (en) Rotating electrical machine
JP6042976B2 (en) Rotating electric machine
JP4672083B2 (en) Induction motor rotor, induction motor, compressor, blower and air conditioner
TWI420783B (en) Axial motor
JP5813254B2 (en) Permanent magnet rotating electric machine
JP2008245336A (en) Rotor, and permanent magnet type rotary electric machine
JP2007104888A5 (en)
JP2006238678A (en) Magnetic material, rotor, electric motor
JP6229147B2 (en) Electric motor and compressor equipped with the same
JP2013099222A (en) Rotor and rotary electric machine
TWI443938B (en) Stator unit, winding method therefor, stator structure using the same; and manufacture therefor
WO2015097767A1 (en) Permanent magnet type rotating electrical machine
JP2020522976A (en) motor
JP2006014399A (en) Cooling structure of axial gap rotary electric machine
JP5605721B2 (en) Rotating electric machine
JP5439904B2 (en) Rotating electric machine
JP2009261162A (en) Split stator core
JP2008278590A (en) Rotary electric machine
JP5630397B2 (en) Rotating electric machine stator core
JP2021002996A (en) Stator, electric machine, vehicle, and method for producing stator
JP2002136013A (en) Magnet motor
JP2011147225A (en) Rotary electric machine
JP2006014565A (en) Disc type rotary electric machine
CN113300499A (en) Stator core, stator, motor, compressor, heat treatment method and vehicle
JP2018026920A (en) motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5630397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees