JP5628530B2 - Support substrate for bonded substrate and manufacturing method thereof - Google Patents

Support substrate for bonded substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5628530B2
JP5628530B2 JP2010027871A JP2010027871A JP5628530B2 JP 5628530 B2 JP5628530 B2 JP 5628530B2 JP 2010027871 A JP2010027871 A JP 2010027871A JP 2010027871 A JP2010027871 A JP 2010027871A JP 5628530 B2 JP5628530 B2 JP 5628530B2
Authority
JP
Japan
Prior art keywords
support substrate
single crystal
silicon carbide
sintered body
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010027871A
Other languages
Japanese (ja)
Other versions
JP2011165958A (en
Inventor
和人 長谷
和人 長谷
和宏 牛田
和宏 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010027871A priority Critical patent/JP5628530B2/en
Publication of JP2011165958A publication Critical patent/JP2011165958A/en
Application granted granted Critical
Publication of JP5628530B2 publication Critical patent/JP5628530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、貼り合わせ基板用支持基板およびその製造方法に関する。   The present invention relates to a support substrate for a bonded substrate and a manufacturing method thereof.

従来から、次世代のLEDデバイス、パワーデバイス、高周波デバイス等の半導体デバイス用基板として、単結晶からなる単結晶ウエハが広く用いられている(例えば、特許文献1参照)。この単結晶ウエハは、優れた特性を有する一方で、製造方法が複雑で高コストであるという問題があったため、近年は、薄膜状の単結晶ウエハと支持基板とを貼り合わせることによって構成される、貼り合わせ基板が開発されている。前記支持基板には、例えば、ホットプレスによって成形された炭化ケイ素焼結体を用いられる。   Conventionally, single crystal wafers made of single crystals have been widely used as substrates for semiconductor devices such as next-generation LED devices, power devices, and high-frequency devices (see, for example, Patent Document 1). This single crystal wafer has excellent characteristics, but has a problem that the manufacturing method is complicated and expensive. In recent years, the single crystal wafer is configured by bonding a thin film single crystal wafer and a supporting substrate. Bonded substrates have been developed. For example, a silicon carbide sintered body formed by hot pressing is used for the support substrate.

特開2005−8472号公報JP 2005-8472 A

しかしながら、前記ホットプレスによって成形された炭化ケイ素焼結体には、表面に凹部が形成され、内部には表面に繋がる空洞が形成されているため、前記炭化ケイ素焼結体の表面をいくら研磨しても前記凹部や空洞は消失せず、平滑面が得られない。従って、この炭化ケイ素焼結体を支持基板とし、炭化ケイ素焼結体の表面を単結晶ウエハに接合しても、これらの炭化ケイ素焼結体の表面と単結晶ウエハとの間には、隙間が生じるため、両者の接合強度が十分にならないおそれがあった。   However, since the silicon carbide sintered body formed by the hot press has a recess formed on the surface and a cavity connected to the surface is formed inside, the surface of the silicon carbide sintered body is polished to some extent. However, the recesses and cavities do not disappear and a smooth surface cannot be obtained. Therefore, even if this silicon carbide sintered body is used as a support substrate and the surface of the silicon carbide sintered body is bonded to the single crystal wafer, there is a gap between the surface of the silicon carbide sintered body and the single crystal wafer. As a result, the bonding strength between the two may not be sufficient.

また、単結晶ウエハと支持基板との貼り合わせ方法には、接着材を使用せずに貼り合わせる方法がある。具体的には、加熱加圧接合法、貼り合わせ面へのイオンビーム照射による表面活性化接合法、親水化処理による親水基を介した接合法が挙げられる。このような接着材を使用しない貼り合わせ法では、原子間の引力を利用するため、貼り合わせ面どうしが原子サイズレベル(1nm)まで接近する必要があった。   As a method for bonding the single crystal wafer and the support substrate, there is a method of bonding without using an adhesive. Specific examples include a heat and pressure bonding method, a surface activated bonding method by irradiating the bonded surface with an ion beam, and a bonding method via a hydrophilic group by a hydrophilic treatment. In such a bonding method that does not use an adhesive material, it is necessary to bring the bonding surfaces close to the atomic size level (1 nm) in order to use the attractive force between atoms.

そこで、本発明の目的は、貼り合わせ基板を構成する支持基板における接合面の平滑度が高く、単結晶ウエハとの接合強度を向上させた貼り合わせ基板用支持基板およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a support substrate for a bonded substrate and a method for manufacturing the same, in which the bonding surface of the support substrate constituting the bonded substrate has high smoothness and the bonding strength with the single crystal wafer is improved. It is in.

前述した課題を解決するため、本発明は次のような特徴を有している。本発明に係る支持基板の製造方法は、単結晶からなる単結晶ウエハに貼り合わされる支持基板の製造方法であって、密度が2.3〜3.0g/cm である多孔質な炭化ケイ素焼結体中の複数の連通した空隙に溶融シリコンを含浸させるステップと、前記溶融シリコンを冷却固化させるステップと、前記炭化ケイ素焼結体の表面を化学機械研磨によって、算術平均粗さが1nm以下にまで研磨して前記単結晶ウエハとの接合面を形成するステップと、を含むことを要旨とする。
また、本発明に係る支持基板は、複数の連通した空隙を有する炭化ケイ素焼結体と、前記空隙に充填されたシリコンとを備え、前記単結晶ウエハに貼り合わされる接合面が平滑である支持基板であって、前記請求項1に記載の支持基板の製造方法により製造され、炭化ケイ素焼結体の密度が2.3〜3.0g/cm であり、かつ、前記単結晶ウエハに貼り合わされる接合面の算術平均粗さが1nm以下であることを要旨とする。
In order to solve the above-described problems, the present invention has the following features. A method for manufacturing a support substrate according to the present invention is a method for manufacturing a support substrate to be bonded to a single crystal wafer made of a single crystal , and is a porous silicon carbide having a density of 2.3 to 3.0 g / cm 3. A step of impregnating a plurality of voids in the sintered body with molten silicon, a step of cooling and solidifying the molten silicon, and a surface of the silicon carbide sintered body by chemical mechanical polishing, an arithmetic average roughness of 1 nm or less And a step of forming a bonding surface with the single crystal wafer .
In addition, the support substrate according to the present invention includes a silicon carbide sintered body having a plurality of communicating voids and silicon filled in the voids, and has a smooth bonding surface bonded to the single crystal wafer. It is a board | substrate, manufactured by the manufacturing method of the support substrate of the said Claim 1, the density of a silicon carbide sintered compact is 2.3-3.0 g / cm < 3 > , and it affixes on the said single crystal wafer. The gist is that the arithmetic average roughness of the joined surfaces to be combined is 1 nm or less.

本発明によれば、支持基板は、複数の連通した空隙を有する炭化ケイ素焼結体と、空隙に充填されたシリコンとを備え、単結晶ウエハに張り合わされる支持基板の接合面は、平滑である。炭化ケイ素焼結体の空隙は、シリコンによって充填されて隙間がない状態になっているため、単結晶ウエハとの接合面を、凹凸や空洞等の空隙のない平滑な面に形成することができる。従って、通常の炭化珪素焼結体からなる支持基板と比べて、本発明の支持基板の接合面は、平滑であるため、炭化ケイ素焼結体と単結晶ウエハとの接合強度を高くすることができる。   According to the present invention, the support substrate includes a silicon carbide sintered body having a plurality of communicating voids and silicon filled in the voids, and the bonding surface of the support substrate bonded to the single crystal wafer is smooth. is there. Since the voids of the silicon carbide sintered body are filled with silicon and have no gaps, the bonding surface with the single crystal wafer can be formed on a smooth surface without voids such as irregularities and cavities. . Therefore, since the bonding surface of the support substrate of the present invention is smoother than a support substrate made of a normal silicon carbide sintered body, the bonding strength between the silicon carbide sintered body and the single crystal wafer can be increased. it can.

本発明に係る貼り合わせ基板用支持基板によれば、単結晶ウエハとの接合面の平滑度が向上するため、単結晶ウエハと支持基板との接合強度を高くすることができる。   According to the bonded substrate support substrate of the present invention, the smoothness of the bonding surface with the single crystal wafer is improved, so that the bonding strength between the single crystal wafer and the support substrate can be increased.

本発明の実施形態に係る貼り合わせ基板を示す斜視図である。It is a perspective view which shows the bonding board | substrate which concerns on embodiment of this invention. 図1の支持基板を示す斜視図である。It is a perspective view which shows the support substrate of FIG. 本発明の実施形態に係る支持基板の製造工程を示す断面図であり、(a)は処理前における炭化ケイ素焼結体の断面図、(b)は空隙に溶融Siを含浸させた炭化ケイ素焼結体の断面図、(c)は表面を研磨して接合面を形成した支持基板の断面図である。It is sectional drawing which shows the manufacturing process of the support substrate which concerns on embodiment of this invention, (a) is sectional drawing of the silicon carbide sintered compact before a process, (b) is silicon carbide baking which made the space | gap impregnated with molten Si. FIG. 4C is a cross-sectional view of a support substrate having a bonded surface formed by polishing the surface.

以下、本発明の実施の形態に係る貼り合わせ基板用支持基板の詳細を図面に基づいて説明する。具体的には、(1)貼り合わせ基板の全体構成、(2)貼り合わせ基板用支持基板の製造工程、(3)作用効果、について説明する。図面は模式的なものであり、各材料層の厚みやその比率などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, the details of the bonded substrate support substrate according to the embodiments of the present invention will be described with reference to the drawings. Specifically, (1) the overall configuration of the bonded substrate, (2) the manufacturing process of the bonded substrate support substrate, and (3) the operational effects will be described. It should be noted that the drawings are schematic, and the thicknesses and ratios of the material layers are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Also included in the drawings are portions having different dimensional relationships and ratios.

(1)貼り合わせ基板の全体構成
まず、貼り合わせ基板1の全体構成について図1,2を用いて説明する。図1は本発明の実施形態に係る貼り合わせ基板1の斜視図、図2は図1の支持基板3を示す斜視図である。図1に示すように、本実施形態に係る貼り合わせ基板1は略円盤状に形成されており、下側に配置された支持基板3と、該支持基板3の上面に貼りあわされた単結晶ウエハ5とから構成されている。
(1) Overall Configuration of Bonded Substrate First, the overall configuration of the bonded substrate 1 will be described with reference to FIGS. FIG. 1 is a perspective view of a bonded substrate 1 according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a support substrate 3 of FIG. As shown in FIG. 1, the bonded substrate 1 according to the present embodiment is formed in a substantially disk shape, and a support substrate 3 disposed on the lower side and a single crystal bonded to the upper surface of the support substrate 3. And a wafer 5.

単結晶ウエハ5は、単結晶からなる単結晶ウエハである。具体的には、Si,SiC,GaN,AlNなどの単結晶からなる。この単結晶ウエハ5は、支持基板3とは別途に作製したのち、接着剤等によって支持基板5に貼り合わせることによって、貼り合わせ基板1が形成される。   The single crystal wafer 5 is a single crystal wafer made of a single crystal. Specifically, it is made of a single crystal such as Si, SiC, GaN, or AlN. The single crystal wafer 5 is manufactured separately from the support substrate 3 and then bonded to the support substrate 5 with an adhesive or the like, whereby the bonded substrate 1 is formed.

支持基板3は、図2に示すように、円盤状に形成されている。支持基板3は、上面側に形成された単結晶ウエハ5との接合面6と、接合面6の反対側に位置する裏面9と、接合面6と裏面9とをつなぐ側面11とからなる。側面11は、支持基板3の側面である。また、支持基板3は、複数の連通した空隙である凹部23や空洞25を有する炭化ケイ素焼結体21と、空隙に充填されたシリコン27とを備える。この接合面6は、単結晶ウエハ5に接着剤等によって接合される面であり、研磨によって算術平均粗さRaが1nm以下の平滑面31,33(図3参照)に形成される。単結晶ウエハ5と支持基板3とを貼りあわすことによって要求される厚みや強度を確保することができる。   As shown in FIG. 2, the support substrate 3 is formed in a disk shape. The support substrate 3 includes a bonding surface 6 with the single crystal wafer 5 formed on the upper surface side, a back surface 9 positioned on the opposite side of the bonding surface 6, and a side surface 11 connecting the bonding surface 6 and the back surface 9. The side surface 11 is a side surface of the support substrate 3. In addition, the support substrate 3 includes a silicon carbide sintered body 21 having a plurality of communicating voids 23 and cavities 25, and silicon 27 filled in the voids. The bonding surface 6 is a surface bonded to the single crystal wafer 5 by an adhesive or the like, and is formed on the smooth surfaces 31 and 33 (see FIG. 3) having an arithmetic average roughness Ra of 1 nm or less by polishing. The required thickness and strength can be ensured by pasting the single crystal wafer 5 and the support substrate 3 together.

(2)貼り合わせ基板用支持基板3の製造工程
次いで、貼り合わせ基板用支持基板3の製造工程について図3を用いて説明する。図3は、本発明の実施形態に係る支持基板の製造工程を示す断面図であり、(a)は処理前における炭化ケイ素焼結体の断面図、(b)は空隙に溶融Siを含浸させた炭化ケイ素焼結体の断面図、(c)は表面を研磨して接合面を形成した支持基板の断面図である。
(2) Manufacturing Process of Bonded Substrate Support Substrate 3 Next, a manufacturing process of the bonded substrate support substrate 3 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing a manufacturing process of a support substrate according to an embodiment of the present invention, where (a) is a cross-sectional view of a silicon carbide sintered body before processing, and (b) is an impregnation of molten Si into voids. FIG. 3C is a cross-sectional view of a silicon carbide sintered body, and FIG.

(2−1)炭化ケイ素焼結体の構造
図3(a)に示すように、炭化ケイ素焼結体21には、表面7に凹部23や内部に空洞25などの空隙(気孔)が多数形成されており、この表面7が後述する研磨工程を経て、図2で示した接合面6となる。表面7自体は、研磨されていないため、微細な凹凸が形成されている。前記空洞25は、図示しない別の部位で表面7に繋がっている。このように、炭化ケイ素焼結体21は、複数の空隙を有する多孔質体に形成されている。炭化ケイ素焼結体21は、ホットプレス等を用いて製造される。
(2-1) Structure of Silicon Carbide Sintered Body As shown in FIG. 3A, the silicon carbide sintered body 21 has a number of voids (pores) such as recesses 23 on the surface 7 and cavities 25 inside. The surface 7 becomes the bonding surface 6 shown in FIG. 2 through a polishing process described later. Since the surface 7 itself is not polished, fine irregularities are formed. The cavity 25 is connected to the surface 7 at another part (not shown). Thus, the silicon carbide sintered body 21 is formed into a porous body having a plurality of voids. The silicon carbide sintered body 21 is manufactured using a hot press or the like.

(2−2)製造工程
図3(b)に示すように、まず、高純度のSiC粉末によって炭化ケイ素焼結体21を作製し、炭化ケイ素焼結体21を溶融シリコン中に漬浸させて、凹部23や空洞25等の空隙に溶融シリコンを毛細管現象を利用して含浸させる。前述したように、空洞25は表面7に繋がっているため、空洞25にも表面7から溶融シリコンが含浸される。これによって、炭化ケイ素焼結体21中に形成された空隙の全ては、溶融シリコンによって充填されて隙間がなくなる。こののち、溶融シリコンを冷却固化させると、この固化したシリコン27が前記空隙に充填されると共にシリコン27の一部が表面7から外側に突出して突出部29が形成される。なお、これにより、本実施形態に係る支持基板3は、空隙にシリコン27が完全に充填された炭化ケイ素を母材としたSiC−Si複合構造となる。
(2-2) Manufacturing Process As shown in FIG. 3 (b), first, a silicon carbide sintered body 21 is produced with high-purity SiC powder, and the silicon carbide sintered body 21 is immersed in molten silicon. Then, molten silicon is impregnated in the gaps such as the recesses 23 and the cavities 25 by utilizing capillary action. As described above, since the cavity 25 is connected to the surface 7, the cavity 25 is also impregnated with molten silicon from the surface 7. As a result, all the voids formed in the silicon carbide sintered body 21 are filled with molten silicon, and there are no gaps. After that, when the molten silicon is cooled and solidified, the solidified silicon 27 is filled in the gap, and a part of the silicon 27 protrudes outward from the surface 7 to form a protruding portion 29. As a result, the support substrate 3 according to the present embodiment has a SiC-Si composite structure in which the base material is silicon carbide in which the voids are completely filled with the silicon 27.

次いで、図3(c)に示すように、固化したシリコン27が充填された炭化ケイ素焼結体21の表面7を研磨すると、平滑な鏡面となり、この平滑面31,33が単結晶ウエハ5との接合面6になる。なお、平滑面31は、シリコン27の突出部29を研磨した後の面であり、平滑面33は、炭化ケイ素焼結体21自体の表面7を研磨した後の面である。この研磨方法として、機械研磨、化学研磨または化学機械研磨(CMP)等を広く用いることができる。機械研磨は、GC砥石や、ダイヤモンド等の砥粒を担持した研磨パッドを被加工物と擦り合わせる操作によって機械的に被加工物表面を鏡面状に仕上げる方法である。化学研磨は、研磨液として、被加工物の表面凹凸を除去する化学薬品を用い、被加工物と工具面を擦り合わせる操作によって化学的に被加工物表面を鏡面状に仕上げる方法である。化学機械研磨は、前記機械研磨と化学研磨との相乗効果を持たせることによって効率を向上させた研磨方法である。このようにして、複数の空隙である凹部23や空洞25を有する炭化ケイ素焼結体21と、前記空隙に充填されたシリコン27と、を備えた支持基板3が得られる。   Next, as shown in FIG. 3C, when the surface 7 of the silicon carbide sintered body 21 filled with the solidified silicon 27 is polished, it becomes a smooth mirror surface, and the smooth surfaces 31 and 33 form the single crystal wafer 5. The joining surface 6 becomes. Note that the smooth surface 31 is a surface after polishing the protruding portion 29 of the silicon 27, and the smooth surface 33 is a surface after polishing the surface 7 of the silicon carbide sintered body 21 itself. As this polishing method, mechanical polishing, chemical polishing, chemical mechanical polishing (CMP), or the like can be widely used. Mechanical polishing is a method of mechanically finishing the surface of a workpiece into a mirror surface by an operation of rubbing a polishing pad carrying abrasive grains such as a GC grindstone or diamond with the workpiece. Chemical polishing is a method in which a chemical that removes surface irregularities of a workpiece is used as a polishing liquid, and the surface of the workpiece is chemically finished into a mirror surface by an operation of rubbing the workpiece and a tool surface. Chemical mechanical polishing is a polishing method in which efficiency is improved by providing a synergistic effect between the mechanical polishing and the chemical polishing. Thus, the support substrate 3 provided with the silicon carbide sintered body 21 having the recesses 23 and the cavities 25 as a plurality of voids and the silicon 27 filled in the voids is obtained.

接合面6に接着剤を塗布する等して、単結晶ウエハ5を接合させると、本実施形態に係る貼り合わせ基板1が形成される。   When the single crystal wafer 5 is bonded to the bonding surface 6 by applying an adhesive or the like, the bonded substrate 1 according to the present embodiment is formed.

密度の差異による表面研磨について説明する。密度が1.9g/cmの炭化ケイ素焼結体21の場合は、含浸後のSi比率が高く、研磨されやすいSiの影響によって研磨後の表面粗さRaは5nmしかならない。密度が2.3〜3.0g/cmの場合は、含浸後のSi比率が低く、研磨後の表面粗さRaは1nm以下になる。密度が3.0g/cmよりも高い場合は、Siの含浸ができない。従って、本実施形態に係る炭化ケイ素焼結体21の密度は、2.3〜3.0g/cmが好ましい。 The surface polishing by the difference in density will be described. In the case of the silicon carbide sintered body 21 having a density of 1.9 g / cm 3 , the Si ratio after impregnation is high, and the surface roughness Ra after polishing is only 5 nm due to the influence of Si that is easily polished. When the density is 2.3 to 3.0 g / cm 3 , the Si ratio after impregnation is low, and the surface roughness Ra after polishing is 1 nm or less. When the density is higher than 3.0 g / cm 3 , Si impregnation is impossible. Therefore, the density of the silicon carbide sintered body 21 according to the present embodiment is preferably 2.3 to 3.0 g / cm 3 .

(3)作用効果
次いで、本実施形態による作用効果を説明する。
(3) Effect Next, the effect by this embodiment is demonstrated.

本発明の実施形態による貼り合わせ基板用支持基板3は、単結晶からなる単結晶ウエハ5に貼り合わされる支持基板3であって、支持基板3は、複数の空隙である凹部23や空洞25を有する炭化ケイ素焼結体21と、空隙に充填されたシリコン27と、を備え、単結晶ウエハ5に張り合わされる支持基板3の接合面6は、平滑である。このため、通常の炭化珪素焼結体からなる支持基板と比べて、炭化ケイ素焼結体と単結晶ウエハとの接合強度を高くすることができる。   The bonded substrate support substrate 3 according to the embodiment of the present invention is a support substrate 3 bonded to a single crystal wafer 5 made of a single crystal, and the support substrate 3 includes a plurality of voids 23 and cavities 25. The bonding surface 6 of the support substrate 3 that is provided with the silicon carbide sintered body 21 and the silicon 27 filled in the gap and is bonded to the single crystal wafer 5 is smooth. For this reason, compared with the support substrate which consists of a normal silicon carbide sintered compact, the joining strength of a silicon carbide sintered compact and a single crystal wafer can be made high.

本発明の実施形態の接合面6における算術平均粗さは、1nm以下であるため、単結晶ウエハ5に接合される場合に、単結晶ウエハ5と基板用支持基板3との間に隙間が生じにくくなり、接合強度が向上する。   Since the arithmetic average roughness at the bonding surface 6 of the embodiment of the present invention is 1 nm or less, a gap is generated between the single crystal wafer 5 and the substrate support substrate 3 when bonded to the single crystal wafer 5. It becomes difficult and joint strength improves.

前記炭化ケイ素焼結体21の密度は、2.3〜3.0g/cmである。密度が2.3g/cm未満の場合は、従来からの機械研磨および化学研磨では平滑度を向上させることが困難であった。即ち、機械研磨では、低密度のSiと、SiCと、には大きな硬度差があるため、Siがより研磨されやすい。よって、SiCが山状でSiが谷状の凹凸面に研磨され、Raが5nm程度にしかできない。また、化学研磨の場合も、薬品による除去レート差が生じ、SiCが山状でSiが谷状の凹凸面に研磨され、Raが5nm程度にしかできない。一方、密度が3.0g/cmよりも大きい場合は、空隙の数が減少するため、含浸しにくくなる。従って、2.3〜3.0g/cmの場合は、間隙の大きさとSiの含浸しやすさの観点から最も好ましい。 The density of the silicon carbide sintered body 21 is 2.3 to 3.0 g / cm 3 . When the density is less than 2.3 g / cm 3 , it has been difficult to improve the smoothness by conventional mechanical polishing and chemical polishing. That is, in mechanical polishing, Si is more easily polished because there is a large hardness difference between low-density Si and SiC. Therefore, SiC can be polished into a concavo-convex surface having a mountain shape and Si having a valley shape, and Ra can only be about 5 nm. Also in the case of chemical polishing, there is a difference in the removal rate due to chemicals, and SiC is polished to an uneven surface having a mountain shape and Si having a valley shape, and Ra can only be about 5 nm. On the other hand, when the density is larger than 3.0 g / cm 3 , the number of voids decreases, and thus impregnation becomes difficult. Therefore, 2.3 to 3.0 g / cm 3 is most preferable from the viewpoint of the size of the gap and the ease of impregnation with Si.

本発明の実施形態による貼り合わせ基板用支持基板3の製造方法は、単結晶からなる単結晶ウエハ5に貼り合わされる支持基板3の製造方法であって、多孔質な炭化ケイ素焼結体21中の複数の空隙である凹部23や空洞25に溶融シリコンを含浸させるステップと、この溶融シリコンを冷却固化させるステップと、前記炭化ケイ素焼結体21の表面7を研磨して単結晶ウエハ5との接合面6を形成するステップと、を含む。   The method for manufacturing the bonded substrate support substrate 3 according to the embodiment of the present invention is a method for manufacturing the support substrate 3 bonded to the single crystal wafer 5 made of a single crystal, and in the porous silicon carbide sintered body 21. A step of impregnating molten silicon into the recesses 23 and cavities 25 which are a plurality of voids, a step of cooling and solidifying the molten silicon, and polishing the surface 7 of the silicon carbide sintered body 21 to form the single crystal wafer 5. Forming the joint surface 6.

このように、炭化ケイ素焼結体21の空隙は、シリコン27が充填されて隙間がない状態になるため、表面7を研磨することにより、単結晶ウエハ5との接合面6を、凹凸や空洞等の空隙のない平滑な面に形成することができる。   Thus, since the voids of the silicon carbide sintered body 21 are filled with the silicon 27 so that there are no gaps, the surface 7 is polished, so that the bonding surface 6 with the single crystal wafer 5 becomes uneven or hollow. It can be formed on a smooth surface having no voids.

即ち、炭化ケイ素焼結体21には、表面7に微細な凹凸が形成されており、内部に気孔による空洞25などが形成されている。このように、炭化ケイ素焼結体21には、凹凸や空洞25などからなる多数の空隙が形成されている。従って、そのまま炭化ケイ素焼結体21の表面7を研磨しても表層に前記空隙が現れるため、いくら研磨しても表面7が平滑にならない。そこで、本実施形態のように、炭化ケイ素焼結体21の空隙にシリコン27を充填して空隙がない状態にしたのちに表面7を研磨すると、平滑な接合面6である平滑面31,33が形成される。このため、支持基板3の接合面6と単結晶ウエハ5とを接合させるとき、両者の間に隙間が生じにくくなり、支持基板3と単結晶ウエハ5との接合強度を向上させることができる。SiはSiCよりも研磨しやすい材質であるため、研磨作業が容易となる。   That is, the silicon carbide sintered body 21 is formed with fine irregularities on the surface 7 and has voids 25 formed by pores inside. As described above, the silicon carbide sintered body 21 has a large number of voids including irregularities and cavities 25. Therefore, even if the surface 7 of the silicon carbide sintered body 21 is polished as it is, the voids appear in the surface layer, so the surface 7 is not smoothed no matter how much it is polished. Therefore, as in this embodiment, when the surface 7 is polished after filling the voids of the silicon carbide sintered body 21 with the silicon 27 so that there are no voids, the smooth surfaces 31 and 33 which are the smooth bonding surfaces 6 are obtained. Is formed. For this reason, when the bonding surface 6 of the support substrate 3 and the single crystal wafer 5 are bonded to each other, a gap is hardly generated between them, and the bonding strength between the support substrate 3 and the single crystal wafer 5 can be improved. Since Si is a material that is easier to polish than SiC, polishing work is facilitated.

本発明の実施形態による支持基板3の製造方法においては、前記炭化ケイ素焼結体21の密度が、2.3〜3.0g/cmであると共に、前記接合面6を形成するステップでは、化学機械研磨によって前記炭化ケイ素焼結体21の表面7を研磨する。化学機械研磨は、機械研磨および化学研磨の長所を兼ね備えた研磨方法であるため、機械研磨および化学研磨よりも表面7を平滑化する効果が高い。 In the method for manufacturing the support substrate 3 according to the embodiment of the present invention, the density of the silicon carbide sintered body 21 is 2.3 to 3.0 g / cm 3 and the step of forming the bonding surface 6 includes: The surface 7 of the silicon carbide sintered body 21 is polished by chemical mechanical polishing. Since chemical mechanical polishing is a polishing method that combines the advantages of mechanical polishing and chemical polishing, the effect of smoothing the surface 7 is higher than that of mechanical polishing and chemical polishing.

また、前記炭化ケイ素焼結体21の密度が、2.3〜3.0g/cmであるため、接合面6における算術平均粗さRaは、1nm以下にすることができる。すなわち、密度が2.3未満の低密度においては、SiとSiCとには大きな硬度差があるため、Siがより研磨されやすく、Raが1nmよりも大きくなる。一方、密度が3.0g/cmよりも大きい場合は、空隙の数が減少するため、溶融シリコンが含浸しにくくなる。従って、2.3〜3.0g/cmの場合は、間隙の大きさとSiの含浸しやすさの観点から最も好ましく、接合面6におけるRaを、1nm以下にすることができる。接着剤を使用しない方法によって、貼り合わせ基板1を形成する場合には、原子間の引力を利用するため、貼り合わせ面どうしが1nm以下にまで接近する必要がある。本実施形態に係る支持基板3であれば、接着剤を使用しない方法によっても、支持基板3と単結晶ウエハ5とを好適に接合できる。すなわち、接着剤を使用しない方法であっても、充分な接合強度を持つ貼り合わせ基板1を形成できる。 Moreover, since the density of the said silicon carbide sintered compact 21 is 2.3-3.0 g / cm < 3 >, arithmetic mean roughness Ra in the joint surface 6 can be 1 nm or less. That is, at a low density of less than 2.3, since Si and SiC have a large hardness difference, Si is more easily polished, and Ra is larger than 1 nm. On the other hand, when the density is larger than 3.0 g / cm 3 , the number of voids decreases, so that it becomes difficult to impregnate with molten silicon. Accordingly, the case of 2.3 to 3.0 g / cm 3 is most preferable from the viewpoint of the size of the gap and the ease of impregnation with Si, and Ra on the bonding surface 6 can be 1 nm or less. When the bonded substrate 1 is formed by a method that does not use an adhesive, the bonded surfaces must be close to 1 nm or less in order to utilize the attractive force between atoms. If it is the support substrate 3 which concerns on this embodiment, the support substrate 3 and the single crystal wafer 5 can be joined suitably also by the method which does not use an adhesive agent. That is, even if it is a method which does not use an adhesive agent, the bonded substrate board 1 with sufficient joint strength can be formed.

なお、前述した実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   It should not be understood that the description and the drawings, which form part of the disclosure of the above-described embodiments, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1 貼り合わせ基板
3 貼り合わせ基板用支持基板
5 単結晶ウエハ
6 接合面
7 表面
23 凹部(空隙)
25 空洞(空隙)
27 シリコン
31,33 平滑面
DESCRIPTION OF SYMBOLS 1 Bonding substrate 3 Bonding substrate support substrate 5 Single crystal wafer 6 Bonding surface 7 Surface 23 Recess (gap)
25 Cavity
27 Silicon 31, 33 Smooth surface

Claims (2)

単結晶からなる単結晶ウエハに貼り合わされる支持基板の製造方法であって、
密度が2.3〜3.0g/cm である多孔質な炭化ケイ素焼結体中の複数の連通した空隙に溶融シリコンを含浸させるステップと、
前記溶融シリコンを冷却固化させるステップと、
前記炭化ケイ素焼結体の表面を化学機械研磨によって、算術平均粗さが1nm以下にまで研磨して前記単結晶ウエハとの接合面を形成するステップと、
を含む支持基板の製造方法
A method of manufacturing a support substrate to be bonded to a single crystal wafer made of a single crystal ,
Impregnating molten silicon into a plurality of continuous voids in a porous silicon carbide sintered body having a density of 2.3 to 3.0 g / cm 3 ;
Cooling and solidifying the molten silicon;
Polishing the surface of the silicon carbide sintered body by chemical mechanical polishing to an arithmetic average roughness of 1 nm or less to form a bonding surface with the single crystal wafer;
The manufacturing method of the support substrate containing this .
複数の連通した空隙を有する炭化ケイ素焼結体と、前記空隙に充填されたシリコンとを備え、前記単結晶ウエハに貼り合わされる接合面が平滑である支持基板であって、
前記請求項1に記載の支持基板の製造方法により製造され、炭化ケイ素焼結体の密度が2.3〜3.0g/cm であり、かつ、前記単結晶ウエハに貼り合わされる接合面の算術平均粗さが1nm以下である支持基板。
A silicon carbide sintered body having a plurality of communicating voids and a silicon filled in the voids, and a support substrate having a smooth bonding surface bonded to the single crystal wafer,
A bonded substrate manufactured by the method for manufacturing a support substrate according to claim 1, wherein the silicon carbide sintered body has a density of 2.3 to 3.0 g / cm 3 and is bonded to the single crystal wafer. A support substrate having an arithmetic average roughness of 1 nm or less .
JP2010027871A 2010-02-10 2010-02-10 Support substrate for bonded substrate and manufacturing method thereof Expired - Fee Related JP5628530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027871A JP5628530B2 (en) 2010-02-10 2010-02-10 Support substrate for bonded substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027871A JP5628530B2 (en) 2010-02-10 2010-02-10 Support substrate for bonded substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011165958A JP2011165958A (en) 2011-08-25
JP5628530B2 true JP5628530B2 (en) 2014-11-19

Family

ID=44596276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027871A Expired - Fee Related JP5628530B2 (en) 2010-02-10 2010-02-10 Support substrate for bonded substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5628530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004938B2 (en) 2018-05-31 2021-05-11 Rohm Co., Ltd. Semiconductor substrate structure and power semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3475975B1 (en) 2016-06-24 2021-12-15 Qromis, Inc. Method of manufacture of a polycrystalline ceramic substrate
JP2023034708A (en) * 2021-08-31 2023-03-13 株式会社東芝 Wafer, semiconductor device, wafer manufacturing method, and semiconductor device manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904892A (en) * 1996-04-01 1999-05-18 Saint-Gobain/Norton Industrial Ceramics Corp. Tape cast silicon carbide dummy wafer
JP2006344865A (en) * 2005-06-10 2006-12-21 Toyoko Kagaku Co Ltd Soi substrate and method of manufacturing same
EP1901345A1 (en) * 2006-08-30 2008-03-19 Siltronic AG Multilayered semiconductor wafer and process for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004938B2 (en) 2018-05-31 2021-05-11 Rohm Co., Ltd. Semiconductor substrate structure and power semiconductor device
DE102019114328B4 (en) 2018-05-31 2022-03-03 Rohm Co. Ltd SEMICONDUCTOR SUBSTRATE STRUCTURE AND POWER SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP2011165958A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
TWI553720B (en) Method for polishing a semiconductor wafer
US5409770A (en) Elastic foamed sheet and wafer-polishing jig using the sheet
WO2015122072A1 (en) Method for manufacturing semiconductor wafer
EP1827759A2 (en) Process for manufacturing optical and semiconductor elements
JP2002540966A5 (en)
WO2006049849A1 (en) Process for manufacturing a light emitting array
JP5628530B2 (en) Support substrate for bonded substrate and manufacturing method thereof
JP5406248B2 (en) Grinding tool and manufacturing method thereof
JP4190232B2 (en) How to perform mechanical polishing
US8303382B2 (en) Polishing pad and method of fabrication
JP5233241B2 (en) Method for manufacturing silicon carbide wafer
JP7165719B2 (en) Microreplicated polished surface with improved flatness
KR20110112246A (en) Polishing pad and method for polishing a semiconductor wafer
US20100122498A1 (en) Abrasive Sheet Including An Abrasive Layer
WO2001069676A3 (en) Method and apparatus for bonding substrates
TW200842962A (en) Composite sheet for mounting a workpiece and the method for making the same
JP2001232555A (en) Flattening method
TW201221301A (en) A sheet for mounting a workpiece
JP2012051778A (en) Method for manufacturing support substrate for laminated substrate, and support substrate for laminated substrate
JP6247254B2 (en) Polishing pad and manufacturing method thereof
TW201100198A (en) Assembly type trimmer
TW201127554A (en) Resin bonding pad conditioner with surface recessed pattern and manufacture method thereof
TW201943495A (en) Polishing pad, manufacturing method of polishing pad and polishing method
JP2008207268A (en) Work holder
TW200942361A (en) Polishing pad and method for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees