JP5625901B2 - Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate - Google Patents

Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate Download PDF

Info

Publication number
JP5625901B2
JP5625901B2 JP2010293250A JP2010293250A JP5625901B2 JP 5625901 B2 JP5625901 B2 JP 5625901B2 JP 2010293250 A JP2010293250 A JP 2010293250A JP 2010293250 A JP2010293250 A JP 2010293250A JP 5625901 B2 JP5625901 B2 JP 5625901B2
Authority
JP
Japan
Prior art keywords
glass substrate
defect
main plane
defect inspection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010293250A
Other languages
Japanese (ja)
Other versions
JP2012141192A (en
Inventor
誠 土屋
誠 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010293250A priority Critical patent/JP5625901B2/en
Publication of JP2012141192A publication Critical patent/JP2012141192A/en
Application granted granted Critical
Publication of JP5625901B2 publication Critical patent/JP5625901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガラス基板の欠陥の有無等を検査するガラス基板の欠陥検査方法及びガラス基板の欠陥検査装置、並びに、前記欠陥検査方法又は前記欠陥検査装置を用いた検査工程を有するガラス基板の製造方法に関する。   The present invention relates to a glass substrate defect inspection method and a glass substrate defect inspection device for inspecting the presence or absence of defects of the glass substrate, and a glass substrate having an inspection process using the defect inspection method or the defect inspection device. Regarding the method.

近年、ガラス基板は様々な用途に用いられている。例えば、パーソナルコンピュータ(PC)等の外部記憶装置であるハードディスクドライブ(HDD)には、コンピュータ用ストレージ等として周知の磁気記録媒体が搭載されており、この磁気記録媒体用の基板としてガラス基板が用いられている。   In recent years, glass substrates have been used for various purposes. For example, a hard disk drive (HDD) which is an external storage device such as a personal computer (PC) is equipped with a magnetic recording medium known as a computer storage, and a glass substrate is used as a substrate for the magnetic recording medium. It has been.

このようなガラス基板を製造する際に、ガラス基板の製造工程においてガラス基板の主平面に傷等の欠陥が形成される場合がある。傷等の欠陥が形成されたガラス基板が研磨工程において研磨装置に投入されると、研磨中にガラス基板が破損するおそれがある。又、ガラス基板の主平面に形成された傷が深く、研磨工程において傷を充分に除去できなかった場合、最終製品として完成したガラス基板製品の主平面に傷が残留する。主平面に傷が残留したガラス基板を磁気記録媒体等に用いると、磁気記録媒体等の性能を十分に発揮できないおそれがある。   When such a glass substrate is manufactured, defects such as scratches may be formed on the main plane of the glass substrate in the glass substrate manufacturing process. If a glass substrate on which defects such as scratches are formed is put into a polishing apparatus in a polishing process, the glass substrate may be damaged during polishing. Further, when the scratch formed on the main plane of the glass substrate is deep and the scratch cannot be sufficiently removed in the polishing process, the scratch remains on the main plane of the glass substrate product completed as a final product. If a glass substrate with scratches remaining on the main plane is used for a magnetic recording medium or the like, the performance of the magnetic recording medium or the like may not be exhibited sufficiently.

従って、ガラス基板の主平面に形成された傷等の欠陥は早期に発見する必要があり、ガラス基板の製造工程においてガラス基板の欠陥検査が行われている。このような欠陥検査は、例えば、目視で行われている。又、目視以外の方法として、ガラス基板に光を照射し、照射した光の反射光を撮像装置で撮像し、撮像した画像に基づいて欠陥の有無等を自動検査する技術が提案されている(例えば、特許文献1、2参照)。   Therefore, defects such as scratches formed on the main plane of the glass substrate need to be discovered early, and the glass substrate is inspected for defects in the glass substrate manufacturing process. Such a defect inspection is performed visually, for example. Moreover, as a method other than visual observation, a technique has been proposed in which light is applied to a glass substrate, reflected light of the irradiated light is imaged with an imaging device, and the presence or absence of defects is automatically inspected based on the captured image ( For example, see Patent Documents 1 and 2).

特開平4−276641号公報JP-A-4-276661 特開2009−288089号公報JP 2009-288089 A

しかしながら、目視による検査は人間が行うため、欠陥検査の精度にばらつきがあり、微細な欠陥を見逃す等の問題があった。又、従来から提案されている欠陥の自動検査では、欠陥の検査感度が不充分であり、検査に時間を要する問題もあった。   However, since visual inspection is performed by humans, there are variations in the accuracy of defect inspection, and there are problems such as overlooking minute defects. Further, in the conventional automatic inspection of defects, there is a problem that the inspection sensitivity of the defects is insufficient and the inspection takes time.

本発明は、上記の点に鑑みてなされたものであり、従来よりもガラス基板の欠陥の検査感度を向上可能であり、かつ、欠陥を検査する時間を短縮できるガラス基板の欠陥検査方法及びガラス基板の欠陥検査装置、並びに、前記欠陥検査方法又は前記欠陥検査装置を用いた検査工程を有するガラス基板の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is possible to improve the inspection sensitivity of a glass substrate for defects, and to reduce the time for inspecting defects, and a glass substrate defect inspection method and glass. It aims at providing the manufacturing method of the glass substrate which has the inspection process using the defect inspection apparatus of the board | substrate, and the said defect inspection method or the said defect inspection apparatus.

本ガラス基板の欠陥検査方法の一形態は、第1主平面及びその対向面である第2主平面を有するガラス基板に対し、複数方向から光を順次照射し、前記ガラス基板の画像を順次撮像する順次撮像工程と、前記順次撮像工程で順次撮像した各ガラス基板の画像に基づいて、前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する欠陥検査工程と、を有し、前記欠陥検査工程は、前記順次撮像した各ガラス基板の画像を複数の欠陥検出領域に分割する分割工程と、分割した各欠陥検出領域の色平均値を算出する色平均値算出工程と、前記各欠陥検出領域において、隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する欠陥度算出工程と、算出した前記欠陥度の最大値が判定値以上である場合に、その欠陥検出領域内に欠陥が存在すると認識する欠陥認識工程と、を含むことを要件とする。 One form of the defect inspection method of the present glass substrate is to sequentially irradiate light from a plurality of directions onto a glass substrate having a first main plane and a second main plane which is the opposite surface, and sequentially capture images of the glass substrate. A sequential imaging step, and a defect inspection step for inspecting the glass substrate for defects on the first main plane and the second main plane based on images of the glass substrates sequentially imaged in the sequential imaging step, have a, the defect inspection process, dividing step and the color average value calculation step of calculating the color average value of the defect detection areas divided for dividing an image of each glass substrate said sequential imaging in a plurality of defect detection area In each defect detection area, a defect degree calculation step of calculating a defect degree that is a difference in color average value from all adjacent defect inspection areas, and a case where the calculated maximum value of the defect degree is equal to or greater than a determination value The defect detection area It is a requirement to include, recognizing defect recognizing step and a defect exists within.

本ガラス基板の欠陥検査方法の他の形態は、第1主平面及びその対向面である第2主平面を有し、前記第1主平面から前記第2主平面に貫通する円孔を中央部に有するガラス基板に、前記第1主平面又は前記第2主平面の何れか一方の主平面側から光を照射し、前記ガラス基板からの透過光を撮像する撮像工程と、前記撮像工程で撮像したガラス基板の透過光画像に基づいて、前記ガラス基板の内周端及び外周端の欠陥の有無を検査する欠陥検査工程と、を有し、前記欠陥検査工程は、前記ガラス基板の透過光画像を複数の欠陥検出領域に分割する分割工程と、各欠陥検出領域の色平均値を算出する色平均値算出工程と、前記各欠陥検出領域において、隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する欠陥度算出工程と、算出した前記欠陥度の最大値が判定値以上である場合に、その欠陥検出領域内に欠陥が存在すると認識する欠陥認識工程と、を含むことを要件とする。 Another form of the defect inspection method of the present glass substrate has a first main plane and a second main plane which is an opposing surface of the first main plane, and a circular hole penetrating from the first main plane to the second main plane is arranged at the center. An imaging step of irradiating the glass substrate having a light from either the first main plane or the second main plane and imaging the transmitted light from the glass substrate, and imaging in the imaging step based on the glass substrate of the transmitted light image, have a, a defect inspection step of inspecting the presence or absence of a defect of the inner peripheral end and outer peripheral end of the glass substrate, the defect inspection process, the transmitted light image of the glass substrate Dividing into a plurality of defect detection regions, a color average value calculating step of calculating a color average value of each defect detection region, and a color average value of all adjacent defect inspection regions in each defect detection region Defect degree calculation process for calculating the defect degree which is the difference, and calculation If the maximum value of the defective degree that is equal to or larger than the reference value, the defect recognizing step recognizes the defect defect detection area is present, to include a requirement.

本ガラス基板の欠陥検査装置は、第1主平面及びその対向面である第2主平面を有するガラス基板に対し、複数方向から光を順次照射する第1照明手段と、前記第1照明手段から前記ガラス基板に順次照射された光により得たガラス基板の画像を順次撮像する撮像手段と、前記撮像手段が順次撮像した各ガラス基板の画像に基づいて、前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する画像処理手段と、を有し、前記画像処理手段は、前記順次撮像した各ガラス基板の画像を複数の欠陥検出領域に分割し、各欠陥検出領域の色平均値を算出し、前記各欠陥検出領域について隣接する全欠陥検査領域との色平均値の差である欠陥度を算出し、算出した前記欠陥度の最大値が判定値以上である場合にその欠陥検出領域内に欠陥が存在すると認識することを要件とする。
The defect inspection apparatus for the glass substrate includes a first illuminating unit that sequentially irradiates light from a plurality of directions to a glass substrate having a first main plane and a second main plane that is a surface opposite thereto, and the first illuminating unit. An image pickup unit that sequentially picks up images of the glass substrate obtained by the light sequentially irradiated on the glass substrate, and the first main plane of the glass substrate based on images of the glass substrates picked up sequentially by the image pickup unit and wherein possess image processing means for inspecting the presence or absence of a defect of the second principal plane, wherein the image processing means divides the image of each glass substrate said sequential imaging in a plurality of defect detection area, the defect detection area When calculating the color average value, calculating the degree of defect that is the difference between the color average values of all the defect detection areas adjacent to each defect detection area, and the calculated maximum value of the defect degree is greater than or equal to the determination value In the defect detection area It is a requirement to recognize a defect exists.

本発明によれば、従来よりも欠陥の検査感度を向上可能であり、かつ、欠陥を検査する時間を短縮できるガラス基板の欠陥検査方法及びガラス基板の欠陥検査装置、並びに、前記欠陥検査方法又は前記欠陥検査装置を用いた検査工程を有するガラス基板の製造方法を提供できる。   According to the present invention, the glass substrate defect inspection method and the glass substrate defect inspection apparatus capable of improving the defect inspection sensitivity and reducing the time for inspecting the defect than before, and the defect inspection method or The manufacturing method of the glass substrate which has an inspection process using the said defect inspection apparatus can be provided.

ガラス基板を例示する断面図である。It is sectional drawing which illustrates a glass substrate. 第1の実施の形態に係る欠陥検査装置を例示する模式図である。It is a schematic diagram which illustrates the defect inspection apparatus which concerns on 1st Embodiment. 図2の欠陥検査装置の第2照明手段について説明するための平面図である。It is a top view for demonstrating the 2nd illumination means of the defect inspection apparatus of FIG. 図2の欠陥検査装置の第1照明手段について説明するための平面図である。It is a top view for demonstrating the 1st illumination means of the defect inspection apparatus of FIG. ガラス基板に対して斜め方向から光が入射する様子を例示する模式図である。It is a schematic diagram which illustrates a mode that light injects into a glass substrate from the diagonal direction. 第1の実施の形態に係る欠陥検査方法を例示するフローチャートである。It is a flowchart which illustrates the defect inspection method which concerns on 1st Embodiment. 第1の実施の形態に係る画像処理について説明するための平面図であり、図7(A)は領域51及び欠陥検出領域52について、図7(B)及び図7(C)は欠陥検出領域52及びピクセル53について説明するための図である。FIG. 7A is a plan view for explaining image processing according to the first embodiment, FIG. 7A shows an area 51 and a defect detection area 52, and FIGS. 7B and 7C show a defect detection area. 5 is a diagram for explaining a pixel 52 and a pixel 53. FIG. 照明方向による欠陥の画像の相違について説明するための図である。It is a figure for demonstrating the difference in the image of the defect by an illumination direction. 第1の実施の形態に係るガラス基板の製造工程を例示するフローチャートである。It is a flowchart which illustrates the manufacturing process of the glass substrate which concerns on 1st Embodiment. 図2の欠陥検査装置の第1照明手段の他の例について説明するための平面図である。It is a top view for demonstrating the other example of the 1st illumination means of the defect inspection apparatus of FIG.

以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.

〈第1の実施の形態〉
[ガラス基板]
まず、欠陥検査の対象となるガラス基板90について説明する。図1は、ガラス基板を例示する断面図である。ガラス基板90は、磁気記録媒体(磁気ディスク)用のガラス基板であり、円盤の中央部に平面形状が円形の円孔95が形成された構造を有する。ガラス基板90の第1主平面91と第2主平面92とは互いに対向しており、第1主平面91及び第2主平面92との間に形成される内周端93及び外周端94には面取り加工が施されている。
<First Embodiment>
[Glass substrate]
First, the glass substrate 90 to be subjected to defect inspection will be described. FIG. 1 is a cross-sectional view illustrating a glass substrate. The glass substrate 90 is a glass substrate for a magnetic recording medium (magnetic disk), and has a structure in which a circular hole 95 having a circular planar shape is formed at the center of the disk. The first main plane 91 and the second main plane 92 of the glass substrate 90 oppose each other, and the inner peripheral end 93 and the outer peripheral end 94 formed between the first main plane 91 and the second main plane 92 are Has been chamfered.

なお、図1では、ガラス基板90として磁気記録媒体用のガラス基板を例示しているため、円盤の中央部に円孔を有するように描かれているが、本実施の形態において欠陥検査の対象となるガラス基板は磁気記録媒体用ガラス基板には限定されない。すなわち、本実施の形態において欠陥検査の対象となるガラス基板は円盤形状に限定されず、例えば、平面形状が矩形状のガラス基板等であっても構わない。但し、以降の説明は、ガラス基板90が磁気記録媒体用のガラス基板である場合を例にして行う。   In FIG. 1, since a glass substrate for a magnetic recording medium is illustrated as the glass substrate 90, it is depicted as having a circular hole in the center of the disk. The glass substrate is not limited to a glass substrate for a magnetic recording medium. That is, in the present embodiment, the glass substrate to be subjected to defect inspection is not limited to a disk shape, and may be a glass substrate having a rectangular planar shape, for example. However, in the following description, the case where the glass substrate 90 is a glass substrate for a magnetic recording medium will be described as an example.

[ガラス基板の欠陥検査装置]
次に、ガラス基板の欠陥検査装置10について説明する。図2は、第1の実施の形態に係る欠陥検査装置を例示する模式図である。図3は、図2の欠陥検査装置の第2照明手段について説明するための平面図である。図4は、図2の欠陥検査装置の第1照明手段について説明するための平面図である。図5は、ガラス基板に対して斜め方向から光が入射する様子を例示する模式図である。なお、図2〜図5において、後述する載置部60がガラス基板90を載置する面の一方向をX方向、それに垂直な方向をY方向、載置部60がガラス基板90を載置する面に垂直な方向(X方向及びY方向に垂直な方向)をZ方向とする(以降の図についても同様)。
[Glass substrate defect inspection system]
Next, the glass substrate defect inspection apparatus 10 will be described. FIG. 2 is a schematic view illustrating the defect inspection apparatus according to the first embodiment. FIG. 3 is a plan view for explaining the second illumination means of the defect inspection apparatus of FIG. FIG. 4 is a plan view for explaining the first illumination means of the defect inspection apparatus of FIG. FIG. 5 is a schematic view illustrating a state where light is incident on the glass substrate from an oblique direction. 2 to 5, one direction on the surface on which the mounting unit 60 to be described later mounts the glass substrate 90 is the X direction, the direction perpendicular thereto is the Y direction, and the mounting unit 60 mounts the glass substrate 90. The direction perpendicular to the surface to be aligned (the direction perpendicular to the X direction and the Y direction) is taken as the Z direction (the same applies to the following drawings).

図2〜図4を参照するに、欠陥検査装置10は、大略すると、第2照明手段20と、第1照明手段30と、撮像手段40と、画像処理手段50と、載置部60とを有する。70は入力手段、80は出力手段を示している。   Referring to FIGS. 2 to 4, the defect inspection apparatus 10 generally includes a second illumination unit 20, a first illumination unit 30, an imaging unit 40, an image processing unit 50, and a placement unit 60. Have. Reference numeral 70 denotes input means, and 80 denotes output means.

欠陥検査装置10において、第2照明手段20は、ガラス基板90を下側から照明する機能を有し、図3に示すように、平面視において、ガラス基板90よりも十分に広い領域を照明可能とされている。なお、本実施の形態では、便宜上、ガラス基板90の撮像手段40側を上側、その反対側を下側と称することにする。   In the defect inspection apparatus 10, the second illumination means 20 has a function of illuminating the glass substrate 90 from below, and can illuminate an area sufficiently larger than the glass substrate 90 in plan view as shown in FIG. 3. It is said that. In the present embodiment, for convenience, the imaging means 40 side of the glass substrate 90 is referred to as the upper side, and the opposite side is referred to as the lower side.

第2照明手段20としては、例えば、可視光のほぼ全域において強度を有する白色のLED(Light Emitting Diode:発光ダイオード)が複数個並設されたLEDアレイ等を用いることができる。第2照明手段20を構成する各LEDの個数は任意に設定して構わないが、ガラス基板90の全域を漏れなく照明できる程度に密に配置し、ガラス基板90の全域にわたって均質に照明可能とすることが好ましい。第2照明手段20とガラス基板90との間に、必要に応じて拡散板や偏向板等の光学部品を配置しても構わない。例えば、第2照明手段20とガラス基板90との間に拡散板を配置することにより均質な照明が可能となり、偏向板を配置することにより第1照明手段30が点灯した際の載置部60や第2照明手段20等からの反射を低減できる。   As the second illumination unit 20, for example, an LED array in which a plurality of white LEDs (Light Emitting Diodes) having intensities in almost the entire visible light region are arranged in parallel can be used. The number of LEDs constituting the second illuminating means 20 may be arbitrarily set, but it is arranged so densely that the entire area of the glass substrate 90 can be illuminated without omission, and the entire area of the glass substrate 90 can be illuminated uniformly. It is preferable to do. An optical component such as a diffusing plate or a deflecting plate may be disposed between the second illumination unit 20 and the glass substrate 90 as necessary. For example, the diffusing plate is disposed between the second illuminating unit 20 and the glass substrate 90 to enable uniform illumination, and the placing unit 60 when the first illuminating unit 30 is lit by disposing the deflecting plate. And reflection from the second illumination means 20 and the like can be reduced.

なお、白色のLEDを用いる理由は、撮像手段40でカラー画像を撮像する場合に、特定色のLEDを用いると、その色がノイズ成分となるからである。例えば、撮像手段40で白黒画像を撮像する場合には、青色LED等の特定色のLEDを用いることができる。但し、第2照明手段20はLEDには限定されず、LEDに代えて、例えば、有機EL素子(Organic Electro-Luminescence素子)、ハロゲンランプ、キセノンランプ、冷陰極管等の蛍光灯等を用いても構わない。第2照明手段20を構成する各LED等は、ガラス基板90の主平面を略垂直方向から照射する。   The reason why the white LED is used is that when a color image is picked up by the image pickup means 40, if a specific color LED is used, that color becomes a noise component. For example, when a black and white image is picked up by the image pickup means 40, a specific color LED such as a blue LED can be used. However, the 2nd illumination means 20 is not limited to LED, It replaces with LED and uses fluorescent lamps, such as an organic EL element (Organic Electro-Luminescence element), a halogen lamp, a xenon lamp, a cold cathode tube, etc., for example. It doesn't matter. Each LED etc. which comprise the 2nd illumination means 20 irradiates the main plane of the glass substrate 90 from a substantially perpendicular direction.

第1照明手段30は、ガラス基板90を上側から照明する機能を有し、図4に示すように、平面視において、照明部31〜34がガラス基板90を囲むように配置されている。照明部31〜34としては、第2照明手段20と同様に、例えば、可視光のほぼ全域において強度を有する白色のLEDが複数個並設されたLEDアレイ等を用いることができる。   The 1st illumination means 30 has the function to illuminate the glass substrate 90 from an upper side, and as shown in FIG. 4, the illumination parts 31-34 are arrange | positioned so that the glass substrate 90 may be enclosed in planar view. As the illuminating units 31 to 34, as in the second illuminating unit 20, for example, an LED array in which a plurality of white LEDs having intensities in almost the entire visible light region are arranged in parallel can be used.

照明部31〜34を構成する各LEDの個数は任意に設定して構わないが、ガラス基板90の全域を漏れなく照明できる程度に密に配置し、ガラス基板90の全域にわたって均質に照明可能とすることが好ましい。照明部31〜34とガラス基板90との間に、必要に応じて拡散板等の光学部品を配置してもよい。又、照明部31〜34はLEDには限定されず、LEDに代えて、例えば、有機EL素子(Organic Electro-Luminescence素子)、ハロゲンランプ、キセノンランプ、冷陰極管等の蛍光灯等を用いてもよい。   The number of LEDs constituting the illuminating units 31 to 34 may be arbitrarily set, but is arranged so densely that the entire area of the glass substrate 90 can be illuminated without omission, and the entire area of the glass substrate 90 can be illuminated uniformly. It is preferable to do. You may arrange | position optical components, such as a diffusion plate, between the illumination parts 31-34 and the glass substrate 90 as needed. The illumination units 31 to 34 are not limited to LEDs, and instead of LEDs, for example, organic EL elements (Organic Electro-Luminescence elements), halogen lamps, xenon lamps, cold cathode fluorescent lamps, or the like are used. Also good.

照明部31〜34を構成する各LEDは、ガラス基板90を斜め方向から照射する。言い換えれば、図5に示すように、照明部31〜34を構成する各LEDから照射される光は、XY平面上にあるガラス基板90に対して斜め方向から入射する。ガラス基板90に対して斜め方向から入射した光は、ガラス基板90内で反射を繰り返し、ガラス基板90から出射される。従って、ガラス基板90の第1主平面91や第2主平面92に傷や異物等の欠陥が存在しない場合には、傷や異物等の欠陥による光の散乱は発生しない。一方、ガラス基板90の第1主平面91や第2主平面92に傷や異物等の欠陥が存在する場合には、ガラス基板90への入射光が欠陥で散乱し、散乱光の一部が撮像手段40方向に向かうため欠陥の検査が可能となる。但し、鉛直方向(撮像手段40方向)に向かった散乱光のみを検出している訳ではなく、傷や異物等の欠陥で散乱して斜め方向に向かう光であっても、一定の輝度があれば撮像手段40でとらえる事ができる。なお、照明部31〜34は順次点灯し、全ての照明部を同時には点灯させない。   Each LED which comprises the illumination parts 31-34 irradiates the glass substrate 90 from the diagonal direction. In other words, as shown in FIG. 5, the light emitted from each LED constituting the illumination units 31 to 34 enters the glass substrate 90 on the XY plane from an oblique direction. Light incident on the glass substrate 90 from an oblique direction is repeatedly reflected in the glass substrate 90 and emitted from the glass substrate 90. Therefore, when there are no defects such as scratches or foreign objects on the first main plane 91 or the second main plane 92 of the glass substrate 90, light scattering due to defects such as scratches or foreign objects does not occur. On the other hand, when a defect such as a scratch or a foreign substance exists on the first main plane 91 or the second main plane 92 of the glass substrate 90, the incident light on the glass substrate 90 is scattered by the defect, and a part of the scattered light is scattered. Defects can be inspected because they go in the direction of the imaging means 40. However, it does not detect only the scattered light directed in the vertical direction (the direction of the imaging means 40). Even if the light is scattered by a defect such as a flaw or a foreign object and is directed in an oblique direction, there is a certain luminance. In this case, it can be captured by the imaging means 40. In addition, the illumination parts 31-34 light up sequentially, and do not light all the illumination parts simultaneously.

なお、ガラス基板90へ入射する光の角度(XY平面となす角度)は、0〜60度程度とすることが好ましい。但し、0度とした場合(エッジライトと称する場合がある)には、ガラス基板90の外周端94に略垂直に光が入射されるため、ハレーションが発生するおそれがある。特に、入射光の減衰量の多い擦りガラス(不透明)に比べて、入射光の減衰量の少ない鏡面ガラス(透明)の場合にハレーションが発生し易いため、ガラス基板90へ入射する光の角度は、0度を超え、60度以下の範囲内で適切な入射角度を選定して、斜め方向から光を照射することが好ましい。   The angle of light incident on the glass substrate 90 (angle formed with the XY plane) is preferably about 0 to 60 degrees. However, when the angle is set to 0 degrees (sometimes referred to as edge light), light enters the outer peripheral edge 94 of the glass substrate 90 substantially perpendicularly, and thus halation may occur. In particular, in the case of specular glass (transparent) with a small amount of attenuation of incident light compared to rubbed glass (opaque) with a large amount of attenuation of incident light, halation is likely to occur, so the angle of light incident on the glass substrate 90 is It is preferable to irradiate light from an oblique direction by selecting an appropriate incident angle within a range of more than 0 degree and 60 degrees or less.

撮像手段40は、X方向及びY方向に並設された複数の受光素子を備え(例えば、500万画素)、第2照明手段20からガラス基板90に照射された光の透過光の光量を取得し、画像を撮像する機能を有する。又、撮像手段40は、第1照明手段30からガラス基板90に照射された光の拡散反射光(欠陥での散乱光)の光量を取得し、画像を撮像する機能を有する。撮像手段40は、ガラス基板90の主平面に対して略垂直方向(ガラス基板90を介して第2照明手段20と対向する位置)に配置されている。   The imaging unit 40 includes a plurality of light receiving elements arranged in parallel in the X direction and the Y direction (for example, 5 million pixels), and acquires the amount of transmitted light of the light irradiated from the second illumination unit 20 onto the glass substrate 90. And has a function of capturing an image. In addition, the imaging unit 40 has a function of acquiring an amount of diffuse reflection light (scattered light at a defect) of light irradiated from the first illumination unit 30 to the glass substrate 90 and capturing an image. The imaging means 40 is arranged in a direction substantially perpendicular to the main plane of the glass substrate 90 (a position facing the second illumination means 20 through the glass substrate 90).

撮像手段40としては、例えばMOS(Metal Oxide Semiconductor Device)、CMOS(Complimentary Metal Oxide Semiconductor Device)、CCD(Charge Coupled Device)、CIS(Contact Image Sensor)等を用いることができる。カラー画像を対象とする場合には、RGBの各色に感度を有する3ラインタイプ等の撮像素子を用いれば良い。   As the imaging means 40, for example, a metal oxide semiconductor device (MOS), a complementary metal oxide semiconductor device (CMOS), a charge coupled device (CCD), a contact image sensor (CIS), or the like can be used. When a color image is targeted, an image sensor such as a 3-line type having sensitivity to each color of RGB may be used.

第2照明手段20を用いてガラス基板90に垂直方向から光を照射し、ガラス基板90に照射された光の透過光の光量を撮像手段40で取得して画像を撮像することにより、ガラス基板90の内周端93及び外周端94のチッピング等の欠陥を検査できる。なお、チッピングとは、ガラス基板90の欠けである。又、第1照明手段30の照明部31〜34を用いてガラス基板90に斜め方向から光を順次照射し、ガラス基板90に照射された光の拡散反射光(欠陥での散乱光)の光量を撮像手段40で取得して画像を順次撮像することにより、ガラス基板90の第1主平面91及び第2主平面92の欠陥を検査できる。この際、ガラス基板90の表裏を反転させることなくガラス基板90の第1主平面91及び第2主平面92の欠陥を一括で検査できるため、欠陥を検査する時間を短縮できる。   By irradiating the glass substrate 90 with light from the vertical direction using the second illuminating means 20, and acquiring the amount of transmitted light of the light irradiated on the glass substrate 90 with the imaging means 40, an image is taken. Defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of 90 can be inspected. Note that chipping is a chipping of the glass substrate 90. Further, the light portions 31 to 34 of the first illuminating means 30 are used to sequentially irradiate the glass substrate 90 with light from an oblique direction, and the amount of diffusely reflected light (scattered light at the defect) of the light irradiated to the glass substrate 90. Can be inspected for defects in the first main plane 91 and the second main plane 92 of the glass substrate 90. At this time, since the defects of the first main plane 91 and the second main plane 92 of the glass substrate 90 can be inspected at a time without inverting the front and back of the glass substrate 90, the time for inspecting the defects can be shortened.

画像処理手段50は、撮像手段40が撮像した画像に基づいて各種の演算処理を実行し、欠陥を検査する機能を有する。又、欠陥を検査する機能に加えて、画像処理手段50は、撮像手段40が撮像した画像に基づいて、ガラス基板90の同芯度、真円度、内径、外径等を計測する機能を有してもよい。   The image processing unit 50 has a function of executing various arithmetic processes based on the image captured by the imaging unit 40 and inspecting defects. In addition to the function of inspecting defects, the image processing means 50 has a function of measuring the concentricity, roundness, inner diameter, outer diameter, etc. of the glass substrate 90 based on the image captured by the imaging means 40. You may have.

画像処理手段50は、図示しないCPU、ROMやRAM等のメモリ等を有する。画像処理手段50の図示しないメモリには、欠陥を検査するためのプログラム等が記録されており、このプログラムが図示しないCPUにより実行されることで、画像処理手段50の各種機能が実現される。但し、欠陥を検査するためのプログラム等は、光記録媒体や磁気記録媒体等のコンピュータが読み取り可能な記録媒体に記憶されていても構わない。画像処理手段50の具体的な機能に関しては、後述するガラス基板の欠陥検査方法の中で説明する。   The image processing unit 50 includes a CPU, a memory such as a ROM and a RAM (not shown), and the like. A program for inspecting defects is recorded in a memory (not shown) of the image processing unit 50, and various functions of the image processing unit 50 are realized by executing the program by a CPU (not shown). However, the program for inspecting the defect may be stored in a computer-readable recording medium such as an optical recording medium or a magnetic recording medium. The specific function of the image processing means 50 will be described in a glass substrate defect inspection method to be described later.

載置部60は、ガラス基板90を載置する部材である。載置部60は、第2照明手段20から照射された光を透過する必要があるため、第2照明手段20の照射光に対して透明な部材を用いる必要がある。又、載置部60は、ガラス基板90に損傷を与えないために、ある程度柔軟な材料から構成することが好ましい。載置部60としては、例えば、アクリル板等を用いることができる。なお、ガラス基板90は載置部60上に載置するだけでよく、特に固定する必要はない。但し、第2照明手段20や第1照明手段30からの照射光に悪影響を及ぼさないものであれば、載置部60上にガラス基板90を固定するためのチャッキングを設け、ガラス基板90を固定してもよい。   The placement unit 60 is a member on which the glass substrate 90 is placed. Since the mounting unit 60 needs to transmit the light emitted from the second illumination unit 20, it is necessary to use a member that is transparent to the irradiation light of the second illumination unit 20. Further, it is preferable that the mounting portion 60 is made of a material that is flexible to some extent so as not to damage the glass substrate 90. As the mounting part 60, an acrylic board etc. can be used, for example. The glass substrate 90 only needs to be placed on the placement portion 60 and does not need to be particularly fixed. However, if the irradiation light from the second illumination means 20 or the first illumination means 30 is not adversely affected, a chucking for fixing the glass substrate 90 is provided on the mounting portion 60, and the glass substrate 90 is It may be fixed.

入力手段70は、例えば、欠陥検査装置10に対してガラス基板90の欠陥検査の開始を指示するスタートスイッチや、欠陥検査装置10に対してガラス基板90の欠陥検査の終了を指示するストップスイッチ等が設けられた部分である。但し、例えば、載置部60を往復動可能に構成されたトレイ上に設け、載置部60にガラス基板90を載置してトレイを押し込むとトレイが自動的に挿入されて所定位置で止まり自動的に欠陥検査が開始され、欠陥検査が終了すると自動的にトレイが排出されるようなシステムとしても構わない。出力手段80は、例えば、欠陥検査装置10が検査した欠陥に関する情報を表示するモニタや、欠陥検査装置10が検査した欠陥に関する情報を印刷するプリンタ、或いは、欠陥無(良品)であれば青、欠陥有(不良品)であれば赤を表示する表示管等である。   The input means 70 is, for example, a start switch that instructs the defect inspection apparatus 10 to start defect inspection of the glass substrate 90, a stop switch that instructs the defect inspection apparatus 10 to end defect inspection of the glass substrate 90, and the like. This is the part where is provided. However, for example, when the placing portion 60 is provided on a tray configured to be reciprocally movable and the glass substrate 90 is placed on the placing portion 60 and the tray is pushed in, the tray is automatically inserted and stops at a predetermined position. A system in which the defect inspection is automatically started and the tray is automatically ejected when the defect inspection is completed may be employed. The output means 80 is, for example, a monitor that displays information on defects inspected by the defect inspection apparatus 10, a printer that prints information on defects inspected by the defect inspection apparatus 10, or blue if there is no defect (good product). If there is a defect (defective product), the display tube displays red.

なお、欠陥検査装置10の検査対象となるガラス基板90の表面は、擦りガラス状、又は鏡面状態であるが、欠陥検査装置10はガラス基板90の表面粗さによらず、何れの状態であっても検査可能である。又、欠陥検査装置10で欠陥検査可能なガラス基板90の厚さは、10mm程度以下である。但し、第2照明手段20や第1照明手段30の輝度を十分に確保できれば、10mm以上の厚さのガラス基板の欠陥検出も可能である。   The surface of the glass substrate 90 to be inspected by the defect inspection apparatus 10 is in a frosted glass shape or a mirror surface state, but the defect inspection apparatus 10 is in any state regardless of the surface roughness of the glass substrate 90. Even inspection is possible. The thickness of the glass substrate 90 that can be inspected by the defect inspection apparatus 10 is about 10 mm or less. However, if the brightness of the second illumination means 20 and the first illumination means 30 can be sufficiently secured, it is possible to detect a defect in a glass substrate having a thickness of 10 mm or more.

[ガラス基板の欠陥検査方法]
次に、欠陥検査装置10を用いてガラス基板90の欠陥検査を行う方法について説明する。図6は、第1の実施の形態に係る欠陥検査方法を例示するフローチャートである。まず、ステップS100では、ガラス基板90を載置部60上に載置し、入力手段70のスタートスイッチを押す。なお、前述のように、載置部60を往復動可能に構成されたトレイ上に設け、載置部60にガラス基板90を載置してトレイを押し込むと自動的に欠陥検査が開始されるようにしても構わない。
[Glass substrate defect inspection method]
Next, a method for performing a defect inspection of the glass substrate 90 using the defect inspection apparatus 10 will be described. FIG. 6 is a flowchart illustrating the defect inspection method according to the first embodiment. First, in step S100, the glass substrate 90 is placed on the placement unit 60, and the start switch of the input means 70 is pressed. As described above, the placement unit 60 is provided on a tray configured to be able to reciprocate, and when the glass substrate 90 is placed on the placement unit 60 and the tray is pushed in, the defect inspection is automatically started. It doesn't matter if you do.

入力手段70のスタートスイッチが押されると、まず、ステップS110〜S140で、ガラス基板90の欠陥の1つである内周端93及び外周端94のチッピング等の欠陥を検査する。具体的には、ステップS110では、第2照明手段20を点灯してガラス基板90に下側から光を照射し、ガラス基板90からの透過光を撮像手段40で撮像する。そして、第2照明手段20を消灯する。   When the start switch of the input means 70 is pressed, first, in steps S110 to S140, defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94, which are one of the defects of the glass substrate 90, are inspected. Specifically, in step S <b> 110, the second illumination unit 20 is turned on, the glass substrate 90 is irradiated with light from below, and the transmitted light from the glass substrate 90 is imaged by the imaging unit 40. Then, the second illumination means 20 is turned off.

ステップS120では、画像処理手段50は、ステップS110で撮像した画像を処理する。具体的には、画像処理手段50は、ステップS110で撮像したガラス基板90の画像を複数の欠陥検出領域に分割して各欠陥検出領域の色平均値を算出し、各欠陥検出領域において、隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する。そして、算出した欠陥度に基づいて、欠陥が存在する欠陥検出領域を認識する。この場合には、ガラス基板90の内周端93及び外周端94のチッピング等の欠陥を検査するので、内周端93及び外周端94近傍を複数の欠陥検出領域に分割して、欠陥が存在する欠陥検出領域を認識する。   In step S120, the image processing means 50 processes the image captured in step S110. Specifically, the image processing unit 50 divides the image of the glass substrate 90 captured in step S110 into a plurality of defect detection areas, calculates a color average value of each defect detection area, and in each defect detection area, A defect degree that is a difference in color average value from all defect inspection areas to be calculated is calculated. Then, based on the calculated defect degree, the defect detection area where the defect exists is recognized. In this case, since defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90 are inspected, the vicinity of the inner peripheral end 93 and the outer peripheral end 94 is divided into a plurality of defect detection areas, and defects exist. The defect detection area to be recognized is recognized.

処理の一例を挙げると、図7(A)に示すように、画像処理手段50は、例えば、9個の欠陥検出領域52を含む領域51を選択する。図7(B)に示すように、各欠陥検出領域52は、例えば、9個のピクセル53(各ピクセル53は画像の最小単位)から構成されている。撮像手段40の解像度が500万画素である場合には、1ピクセル(各ピクセル53)は、約40μm程度に相当する。なお、領域51が9個以外の個数の欠陥検出領域52を含むようにしてもよく、又、各欠陥検出領域52が9個以外の個数のピクセル53を含むようにしてもよい。   As an example of processing, as shown in FIG. 7A, the image processing means 50 selects a region 51 including, for example, nine defect detection regions 52. As shown in FIG. 7B, each defect detection area 52 includes, for example, nine pixels 53 (each pixel 53 is a minimum unit of an image). When the resolution of the imaging means 40 is 5 million pixels, one pixel (each pixel 53) corresponds to about 40 μm. The region 51 may include a number of defect detection regions 52 other than nine, and each defect detection region 52 may include a number of pixels 53 other than nine.

次に、画像処理手段50は、領域51に含まれる9個の欠陥検出領域52それぞれの色平均値を算出し、中央の欠陥検出領域52と、それに隣接する8個の欠陥検出領域52との色平均値の差である欠陥度をそれぞれ算出する。そして、算出した8個の欠陥度の最大値が所定の判定値以上であれば、その欠陥検出領域52内に欠陥が存在すると認識する。   Next, the image processing means 50 calculates the color average value of each of the nine defect detection areas 52 included in the area 51, and calculates the center defect detection area 52 and the eight defect detection areas 52 adjacent thereto. Defect degrees, which are differences in color average values, are calculated. If the maximum value of the calculated eight defect degrees is equal to or greater than a predetermined determination value, it is recognized that a defect exists in the defect detection area 52.

撮像手段40がカラーカメラである場合には、輝度(RGB)を平均化した値が色平均値であり、所定の欠陥検出領域52と、それに隣接する欠陥検出領域52との色平均値の差は色差として表すことができる。この色差が欠陥度となる。例えば、所定の欠陥検出領域52の輝度(RGB)をRGB各256階調で認識したときの値を(r1、g1、b1)とする。又、それに隣接する1つの欠陥検出領域52の輝度(RGB)を同様にRGB各256階調で認識したときの値を(r2、g2、b2)とする。このとき、色差=√(r1−r2)+(g1−g2)+(b1−b2)となり、色差(=欠陥度)を3次元空間上の距離として表すことができる。 When the imaging means 40 is a color camera, a value obtained by averaging luminance (RGB) is a color average value, and a difference in color average value between a predetermined defect detection area 52 and a defect detection area 52 adjacent thereto. Can be expressed as a color difference. This color difference becomes the degree of defect. For example, the value (r1, g1, b1) when the luminance (RGB) of the predetermined defect detection area 52 is recognized with 256 gradations of RGB is assumed. Similarly, the value (r2, g2, b2) when the luminance (RGB) of one defect detection area 52 adjacent to the defect detection area 52 is similarly recognized with 256 gradations of RGB. At this time, color difference = √ (r1−r2) 2 + (g1−g2) 2 + (b1−b2) 2 , and the color difference (= defect degree) can be expressed as a distance in a three-dimensional space.

このようにして、領域51の中央の欠陥検出領域52と、それに隣接する8個の欠陥検出領域52との色差(=欠陥度)を3次元空間上の距離として表し、その最大値が所定の判定値以上であれば、その欠陥検出領域52内に欠陥が存在すると認識する。次に、図7(C)に示すように、領域51を1ピクセルシフトさせて同様の処理を繰り返す(図7(C)の例では、領域51を1ピクセル右にシフトさせている)。このような処理を、内周端93及び外周端94近傍の全欠陥検出領域52について行い、欠陥が存在すると認識した欠陥検出領域52を示す所定の判定結果フラグを立てる。   In this way, the color difference (= defect degree) between the defect detection area 52 in the center of the area 51 and the eight defect detection areas 52 adjacent thereto is expressed as a distance in the three-dimensional space, and the maximum value is a predetermined value. If it is equal to or greater than the determination value, it is recognized that a defect exists in the defect detection area 52. Next, as shown in FIG. 7C, the region 51 is shifted by one pixel and the same processing is repeated (in the example of FIG. 7C, the region 51 is shifted to the right by one pixel). Such processing is performed for all the defect detection areas 52 in the vicinity of the inner peripheral edge 93 and the outer peripheral edge 94, and a predetermined determination result flag indicating the defect detection area 52 recognized as having a defect is set.

なお、撮像手段40が白黒カメラである場合には、濃淡を平均化した平均濃淡値が色平均値であり、所定の欠陥検出領域52と、それに隣接する欠陥検出領域52との色平均値の差は濃淡差として表すことができる。この濃淡差が欠陥度となる。例えば、領域51の中央の欠陥検出領域52の平均濃淡値をAとする。又、それに隣接する8個の欠陥検出領域52の平均濃淡値を、それぞれB、C、D、E、F、G、H、Iとする。この場合、AとB〜Iとの濃淡差の最大値が所定の判定値以上であれば、その欠陥検出領域52内に欠陥が存在すると認識する。他の処理は、撮像手段40がカラーカメラである場合と同様である。   When the imaging unit 40 is a black and white camera, the average gray value obtained by averaging the gray levels is the color average value, and the color average value of the predetermined defect detection area 52 and the defect detection area 52 adjacent thereto is obtained. The difference can be expressed as a shading difference. This density difference is the defect degree. For example, let A be the average gray value of the defect detection area 52 in the center of the area 51. Further, the average density values of the eight defect detection areas 52 adjacent to the defect detection areas 52 are set to B, C, D, E, F, G, H, and I, respectively. In this case, if the maximum value of the contrast between A and B to I is equal to or greater than a predetermined determination value, it is recognized that a defect exists in the defect detection area 52. Other processes are the same as when the imaging means 40 is a color camera.

このように、撮像した画像を多数の欠陥検出領域に分割し、分割した各欠陥検出領域の色平均値を算出し、各欠陥検出領域について隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する。そして、算出した欠陥度の最大値が所定の判定値以上である場合に、その欠陥検出領域内に欠陥が存在すると認識する。これにより、画像全体の色合いにムラがあっても、精度のよい欠陥検出が可能となる。   In this way, the captured image is divided into a large number of defect detection areas, the color average value of each divided defect detection area is calculated, and the difference in color average value between all adjacent defect inspection areas for each defect detection area is calculated. A certain defect degree is calculated. When the calculated maximum value of the defect degree is equal to or greater than a predetermined determination value, it is recognized that a defect exists in the defect detection area. As a result, even if the color of the entire image is uneven, it is possible to detect defects with high accuracy.

図6に戻り、ステップS130では、画像処理手段50は、判定結果フラグを含むステップS120で検査したデータを画像処理手段50の図示しないメモリに記憶する。判定結果フラグ以外では、例えば、欠陥の存在する座標や欠陥度等をメモリに記憶できる。   Returning to FIG. 6, in step S <b> 130, the image processing unit 50 stores the data inspected in step S <b> 120 including the determination result flag in a memory (not shown) of the image processing unit 50. Other than the determination result flag, for example, the coordinates where the defect exists and the degree of defect can be stored in the memory.

ステップS140では、画像処理手段50は、ステップS120での判定結果を出力手段80に出力する(例えば、モニタに表示する)。以上で、ガラス基板90の内周端93及び外周端94のチッピング等の欠陥検査が終了する。   In step S140, the image processing unit 50 outputs the determination result in step S120 to the output unit 80 (for example, displays it on a monitor). The defect inspection such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90 is thus completed.

なお、ステップS110〜S140におけるガラス基板90の内周端93及び外周端94のチッピング等の欠陥検査と共に、画像処理手段50は、撮像手段40が撮像した画像に基づいて、ガラス基板90の同芯度、真円度、内径、外径等を計測できる。   In addition to the defect inspection such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90 in Steps S110 to S140, the image processing unit 50 concentrics the glass substrate 90 based on the image captured by the imaging unit 40. Measure the degree, roundness, inner diameter, outer diameter, etc.

次に、ステップS150〜S230で、ガラス基板90の第1主平面91及び第2主平面92の欠陥を検査する。具体的には、ステップS150では、第1照明手段30の照明部31〜34を順次点灯してガラス基板90に上側の複数方向から光を斜め照射し、ガラス基板90からの散乱光等の画像を撮像手段40で順次撮像する。そして、第1照明手段30の照明部31〜34を順次消灯する。すなわち、第1照明手段30の照明部31を点灯してガラス基板90に上側から光を斜め照射し、ガラス基板90からの散乱光等の画像を撮像手段40で撮像する。そして、照明部31を消灯し、照明部32を点灯してガラス基板90に上側の別方向から光を斜め照射し、ガラス基板90からの散乱光等の画像を撮像手段40で撮像する。照明部33及び34についても同様に順次点灯、撮像、消灯する。これにより、異なる4方向から順次光を照射して撮像した4枚の画像が得られる。   Next, in steps S150 to S230, the first main plane 91 and the second main plane 92 of the glass substrate 90 are inspected for defects. Specifically, in step S150, the illumination units 31 to 34 of the first illumination unit 30 are sequentially turned on to obliquely irradiate the glass substrate 90 with light from a plurality of upper directions, and an image such as scattered light from the glass substrate 90. Are sequentially imaged by the imaging means 40. And the illumination parts 31-34 of the 1st illumination means 30 are light-extinguished sequentially. That is, the illumination unit 31 of the first illumination unit 30 is turned on, light is obliquely irradiated onto the glass substrate 90 from above, and an image such as scattered light from the glass substrate 90 is captured by the imaging unit 40. Then, the illumination unit 31 is turned off, the illumination unit 32 is turned on, and the glass substrate 90 is obliquely irradiated with light from another upper side, and an image such as scattered light from the glass substrate 90 is captured by the imaging unit 40. Similarly, the lighting units 33 and 34 are sequentially turned on, imaged, and turned off. Thereby, four images captured by sequentially irradiating light from four different directions are obtained.

なお、ステップS150よりも前に、検査対象物であるガラス基板90の状態(擦りガラス状態、又は鏡面状態)に応じて、照明部31〜34からガラス基板90へ入射する光の角度(XY平面となす角度)、照明部31〜34の出射光の強度、照明部31〜34の出射光の角度、照明部31〜34からガラス基板90までの距離、予め適切な値に調整しておく必要がある。これらにより、ハレーションの発生等を防止する。   Prior to step S150, the angle of light incident on the glass substrate 90 from the illumination units 31 to 34 (XY plane) in accordance with the state of the glass substrate 90 that is the inspection object (the rubbed glass state or the mirror surface state). Angle), the intensity of the emitted light from the illumination units 31 to 34, the angle of the emitted light from the illumination units 31 to 34, the distance from the illumination units 31 to 34 to the glass substrate 90, and must be adjusted to appropriate values in advance. There is. As a result, the occurrence of halation is prevented.

ステップS160では、画像処理手段50は、ステップS150で撮像した各画像(4枚)を処理する。画像処理手段50は、ステップS120と同様にして、各画像(4枚)を多数の欠陥検出領域に分割して欠陥を認識する。但し、ステップS120と異なり、ガラス基板90の内周端93及び外周端94のみではなく、ガラス基板90の全領域を欠陥検出領域に分割して欠陥の認識を行う。そして、欠陥が存在すると認識した欠陥検出領域を示す所定の判定結果フラグを立てる。   In step S160, the image processing unit 50 processes each image (four images) captured in step S150. Similar to step S120, the image processing unit 50 divides each image (four sheets) into a large number of defect detection areas and recognizes defects. However, unlike step S120, not only the inner peripheral edge 93 and the outer peripheral edge 94 of the glass substrate 90 but also the entire area of the glass substrate 90 is divided into defect detection areas to recognize defects. Then, a predetermined determination result flag indicating a defect detection area recognized as having a defect is set.

ステップS170では、画像処理手段50は、ステップS130と同様にして、判定結果フラグを含むステップS160で検査したデータを画像処理手段50の図示しないメモリに記憶する。ステップS180では、画像処理手段50は、ステップS140と同様にして、ステップS160での判定結果を出力手段80に出力する(例えば、モニタに表示する)。   In step S170, the image processing unit 50 stores the data inspected in step S160 including the determination result flag in a memory (not shown) of the image processing unit 50, as in step S130. In step S180, as in step S140, the image processing unit 50 outputs the determination result in step S160 to the output unit 80 (for example, displays on the monitor).

以上でガラス基板90を上側の複数方向から斜め照射して得られた各画像についての欠陥検査が終了するが、本実施の形態では、更に、ステップS150で撮像した各画像(4枚)を合成し、合成した画像についても欠陥検査を行う。なお、ステップS150〜S180のみでもガラス基板90の欠陥検査は可能である。しかし、更に、ステップS150で撮像した各画像(4枚)を合成し、合成した画像についても欠陥検査を行うことにより、不感領域が生じることなく、1方向からの照射のみでは確認し難い欠陥を精度よく検出できる。すなわち、欠陥検出感度を向上できる。   The defect inspection for each image obtained by obliquely irradiating the glass substrate 90 from a plurality of directions on the upper side is completed as described above. In this embodiment, each image (four images) captured in step S150 is further synthesized. The defect inspection is also performed on the synthesized image. In addition, the defect inspection of the glass substrate 90 is possible only by steps S150 to S180. However, furthermore, by synthesizing each image (four images) captured in step S150, and performing defect inspection on the synthesized image, a defect area that does not appear insensitive area and is difficult to be confirmed only by irradiation from one direction. It can be detected accurately. That is, the defect detection sensitivity can be improved.

ステップS190では、画像処理手段50は、ステップS150で撮像した各画像(4枚)を合成して1枚の合成画像を生成する。ステップS200では、画像処理手段50は、ステップS190で合成した合成画像(1枚)を処理する。画像処理手段50は、ステップS160と同様にして、合成画像(1枚)を多数の欠陥検出領域に分割して欠陥を認識する。ステップS210では、画像処理手段50は、ステップS180と同様にして、ステップS200での判定結果を出力手段80に出力する(例えば、モニタに表示する)。   In step S190, the image processing means 50 synthesizes each image (four images) captured in step S150 to generate one synthesized image. In step S200, the image processing means 50 processes the synthesized image (one sheet) synthesized in step S190. Similar to step S160, the image processing unit 50 divides the composite image (one sheet) into a large number of defect detection areas to recognize defects. In step S210, the image processing unit 50 outputs the determination result in step S200 to the output unit 80 (for example, displays it on a monitor) in the same manner as in step S180.

ステップS220では、画像処理手段50は、総合判定を行う。総合判定の条件は適宜決定してよいが、ここでは、ステップS120での判定結果、ステップS160での判定結果、及びステップS200での判定結果の何れかで欠陥が認識された場合には総合判定は欠陥有(不良品)とする。   In step S220, the image processing means 50 performs comprehensive determination. The condition for comprehensive determination may be determined as appropriate, but here, when a defect is recognized in any of the determination result in step S120, the determination result in step S160, and the determination result in step S200, the comprehensive determination is made. Is defective (defective).

ステップS230では、画像処理手段50は、総合判定結果を出力手段80に出力する(例えば、モニタに『欠陥無(良品)』や『欠陥有(不良品)』と表示する)。そして、ステップS240では、入力手段70のストップスイッチを押して測定をリセットし、ガラス基板90を載置部60上から取り出す。なお、前述のように、欠陥検査が終了すると自動的にトレイが排出され、それと同時に測定がリセットされるようにしても構わない。   In step S230, the image processing unit 50 outputs the comprehensive determination result to the output unit 80 (for example, displays “no defect (good product)” or “has a defect (defective product)” on the monitor). In step S240, the stop switch of the input means 70 is pressed to reset the measurement, and the glass substrate 90 is taken out from the placement unit 60. As described above, the tray may be automatically ejected when the defect inspection is completed, and at the same time, the measurement may be reset.

なお、ステップS220で総合判定が欠陥有(不良品)である場合には、データロギングや再測定等を行ってもよい。以下に一例を挙げる。ステップS220で総合判定が欠陥有(不良品)である場合には、画像処理手段50は、その旨を出力手段80に出力し(例えば、モニタに『欠陥有(不良品)』と表示する)、測定データを磁気記録媒体や光記録媒体等を有する外部記憶装置に出力し記憶させる(データロギング)。   Note that if the comprehensive determination is defective (defective product) in step S220, data logging, remeasurement, or the like may be performed. An example is given below. If it is determined in step S220 that the overall determination is defective (defective product), the image processing unit 50 outputs the fact to the output unit 80 (for example, displays “defective (defective product)” on the monitor). The measurement data is output and stored in an external storage device having a magnetic recording medium or an optical recording medium (data logging).

再測定を行う場合には、再測定したい箇所を指定する。例えば、第1照明手段30の照明部31〜34の中の再測定したい箇所に対応する照明部を点灯してガラス基板90に上側から光を斜め照射し、ガラス基板90からの散乱光を撮像手段40で撮像する。そして、点灯した照明部を消灯する。そして、画像処理手段50は、ステップS160と同様にして、再測定のために撮像した画像を多数の欠陥検出領域に分割して欠陥を認識し、ステップS180と同様にして、判定結果を出力手段80に出力する(例えば、モニタに表示する)。なお、第2照明手段20で再測定したり、第1照明手段30の照明部31〜34を順次照射した合成画像で再測定したりしてもよい。   When performing re-measurement, specify the location to be re-measured. For example, the illumination unit corresponding to the location to be remeasured in the illumination units 31 to 34 of the first illumination unit 30 is turned on, and light is obliquely irradiated on the glass substrate 90 from above, and the scattered light from the glass substrate 90 is imaged. The image is taken by means 40. Then, the illuminated illumination unit is turned off. Then, the image processing means 50 recognizes the defect by dividing the image taken for remeasurement into a large number of defect detection areas in the same manner as in step S160, and outputs the determination result in the same manner as in step S180. Output to 80 (for example, displayed on a monitor). In addition, you may remeasure with the 2nd illumination means 20, or you may remeasure with the synthesized image which irradiated the illumination parts 31-34 of the 1st illumination means 30 sequentially.

以上で、ガラス基板90についての全ての欠陥検査が終了する。なお、外部光の影響が懸念される場合には、外部光を遮光可能なボックス等に欠陥検査装置10を入れて、ガラス基板90の欠陥検査をすることが好ましい。   Thus, all defect inspections for the glass substrate 90 are completed. When there is a concern about the influence of external light, it is preferable to inspect the glass substrate 90 for defects by placing the defect inspection apparatus 10 in a box or the like capable of shielding external light.

ここで、第1照明手段30の照明部31〜34を、平面視において、ガラス基板90を囲むように配置し、照明部31〜34を順次点灯させて画像を取得し、取得した画像を合成する効果について説明する。図8は、照明方向による欠陥の画像の相違について説明するための図である。図8(a)は、照明部31のみを点灯させて取得した欠陥100aの画像を模式的に示している。図8(b)は、照明部33のみを点灯させて取得した欠陥100bの画像を模式的に示している。図8(c)は、図8(a)の欠陥100aの画像と図8(b)の欠陥100bの画像とを合成した欠陥100cの画像を模式的に示している。   Here, the illumination units 31 to 34 of the first illumination unit 30 are arranged so as to surround the glass substrate 90 in plan view, the illumination units 31 to 34 are sequentially turned on to acquire images, and the acquired images are synthesized. The effect to do is demonstrated. FIG. 8 is a diagram for explaining the difference in the defect image depending on the illumination direction. FIG. 8A schematically shows an image of the defect 100a acquired by lighting only the illumination unit 31. FIG. FIG. 8B schematically shows an image of the defect 100b acquired by lighting only the illumination unit 33. FIG. FIG. 8C schematically shows an image of the defect 100c obtained by synthesizing the image of the defect 100a in FIG. 8A and the image of the defect 100b in FIG.

図8(a)に示すように、照明部31のみを点灯させてガラス基板90に光を斜め照射すると、欠陥の照明部31とは反対側(紙面下側)のみが光るため、欠陥100aのような画像が取得される。つまり、欠陥の照明部31側(欠陥の紙面上側の破線部分)の明瞭な画像は取得できない。又、図8(b)に示すように、照明部33のみを点灯させてガラス基板90に光を斜め照射すると、欠陥の照明部33とは反対側(紙面上側)のみが光るため、欠陥100bのような画像が取得される。つまり、欠陥の照明部33側(欠陥の紙面下側の破線部分)の明瞭な画像は取得できない。   As shown in FIG. 8A, when only the illumination unit 31 is turned on and the glass substrate 90 is obliquely irradiated with light, only the side opposite to the defective illumination unit 31 (the lower side of the paper surface) shines. Such an image is acquired. That is, a clear image on the defective illumination unit 31 side (the broken line portion above the defective paper surface) cannot be acquired. Further, as shown in FIG. 8B, when only the illumination unit 33 is turned on and the glass substrate 90 is obliquely irradiated with light, only the side opposite to the defect illumination unit 33 (upper side in the drawing) is illuminated, so that the defect 100b An image like this is acquired. In other words, a clear image on the defective illumination unit 33 side (the broken line portion on the lower side of the defective paper surface) cannot be acquired.

そこで、図8(c)に示すように、図8(a)の欠陥100aの画像と図8(b)の欠陥100bの画像とを合成することにより、欠陥の照明部31側及び照明部33側の両方が光り明瞭となった欠陥100cの画像が得られ、欠陥がより検出し易くなり、欠陥検出感度が向上する。   Therefore, as shown in FIG. 8C, the image of the defect 100a in FIG. 8A and the image of the defect 100b in FIG. An image of the defect 100c in which both sides are bright and clear is obtained, the defect is more easily detected, and the defect detection sensitivity is improved.

このように、照明部31と照明部33のように、互いに対向配置された照明部を設け、それらを順次点灯させて取得した画像を合成することにより、1方向からの照射のみでは確認し難い欠陥の画像を精度よく取得できる。言い換えれば、1方向からの照射のみでは検出できず流出されるような欠陥を確実に検出できる。   In this way, it is difficult to confirm by only irradiating from one direction by providing illumination units arranged opposite to each other like the illumination unit 31 and the illumination unit 33 and combining the images acquired by sequentially lighting them. A defect image can be obtained with high accuracy. In other words, it is possible to reliably detect a defect that cannot be detected only by irradiation from one direction but flows out.

なお、ここでは、照明部31と照明部33を例に説明を行ったが、照明部32と照明部34も互いに対向配置された照明部であるから、同様の効果を奏する。更に、照明部31〜34は、平面視において、ガラス基板90を囲むように配置されているため、照明部31〜34を順次点灯させて画像を取得し、取得した画像を合成することにより、不感領域が生じることなく、精度のよい欠陥検出が可能となる。   Here, the illumination unit 31 and the illumination unit 33 have been described as examples. However, since the illumination unit 32 and the illumination unit 34 are also illumination units arranged to face each other, the same effect can be obtained. Furthermore, since the illumination parts 31-34 are arrange | positioned so that the glass substrate 90 may be enclosed in planar view, by illuminating the illumination parts 31-34 sequentially, an image is acquired, and the acquired image is combined, Accurate defect detection is possible without generating a dead area.

[ガラス基板の製造方法]
次に、ガラス基板90の製造方法について説明する。図9は、第1の実施の形態に係るガラス基板の製造工程を例示するフローチャートである。まず、形状付与工程400では、例えば、フロート法、フュージョン法、又はプレス成形法等で成形された素板ガラス等を加工して図1に相当する形状の原ガラス基板(以降、便宜上、原ガラス基板99とする)を多数個作製する。なお、原ガラス基板99は、最終的にガラス基板90となる基板である。具体的には、例えば、素板ガラス等に円孔を形成し、円孔が中心部に位置するように円盤形状の原ガラス基板99を切り出す。そして、原ガラス基板99の内周端及び外周端に面取り加工を施す。
[Glass substrate manufacturing method]
Next, a method for manufacturing the glass substrate 90 will be described. FIG. 9 is a flowchart illustrating the manufacturing process of the glass substrate according to the first embodiment. First, in the shape imparting step 400, for example, an original glass substrate having a shape corresponding to FIG. 1 is processed by processing a base glass formed by a float method, a fusion method, a press molding method, or the like (hereinafter, for convenience, the original glass substrate). 99). The original glass substrate 99 is a substrate that eventually becomes the glass substrate 90. Specifically, for example, a circular hole is formed in the base glass and the disk-shaped original glass substrate 99 is cut out so that the circular hole is located at the center. Then, chamfering is performed on the inner peripheral end and the outer peripheral end of the original glass substrate 99.

次に、端面研磨工程410では、例えば、砥粒を含む研磨液、研磨用ブラシ、研磨パッド等を用いて、面取り加工された部分も含む内周端及び外周端を研磨し、鏡面とする。   Next, in the end surface polishing step 410, for example, the inner peripheral end and the outer peripheral end including the chamfered portion are polished using a polishing liquid containing abrasive grains, a polishing brush, a polishing pad, and the like to obtain a mirror surface.

次に、ラップ工程420では、原ガラス基板99の第1主平面及び第2主平面をラッピングする。原基板99の第1主平面及び第2主平面をラッピングすることにより、原ガラス基板の平坦度と板厚を揃える。なお、ラップ工程420は、端面研磨工程410の前に実施してもよく、端面研磨工程410の前及び後の両方で実施してもよい。   Next, in the lapping step 420, the first main plane and the second main plane of the original glass substrate 99 are lapped. By wrapping the first main plane and the second main plane of the original substrate 99, the flatness and thickness of the original glass substrate are made uniform. The lapping step 420 may be performed before the end surface polishing step 410 or may be performed both before and after the end surface polishing step 410.

次に、研磨工程430では、例えば、砥粒を含む研磨液と研磨パッドを用いて、原ガラス基板99の第1主平面及び第2主平面を研磨する。研磨工程430では、1次研磨のみを行っても良く、1次研磨と2次研磨を行っても良く、2次研磨の後に3次研磨を行っても良い。   Next, in the polishing step 430, for example, the first main plane and the second main plane of the original glass substrate 99 are polished using a polishing liquid containing abrasive grains and a polishing pad. In the polishing step 430, only primary polishing may be performed, primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing.

研磨工程430において原ガラス基板99の第1主平面及び第2主平面は、例えば、研磨具として硬質ウレタン製の研磨パッドと酸化セリウム砥粒を含有する研磨液(平均粒子直径、以下、平均粒径と略す、約1.3μmの酸化セリウムを主成分した研磨液組成物など)を用いて、両面研磨装置により1次研磨できる。1次研磨工程において、両面研磨装置の上定盤と下定盤に装着した研磨パッドは、原ガラス基板99を研磨する前に、ダイヤモンド砥粒を含有するペレットからなるドレス治具を用いてドレス処理が施され、所定の研磨面に形成される。   In the polishing step 430, the first main plane and the second main plane of the original glass substrate 99 are, for example, a polishing liquid containing an abrasive pad made of hard urethane and cerium oxide abrasive as an abrasive (average particle diameter, hereinafter referred to as average particle). The primary polishing can be performed by a double-side polishing apparatus using a polishing liquid composition having a diameter of about 1.3 μm as a main component. In the primary polishing process, the polishing pads mounted on the upper and lower surface plates of the double-side polishing apparatus are dressed using a dressing jig made of pellets containing diamond abrasive grains before the original glass substrate 99 is polished. Is formed on a predetermined polished surface.

1次研磨の後に2次研磨を行う場合には、1次研磨後の原ガラス基板99の第1主平面及び第2主平面は、例えば、研磨具として軟質ウレタン製の研磨パッドと、1次研磨工程で用いた酸化セリウム砥粒よりも平均粒径が小さい酸化セリウム砥粒を含有する研磨液(平均粒径約0.5μmの酸化セリウムを主成分とする研磨液組成物など)を用いて、両面研磨装置により2次研磨できる。2次研磨の後、酸化セリウムを洗浄除去する。   When secondary polishing is performed after primary polishing, the first main plane and the second main plane of the original glass substrate 99 after the primary polishing are, for example, a polishing pad made of soft urethane as a polishing tool, Using a polishing liquid (such as a polishing liquid composition mainly composed of cerium oxide having an average particle diameter of about 0.5 μm) containing cerium oxide abrasive grains having an average particle diameter smaller than that of the cerium oxide abrasive grains used in the polishing step. Secondary polishing can be performed by a double-side polishing apparatus. After the secondary polishing, the cerium oxide is washed away.

2次研磨の後に3次研磨を行う場合には、2次研磨後の原ガラス基板99の第1主平面及び第2主平面は、例えば、研磨具として軟質ウレタン製の研磨パッドと、コロイダルシリカを含有する研磨液(一次粒子の平均粒径が20〜30nmのコロイダルシリカを主成分とする研磨液組成物など)を用いて、両面研磨装置により3次研磨できる。   When performing tertiary polishing after secondary polishing, the first main plane and the second main plane of the original glass substrate 99 after the secondary polishing are, for example, a polishing pad made of soft urethane as a polishing tool, and colloidal silica. Can be subjected to tertiary polishing by a double-side polishing apparatus using a polishing liquid containing a polishing liquid (such as a polishing liquid composition mainly composed of colloidal silica having an average primary particle diameter of 20 to 30 nm).

次に、洗浄工程440では、内周端及び外周端、並びに、第1主平面及び第2主平面が鏡面研磨された原ガラス基板99を精密洗浄して乾燥させる。原ガラス基板99は、例えば、アルカリ性洗剤によるスクラブ洗浄、アルカリ性洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い、イソプロピルアルコール蒸気にて乾燥させることができる。以上により、図1に示すガラス基板90が完成する。   Next, in the cleaning step 440, the original glass substrate 99 whose inner peripheral end and outer peripheral end, and the first main plane and the second main plane are mirror-polished is precisely cleaned and dried. The original glass substrate 99 is sequentially subjected to, for example, scrub cleaning with an alkaline detergent, ultrasonic cleaning in a state immersed in an alkaline detergent solution, and ultrasonic cleaning in a state immersed in pure water, and dried with isopropyl alcohol vapor. be able to. Thus, the glass substrate 90 shown in FIG. 1 is completed.

なお、上記ガラス基板90の製造工程の各工程間において、原ガラス基板99の洗浄(工程間洗浄)や原ガラス基板99の表面のエッチング(工程間エッチング)を実施してもよい。更に、原ガラス基板99に高い機械的強度が求められる場合、原ガラス基板99の表層に強化層を形成する強化工程(例えば、化学強化工程)を研磨工程前、又は研磨工程後、あるいは研磨工程間で実施してもよい。又、原ガラス基板99は、アモルファスガラスでもよく、結晶化ガラスでもよく、表層に強化層を有する強化ガラス(例えば、化学強化ガラス)でもよい。

ところで、ガラス基板90の製造工程において、前述の欠陥検査装置10を用いて原ガラス基板99の欠陥検査を行うことが好ましい。例えば、洗浄工程440の後に欠陥検査を行うことにより、内周端及び外周端、並びに、第1主平面及び第2主平面に欠陥を有するガラス基板90が最終製品として出荷されることを防止できる。
In addition, between each process of the manufacturing process of the said glass substrate 90, you may implement the cleaning (interprocess cleaning) of the original glass substrate 99 and the etching (interprocess etching) of the surface of the original glass substrate 99. Further, when high mechanical strength is required for the original glass substrate 99, a strengthening step (for example, a chemical strengthening step) for forming a reinforcing layer on the surface layer of the original glass substrate 99 is performed before the polishing step, after the polishing step, or the polishing step. You may carry out between. The original glass substrate 99 may be amorphous glass, crystallized glass, or tempered glass (for example, chemically tempered glass) having a tempered layer on the surface layer.

By the way, in the manufacturing process of the glass substrate 90, it is preferable to perform a defect inspection of the original glass substrate 99 using the defect inspection apparatus 10 described above. For example, by performing a defect inspection after the cleaning process 440, it is possible to prevent the glass substrate 90 having defects on the inner peripheral end and the outer peripheral end, and the first main plane and the second main plane from being shipped as a final product. .

又、形状付与工程400と端面研磨工程410との間や、ラップ工程420と研磨工程430との間等の工程間で欠陥検査を行うことにより、内周端及び外周端にチッピング等の欠陥が形成された原基板99や、第1主平面及び第2主平面に傷等の欠陥が形成された原ガラス基板99が後工程に流出することを防止できる。その結果、欠陥を有する原ガラス基板99が後工程に流出しなくなるため、例えば、欠陥の存在に起因して研磨中の原基板99が破損し研磨装置を停止させることが防止可能となり、研磨装置の停止時間を短くすることにより研磨装置の稼動率を向上できる。又、後工程の研磨で除去できない深さ以上の傷やチッピング等の欠陥を有する原ガラス基板99を後工程に流出することを防止できる。   Further, by performing defect inspection between the shape imparting step 400 and the end surface polishing step 410 or between the lapping step 420 and the polishing step 430, defects such as chipping are found at the inner peripheral end and the outer peripheral end. It is possible to prevent the formed original substrate 99 and the original glass substrate 99 in which defects such as scratches are formed on the first main plane and the second main plane from flowing out to the subsequent process. As a result, since the defective original glass substrate 99 does not flow out to the subsequent process, for example, it is possible to prevent the original substrate 99 being polished from being damaged due to the presence of the defect and stop the polishing apparatus. The operating rate of the polishing apparatus can be improved by shortening the stop time. In addition, it is possible to prevent the original glass substrate 99 having scratches or defects such as chipping beyond the depth that cannot be removed by polishing in the subsequent process from flowing out to the subsequent process.

このように、第1の実施の形態によれば、ガラス基板90よりも十分に広い領域を照明可能な第2照明手段20を用いてガラス基板90の主平面に略垂直方向から光を照射し、ガラス基板90を透過した光を撮像手段40で撮像する。そして、撮像手段40で撮像した画像に所定の画像処理を施す。その結果、ガラス基板90の内周端93及び外周端94のチッピング等の欠陥を検査できる。   As described above, according to the first embodiment, the second illumination unit 20 that can illuminate a region sufficiently wider than the glass substrate 90 is used to irradiate the main plane of the glass substrate 90 from a substantially vertical direction. The light transmitted through the glass substrate 90 is imaged by the imaging means 40. Then, predetermined image processing is performed on the image picked up by the image pickup means 40. As a result, defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90 can be inspected.

又、ガラス基板90の内周端93及び外周端94のチッピング等の欠陥を検査する際に、ガラス基板90の同芯度、真円度、内径、外径等を同時に計測できる。   Further, when inspecting defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90, the concentricity, roundness, inner diameter, outer diameter, etc. of the glass substrate 90 can be simultaneously measured.

又、第1照明手段30の照明部31〜34を、平面視において、ガラス基板90を囲むように配置し、ガラス基板90に上側の複数方向から光を順次照射し、ガラス基板90の欠陥で乱反射した散乱光を撮像手段40で順次撮像する。そして、順次撮像した各画像に所定の画像処理を施して欠陥検査を行う。その結果、方向依存性のある欠陥を全て検出でき、不感領域が生じることなく、1方向からの照射のみでは確認し難い欠陥を精度よく検出できる。   Further, the illumination units 31 to 34 of the first illumination means 30 are arranged so as to surround the glass substrate 90 in plan view, and light is sequentially irradiated on the glass substrate 90 from a plurality of upper directions. The diffused scattered light is sequentially imaged by the imaging means 40. Then, a predetermined image processing is performed on each sequentially captured image to perform defect inspection. As a result, it is possible to detect all the direction-dependent defects, and it is possible to accurately detect defects that are difficult to be confirmed only by irradiation from one direction without generating a dead area.

又、ガラス基板90の表裏を反転させることなくガラス基板90の第1主平面91及び第2主平面92の欠陥を一括で検査できるため、欠陥検査時間を短縮できる。   Further, since the defects of the first main plane 91 and the second main plane 92 of the glass substrate 90 can be inspected at a time without inverting the front and back of the glass substrate 90, the defect inspection time can be shortened.

又、撮像手段40で順次撮像した各画像を合成した1枚の合成画像を生成し、この合成画像に所定の画像処理を施して欠陥検査を行う。その結果、不感領域が生じることなく、1方向からの照射のみでは確認し難い欠陥を精度よく検出できる。さらに、合成画像を用いることにより欠陥検出感度を向上できる。   Further, a single composite image is generated by combining the images sequentially picked up by the image pickup means 40, and a predetermined image processing is performed on the composite image to perform defect inspection. As a result, it is possible to accurately detect a defect that is difficult to confirm only by irradiation from one direction without generating a dead area. Furthermore, the defect detection sensitivity can be improved by using the composite image.

又、画像処理において、撮像又は合成した画像を多数の欠陥検出領域に分割し、分割した各欠陥検出領域の色平均値を算出し、各欠陥検出領域について隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する。そして、算出した欠陥度の最大値が所定の判定値以上である場合に、その欠陥検出領域内に欠陥が存在すると認識する。これにより、画像全体の色合いにムラがあっても、精度のよい欠陥検出が可能となる。   Also, in image processing, the captured or synthesized image is divided into a large number of defect detection areas, the color average value of each divided defect detection area is calculated, and the color average of all defect detection areas with the adjacent all defect inspection areas The defect degree which is a difference in values is calculated. When the calculated maximum value of the defect degree is equal to or greater than a predetermined determination value, it is recognized that a defect exists in the defect detection area. As a result, even if the color of the entire image is uneven, it is possible to detect defects with high accuracy.

又、第1の実施の形態に係る欠陥検査方法をガラス基板の製造工程で実行することにより、内周端93及び外周端94や第1主平面91及び第2主平面92に欠陥を有するガラス基板90が最終製品として出荷されることを防止できる等の効果を奏する。   Moreover, the glass which has a defect in the inner peripheral end 93 and the outer peripheral end 94, the 1st main plane 91, and the 2nd main plane 92 by performing the defect inspection method which concerns on 1st Embodiment in the manufacturing process of a glass substrate. It is possible to prevent the substrate 90 from being shipped as a final product.

なお、発明者らの検討によれば、目視検査で正常と判定された8600枚の基板を欠陥検査装置10で再検査したところ、欠陥の存在する基板(不良基板)が14枚検出された。欠陥検査装置10による1枚のガラス基板90を検査する時間は3秒であった。このように、欠陥検査装置10により、短い検査時間で精度のよい欠陥検査ができることを確認した。   According to the examination by the inventors, when 8600 substrates determined to be normal by visual inspection were re-inspected by the defect inspection apparatus 10, 14 substrates having defects (defective substrates) were detected. The time for inspecting one glass substrate 90 by the defect inspection apparatus 10 was 3 seconds. As described above, it was confirmed that the defect inspection apparatus 10 can perform an accurate defect inspection in a short inspection time.

〈第1の実施の形態の変形例1〉
第1の実施の形態の変形例1では、第1の実施の形態の第1照明手段30に代えて、第1照明手段35を用いる例を示す。なお、第1の実施の形態の変形例1において、第1の実施の形態で既に説明した内容と重複する部分についての説明は省略する。
<Variation 1 of the first embodiment>
In the first modification of the first embodiment, an example in which the first illumination unit 35 is used instead of the first illumination unit 30 of the first embodiment is shown. In the first modification of the first embodiment, the description of the same parts as those already described in the first embodiment will be omitted.

図10は、図2の欠陥検査装置の第1照明手段の他の例について説明するための平面図である。図10に示す第1照明手段35は、第1の実施の形態の第1照明手段30と同様に、ガラス基板90を上側から照明する機能を有し、平面視において、複数の発光素子がガラス基板90を同心円状に囲むように配置されている。第1照明手段35を構成する発光素子としては、第1照明手段30と同様に、例えば、可視光のほぼ全域において強度を有する白色のLED等を用いることができる。   FIG. 10 is a plan view for explaining another example of the first illumination means of the defect inspection apparatus of FIG. 10 has the function of illuminating the glass substrate 90 from above, as in the first illumination unit 30 of the first embodiment, and a plurality of light emitting elements are made of glass in plan view. It arrange | positions so that the board | substrate 90 may be enclosed concentrically. As the light emitting element constituting the first illumination unit 35, for example, a white LED having an intensity in almost the entire visible light region can be used as in the first illumination unit 30.

第1照明手段35を構成する発光素子の個数は任意に設定して構わないが、ガラス基板90の全域を漏れなく照明できる程度に密に配置し、ガラス基板90の全域にわたって均質に照明可能とすることが好ましい。第1照明手段35を構成する発光素子とガラス基板90との間に、必要に応じて拡散板等の光学部品を配置しても構わない。又、第1照明手段35を構成する発光素子はLEDには限定されず、LEDに代えて、例えば、有機EL素子(Organic Electro-Luminescence素子)、ハロゲンランプ、キセノンランプ、冷陰極管等の蛍光灯等を用いても構わない。   The number of light-emitting elements constituting the first illumination means 35 may be arbitrarily set, but it is arranged so densely that the entire glass substrate 90 can be illuminated without omission, and the entire glass substrate 90 can be illuminated uniformly. It is preferable to do. An optical component such as a diffusing plate may be disposed between the light emitting element constituting the first illumination unit 35 and the glass substrate 90 as necessary. The light emitting element constituting the first illuminating means 35 is not limited to the LED, and instead of the LED, for example, fluorescent light such as an organic EL element (Organic Electro-Luminescence element), a halogen lamp, a xenon lamp, a cold cathode tube or the like. A lamp or the like may be used.

第1照明手段35を構成する各発光素子は、ガラス基板90を斜め方向から照射するため、第1照明手段30と同様に、ガラス基板90の第1主平面91と第2主平面92に傷や異物等の欠陥が存在しない場合には、撮像手段40には欠陥起因である散乱光は入射しない。一方、ガラス基板90の第1主平面91と第2主平面92に傷や異物等の欠陥が存在する場合には、ガラス基板90への入射光が欠陥で乱反射されて散乱光の一部が撮像手段40方向に向かうため、欠陥の検査が可能となる。但し、鉛直方向(撮像手段40方向)に向かった散乱光のみを検出している訳ではなく、傷や異物等の欠陥で散乱して斜め方向に向かう光であっても、一定の輝度があれば撮像手段40でとらえる事ができる。なお、ガラス基板90へ入射する光の角度(XY平面となす角度)に関しては、第1照明手段30と同様である
第1照明手段35を用いて欠陥検査を実行する場合には、第1照明手段35を構成する各発光素子を順次点灯して画像を取得する必要がある。但し、第1照明手段35を構成する各発光素子は必ずしも1つずつ点灯させる必要はなく、隣接する数個の発光素子を発光素子対と考え、発光素子対を順次点灯させればよい(同じ発光素子対に属する発光素子は同時に点灯させる)。
Since each light emitting element constituting the first illumination unit 35 irradiates the glass substrate 90 from an oblique direction, the first main plane 91 and the second main plane 92 of the glass substrate 90 are scratched similarly to the first illumination unit 30. When there is no defect such as a foreign substance or the like, scattered light due to the defect is not incident on the imaging means 40. On the other hand, when a defect such as a scratch or a foreign object exists on the first main plane 91 and the second main plane 92 of the glass substrate 90, the incident light on the glass substrate 90 is irregularly reflected by the defect and a part of the scattered light is generated. Since it goes in the direction of the imaging means 40, it is possible to inspect the defect. However, it does not detect only the scattered light directed in the vertical direction (the direction of the imaging means 40). Even if the light is scattered by a defect such as a flaw or a foreign object and is directed in an oblique direction, there is a certain luminance. In this case, it can be captured by the imaging means 40. Note that the angle of light incident on the glass substrate 90 (the angle formed with the XY plane) is the same as that of the first illumination unit 30. When the defect inspection is performed using the first illumination unit 35, the first illumination is performed. It is necessary to sequentially turn on each light emitting element constituting the means 35 to acquire an image. However, it is not always necessary to turn on each of the light emitting elements constituting the first illumination unit 35. It is only necessary to consider several adjacent light emitting elements as light emitting element pairs and sequentially turn on the light emitting element pairs (same as above). The light emitting elements belonging to the light emitting element pair are turned on simultaneously).

このように、第1の実施の形態の変形例1によれば、第1の実施の形態の第1照明手段30に代えて、複数の発光素子がガラス基板90を同心円状に囲むように配置されている第1照明手段35を用いても、第1の実施の形態と同様の効果を奏する。   Thus, according to the first modification of the first embodiment, a plurality of light emitting elements are arranged so as to surround the glass substrate 90 concentrically instead of the first illumination means 30 of the first embodiment. Even if the 1st illumination means 35 currently used is used, there exists an effect similar to 1st Embodiment.

〈第1の実施の形態の変形例2〉
第1の実施の形態の変形例2では、ガラス基板に付着した研磨材(スラリー)の影響を除去し、欠陥検出の精度を一層向上させる例を示す。なお、第1の実施の形態の変形例2において、第1の実施の形態で既に説明した内容と重複する部分についての説明は省略する。
<Modification 2 of the first embodiment>
Modification 2 of the first embodiment shows an example in which the influence of the abrasive (slurry) adhering to the glass substrate is removed to further improve the accuracy of defect detection. In the second modification of the first embodiment, the description of the same parts as those already described in the first embodiment is omitted.

ガラス基板の製造工程の各工程間において、研削又は研磨されたガラス基板を工程間で検査する場合がある。工程間検査を実施する場合には、検査対象となるガラス基板90の第1主平面91や第2主平面92に研磨材(スラリー)が付着している場合がある。ガラス基板90の第1主平面91や第2主平面92に研磨材(スラリー)が付着していると、研磨材(スラリー)を傷等の欠陥と誤検出するおそれがあるため、研磨材(スラリー)の影響を除去しておくことが好ましい。研磨材(スラリー)の影響を除去する方法を以下に説明する。   There is a case where a ground or polished glass substrate is inspected between processes in each process of manufacturing a glass substrate. When performing an inter-process inspection, an abrasive (slurry) may adhere to the first main plane 91 or the second main plane 92 of the glass substrate 90 to be inspected. If an abrasive (slurry) is attached to the first main plane 91 or the second main plane 92 of the glass substrate 90, the abrasive (slurry) may be erroneously detected as a defect such as a scratch. It is preferable to remove the influence of the slurry. A method for removing the influence of the abrasive (slurry) will be described below.

まず、図6のステップS110〜S140で、ガラス基板90の内周端93及び外周端94のチッピング等の欠陥を検査する際に、研磨材(スラリー)の有無を同時に検査する。研磨材(スラリー)は、特定色の材料を用いているため、カラーで撮像した画像と、予め画像処理手段50のメモリに記憶させた研磨材(スラリー)の色情報とを対比することにより、研磨材(スラリー)の有無を検査できる。この際、傷等の欠陥は特定色を有さないため、研磨材(スラリー)と傷等の欠陥とは区別できる。   First, in steps S110 to S140 in FIG. 6, when inspecting defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90, the presence or absence of an abrasive (slurry) is simultaneously inspected. Since the abrasive (slurry) uses a material of a specific color, by comparing the image captured in color with the color information of the abrasive (slurry) stored in the memory of the image processing unit 50 in advance, The presence or absence of an abrasive (slurry) can be inspected. At this time, since defects such as scratches do not have a specific color, the abrasive (slurry) can be distinguished from defects such as scratches.

次に、ステップS160等において欠陥を認識する際に、研磨材(スラリー)の付着している座標を欠陥検査から除外することにより、研磨材(スラリー)を欠陥と誤検出することを防止できる。なお、ステップS160等でもカラーで撮像した画像を用いて欠陥検査を行うが、ガラス基板90に斜め方向から光を照射しているため、研磨材(スラリー)の色情報の検出精度が低い。従って、研磨材(スラリー)の有無の検査は、ガラス基板90の主平面に垂直方向から光を照射するステップS110〜S140で行うことが好ましい。   Next, when recognizing a defect in step S160 or the like, it is possible to prevent the abrasive (slurry) from being erroneously detected as a defect by excluding the coordinates to which the abrasive (slurry) is attached from the defect inspection. In step S160 and the like, defect inspection is performed using an image captured in color. However, since the glass substrate 90 is irradiated with light from an oblique direction, the detection accuracy of the color information of the abrasive (slurry) is low. Therefore, the inspection for the presence of the abrasive (slurry) is preferably performed in steps S <b> 110 to S <b> 140 in which light is irradiated from the direction perpendicular to the main plane of the glass substrate 90.

このように、第1の実施の形態の変形例2によれば、第1の実施の形態と同様の効果を奏するが、更に、以下の効果を奏する。すなわち、第2照明手段20によりガラス基板90の下側から光を照明し、内周端93及び外周端94のチッピング等の欠陥を検査する際に、研磨材(スラリー)の有無を同時に検査する。そして、第1照明手段30によりガラス基板90に対して光を斜め方向から照射する際に、研磨材(スラリー)の付着している座標を欠陥検査から除外する。これにより、ガラス基板90に付着した研磨材(スラリー)の影響を除去し、ガラス基板90の欠陥検出の精度を一層向上させることができる。   As described above, according to the second modification of the first embodiment, the same effects as those of the first embodiment are obtained, but the following effects are further obtained. That is, when the second illumination unit 20 illuminates light from the lower side of the glass substrate 90 and inspects defects such as chipping of the inner peripheral end 93 and the outer peripheral end 94, the presence or absence of abrasive (slurry) is simultaneously inspected. . Then, when the first illumination unit 30 irradiates the glass substrate 90 with light from an oblique direction, the coordinates to which the abrasive (slurry) is attached are excluded from the defect inspection. Thereby, the influence of the abrasive (slurry) adhering to the glass substrate 90 can be removed, and the accuracy of defect detection of the glass substrate 90 can be further improved.

以上、好ましい実施の形態及びその変形例について詳説したが、上述した実施の形態及びその変形例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及びその変形例に種々の変形及び置換を加えることができる。   The preferred embodiment and its modification have been described in detail above, but the present invention is not limited to the above-described embodiment and its modification, and the above-described implementation is performed without departing from the scope described in the claims. Various modifications and substitutions can be added to the embodiment and its modifications.

例えば、第1照明手段30を有さず、第2照明手段20からの透過光のみを撮像手段40で撮像し、画像処理手段50で画像処理して欠陥検査をする装置も実現可能である。前記実施の形態では、第2照明手段20からの透過光を用いてガラス基板90の内周端93及び外周端94の欠陥検査をする例を示したが、第2照明手段20からの透過光を用いてガラス基板90の第1主平面91及び第2主平面92の傷等の欠陥検査を実行することもできる。但し、第2照明手段20からの透過光は載置部60も透過するので、載置部60の傷を検出してしまうおそれがある。このような観点から、ガラス基板90の第1主平面91及び第2主平面92についてより精度高く欠陥検査が必要な場合には、欠陥検査装置10のような第2照明手段20及び第1照明手段30を有する欠陥検査装置を用いることが好ましい。なお、第1照明手段30はガラス基板90を斜め方向から照射するので、載置部60の傷を誤検出するおそれが極めて低い。   For example, it is possible to realize an apparatus that does not have the first illuminating unit 30 and images only the transmitted light from the second illuminating unit 20 with the imaging unit 40 and performs image processing with the image processing unit 50 to inspect the defect. In the above-described embodiment, the example in which the defect inspection of the inner peripheral end 93 and the outer peripheral end 94 of the glass substrate 90 is performed using the transmitted light from the second illumination unit 20 is described. It is also possible to perform defect inspection such as scratches on the first main plane 91 and the second main plane 92 of the glass substrate 90. However, the transmitted light from the second illuminating means 20 is also transmitted through the mounting portion 60, so that there is a risk of detecting a scratch on the mounting portion 60. From this point of view, when the defect inspection is required for the first main plane 91 and the second main plane 92 of the glass substrate 90 with higher accuracy, the second illumination unit 20 and the first illumination such as the defect inspection apparatus 10 are used. It is preferable to use a defect inspection apparatus having means 30. In addition, since the 1st illumination means 30 irradiates the glass substrate 90 from the diagonal direction, the possibility of misdetecting the damage of the mounting part 60 is very low.

又、第2照明手段は、平面視において、ガラス基板90を正六角形状や正八角形状に囲むように配置しても構わない。   Further, the second illumination means may be arranged so as to surround the glass substrate 90 in a regular hexagonal shape or a regular octagonal shape in plan view.

又、特定色の材料を用いた研磨材(スラリー)の有無を検出しない場合には、カラー情報の取得が不要なため、第2照明手段20及び第1照明手段30として青色光源を用い、撮像手段40として白黒カメラを用いることができる。なお、青色光源に代えて、赤等の他色の光源を用いてもよい。   Further, when the presence or absence of an abrasive (slurry) using a material of a specific color is not detected, it is not necessary to acquire color information. Therefore, a blue light source is used as the second illumination unit 20 and the first illumination unit 30 to perform imaging. A black and white camera can be used as the means 40. Note that a light source of another color such as red may be used instead of the blue light source.

10 欠陥検査装置
20 第2照明手段
30、35 第1照明手段
31、32、33、34 照明部
40 撮像手段
50 画像処理手段
50A、50B 欠陥検出領域
60 載置部
70 入力手段
80 出力手段
90 ガラス基板
90A 画像
91 第1主平面
92 第2主平面
93 内周端
94 外周端
95 円孔
100a、100b、100c 欠陥
DESCRIPTION OF SYMBOLS 10 Defect inspection apparatus 20 2nd illumination means 30, 35 1st illumination means 31, 32, 33, 34 Illumination part 40 Imaging means 50 Image processing means 50A, 50B Defect detection area 60 Mounting part 70 Input means 80 Output means 90 Glass Substrate 90A Image 91 First main plane 92 Second main plane 93 Inner edge 94 Outer edge 95 Circular hole 100a, 100b, 100c Defect

Claims (20)

第1主平面及びその対向面である第2主平面を有するガラス基板に対し、複数方向から光を順次照射し、前記ガラス基板の画像を順次撮像する順次撮像工程と、
前記順次撮像工程で順次撮像した各ガラス基板の画像に基づいて、前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する欠陥検査工程と、を有し、
前記欠陥検査工程は、前記順次撮像した各ガラス基板の画像を複数の欠陥検出領域に分割する分割工程と、
分割した各欠陥検出領域の色平均値を算出する色平均値算出工程と、
前記各欠陥検出領域において、隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する欠陥度算出工程と、
算出した前記欠陥度の最大値が判定値以上である場合に、その欠陥検出領域内に欠陥が存在すると認識する欠陥認識工程と、を含むガラス基板の欠陥検査方法。
A sequential imaging step of sequentially irradiating light from a plurality of directions and sequentially capturing images of the glass substrate to the glass substrate having the first main plane and the second main plane that is the opposite surface;
On the basis of the image of each glass substrate are sequentially captured in a sequential imaging step, have a, a defect inspection step of inspecting the presence or absence of a defect of the first principal plane and the second principal plane of the glass substrate,
The defect inspection step is a division step of dividing the sequentially imaged glass substrate images into a plurality of defect detection regions;
A color average value calculating step for calculating a color average value of each of the divided defect detection areas;
In each of the defect detection areas, a defect degree calculating step of calculating a defect degree that is a difference in color average value from all adjacent defect inspection areas;
And a defect recognition step for recognizing that a defect exists in the defect detection area when the calculated maximum value of the defect degree is equal to or greater than a determination value .
前記順次撮像工程で順次撮像した各ガラス基板の画像を合成して合成画像を生成する画像合成工程を更に有し、
前記欠陥検査工程では、前記順次撮像した各ガラス基板の画像及び前記合成画像に基づいて、前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する請求項1記載のガラス基板の欠陥検査方法。
Further comprising an image synthesis step of generating a synthesized image by synthesizing images of the glass substrates taken sequentially in the sequential imaging step;
The said defect inspection process inspects the presence or absence of the defect of the said 1st main plane and the said 2nd main plane of the said glass substrate based on the said image and each synthesized image of each glass substrate which were sequentially imaged. Defect inspection method for glass substrates.
前記順次撮像工程は、前記第1主平面又は前記第2主平面の何れか一方の主平面側から、前記ガラス基板の内部を光が透過するように、複数方向から光を順次照射する請求項1又は2記載のガラス基板の欠陥検査方法。   The sequential imaging step sequentially irradiates light from a plurality of directions from one main plane side of the first main plane or the second main plane so that light is transmitted through the glass substrate. The glass substrate defect inspection method according to 1 or 2. 前記複数方向は、平面視において、少なくとも一対以上が前記ガラス基板を介して対向する請求項1乃至3の何れか一項記載のガラス基板の欠陥検査方法。   The glass substrate defect inspection method according to claim 1, wherein at least a pair of the plurality of directions are opposed to each other with the glass substrate in a plan view. 前記ガラス基板は、前記第1主平面から前記第2主平面に貫通する円孔を中央部に有し、
前記検査方法は、
前記第1主平面又は前記第2主平面の何れか一方の主平面側から光を照射し、前記ガラス基板からの透過光を撮像する撮像工程と、
前記撮像工程で撮像したガラス基板の透過光画像に基づいて、前記ガラス基板の内周端及び外周端の欠陥の有無を検査する第2の欠陥検査工程と、を更に有する請求項1乃至4の何れか一項記載のガラス基板の欠陥検査方法。
The glass substrate has a circular hole penetrating from the first main plane to the second main plane in a central portion,
The inspection method is:
An imaging step of irradiating light from either one of the first main plane or the second main plane and imaging the transmitted light from the glass substrate;
5. The second defect inspection step of inspecting the presence or absence of defects at the inner peripheral end and the outer peripheral end of the glass substrate based on the transmitted light image of the glass substrate imaged in the imaging step. The defect inspection method of the glass substrate as described in any one of Claims.
前記第2の欠陥検査工程では、前記撮像工程で撮像したガラス基板の透過光画像に基づいて、前記ガラス基板の内周端及び外周端の欠陥の有無を検査するとともに、前記第1主平面又は前記第2主平面に付着した研磨材の有無を検査し、In the second defect inspection step, based on the transmitted light image of the glass substrate imaged in the imaging step, the presence or absence of defects at the inner peripheral end and the outer peripheral end of the glass substrate, and the first main plane or Inspecting the presence or absence of the abrasive adhered to the second main plane,
前記欠陥検査工程で前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する際には、前記第2の欠陥検査工程での検査結果に基づいて、前記研磨材の付着している座標を検査から除外する請求項5記載のガラス基板の欠陥検査方法。When inspecting the presence or absence of defects on the first main plane and the second main plane of the glass substrate in the defect inspection step, based on the inspection result in the second defect inspection step, The glass substrate defect inspection method according to claim 5, wherein attached coordinates are excluded from inspection.
前記ガラス基板は中央部に円孔を有する円盤形状であり、
前記欠陥検査工程は、撮像した前記ガラス基板の透過光画像に基づいて、前記ガラス基板の同芯度、真円度、内径、外径のうち少なくとも1つを計測する請求項5又は6記載のガラス基板の欠陥検査方法。
The glass substrate has a disk shape with a circular hole in the center,
The defect inspection process based on the transmitted light image of the glass substrate obtained by imaging, concentricity of the glass substrate, roundness, inside diameter, according to claim 5 or 6, wherein measuring at least one of outer diameter Defect inspection method for glass substrates.
前記分割工程では、前記順次撮像した各ガラス基板の画像に代えて前記合成画像又は前記ガラス基板の透過光画像を複数の欠陥検出領域に分割する請求項2、5、6、又は7記載のガラス基板の欠陥検査方法。 The division step, the you divide the transmitted light image of the composite image or the glass substrate instead of the glass substrates of images sequentially captured in a plurality of defect detection area Motomeko 2,5,6, or 7 The defect inspection method of the glass substrate of description. 第1主平面及びその対向面である第2主平面を有し、前記第1主平面から前記第2主平面に貫通する円孔を中央部に有するガラス基板に、前記第1主平面又は前記第2主平面の何れか一方の主平面側から光を照射し、前記ガラス基板からの透過光を撮像する撮像工程と、
前記撮像工程で撮像したガラス基板の透過光画像に基づいて、前記ガラス基板の内周端及び外周端の欠陥の有無を検査する欠陥検査工程と、を有し、
前記欠陥検査工程は、前記ガラス基板の透過光画像を複数の欠陥検出領域に分割する分割工程と、
各欠陥検出領域の色平均値を算出する色平均値算出工程と、
前記各欠陥検出領域において、隣接する全欠陥検査領域との色平均値の差である欠陥度を算出する欠陥度算出工程と、
算出した前記欠陥度の最大値が判定値以上である場合に、その欠陥検出領域内に欠陥が存在すると認識する欠陥認識工程と、を含むガラス基板の欠陥検査方法。
A glass substrate having a first main plane and a second main plane opposite to the first main plane and having a circular hole penetrating from the first main plane to the second main plane in a central portion thereof, the first main plane or the An imaging step of irradiating light from any one of the second principal planes and imaging the transmitted light from the glass substrate;
Based on the transmitted light image of the glass substrate taken by the image pickup step, have a, a defect inspection step of inspecting the presence or absence of a defect of the inner peripheral end and outer peripheral end of the glass substrate,
The defect inspection step is a division step of dividing the transmitted light image of the glass substrate into a plurality of defect detection regions;
A color average value calculating step of calculating a color average value of each defect detection area;
In each of the defect detection areas, a defect degree calculating step of calculating a defect degree that is a difference in color average value from all adjacent defect inspection areas;
And a defect recognition step for recognizing that a defect exists in the defect detection area when the calculated maximum value of the defect degree is equal to or greater than a determination value .
前記ガラス基板は中央部に円孔を有する円盤形状であり、
前記欠陥検査工程では、撮像したガラス基板の透過光画像に基づいて、前記ガラス基板の同芯度、真円度、内径、外径のうちの少なくとも1つを計測する請求項記載のガラス基板の欠陥検査方法。
The glass substrate has a disk shape with a circular hole in the center,
10. The glass substrate according to claim 9, wherein in the defect inspection step, at least one of concentricity, roundness, inner diameter, and outer diameter of the glass substrate is measured based on a captured light image of the glass substrate. Defect inspection method.
第1主平面及びその対向面である第2主平面を有するガラス基板に対し、複数方向から光を順次照射する第1照明手段と、前記第1照明手段から前記ガラス基板に順次照射された光により得たガラス基板の画像を順次撮像する撮像手段と、
前記撮像手段が順次撮像した各ガラス基板の画像に基づいて、前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する画像処理手段と、を有し、
前記画像処理手段は、前記順次撮像した各ガラス基板の画像を複数の欠陥検出領域に分割し、各欠陥検出領域の色平均値を算出し、前記各欠陥検出領域について隣接する全欠陥検査領域との色平均値の差である欠陥度を算出し、算出した前記欠陥度の最大値が判定値以上である場合にその欠陥検出領域内に欠陥が存在すると認識するガラス基板の欠陥検査装置。
A first illuminating means for sequentially irradiating light from a plurality of directions to a glass substrate having a first main plane and a second main plane that is the opposite surface, and light that is sequentially emitted from the first illuminating means to the glass substrate. Imaging means for sequentially capturing images of the glass substrate obtained by
Based on the image of each glass substrate on which the imaging means sequentially captured, we have a, and an image processing means for inspecting the presence or absence of a defect of the first principal plane and the second principal plane of the glass substrate,
The image processing means divides the sequentially imaged glass substrate images into a plurality of defect detection areas, calculates a color average value of each defect detection area, and all defect inspection areas adjacent to each defect detection area; of calculating the defectivity is the difference between the average color value, calculated defect inspection apparatus for a glass substrate to recognize a defect exists in the defect detection area when the maximum value of the defective degree is equal to or larger than the reference value.
前記画像処理手段は、前記撮像手段が順次撮像した各ガラス基板の画像を合成して合成画像を生成し、前記順次撮像した各ガラス基板の画像及び前記合成画像に基づいて、前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する請求項11記載のガラス基板の欠陥検査装置。   The image processing unit generates a composite image by combining images of the glass substrates sequentially captured by the imaging unit, and based on the sequentially captured images of the glass substrates and the composite image, the glass substrate The glass substrate defect inspection apparatus according to claim 11, wherein the presence or absence of defects on the first main plane and the second main plane is inspected. 前記第1照明手段は複数の照明部を備え、
前記照明部の少なくとも一部は、平面視において、前記ガラス基板を介して対向配置されている請求項11又は12記載のガラス基板の欠陥検査装置。
The first illumination means includes a plurality of illumination units,
The defect inspection apparatus for a glass substrate according to claim 11 or 12, wherein at least a part of the illumination unit is disposed so as to face the glass substrate in plan view.
前記ガラス基板は、前記第1主平面から前記第2主平面に貫通する円孔を中央部に有し、
前記欠陥検査装置は、
前記第1主平面及び前記第2主平面の何れか一方の主平面側から光を照射する第2照明手段を更に有し、
前記撮像手段は、前記第2照明手段から前記ガラス基板に照射された光の透過光を撮像し、
前記画像処理手段は、前記撮像手段が撮像した前記ガラス基板の透過光画像に基づいて、前記ガラス基板の内周端及び外周端の欠陥の有無を検査する請求項11乃至13の何れか一項記載のガラス基板の欠陥検査装置。
The glass substrate has a circular hole penetrating from the first main plane to the second main plane in a central portion,
The defect inspection apparatus includes:
A second illumination means for irradiating light from either one of the first main plane and the second main plane;
The imaging means images the transmitted light of the light irradiated on the glass substrate from the second illumination means,
The said image processing means test | inspects the presence or absence of the defect of the inner peripheral end of the said glass substrate and an outer peripheral end based on the transmitted light image of the said glass substrate imaged by the said imaging means. The glass substrate defect inspection apparatus described.
前記画像処理手段は、前記撮像手段が撮像した前記ガラス基板の透過光画像に基づいて、前記ガラス基板の内周端及び外周端の欠陥の有無を検査するとともに前記第1主平面又は前記第2主平面に付着した研磨材の有無を検査し、The image processing means inspects for the presence or absence of defects at the inner peripheral edge and the outer peripheral edge of the glass substrate based on the transmitted light image of the glass substrate imaged by the imaging means, and the first main plane or the second Inspect for abrasive material adhering to the main plane,
前記ガラス基板の前記第1主平面及び前記第2主平面の欠陥の有無を検査する際には、前記研磨材の有無の検査結果に基づいて、前記研磨材の付着している座標を検査から除外する請求項14記載のガラス基板の欠陥検査装置。  When inspecting the glass substrate for the presence or absence of defects on the first main plane and the second main plane, based on the inspection result of the presence or absence of the abrasive, the coordinates of the abrasive are attached. The glass substrate defect inspection apparatus according to claim 14 to be excluded.
前記ガラス基板は中央部に円孔を有する円盤形状であり、
前記画像処理手段は、前記ガラス基板の透過光画像に基づいて、前記ガラス基板の同芯度、真円度、内径、外径のうちの少なくとも1つを計測する請求項14又は15記載のガラス基板の欠陥検査装置。
The glass substrate has a disk shape with a circular hole in the center,
The glass according to claim 14 or 15 , wherein the image processing means measures at least one of concentricity, roundness, inner diameter, and outer diameter of the glass substrate based on a transmitted light image of the glass substrate. Substrate inspection system.
前記画像処理手段は、前記順次撮像した各ガラス基板の画像に代えて前記合成画像又は前記ガラス基板の透過光画像を複数の欠陥検出領域に分割する請求項12、14、15、又は16記載のガラス基板の欠陥検査装置。 Wherein the image processing means, wherein you divide the transmitted light image of the composite image or the glass substrate instead of the glass substrates of images sequentially captured in a plurality of defect detection area claim 12, 14, 15, or 16 The glass substrate defect inspection apparatus described. 請求項1乃至10の何れか一項記載の欠陥検査方法でガラス基板の欠陥を検査する工程を有するガラス基板の製造方法。   The manufacturing method of the glass substrate which has the process of test | inspecting the defect of a glass substrate with the defect inspection method as described in any one of Claims 1 thru | or 10. 請求項11乃至17の何れか一項記載の欠陥検査装置でガラス基板を欠陥検査する工程を有するガラス基板の製造方法。 The manufacturing method of a glass substrate which has the process of carrying out a defect inspection of the glass substrate with the defect inspection apparatus as described in any one of Claims 11 thru | or 17 . 前記ガラス基板は、磁気記録媒体用ガラス基板である請求項18又は19記載のガラス基板の製造方法。 The glass substrate, according to claim 18 or 19 glass substrate manufacturing method according a glass substrate for a magnetic recording medium.
JP2010293250A 2010-12-28 2010-12-28 Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate Expired - Fee Related JP5625901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293250A JP5625901B2 (en) 2010-12-28 2010-12-28 Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293250A JP5625901B2 (en) 2010-12-28 2010-12-28 Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate

Publications (2)

Publication Number Publication Date
JP2012141192A JP2012141192A (en) 2012-07-26
JP5625901B2 true JP5625901B2 (en) 2014-11-19

Family

ID=46677621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293250A Expired - Fee Related JP5625901B2 (en) 2010-12-28 2010-12-28 Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate

Country Status (1)

Country Link
JP (1) JP5625901B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014103283A1 (en) * 2012-12-25 2017-01-12 Hoya株式会社 Manufacturing method of glass substrate for information recording medium
WO2015076753A1 (en) * 2013-11-20 2015-05-28 Semiconductor Technologies & Instruments Pte, Ltd Apparatus and method for selectively inspecting component sidewalls
CN106990119A (en) * 2017-04-27 2017-07-28 中科慧远视觉技术(洛阳)有限公司 The vision detection system and detection method of a kind of white glass surface defect of automatic detection
CN110500962A (en) * 2019-09-17 2019-11-26 威海华菱光电股份有限公司 Contact-type image sensor, crack change monitoring device and clean method
CN114235847A (en) * 2021-12-20 2022-03-25 深圳市尊绅投资有限公司 Liquid crystal display panel glass substrate surface defect detection device and detection method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343047A (en) * 1991-05-17 1992-11-30 Fujikura Ltd Method for inspecting foreign object
JPH07225198A (en) * 1994-02-14 1995-08-22 Nippon Sheet Glass Co Ltd Line inspection method of glass substrate
JP2005127989A (en) * 2003-10-03 2005-05-19 Olympus Corp Flaw detector and flaw detecting program
JP2005189069A (en) * 2003-12-25 2005-07-14 Sony Corp Method and apparatus for measuring surface shape
JP2008046109A (en) * 2006-07-20 2008-02-28 Toshiba Corp Flaw inspection device of substrate, and manufacturing method of substrate
JP2008089424A (en) * 2006-10-02 2008-04-17 Nikon Corp Surface inspection apparatus
JP5117054B2 (en) * 2007-01-15 2013-01-09 Hoya株式会社 Apparatus for measuring inner diameter of glass substrate for magnetic disk, method for measuring inner diameter of glass substrate for magnetic disk, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2008249568A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Visual examination device
GB0721060D0 (en) * 2007-10-29 2007-12-05 Pilkington Group Ltd Optical inspection
JP5245482B2 (en) * 2008-03-21 2013-07-24 株式会社ニコン Substrate inspection apparatus and mask substrate manufacturing method
JP2010122155A (en) * 2008-11-21 2010-06-03 Canon Chemicals Inc Method for detecting defect in plate-like body and defect detector

Also Published As

Publication number Publication date
JP2012141192A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5419304B2 (en) Light emitting element inspection apparatus and inspection method thereof
JP5625901B2 (en) Defect inspection method for glass substrate, defect inspection apparatus for glass substrate, and method for manufacturing glass substrate
US20080062422A1 (en) Optical Inspection Of Flat Media Using Direct Image Technology
US8396281B2 (en) Apparatus and method for inspecting substrate internal defects
US9201019B2 (en) Article edge inspection
JP2007303829A (en) Image inspection device, and image inspection method using the image inspection device
US20200378899A1 (en) Glass processing apparatus and methods
JP5830229B2 (en) Wafer defect inspection system
WO2011086634A1 (en) Liquid crystal panel inspection method and device
JPWO2007132925A1 (en) Surface inspection device
CN112945988A (en) Lens defect detection system and detection method
JP2010048602A (en) Printed board inspection device and printed board inspection method
JP3482425B2 (en) Inspection device
JP2008046109A (en) Flaw inspection device of substrate, and manufacturing method of substrate
TW382061B (en) Carrier for substrate and defect inspection apparatus for substrate
JP4151306B2 (en) Inspection method of inspection object
CN103151282A (en) Inspection system and method for inspecting multiple wafers
JP2009103494A (en) Surface inspection apparatus
JP2013164371A (en) Inspection device and inspection method for phosphor-containing glass member
KR100490455B1 (en) Appearance examining apparatus
JP2011196897A (en) Inspection device
JP2007030118A (en) Dresser inspecting device, dresser inspecting method, cmp device and cmp device inspecting method
TWM457889U (en) Panel defect detection device
JP2019100968A (en) Macro inspection device inspecting top surface of protrusion on stage front surface
JPS58184116A (en) Examining method of defect on surface of light-transmittable object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees