JP5627847B2 - カテーテルベースの音響放射力インパルスシステム - Google Patents

カテーテルベースの音響放射力インパルスシステム Download PDF

Info

Publication number
JP5627847B2
JP5627847B2 JP2008309216A JP2008309216A JP5627847B2 JP 5627847 B2 JP5627847 B2 JP 5627847B2 JP 2008309216 A JP2008309216 A JP 2008309216A JP 2008309216 A JP2008309216 A JP 2008309216A JP 5627847 B2 JP5627847 B2 JP 5627847B2
Authority
JP
Japan
Prior art keywords
tissue
probe
ablation
array
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008309216A
Other languages
English (en)
Other versions
JP2009142653A (ja
Inventor
アサフ・ゴバリ
アンドレス・クラウディオ・アルトマン
ギラッド・アドラー
Original Assignee
バイオセンス・ウエブスター・インコーポレーテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオセンス・ウエブスター・インコーポレーテツド filed Critical バイオセンス・ウエブスター・インコーポレーテツド
Publication of JP2009142653A publication Critical patent/JP2009142653A/ja
Application granted granted Critical
Publication of JP5627847B2 publication Critical patent/JP5627847B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • A61B2090/3784Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cardiology (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)

Description

開示の内容
〔発明の分野〕
本発明は、全体として超音波システムに関し、特に、医療処置のために使用される超音波システムに関する。
〔発明の背景〕
米国のUniversity of North Carolina at Chapel HillおよびNorth Carolina State Universityの合同生体医用工学部(Joint Department of Biomedical Engineering)の超音波撮像研究室(Ultrasonic Imaging Laboratory)の、www.bme.ncsu.edu/labs/ULSLab/index.htmlで検索することもできる記事は、音響放射力インパルス(Acoustic radiation force impulse (ARFI))撮像について説明する。この記事は参照して本明細書に組み入れる。記事は次のように述べている。“ARFI撮像においては、比較的高い音響エネルギーのインパルスを身体中に送信して、撮像対象に向けて空間的および時間的に局所化された放射力を送り出し、組織を撮像トランスデューサから離れる方向に微細に押しやるようにする(組織変位はミクロンのオーダーである)。各々のARFIインパルスには従来の超音波送受信線の集合体が続き、一次元相互相関でARFI誘発の軸方向運動を追跡するためのデータを生成する働きをする。空間および時間的に測定された変位はその後に組織の機械的特性の差を表すグラフィカルおよびパラメータ画像描写に翻訳される。”
以下に引用するいくつかの文献は、ARFIについてより多くの詳細を提供している。
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control、第52巻、第4号、2005年4月、第631〜641頁で公表された、Faheyらによる“Acoustic radiation force impulse imaging of myocardial radio-frequency ablation: initial in vivo results”と題された記事において、著者は、“音響放射力インパルス(ARFI)撮像技術を、羊の心臓組織の生体内高周波(RF)焼灼を監視するために使用した”と述べている。この記事は参照して本明細書に組み入れる。
参照して本明細書に組み入れる、IEEE Symposium on Ultrasonics、2003年、第1巻、第562〜567頁で公表された、Faheyらによる“ARFI imaging of thermal lesions in ex vivo and in vivo soft tissues”と題された記事において、著者は、“生体外および生体内の両方での軟組織焼灼を監視するARFI撮像の能力を調査した”と述べている。
参照して本明細書に組み入れる、Keidarの米国特許出願公報第20040147920号は、超音波測定をいかに焼灼の評価に使用することができるか説明している。
参照して本明細書に組み入れる、Swansonらへの米国特許第6,658,279号は、組織を焼灼し、撮像するためのカテーテルについて説明している。このカテーテルは多孔性電極を含んでいる。
参照して本明細書に組み入れる、Nightingaleらへの米国特許第6,371,912号は、剛性が変化した領域の特定および特徴づけのための方法および装置について説明している。
〔発明の概要〕
本発明の一つの実施の形態においては、カテーテルの遠位端に位置付けられたプローブを使用して組織の焼灼(ablation)を行う。プローブは、焼灼を監視することもできる。これらの2つの機能を実行するために、プローブは、互いに近接して取り付けられた焼灼要素と、超音波トランスデューサとを備える。焼灼を監視するために、超音波トランスデューサは、音響放射力インパルス(acoustic radiation force impulses (ARFIs))を、焼灼要素を介して、または焼灼要素の近傍を通って、焼灼される組織に送信するように構成される。インパルスは組織の弾性によって決まる量だけ組織を変位させ、トランスデューサはこの組織の変位を測定することもできる。焼灼された組織と焼灼されていない組織は異なった弾性を有するので、異なった変位量は組織の焼灼が監視されるのを可能にする。焼灼要素とトランスデューサとを1つのプローブに組み込むことによって、プローブとは別個の第2の超音波装置を必要としない。さらに、超音波トランスデューサは焼灼部位の近くに位置するので、焼灼をより正確に監視することができると共に、より低い超音波エネルギーを使用することもでき、同時になお外部トランスデューサの成果に匹敵する成果を実現することができる。
いくつかの実施の形態において、焼灼要素は、通例超音波透過性(sonolucent)電極である高周波(RF)電極を備える。トランスデューサはこの電極と音響的に接触して取り付けられ、かつ、トランスデューサによって発生される前進超音波、ならびに戻りの超音波が感知できるほどの反射なしに電極を横切るように取り付けられる。電極を横切る超音波は、ARFIs、超音波追跡パルス、およびARFIsに起因する組織の変位を監視するのに使用される追跡パルスの反射を含む。代替的にまたは付加的に、電極は音響的に透明なアパーチャを備える。トランスデューサは、上述の超音波がアパーチャを介して電極の中を移動するように取り付けられる。
開示される代替的な実施の形態において、焼灼要素は低温で焼灼し、またはマイクロ波を使用して焼灼を行う。
さらに代替的な実施の形態において、組織焼灼は別個の焼灼要素を使用して行われるのではなく、超音波によって組織は焼灼される。この場合、超音波トランスデューサを使用し、焼灼超音波を放射することによって焼灼を行うこともでき、プローブ中の別個の焼灼要素は必要とされない。
ゆえに、本発明の一つの実施の形態によれば、プローブにおいて、
組織の焼灼を行うように構成される焼灼要素と、
焼灼要素の近傍に位置される超音波トランスデューサであって、組織に音響放射力インパルス(ARFIs)を送信するように、かつ、組織の焼灼を監視するために、ARFIsに応じる組織の変位を測定するように構成される超音波トランスデューサと、を含む、プローブが提供される。
一つの実施の形態において、焼灼要素はアパーチャを含み、かつ、超音波トランスデューサは、アパーチャを介して、ARFIsを組織に向けて送り出すように構成される。プローブは、アパーチャを充填する、良好な音響伝達媒体を含むこともできる。
開示される一つの実施の形態において、超音波トランスデューサは、複数のトランスデューサ要素のアレイを含む。アレイはARFIsを組織上に集束させるように構成されることもできる。代替的にまたは付加的に、アレイは組織の画像を生成するように構成されることもできる。
通例、焼灼要素は、組織の高周波(RF)焼灼を行うように構成された電極を含む。一つの実施の形態において、電極は超音波透過性(sonolucent)電極を含み、かつ、トランスデューサは、電気高周波(RF)ARFI信号の受信に応じてARFIsを送信し、電気RF追跡パルスの受信に応じて組織に超音波透過性電極を介して超音波追跡パルスを送信し、組織から超音波透過性電極を介して超音波追跡パルスのそれぞれの反射を受信し、かつ反射に応じて電気RF反射パルスを発生させるように構成される。プローブは、プロセッサであって、電気RFARFIパルスおよび電気RF追跡パルスをトランスデューサに伝達し、かつ組織の変位を測定するためにトランスデューサからの電気RF反射パルスを受信するように構成されるプロセッサを含むこともできる。
開示される一つの実施の形態において、焼灼要素は、組織の低温焼灼を行うように構成された冷却要素を含む。
開示される代替的な実施の形態において、焼灼要素は、組織のマイクロ波焼灼を行うように構成されたマイクロ波放射器を含む。
本発明の一つの実施の形態によれば、さらに、組織を焼灼するための装置において、
プローブであって、複数の超音波トランスデューサ要素のアレイを含み、該アレイは、電気高周波(RF)信号に応じて、超音波を組織に向けて送り出すように、かつ、組織から反射された超音波を受信するように構成される、プローブと、
RF送受信装置と、を含み、該RF送受信装置は、
第1の送受信状態において、アレイに電気焼灼RF信号を伝達して、アレイが、組織の焼灼をもたらすのに十分なエネルギーを有する焼灼超音波パルスを、組織に送信するようにさせるように構成され、
第2の送受信状態において、アレイに電気音響放射力インパルス(ARFI)RF信号を伝達して、アレイが、組織にARFIを送信するようにさせるように構成され、かつ、
第3の送受信状態において、
アレイに電気追跡RF信号を伝達して、アレイが、組織に1つまたは複数の追跡超音波パルスを送信するようにさせ、
アレイが組織から1つまたは複数の追跡超音波パルスの反射を受信するのに応じて発生された電気RF反射信号をアレイから受信し、かつ、組織の焼灼を監視するために、電気RF反射信号に応じて組織の変位を測定するように構成される、装置が提供される。
通例、RF送受信装置は、第4の送受信状態において、アレイに電気撮像RF信号を伝達して、アレイが、1つまたは複数の撮像超音波パルスを組織に送信するようにさせ、かつ、アレイが、組織から1つまたは複数の撮像超音波パルスの反射を受信するのに応じて発生された電気RF撮像反射信号をアレイから受信するように構成される。
本発明の一つの実施の形態によれば、さらに、組織を焼灼するための方法において、
焼灼要素を準備することと、
焼灼要素を使用して組織の焼灼を行うことと、
焼灼要素の近傍に超音波トランスデューサを位置させることと、
トランスデューサから組織に音響放射力インパルス(ARFIs)を送信することと、
組織の焼灼を監視するために、ARFIsに応じる組織の変位を測定することと、を含む、方法が提供される。
本発明の一つの実施の形態によれば、さらに、組織を焼灼するための方法において、
複数の超音波トランスデューサ要素のアレイを備えるプローブを、電気高周波(RF)信号に応じて、超音波を組織に向けて送り出すように、かつ、組織から反射された超音波を受信するように構成することと、
RF送受信装置を準備することと、を含み、該RF送受信装置は、
第1の送受信状態において、アレイに電気焼灼RF信号を伝達して、アレイが、組織の焼灼をもたらすのに十分なエネルギーを有する焼灼超音波パルスを組織に送信するようにさせるように構成され、
第2の送受信状態において、アレイに電気音響放射力インパルス(ARFI)RF信号を伝達して、アレイが、組織にARFIを送信するようにさせるように構成され、かつ、
第3の送受信状態において、
アレイに電気追跡RF信号を伝達して、アレイが、組織に1つまたは複数の追跡超音波パルスを送信するようにさせ、
アレイが組織から1つまたは複数の追跡超音波パルスの反射を受信するのに応じて発生された電気RF反射信号をアレイから受信し、かつ、組織の焼灼を監視するために、電気RF反射信号に応じて組織の変位を測定するように構成される、方法が提供される。
本発明は、以下の本発明の実施の形態の詳細な説明、および添付図面を参酌することでより完全に理解されるであろう。
〔実施の形態の詳細な説明〕
図1を参照されたい。図1は、本発明の実施の形態による患者の組織を焼灼(ablation)するためのシステム10の概要図である。システム10は、患者の各種の臓器における組織を焼灼するのに使用することもでき、本明細書では、一例として、焼灼される組織が患者の心臓24に含まれるものと想定する。システム10は、医師14によって静脈または動脈を通じて心腔に挿入されるカテーテル12を備える。カテーテル12は、通例、医師がカテーテルを操作するためのハンドル16を備える。ハンドル上の好適な調整つまみは、医師がカテーテルの遠位端に取り付けられたプローブ18を望み通りに案内し、位置付けし、かつ向き決めするのを可能にする。システム10は、通例、プローブ18の場所および向き座標を測定する測位サブシステムを備える。
1つの実施の形態において、測位サブシステムは、プローブ18の位置および向きを決定する磁気位置追跡システムを備える。測位サブシステムは、予め定められた作用量の磁場を発生させ、これらの場をプローブにて検出する。測位サブシステムは、通例、場発生コイル20等の一組の外部放射器を備え、該外部放射器は患者の外部の既知の固定位置に位置する。コイル20は、心臓24の付近に場、通例磁場を発生させる。発生した場は、プローブ18の位置センサー22によって検出される。プローブ18は図2により詳細に示されている。
代替的な実施の形態において、コイル等のプローブ中の放射器が磁場を発生させる。場は患者の身体の外側のセンサーによって受信される。
位置センサー22は、検出された場に応じて、カテーテルを通じて延びるケーブル26によって、コンソール28に位置関連の電気信号を送信する。代替的に、位置センサーは、無線リンクによってコンソールに信号を送信することもできる。コンソールは、測位プロセッサ31によって動作される測位モジュール30を備えており、該測位モジュールは上記の磁場を制御する。モジュール30は、位置センサー22から送られた信号に基づいて、プローブ18の場所および向きを計算する。この計算を行うために、測位モジュール30は、通例、センサー22からの信号を受信し、増幅し、ろ過し、デジタル化し、および別の方法で処理する。
システム10で使用することもできるいくつかの位置追跡システムは、例えば、米国特許第6,690,963号、第6,618,612号、および第6,332,089号、ならびに米国特許出願公報第2002/0065455号A1、第2004/0147920号A1、および第2004/0068178号A1に記載されており、これらの開示内容はすべて参照して本明細書に組み入れる。図1に示す測位サブシステムは磁場を使用するが、電磁場、音響または超音波測定に基づくシステム等の任意の他の好適な測位サブシステムを使用することもできる。
システム10は、また、焼灼プロセッサ33によって動作される焼灼モジュール32を備える。本明細書で述べる場合を除いて、焼灼モジュール32は送受信装置として動作し、本明細書において送受信モジュール32と呼ばれることもある。送受信モジュール32は、ケーブル26を介してプローブ18に電気信号を送信し、またプローブ18から電気信号を受信する。転送される信号、および送受信モジュール32によって実行される機能については、以下により詳細に説明する。ディスプレイ44は医師14にグラフィカルユーザーインターフェースを提供し、該ユーザーインターフェースは、システム10の動作の結果を示すと共に、医師が通例トラックボール等のポインティング装置36を介してシステムを制御するのを可能にする。本明細書において、システム10は、焼灼モードで、または非焼灼モードで動作するように構成されることもでき、これら2つのモードが装置36を使用して医師により選択可能であることが想定されている。焼灼モードにおいて、システム10は、図5を参照して以下に説明するフローチャート100を遂行する。非焼灼モードにおいて、プローブ18は組織を焼灼せず、フローチャート100は遂行されない。システム10の要素35および37については以下に説明する。
図2は本発明の実施の形態によるプローブ18の略図である。プローブ18は、カテーテル12の遠位端に取り付けられている。1つの実施の形態において、プローブ18は、ほぼ1mmとほぼ2mmの間の範囲の直径、およびほぼ5mmとほぼ8mmの間の範囲の長さを有する。プローブは、位置センサー22と、超音波トランスデューサ60とを備え、該超音波トランスデューサは個々のトランスデューサ要素のアレイ58から形成されている。アレイ58は、一次元アレイまたは二次元アレイであってもよく、前向きの超音波トランスデューサアレイとなるように構成されている。超音波透過性(sonolucent)の電極62は、トランスデューサ60の遠位側で該トランスデューサと音響的に接触してカテーテル12に取り付けられている。以下に説明するように、電極62は焼灼要素として構成される。この電極は、通例、アレイ58の複数の要素と直接物理的に接触するように取り付けられる。代替的に、電極62は、硬質プラスチック等の実質的に無反射の音響伝導性材料61によってアレイ58から分離される。ケーブル26は、それぞれ電極62、トランスデューサ60、およびセンサー22と接続する別々のケーブル52、54、および56を備える。
医師は、通例ポインティング装置36またはハンドル16を使用して、ケーブル52を介して電極62に高周波(RF)焼灼信号を送るようモジュール32に指示することによって、組織66の部分68のRF焼灼を行うことができる。例えば、組織66は心臓24の大動脈壁を含むこともでき、医師はこの壁部の部分68を焼灼することを望む。位置センサー22を使用して、医師は、プローブ18を焼灼される部分と実質的に接触するように位置付けし、上記プロセッサに指示してRF焼灼信号を発生させる。送受信モジュール32は、本明細書で説明する場合を除き、RF信号発生器であることが想定される焼灼信号発生器35を備え、プロセッサ33がこの信号発生器を動作させてRF焼灼信号を発生させる。信号は、電極62に印加されたときに組織の焼灼が起るよう十分なエネルギーを有するように発生される。
医師はアレイ58を使用することによって焼灼の進行を点検する。アレイ58は、一組の1つまたは複数の音響放射力インパルス(acoustic radiation force impulses (ARFIs))を組織66に向けて集束させて送り出す。各々のARFIは、通例、30μsのオーダーの時間期間を有する集束超音波パルスを備える。送受信モジュール32は、RF超音波信号発生器37を備え、該信号発生器はプロセッサ33によって動作されて電気RF信号を発生させ、該電気RF信号はケーブル54を介してアレイ58に転送され、かつアレイの要素トランスデューサに動力を供給するのに使用される。ARFIを発生させるために、発生器37は、RFパルスを、各々の要素トランスデューサに向けて送り出す。RFパルスは集束超音波インパルス、すなわちARFIがアレイによって生成されるように適切な時間遅延を有する。プロセッサ33は、個々のパルスの時間遅延を変化させて、インパルスの合焦がインパルスの伝播方向においても、また伝播方向に対して横方向にも変えられるようにすることもできる。各々の組のARFIは、組織66に対して超音波パルスの進行方向に力を及ぼし、組織の弾性の関数である変位量によって組織を変位させる。
組織に対するARFIの効果を監視するために、アレイ58は超音波追跡パルスを送信する。超音波追跡パルスは一組のARFIの前に、間に、および後に発生されるパルスを含むこともできる。追跡パルスは、焼灼プロセッサ33がARFIによってもたらされた変位を空間および時間の両方において測定するのを可能にする。変位は、追跡パルスの移動時間、および追跡パルスの組織からの反射時間を測定することによって計測される。通例、追跡パルスの時間期間は0.2μsのオーダーである。超音波追跡パルスを発生させるために、プロセッサ33はRF超音波信号発生器37を動作させて、ケーブル54によってアレイ58に転送される適切な電気RF信号を形成する。追跡パルスの反射はアレイ58によって受信され、該アレイは反射されたエコーの超音波を、ケーブル54によってプロセッサ33に転送される電気RF信号に変換する。
測定された変位量から、組織66の弾性を計算することもできる。焼灼されていない組織の弾性は焼灼された組織の弾性と異なるので、送受信モジュール32はこの差を使用して、焼灼された組織と焼灼されていない組織とを区別することができる。もし、以下に説明するように、アレイ58が組織66を撮像するのであれば、この差を使用して、ディスプレイ44に現される組織の画像に焼灼された組織と焼灼されていない組織とを示すこともできる。
上述のように、ARFIと超音波追跡パルスとは共にアレイ58によって発生され、これらのインパルスと追跡パルスは、超音波透過性電極62を通じて組織66に送信されるが、送信波の反射またはエネルギー損失は実質的にない。同様に、組織からの追跡パルスの反射は、実質的にエネルギーの変化または損失なしに、電極を横切ってアレイ58に至る。
上述の機能に加えて、トランスデューサ60が複数の要素からなるアレイを備えているという事実のため、アレイは、プロセッサ33と共に、組織66の超音波画像を形成するように構成されることもできる。この場合、プロセッサ33はアレイに電気撮像RF信号を向けて送り出し、アレイに1つまたは複数の撮像超音波パルスを組織に送信させる。プロセッサは、アレイが撮像超音波パルスの反射を受信するのに応じて発生された電気RF撮像反射信号をアレイから受信し、それに応じて組織66の画像を形成する。
プロセッサ33およびアレイ58は、したがって、共同して動作し、以下の4つの別個の機能を実行する。
・RF信号からのARFIの生成
・RF信号からの超音波追跡パルスの生成
・超音波追跡パルスの反射のRF信号への変換
・超音波画像の形成
図2の矢印64は、これらの4つの機能のために発生される超音波の経路および方向を略図的に図示する。
図3は、本発明の実施の形態によるプローブ70の略図である。以下に説明する相違を除いて、プローブ70の動作はプローブ18(図2)の動作と全体として類似し、両プローブ18および70において同じ参照番号によって指示される要素は、構成および動作において全体として類似する。複数の要素のアレイで形成されるトランスデューサ60(プローブ18)と異なり、プローブ70は、単一の超音波要素として動作する超音波トランスデューサ72を備える。
しかしながら、単一要素のトランスデューサ72はプロセッサ33と共に、超音波画像の形成を除いて、プロセッサ33およびアレイ58について上に列記したすべての機能を実行するように構成されることもできる。したがって、プローブ70を使用して、組織焼灼を行い、かつ焼灼の進行を追跡することもできる。その結果は、通例、プローブ70とは別個の撮像源から得られた組織66の画像に焼灼されたおよび焼灼されていない組織を表す色を重ね合わせることによって、および/またはディスプレイ44上のグラフィカル表示または数値表示によって、および/またはARFIによって生成された焼灼を表示するための任意の他の便利なシステムによって、ディスプレイ44上に現されることもできる。
図4Aは、本発明の実施の形態によるプローブ80の略図である。以下に説明する相違を除いて、プローブ80の動作はプローブ70(図3)の動作と全体として類似し、両プローブ70および80において同じ参照番号によって指示される要素は、構成および動作において全体として類似する。
プローブ80は、超音波透過性電極62の代わりに、中央アパーチャ86を有する電極82を備えている。電極82は焼灼要素として作用し、電極62と全体として類似のやり方で組織を焼灼する。トランスデューサ72は、アパーチャの近位端に取り付けられ、該アパーチャは、通例、良好な音響伝達媒体であるシリコーン等の材料88で充填される。したがって、アパーチャ86は、超音波のARFIおよび追跡パルスがトランスデューサから電極を介して組織66に送信されるのを可能にする。アパーチャ86は、また、追跡パルスの反射が組織66から電極を介してトランスデューサ72に伝送されるのを可能にする。
プローブ80は、プローブ70について上述した3つの機能を実行する。プローブ80によって行われる焼灼は、実質的にプローブ70について上述したように追跡することもできる。
プローブ80の代替的な実施の形態において、トランスデューサ72は、全体としてアレイ58(図2)と類似の、複数のトランスデューサ要素のアレイ90を備える。この実施の形態において、プローブ80はプローブ18について上述した4つの機能を実行することができる。
図4Bは、本発明の実施の形態によるプローブ91の略図である。以下に説明する相違を除いて、プローブ91の動作はプローブ70および80(図3および4A)の動作と全体として類似し、プローブ70、80および91において同じ参照番号によって指示される要素は、構成および動作において全体として類似する。
プローブ70および80とは異なり、プローブ91は低温で焼灼を行い、そのためプローブ91の焼灼要素は冷却要素93を備えている。要素93は、通例、全体として中空のトロイド形に形成され、トロイドの中心の領域、すなわちアパーチャ86は材料88で充填される。要素93は焼灼モジュール32から供給管92を介して冷ガスを受け取り、またこのガスを図4Bに図示しない管を介して排出する。要素93の外壁は、したがって、組織66を冷却し焼灼する。しかしながら、プローブ91が組織66を焼灼するための任意の他の便利な低温システムを備えることもできることは認識されよう。プローブ91を動作させるために、モジュール32は、送受信装置として構成されるほかに、通例液体窒素を蒸発させることによって、管92に冷ガスを供給する。
プローブ91は、プローブ70について上述した3つの機能を実行し、プローブ91によって行われる焼灼は、実質的にプローブ70について上述したように追跡することもできる。プローブ91の代替的な実施の形態において、トランスデューサ72は、全体としてアレイ58(図2)と類似の、複数のトランスデューサ要素のアレイ90を備える。この実施の形態において、プローブ91はプローブ18について上述した4つの機能を実行することができる。
図4Cは、本発明の実施の形態によるプローブ94の略図である。以下に説明する相違を除いて、プローブ94の動作はプローブ70および80(図3および4A)の動作と全体として類似し、プローブ70、80および94において同じ参照番号によって指示される要素は、構成および動作において全体として類似する。
プローブ70および80とは異なり、プローブ94はマイクロ波エネルギーを使用して焼灼を行い、そのためプローブ91の焼灼要素はマイクロ波放射器96を備えている。要素96は、通例、トロイド形に形成され、トロイドの中心の領域、すなわちアパーチャ86は材料88で充填される。要素96は焼灼モジュール32からケーブル52を介してマイクロ波エネルギーを受け取る。プローブ94の動作のために、モジュール32中の焼灼信号発生器35は、マイクロ波発生器を備える。この発生器は通例2GHzのオーダーの周波数で動作する。
プローブ94は、プローブ70について上述した3つの機能を実行し、プローブ94によって行われる焼灼は、実質的にプローブ70について上述したように追跡することもできる。プローブ94の代替的な実施の形態において、トランスデューサ72は、全体としてアレイ58(図2)と類似の、複数のトランスデューサ要素のアレイ90を備える。この実施の形態において、プローブ94はプローブ18について上述した4つの機能を実行することができる。
図5は、本発明の実施の形態による、システム10を動作させるのに必要なステップを示すフローチャート100である。以下のフローチャート100の説明において、医師14はプローブ18(図1および図2)を使用して組織66の部分68を焼灼することが想定されている。当業者は、図3および図4A、図4B、ならびに図4Cを参照して上述したプローブ等の他のプローブ用に、必要な変更を加えて、本説明を適合させることができるであろう。
第1のステップ102で、医師は患者の体内にカテーテル12を挿入し、センサー22からの信号を使用してプローブ18の位置を調節する。医師は、組織66と接触するように、かつ部分68と正しく整列するようにプローブの位置を調節し、電極62が部分68を焼灼できるようにする。
第2のステップ104において、医師はシステム10を作動させ、焼灼モードで動作するように該システムを設定することによって焼灼を開始する。作動させると、RF焼灼信号発生器35は、上述のように、電極と組織との間の相互作用が焼灼をもたらすのに十分な出力で電極62にRFエネルギーを転送する。通例、システム10はほぼ2分の期間の間焼灼を行う。
第3のステップ106において、焼灼が行われている間に、RF超音波信号発生器37は、上述のように、アレイ58をして一組の1つまたは複数の集束ARFIを部分68に向けて送信させるRF信号をアレイに転送する。また、上述のように、このARFI組の送信前に、送信中に、および/または送信後に、RF超音波信号発生器37は、アレイが、超音波追跡パルスを送信させるRF追跡信号をアレイに転送するようにする。
第4のステップ108において、超音波追跡パルスの反射がアレイ58によって受信され、該アレイはこの反射を電気信号に変換する。モジュール32はこの電気信号を使用して部分68の弾性の尺度を形成する。この弾性を使用して、モジュール32は、部分68の焼灼された領域および焼灼されていない領域を示す部分68の画像を生成する。弾性測定値は、また、焼灼された領域の焼灼度を測定することを可能とし、焼灼度はまた画像上に現される。
ステップ110で、医師は部分68の画像から該部分が十分に焼灼されたか評価し、十分に焼灼されている場合は、医師はシステム10を非焼灼モードに切り替え、フローチャート100は終了する。十分な焼灼が行われていなければ、フローチャートはステップ104に戻り、電極62が組織66を焼灼し続けるようにする。したがって、ステップ104、106、108、および110は、部分68が十分に焼灼されるまで反復して実行される。
本発明の代替的な実施の形態において、医師は、実質的にステップ104で上述したように、通例20s〜30sのオーダーの焼灼を断続的に行う。各々の焼灼と焼灼の間に、システム10および医師は、ステップ110について上述したように、部分68が十分に焼灼されるまでステップ106、108、および110を実行する。医師はその後に非焼灼モードで動作するようにシステム10を設定し、ここではフローチャート100は適用されない。
図6は、本発明の代替的な実施の形態によるプローブ118の略図である。以下に説明する相違を除いて、プローブ118の動作はプローブ18(図2)の動作と全体として類似し、両プローブ18および118において同じ参照番号によって指示される要素は、構成および動作において全体として類似する。プローブ18と異なり、プローブ118は、超音波透過性電極62または該電極の接続ケーブル52を備えていない。むしろ、電極によって転送されるRFエネルギーを使用して組織を焼灼する代わりに、プローブ118は、焼灼をもたらすのに十分なエネルギーを有する高密度焦点式超音波(High Intensity Focused Ultrasound (HIFU))をアレイ158から送り出し集束させることによって、組織を焼灼する。
アレイ158は、アレイ58に全体として類似するが、上に列記したアレイ58の4つの機能を実行できることに加えて、アレイ158はHIFUを発生させることもできる。
図7は、本発明の代替的な実施の形態による、患者の組織を焼灼するためのシステム150の概要図である。以下に説明する相違を除いて、システム150の動作はシステム10(図1)の動作と全体として類似し、システム10および150において同じ参照番号によって指示される要素は、構成においておよび動作において全体として類似する。
システム150において、プローブ118はプローブ18に取って代わり、カテーテル12の遠位端に取り付けられている。焼灼送受信モジュール152は送受信モジュール32に全体として類似する。しかしながら、プローブ118はRF電気信号を使用して組織を焼灼しないので、モジュール152はRF焼灼信号発生器35を備えていない。RF超音波信号発生器37の代わりに、モジュール152はRF超音波信号発生器154を備えている。したがって、プロセッサ33は、発生器154を使用して、アレイ58を備えたプロセッサについて上に列記した4つの機能を提供することができる。加えて、発生器154はアレイ158をしてHIFUを発生させる超音波焼灼RF信号を発生することができる。
システム10と同様に、システム150は、焼灼モードで、または非焼灼モードで動作し、これら2つのモードが装置36を使用して医師により選択可能であるように構成されることもできる。焼灼モードにおいて、システム150は、図8を参照して以下に説明するフローチャート200を実行する。非焼灼モードにおいて、フローチャート200は実行されない。
図8は、本発明の実施の形態による、システム150を動作させるのに必要なステップを示すフローチャート200である。以下に説明する相違を除いて、フローチャート200のステップはフローチャート100(図5)のステップに全体として類似し、フローチャート100および200において同じ参照番号によって指示されるステップの処置は全体として類似する。
フローチャート200では、ステップ104の代わりに、ステップ202がある。ステップ202において、医師は、システム150を作動させ、焼灼モードで動作するように該システムを設定することによって焼灼を開始する。焼灼モードにおいて、プロセッサ33は、超音波焼灼RF信号を発生するように超音波RF信号発生器154を構成する。焼灼RF信号は、アレイ158をしてHIFUを発生させ、したがって組織68(図6)を焼灼させる。通例、焼灼は20s〜30sのオーダーの時間の間、継続される。
ステップ206および208はそれぞれステップ106および108と全体として類似する。しかしながら、フローチャート200において、ステップ206および208は、ステップ202で発生された焼灼信号が止んだ時に実行される。
プローブ18、70、80、91、94、および118について上述した機能に加えて、プローブと、プローブが連結されるシステムは、Bモード撮像(B-mode imaging)および/またはドップラー撮像(Doppler imaging)等の他の超音波ベースの撮像手段において使用されることもできることは理解されよう。また、本発明の実施の形態は、心臓以外の臓器の焼灼、および焼灼の監視のために使用されることもできることは理解されよう。さらに、本明細書で具体的に説明した焼灼処置以外の焼灼処置を本発明の実施の形態において使用することもできる。例えば、焼灼は組織状態に実質的に何らかの便利な局所化された変化を実現することによって行うこともできる。抵抗方式の組織の加熱によって達成することもできる等である。かかるすべての焼灼処置は、本発明の範囲に含まれることが想定されている。
したがって、上述の実施の形態は一例として挙げられたものであり、本発明が先に具体的に図示し、説明したものに限定されるものでないことは認識されるであろう。むしろ、本発明の範囲は、先に説明したさまざまな特徴のコンビネーションおよびサブコンビネーション、ならびに先述の説明を読むことによって当業者に想到され、かつ先行技術には開示されていない、先に説明したさまざまな特徴の変更例および修正例を含むものである。
〔実施の形態〕
(1) プローブにおいて、
組織の焼灼(ablation)を行うように構成される焼灼要素と、
前記焼灼要素の近傍に位置される超音波トランスデューサであって、前記組織に音響放射力インパルス(acoustic radiation force impulses (ARFIs))を送信するように、かつ、前記組織の前記焼灼を監視するために、前記ARFIsに応じる前記組織の変位を測定するように構成される、超音波トランスデューサと、
を備える、プローブ。
(2) 実施態様1に記載のプローブにおいて、
前記焼灼要素は、アパーチャ(aperture)を備え、
前記超音波トランスデューサは、前記アパーチャを介して、前記ARFIsを前記組織に向けて送り出すように構成されている、プローブ。
(3) 実施態様2に記載のプローブにおいて、
前記アパーチャを充填する、良好な音響伝達媒体(good acoustic transmission medium)、
を備える、プローブ。
(4) 実施態様1に記載のプローブにおいて、
前記超音波トランスデューサは、複数のトランスデューサ要素のアレイを備える、プローブ。
(5) 実施態様4に記載のプローブにおいて、
前記アレイは、前記ARFIsを前記組織上に集束させるように構成されている、プローブ。
(6) 実施態様4に記載のプローブにおいて、
前記アレイは、前記組織の画像を生成するように構成されている、プローブ。
(7) 実施態様1に記載のプローブにおいて、
前記焼灼要素は、前記組織の高周波(RF)焼灼を行うように構成された電極を備える、プローブ。
(8) 実施態様7に記載のプローブにおいて、
前記電極は、超音波透過性(sonolucent)電極を備え、
前記トランスデューサは、電気高周波(RF)ARFI信号の受信に応じて前記ARFIsを送信し、電気RF追跡パルスの受信に応じて前記超音波透過性電極を介して超音波追跡パルスを前記組織に送信し、前記組織から前記超音波透過性電極を介して前記超音波追跡パルスのそれぞれの反射を受信し、かつ、前記反射に応じて電気RF反射パルスを発生させるように構成されている、プローブ。
(9) 実施態様8に記載のプローブにおいて、
プロセッサであって、前記電気RFARFIパルスおよび前記電気RF追跡パルスを前記トランスデューサに伝達し、かつ、前記組織の前記変位を測定するために、前記トランスデューサからの前記電気RF反射パルスを受信するように構成される、プロセッサ、
を備える、プローブ。
(10) 実施態様1に記載のプローブにおいて、
前記焼灼要素は、前記組織の低温焼灼を行うように構成された冷却要素を備える、プローブ。
(11) 実施態様1に記載のプローブにおいて、
前記焼灼要素は、前記組織のマイクロ波焼灼を行うように構成されたマイクロ波放射器を備える、プローブ。
(12) 組織を焼灼するための装置において、
プローブであって、複数の超音波トランスデューサ要素のアレイを備え、前記アレイは、電気高周波(RF)信号に応じて、超音波を前記組織に向けて送り出すように、かつ、前記組織から反射された超音波を受信するように構成される、プローブと、
RF送受信装置と、
を備え、
前記RF送受信装置は、
第1の送受信状態において、前記アレイに電気焼灼RF信号を伝達して、前記アレイが、前記組織の焼灼をもたらすのに十分なエネルギーを有する焼灼超音波パルスを、前記組織に送信するようにさせるように構成され、
第2の送受信状態において、前記アレイに電気音響放射力インパルス(ARFI)RF信号を伝達して、前記アレイが、ARFIを前記組織に送信するようにさせるように構成され、かつ、
第3の送受信状態において、
前記アレイに電気追跡RF信号を伝達して、前記アレイが、1つまたは複数の追跡超音波パルスを前記組織に送信するようにさせ、
前記アレイが前記組織から前記1つまたは複数の追跡超音波パルスの反射を受信するのに応じて発生された電気RF反射信号を前記アレイから受信し、かつ、前記組織の前記焼灼を監視するために、前記電気RF反射信号に応じて前記組織の変位を測定する
ように構成されている、装置。
(13) 実施態様12に記載の装置において、
前記RF送受信装置は、第4の送受信状態において、前記アレイに電気撮像RF信号を伝達して、前記アレイが1つまたは複数の撮像超音波パルスを前記組織に送信するようにさせ、かつ、前記アレイが前記組織から前記1つまたは複数の撮像超音波パルスの反射を受信するのに応じて発生された電気RF撮像反射信号を前記アレイから受信するように構成されている、装置。
(14) 組織を焼灼するための方法において、
焼灼要素を準備することと、
前記焼灼要素を使用して前記組織の焼灼を行うことと、
前記焼灼要素の近傍に超音波トランスデューサを位置させることと、
前記トランスデューサから前記組織に音響放射力インパルス(ARFIs)を送信することと、
前記組織の前記焼灼を監視するために、前記ARFIsに応じる前記組織の変位を測定することと、
を備える、方法。
(15) 実施態様14に記載の方法において、
前記焼灼要素は、アパーチャを備え、前記アパーチャを介して、前記ARFIsを前記組織に向けて送り出すように前記超音波トランスデューサを構成する、方法。
(16) 実施態様15に記載の方法において、
前記アパーチャを、良好な音響伝達媒体によって充填すること、
を備える、方法。
(17) 実施態様14に記載の方法において、
前記超音波トランスデューサは、複数のトランスデューサ要素のアレイを備える、方法。
(18) 実施態様17に記載の方法において、
前記ARFIsを前記組織上に集束させるように前記アレイを構成すること、
を備える、方法。
(19) 実施態様17に記載の方法において、
前記組織の画像を生成するように前記アレイを構成すること、
を備える、方法。
(20) 実施態様14に記載の方法において、
前記焼灼要素は、前記組織の高周波(RF)焼灼を行うように構成された電極を備える、方法。
(21) 実施態様20に記載の方法において、
前記電極は、超音波透過性電極を備え、
前記トランスデューサは、電気高周波(RF)ARFI信号の受信に応じて前記ARFIsを送信し、電気RF追跡パルスの受信に応じて前記組織に前記超音波透過性電極を介して超音波追跡パルスを送信し、前記組織から前記超音波透過性電極を介して前記超音波追跡パルスのそれぞれの反射を受信し、かつ、前記それぞれの反射に応じて電気RF反射パルスを発生させるように構成されている、方法。
(22) 実施態様14に記載の方法において、
前記焼灼要素は、前記組織の低温焼灼を行うように構成された冷却要素を備える、方法。
(23) 実施態様14に記載の方法において、
前記焼灼要素は、前記組織のマイクロ波焼灼を行うように構成されたマイクロ波放射器を備える、方法。
(24) 組織を焼灼するための方法において、
複数の超音波トランスデューサ要素のアレイを備えるプローブを、電気高周波(RF)信号に応じて、超音波を前記組織に向けて送り出すように、かつ、前記組織から反射された超音波を受信するように構成することと、
RF送受信装置を準備することと、
を備え、
前記RF送受信装置は、
第1の送受信状態において、前記アレイに電気焼灼RF信号を伝達して、前記アレイが、前記組織の焼灼をもたらすのに十分なエネルギーを有する焼灼超音波パルスを前記組織に送信するようにさせるように構成され、
第2の送受信状態において、前記アレイに電気音響放射力インパルス(ARFI)RF信号を伝達して、前記アレイが、前記組織にARFIを送信するようにさせるように構成され、かつ、
第3の送受信状態において、
前記アレイに電気追跡RF信号を伝達して、前記アレイが前記組織に1つまたは複数の追跡超音波パルスを送信するようにさせ、
前記アレイが前記組織から前記1つまたは複数の追跡超音波パルスの反射を受信するのに応じて発生された電気RF反射信号を前記アレイから受信し、かつ、前記組織の前記焼灼を監視するために、前記電気RF反射信号に応じて前記組織の変位を測定する
ように構成されている、方法。
(25) 実施態様24に記載の方法において、
前記RF送受信装置は、第4の送受信状態において、前記アレイに電気撮像RF信号を伝達して、前記アレイが、1つまたは複数の撮像超音波パルスを前記組織に送信するようにさせ、かつ、前記アレイが前記組織から前記1つまたは複数の撮像超音波パルスの反射を受信するのに応じて発生された電気RF撮像反射信号を前記アレイから受信するように構成されている、方法。
本発明の実施の形態による、患者の組織を焼灼するためのシステムの概要図である。 本発明の実施の形態による、図1のシステムで使用されるプローブの略図である。 本発明の代替的な実施の形態による、図1のシステムで使用されるプローブの略図である。 図4A、4B、および4Cは、本発明のさらに代替的な実施の形態による、図1のシステムで使用されるプローブの略図である。 本発明の実施の形態による、図1のシステムを動作させるのに必要なことを示すフローチャートである。 本発明のまださらに代替的な実施の形態による、組織を焼灼するのに使用されるプローブの略図である。 本発明の代替的な実施の形態による、患者の組織を焼灼するためのシステムの概要図である。 本発明の実施の形態による、図7のシステムを動作させるのに必要なことを示すフローチャートである。

Claims (7)

  1. プローブにおいて、
    プローブ本体と、
    組織の焼灼を行うように構成される焼灼要素であって、前記焼灼要素は前記プローブ本体の遠位端に配されており、前記焼灼要素は遠位端および近位端を有しており、前記焼灼要素の前記遠位端は前記組織と接触するように構成されている、焼灼要素と、
    前記焼灼要素の近傍に位置される超音波トランスデューサであって、前記組織に音響放射力インパルス (ARFIs)を送信するように、かつ、前記組織の前記焼灼を監視するために、前記ARFIsに応じる前記組織の変位を測定するように構成される、超音波トランスデューサと、
    を備え、
    前記超音波トランスデューサは、複数のトランスデューサ要素のアレイを備えており、
    前記アレイは、前記ARFIsを前記組織上に集束させるように構成されており、
    前記アレイの前記複数のトランスデューサ要素のそれぞれは、前記焼灼要素の前記近位端の平面上に取り付けられており、かつ、前記焼灼要素を通り抜けて前記焼灼要素の前記遠位端に向かって前記ARFIsを送信するように構成されている、
    プローブ。
  2. 請求項1に記載のプローブにおいて、
    前記アレイは、前記組織の画像を生成するように構成されている、プローブ。
  3. 請求項1に記載のプローブにおいて、
    前記焼灼要素は、前記組織の高周波(RF)焼灼を行うように構成された電極を備える、プローブ。
  4. 請求項に記載のプローブにおいて、
    前記電極は、超音波透過性電極を備え、
    前記トランスデューサは、電気高周波(RF)ARFI信号の受信に応じて前記ARFIsを送信し、電気RF追跡パルスの受信に応じて前記超音波透過性電極を介して超音波追跡パルスを前記組織に送信し、前記組織から前記超音波透過性電極を介して前記超音波追跡パルスのそれぞれの反射を受信し、かつ、前記反射に応じて電気RF反射パルスを発生させるように構成されている、プローブ。
  5. 請求項に記載のプローブにおいて、
    プロセッサであって、前記電気高周波(RF)ARFI信号および前記電気RF追跡パルスを前記トランスデューサに伝達し、かつ、前記組織の前記変位を測定するために、前記トランスデューサからの前記電気RF反射パルスを受信するように構成される、プロセッサ、
    を備える、プローブ。
  6. 請求項1に記載のプローブにおいて、
    前記焼灼要素は、前記組織の低温焼灼を行うように構成された冷却要素を備える、プローブ。
  7. 請求項1に記載のプローブにおいて、
    前記焼灼要素は、前記組織のマイクロ波焼灼を行うように構成されたマイクロ波放射器を備える、プローブ。
JP2008309216A 2007-12-05 2008-12-04 カテーテルベースの音響放射力インパルスシステム Expired - Fee Related JP5627847B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/950,946 2007-12-05
US11/950,946 US10492854B2 (en) 2007-12-05 2007-12-05 Catheter-based acoustic radiation force impulse system

Publications (2)

Publication Number Publication Date
JP2009142653A JP2009142653A (ja) 2009-07-02
JP5627847B2 true JP5627847B2 (ja) 2014-11-19

Family

ID=40451134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309216A Expired - Fee Related JP5627847B2 (ja) 2007-12-05 2008-12-04 カテーテルベースの音響放射力インパルスシステム

Country Status (10)

Country Link
US (1) US10492854B2 (ja)
EP (1) EP2067446A1 (ja)
JP (1) JP5627847B2 (ja)
KR (1) KR20090059044A (ja)
CN (1) CN101450004B (ja)
AU (1) AU2008255133B2 (ja)
BR (1) BRPI0806090A2 (ja)
CA (1) CA2645386A1 (ja)
IL (1) IL195715A (ja)
MX (1) MX2008015681A (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
EP2021846B1 (en) 2006-05-19 2017-05-03 Koninklijke Philips N.V. Ablation device with optimized input power profile
US10492854B2 (en) 2007-12-05 2019-12-03 Biosense Webster, Inc. Catheter-based acoustic radiation force impulse system
KR101060345B1 (ko) * 2008-08-22 2011-08-29 삼성메디슨 주식회사 Arfi를 이용하여 탄성영상을 형성하는 초음파 시스템 및 방법
US9364194B2 (en) * 2008-09-18 2016-06-14 General Electric Company Systems and methods for detecting regions of altered stiffness
EP2186481A1 (en) * 2008-11-17 2010-05-19 Medison Co., Ltd. Ultrasonic probe capable of probing curved surface
US20100168568A1 (en) * 2008-12-30 2010-07-01 St. Jude Medical, Atrial Fibrillation Division Inc. Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams
JP5693471B2 (ja) 2009-02-11 2015-04-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 絶縁された切除カテーテルデバイスおよびその使用法
EP2448510B1 (en) 2009-06-30 2016-08-31 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
BR112012005507A2 (pt) 2009-09-15 2019-09-24 Koninklijke Philps Electronics N V dispositivo de ultrassom médio, sistema médico, método de operação de um dispositivo médico e produto de programa de computador
CN102497822B (zh) 2009-09-17 2015-02-11 皇家飞利浦电子股份有限公司 具有远端处的温度探测的医学超声设备
CN102596320B (zh) 2009-10-30 2016-09-07 瑞蔻医药有限公司 通过经皮超声波去肾神经治疗高血压的方法和装置
US20130096597A1 (en) * 2010-06-24 2013-04-18 Koninklijke Philips Electronics N.V. Real-time monitoring and control of hifu therapy in multiple dimensions
US8727995B2 (en) * 2010-09-09 2014-05-20 Siemens Medical Solutions Usa, Inc. Reduction of motion artifacts in ultrasound imaging with a flexible ultrasound transducer
US8545409B2 (en) * 2011-04-14 2013-10-01 St. Jude Medical, Inc. Arrangement and interface for RF ablation system with acoustic feedback
WO2012166239A1 (en) 2011-06-01 2012-12-06 Boston Scientific Scimed, Inc. Ablation probe with ultrasonic imaging capabilities
CN103687550B (zh) * 2011-07-22 2016-08-17 皇家飞利浦有限公司 消融装置
CA2848053A1 (en) 2011-09-14 2013-03-21 Boston Scientific Scimed, Inc. Ablation device with ionically conductive balloon
EP2755587B1 (en) 2011-09-14 2018-11-21 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
JP2013090809A (ja) * 2011-10-26 2013-05-16 Olympus Corp 脂肪除去装置
EP2797536B1 (en) 2011-12-28 2016-04-13 Boston Scientific Scimed, Inc. Ablation probe with ultrasonic imaging capability
CA2860636A1 (en) 2012-01-10 2013-07-18 Boston Scientific Scimed, Inc. Electrophysiology system
US8814796B2 (en) * 2012-01-10 2014-08-26 Hologic, Inc. System and method for tissue ablation in a body cavity
JP5830614B2 (ja) 2012-01-31 2015-12-09 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 超音波組織撮像のための流体に基づいた音響結合を有するアブレーションプローブ、および、アブレーションおよび超音波撮像システム
US9332962B2 (en) * 2013-03-13 2016-05-10 Siemens Medical Solutions Usa, Inc. Ultrasound ARFI displacement imaging using an adaptive time instance
EP2968984B1 (en) 2013-03-14 2016-08-17 ReCor Medical, Inc. Ultrasound-based neuromodulation system
CN105074050B (zh) 2013-03-14 2019-02-15 瑞蔻医药有限公司 电镀或涂覆超声换能器的方法
CN105658164B (zh) 2013-09-06 2018-08-21 柯惠有限合伙公司 微波消融导管、手柄、及系统
US10448862B2 (en) 2013-09-06 2019-10-22 Covidien Lp System and method for light based lung visualization
US10098566B2 (en) 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
JP6599885B2 (ja) * 2014-03-27 2019-10-30 コーニンクレッカ フィリップス エヌ ヴェ 正規化された変位差に基づく熱的破壊痕サイズ制御のための手法
US10524684B2 (en) 2014-10-13 2020-01-07 Boston Scientific Scimed Inc Tissue diagnosis and treatment using mini-electrodes
EP4316361A3 (en) 2014-10-24 2024-05-01 Boston Scientific Scimed Inc. Medical devices with a flexible electrode assembly coupled to an ablation tip
WO2016100917A1 (en) 2014-12-18 2016-06-23 Boston Scientific Scimed Inc. Real-time morphology analysis for lesion assessment
EP3261549B1 (en) * 2015-02-27 2021-08-04 Koninklijke Philips N.V. System for adaptive ablation and therapy based on elastography monitoring
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
WO2018092063A1 (en) * 2016-11-16 2018-05-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
US11006854B2 (en) * 2017-02-24 2021-05-18 Teleflex Medical Incorporated Intravascular sensing devices having flexible tip structure
US11583249B2 (en) * 2017-09-08 2023-02-21 Biosense Webster (Israel) Ltd. Method and apparatus for performing non-fluoroscopic transseptal procedure
CN111773567A (zh) * 2020-08-17 2020-10-16 杭州福嵩科技有限责任公司 一种高强度聚焦超声-穿刺消融的融合治疗设备
CN114209419B (zh) * 2021-12-14 2024-07-05 上海交通大学医学院附属瑞金医院 一种消融治疗设备
CN114533251B (zh) * 2022-02-21 2023-11-03 深圳市赛禾医疗技术有限公司 消融导管、导管消融系统、方法、装置以及存储介质
CN114601556B (zh) * 2022-04-19 2022-09-20 天津市鹰泰利安康医疗科技有限责任公司 脉冲场消融刺激用电极、使用方法及电压调节方法
US20240065755A1 (en) 2022-08-23 2024-02-29 Biosense Webster (Israel) Ltd. Planar multi-electrode catheters

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2645386A (en) 1950-06-05 1953-07-14 Bobrick Mfg Corp Dispenser for thick and viscous liquids
NL9001755A (nl) * 1990-08-02 1992-03-02 Optische Ind De Oude Delft Nv Endoscopische aftastinrichting.
JPH05228150A (ja) 1992-02-25 1993-09-07 Fujitsu Ltd 超音波探触子及び超音波診断装置
US5471988A (en) 1993-12-24 1995-12-05 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
JPH07227395A (ja) * 1993-12-24 1995-08-29 Olympus Optical Co Ltd 超音波診断治療システム
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
WO1997029685A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Independently positionable transducers for location system
CA2246287C (en) 1996-02-15 2006-10-24 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5893848A (en) 1996-10-24 1999-04-13 Plc Medical Systems, Inc. Gauging system for monitoring channel depth in percutaneous endocardial revascularization
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
WO1998058588A1 (en) 1997-06-23 1998-12-30 Focus Surgery, Inc. Methods and devices for providing acoustic hemostasis
US20030130657A1 (en) * 1999-08-05 2003-07-10 Tom Curtis P. Devices for applying energy to tissue
US6371912B1 (en) 2000-04-05 2002-04-16 Duke University Method and apparatus for the identification and characterization of regions of altered stiffness
US20060079773A1 (en) * 2000-11-28 2006-04-13 Allez Physionix Limited Systems and methods for making non-invasive physiological assessments by detecting induced acoustic emissions
AU2003280416A1 (en) 2002-07-01 2004-01-19 Allez Physionix Systems and methods for making noninvasive assessments of cardiac tissue and parameters
US20040068178A1 (en) 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
US7306593B2 (en) 2002-10-21 2007-12-11 Biosense, Inc. Prediction and assessment of ablation of cardiac tissue
US20050215899A1 (en) 2004-01-15 2005-09-29 Trahey Gregg E Methods, systems, and computer program products for acoustic radiation force impulse (ARFI) imaging of ablated tissue
US20070073135A1 (en) 2005-09-13 2007-03-29 Warren Lee Integrated ultrasound imaging and ablation probe
US7766833B2 (en) 2005-11-23 2010-08-03 General Electric Company Ablation array having independently activated ablation elements
EP2068736A4 (en) 2006-08-04 2009-12-30 Abla Tx Inc METHOD AND SYSTEMS FOR PLANNING, IMPLEMENTING AND MONITORING A HEAT DISPOSAL
JP4966718B2 (ja) 2007-04-10 2012-07-04 宇部興産株式会社 二次電池用非水電解液
US10492854B2 (en) 2007-12-05 2019-12-03 Biosense Webster, Inc. Catheter-based acoustic radiation force impulse system

Also Published As

Publication number Publication date
EP2067446A1 (en) 2009-06-10
CN101450004A (zh) 2009-06-10
MX2008015681A (es) 2009-06-17
JP2009142653A (ja) 2009-07-02
AU2008255133A1 (en) 2009-06-25
AU2008255133B2 (en) 2013-03-28
CN101450004B (zh) 2012-11-14
CA2645386A1 (en) 2009-06-05
KR20090059044A (ko) 2009-06-10
BRPI0806090A2 (pt) 2009-11-17
IL195715A0 (en) 2009-09-01
US10492854B2 (en) 2019-12-03
US20090149753A1 (en) 2009-06-11
IL195715A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5627847B2 (ja) カテーテルベースの音響放射力インパルスシステム
US20170312553A1 (en) Acoustic coupling for assessment and ablation procedures
JP6382900B2 (ja) 可調整焦点を持つ容量型微細加工超音波トランスジューサを有するカテーテル
JP4095729B2 (ja) 治療用超音波装置
US8480585B2 (en) Imaging, therapy and temperature monitoring ultrasonic system and method
JP5829526B2 (ja) アブレーション処置を監視するモニタリング装置
EP0966226B1 (en) A system for sharing electrocardiogram electrodes and transducers
AU2004200534B2 (en) Externally-applied high intensity focused ultrasound (HIFU) for pulmonary vein isolation
JP5855739B2 (ja) アブレーションカテーテルにおいて焼灼巣フィードバックのために角度方向付けを用いる単一トランスデューサ
US20090163807A1 (en) Finger-mounted or robot-mounted transducer device
AU2016259377A1 (en) Using force sensor to give angle of ultrasound beam
WO2003096911A1 (en) Lens-focused ultrasonic applicator for medical applications
US20030093067A1 (en) Systems and methods for guiding catheters using registered images
JP2013518659A (ja) 組み合わされた切除及び超音波撮像
JP2013504398A (ja) 超音波診断装置、医療システム及び医療装置の動作方法
WO2003076017A1 (en) Self-cooled ultrasonic applicator for medical applications
EP1971266A2 (en) Intrauterine ultrasound and method for use
CN107261346A (zh) 用于使用超声形成阻塞的方法和系统
JP2015518400A (ja) 超音波病変フィードバック、非ポップ・モニタリング、及び力検出
CN219250395U (zh) 一种超声消融导管装置
US20240016539A1 (en) Systems and methods for imaging in connection with thermal ablation treatments
CN106913378A (zh) 高度开孔的消融电极
Seo et al. Regulating energy delivery during intracardiac radiofrequency ablation using thermal strain imaging
WO2023158603A1 (en) Pulse-echo guided ultrasound ablation; an acoustic method for sensing ultrasound ablation catheter orientation and proximity to tissue

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130716

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5627847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees