JP5625880B2 - Method for producing positive electrode slurry and apparatus for producing positive electrode slurry - Google Patents

Method for producing positive electrode slurry and apparatus for producing positive electrode slurry Download PDF

Info

Publication number
JP5625880B2
JP5625880B2 JP2010283474A JP2010283474A JP5625880B2 JP 5625880 B2 JP5625880 B2 JP 5625880B2 JP 2010283474 A JP2010283474 A JP 2010283474A JP 2010283474 A JP2010283474 A JP 2010283474A JP 5625880 B2 JP5625880 B2 JP 5625880B2
Authority
JP
Japan
Prior art keywords
powder
positive electrode
powder material
powder particles
electrode slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010283474A
Other languages
Japanese (ja)
Other versions
JP2012133931A (en
Inventor
川崎 淳一
淳一 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010283474A priority Critical patent/JP5625880B2/en
Priority to KR1020110133317A priority patent/KR101414939B1/en
Publication of JP2012133931A publication Critical patent/JP2012133931A/en
Application granted granted Critical
Publication of JP5625880B2 publication Critical patent/JP5625880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/10Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft and axial flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、正極電極スラリーの製造方法、および正極電極スラリーの製造装置に関する。   The present invention relates to a method for producing a positive electrode slurry and an apparatus for producing a positive electrode slurry.

近年、環境保護運動の高まりを背景として、電気自動車(EV)、ハイブリッド電気自動車(HEV)、および燃料電池車(FCV)の開発が進められている。これらのモータ駆動用電源として、繰り返し充放電可能な二次電池などが注目されている。二次電池は、一般的に、正極集電体に正極活物質層を形成させた正極、負極集電体に負極活物質層を形成させた負極、および正極と負極との間に位置し両者を接続するセパレータを電池ケース内に収納させた構造を備えている。   In recent years, the development of electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV) has been promoted against the background of the increasing environmental protection movement. As these motor driving power sources, secondary batteries that can be repeatedly charged and discharged have attracted attention. A secondary battery generally includes a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector, a negative electrode in which a negative electrode current collector is formed with a negative electrode active material layer, and a positive electrode and a negative electrode. Is provided in a battery case.

正極活物質層は、正極集電体に塗布した正極電極スラリーによって構成されている。正極電極スラリーは、正極活物質や導電助剤等からなる粉末材料を混合した後、液状の溶剤と混練させて製造している。   The positive electrode active material layer is composed of a positive electrode slurry applied to a positive electrode current collector. The positive electrode slurry is produced by mixing a powder material composed of a positive electrode active material, a conductive aid, and the like and then kneading with a liquid solvent.

特許文献1には、正極電極スラリー内における粉末材料の分散性の向上を図る技術が開示されている。粉末材料と溶剤とを混練しながら混練物にせん断力を付与し、粉末材料の粉末粒子を微細化させて分散性を向上させている。   Patent Document 1 discloses a technique for improving the dispersibility of the powder material in the positive electrode slurry. While kneading the powder material and the solvent, a shearing force is applied to the kneaded product, and the powder particles of the powder material are refined to improve dispersibility.

特開2000−353516号公報JP 2000-353516 A

上記従来技術にあっては、表面が液膜で覆われた状態の粉末粒子に対してせん断力を付与する作業が行われるため、粉末粒子の微細化に要する十分なせん断力を付与することが困難であり、粉末粒径の調整に多くの時間が費やされている。このため、正極電極スラリーの製造作業の作業時間の短縮化が図り難いという問題がある。また、粉末粒子にせん断力を均等に付与することが難しく、粉末粒径が不均一なものとなるため、正極電極スラリーの品質にばらつきが発生するという問題もある。   In the above prior art, since the work of applying a shearing force to the powder particles whose surface is covered with a liquid film is performed, it is possible to apply a sufficient shearing force required for the refinement of the powder particles. It is difficult and a lot of time is spent adjusting the powder particle size. For this reason, there is a problem that it is difficult to shorten the working time of the manufacturing work of the positive electrode slurry. In addition, it is difficult to uniformly apply a shearing force to the powder particles, and the powder particle size becomes non-uniform, which causes a problem in that the quality of the positive electrode slurry varies.

本発明は上記課題を解決するためになされたものであり、電池の正極活物質層に用いられる粉末材料と溶剤とを混練する混練作業の作業時間の短縮化、ひいては正極電極スラリーの製造作業の作業時間の短縮化を図るとともに、正極電極スラリーの品質のばらつきを抑える正極電極スラリーの製造方法、および正極電極スラリーの製造装置を提供することを目的としている。   The present invention has been made to solve the above-mentioned problems, and shortens the work time of the kneading work for kneading the powder material and the solvent used for the positive electrode active material layer of the battery, and thus the work for producing the positive electrode slurry. An object of the present invention is to provide a positive electrode slurry manufacturing method and a positive electrode slurry manufacturing apparatus that can reduce working time and suppress variations in the quality of the positive electrode slurry.

本発明に係る正極電極スラリーの製造方法は、電池の正極活物質層に用いられる粉末材料の粉末粒径を乾式方式によって調整する調整工程を含む。さらに、粉末粒径が調整された粉末材料と溶剤とを湿式方式によって混練する混練工程を含む。乾式方式は、粉末材料の供給方向の上流側から下流側にいくにしたがって寸法が大きくなるように区画形成された混合空間において保持した粉末材料の粉末粒子に圧縮力を付与しつつせん断力を付与する石臼機構によるものである。調整工程は、石臼機構に設けられたブレードの回転によって粉末材料の粉末粒子を破砕する。 The manufacturing method of the positive electrode slurry which concerns on this invention includes the adjustment process which adjusts the powder particle size of the powder material used for the positive electrode active material layer of a battery with a dry system. Furthermore, it includes a kneading step of kneading the powder material with the adjusted particle size and the solvent by a wet method. In the dry method, a shearing force is applied while applying a compressive force to the powder particles of the powder material held in the mixing space formed so as to increase in size from the upstream side to the downstream side in the powder material supply direction. This is due to the mortar mechanism. In the adjusting step, the powder particles of the powder material are crushed by rotation of a blade provided in the stone mill mechanism.

本発明によれば、乾式方式により粉末材料の粉末粒子を破砕して粒径を調整した後、湿式方式による混練作業を行うため、粉末粒子を破砕するためのせん断力を付与する作業を混練作業時に行う必要がない。したがって、湿式方式による粉末粒子の粒径調整方法を採用する場合と比較して、混練作業の作業時間の短縮化、ひいては正極電極スラリーの製造作業の作業時間の短縮化を図ることができる。さらに、粉末粒子の粒径を均質化することができ、正極電極スラリーの品質のばらつきを抑えることができる。   According to the present invention, after the powder particles of the powder material are crushed by the dry method and the particle size is adjusted, the kneading operation by the wet method is performed. There is no need to do it sometimes. Therefore, it is possible to shorten the work time of the kneading work and, in turn, shorten the work time of the manufacturing process of the positive electrode slurry, as compared with the case where the method of adjusting the particle size of the powder particles by the wet method is adopted. Furthermore, the particle size of the powder particles can be homogenized, and variations in the quality of the positive electrode slurry can be suppressed.

実施形態に係る正極電極スラリーの製造装置を簡略化して示す図である。It is a figure which simplifies and shows the manufacturing apparatus of the positive electrode slurry which concerns on embodiment. 実施形態に係る石臼機構を説明するための図であり、図1の破線部IIを拡大して示す図である。It is a figure for demonstrating the stone mill mechanism which concerns on embodiment, and is a figure which expands and shows the broken-line part II of FIG. 変形例に係る石臼機構を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the stone mill mechanism which concerns on a modification.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

実施形態に係る正極電極スラリーの構成材料について説明する。   The constituent material of the positive electrode slurry according to the embodiment will be described.

粉末材料50は、電池の正極活物質層に用いられる正極電極スラリーの組成材料であって、溶剤が添加される前の状態のものである。粉末材料50には、正極活物質と、正極活物質層内における電気伝導性を高めるための導電助剤とが含まれている。図面においては、粉末材料50に含まれる正極活物質の粉末粒子に符号51を付して示し、粉末材料50に含まれる導電助剤の粉末粒子に符号53を付して示す(図2を参照)。   The powder material 50 is a composition material of the positive electrode slurry used for the positive electrode active material layer of the battery, and is in a state before the solvent is added. The powder material 50 contains a positive electrode active material and a conductive additive for enhancing electrical conductivity in the positive electrode active material layer. In the drawing, the positive electrode active material powder particles included in the powder material 50 are indicated by reference numeral 51, and the conductive auxiliary agent powder particles included in the powder material 50 are indicated by reference numeral 53 (see FIG. 2). ).

正極活物質には、例えば、リチウムイオン二次電池などに用いられるリチウム−遷移金属複合酸化物、LiMnなどのLi−Mn系複合酸化物、LiNiOなどのLi−Ni系複合酸化物、LiCoOなどのLi−Co系複合酸化物、LiFePOなどのLi−Fe系複合酸化物が挙げられる。 Examples of the positive electrode active material include lithium-transition metal composite oxides used for lithium ion secondary batteries, Li-Mn composite oxides such as LiMn 2 O 4, and Li—Ni composite oxides such as LiNiO 2 . Li-Co based composite oxides such as LiCoO 2 and Li-Fe based composite oxides such as LiFePO 4 .

導電助剤には、例えば、カーボン材が挙げられる。カーボン材には、例えば、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、およびフラーレンが挙げられる。   Examples of the conductive aid include a carbon material. Examples of the carbon material include acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, hard carbon, and fullerene.

粉末材料50には、例えば、D10〜D90程度でサブミクロン〜40ミクロン程度の粒径の粉末粒子を備えるものを準備することができる。このような粉末材料を使用する場合、後述する調整機構20を利用してD10〜D90程度でサブミクロン〜20ミクロン程度の粒径に調整することが望ましい。   As the powder material 50, for example, a powder material having powder particles having a particle size of about D10 to D90 and a submicron to about 40 microns can be prepared. When using such a powder material, it is desirable to adjust to a particle size of about submicron to about 20 microns by using an adjusting mechanism 20 described later at about D10 to D90.

粉末材料50と混練させる溶剤60には、例えば、スラリー粘度調整溶媒としてのNMP(N−メチルピロリドン)や、バインダとしてのPVDF(ポリテトラフルオロエチレン)などが適宜含まれ得る。   The solvent 60 to be kneaded with the powder material 50 may appropriately include, for example, NMP (N-methylpyrrolidone) as a slurry viscosity adjusting solvent, PVDF (polytetrafluoroethylene) as a binder, and the like.

正極電極スラリーの製造装置について説明する。   An apparatus for producing a positive electrode slurry will be described.

図1および図2を参照して、正極電極スラリーの製造装置10は、粉末材料50の粉末粒径を乾式方式によって調整する調整機構20と、粉末粒径が調整された粉末材料50と溶剤60とを湿式方式によって混練する混練機構40とを備えている。製造作業が進行する上流側には、粉末材料50を装置内へ投入するための投入口11を設けている。製造作業が進行する下流側には、粒径調整後の粉末粒子51、53を含む粉末材料50を混練機構40へ送り出すための排出口13を設けている。   Referring to FIGS. 1 and 2, positive electrode slurry manufacturing apparatus 10 includes adjustment mechanism 20 that adjusts the powder particle size of powder material 50 by a dry method, and powder material 50 and solvent 60 with adjusted powder particle size. And a kneading mechanism 40 for kneading them by a wet method. An inlet 11 for introducing the powder material 50 into the apparatus is provided on the upstream side where the manufacturing operation proceeds. On the downstream side where the manufacturing operation proceeds, a discharge port 13 for sending the powder material 50 including the powder particles 51 and 53 after the particle size adjustment to the kneading mechanism 40 is provided.

投入口11から投入した粉末材料50は、調整機構20を含む材料混合ゾーン30を通過する。材料混合ゾーン30を通過する際、調整機構20によって粉末粒子51、53を破砕し、粉末粒子51、53の粒径を調整する。粉末材料が異なる2種以上の構成材料を含む場合には、粒径を調整する作業とともに粉末材料の粉末粒子同士を混合させる作業が行われる。材料混合ゾーン30を通過した粉末材料50は、排出口13を通って混練機構40へ送られる。   The powder material 50 input from the input port 11 passes through the material mixing zone 30 including the adjusting mechanism 20. When passing through the material mixing zone 30, the powder particles 51 and 53 are crushed by the adjusting mechanism 20 to adjust the particle diameters of the powder particles 51 and 53. When the powder material includes two or more different constituent materials, an operation of adjusting the particle diameter and an operation of mixing the powder particles of the powder material are performed. The powder material 50 that has passed through the material mixing zone 30 is sent to the kneading mechanism 40 through the discharge port 13.

調整機構20は、粉末材料50の粉末粒子51、53に圧縮力を付与しつつせん断力を付与することが可能な石臼機構によって構成している。石臼機構は、回転可能な回転軸21(回転軸21の回転方向を図1中の矢印aで示す)と、回転軸21の軸方向に互いに間隔を空けて配置された複数の回転ブレード23(ブレードに相当する)とを備えている。回転軸21は回転ブレード23に貫通させて取り付けられている。   The adjusting mechanism 20 is configured by a stone mill mechanism capable of applying a shearing force while applying a compressive force to the powder particles 51 and 53 of the powder material 50. The stone mill mechanism includes a rotatable rotating shaft 21 (the rotating direction of the rotating shaft 21 is indicated by an arrow a in FIG. 1) and a plurality of rotating blades 23 (see FIG. 1) spaced apart from each other in the axial direction of the rotating shaft 21. Equivalent to a blade). The rotating shaft 21 is attached so as to penetrate the rotating blade 23.

複数の回転ブレード23の間には、正極電極スラリーの製造装置10の本体部分に取り付けた固定ブレード25を設置している。回転ブレード23と固定ブレード25との間には、粉末粒子51、53を保持する窪み(混合空間)29が区画形成されている。   Between the plurality of rotating blades 23, fixed blades 25 attached to the main body portion of the positive electrode slurry manufacturing apparatus 10 are installed. A recess (mixing space) 29 that holds the powder particles 51 and 53 is defined between the rotating blade 23 and the fixed blade 25.

材料混合ゾーン30に送り込まれた粉末材料50は、回転ブレード23および固定ブレード25間に少量ずつ流し込まれ、両ブレード23、25間において保持される。順次送り込まれる粉末材料50の流入に伴って粉末粒子51、53には圧縮力が作用する(図2中矢印pで示す)。この状態で回転軸21を回転させ、回転ブレード23を回転させると、粉末粒子51、53に対してずりせん断力が付与される。粉末粒子51、53は、付与されたずりせん断力によって破砕される。   The powder material 50 fed into the material mixing zone 30 is poured little by little between the rotary blade 23 and the fixed blade 25 and is held between the blades 23 and 25. A compressive force acts on the powder particles 51 and 53 with the inflow of the powder material 50 sequentially fed (indicated by an arrow p in FIG. 2). When the rotating shaft 21 is rotated and the rotating blade 23 is rotated in this state, a shearing shear force is applied to the powder particles 51 and 53. The powder particles 51 and 53 are crushed by the applied shear force.

回転ブレード23と固定ブレード25との間に区画形成される混合空間は、最大で10ゾーン程度に設計することが望ましい。このような設計を行うことにより、粉末粒子51、53を破砕する機能を良好に発揮させつつ、装置全体が大型化することを抑制することが可能になる。   It is desirable that the mixing space formed between the rotating blade 23 and the fixed blade 25 is designed to have a maximum of about 10 zones. By carrying out such a design, it is possible to suppress an increase in the size of the entire apparatus while satisfactorily exerting the function of crushing the powder particles 51 and 53.

回転ブレード23の側面および固定ブレード25の側面には、両ブレード23、25間の間隔を調整するための調整部材27を設けている。調整部材27を設置することにより、両ブレード23、25間において保持する粉末材料50の保持量を調整している。保持量を調整することにより、粉末粒子51、53に作用する圧縮力を調整することができる。回転ブレード23および固定ブレード25間の間隔は、粉末材料50の粒径に合わせて適宜調整し得るが、例えば、粉末材料50の粉末粒子51、53の粒径を100ミクロン以下に調整することが可能となるような寸法に設計することが望ましい。   An adjustment member 27 for adjusting the distance between the blades 23 and 25 is provided on the side surface of the rotating blade 23 and the side surface of the fixed blade 25. By installing the adjusting member 27, the holding amount of the powder material 50 held between the blades 23 and 25 is adjusted. By adjusting the holding amount, the compressive force acting on the powder particles 51 and 53 can be adjusted. The interval between the rotary blade 23 and the fixed blade 25 can be adjusted as appropriate according to the particle size of the powder material 50. For example, the particle size of the powder particles 51 and 53 of the powder material 50 can be adjusted to 100 microns or less. It is desirable to design the dimensions so that they are possible.

混練機構40は、粉末材料50と液状の溶剤60とを混合するミキサー41と、溶剤60を供給する供給部43とを備えている。ミキサー41には、粉体と溶液との混合および撹拌などに用いられる公知のプラネタリーミキサーを採用している。材料混合ゾーン30を通過させた粉末材料50と溶剤60とをミキサー41で混練し、溶剤60中に粉末材料50を分散させて正極電極スラリーを作製することが可能になっている。   The kneading mechanism 40 includes a mixer 41 that mixes the powder material 50 and the liquid solvent 60, and a supply unit 43 that supplies the solvent 60. The mixer 41 employs a known planetary mixer used for mixing and stirring the powder and the solution. The powder material 50 that has passed through the material mixing zone 30 and the solvent 60 are kneaded by the mixer 41, and the powder material 50 is dispersed in the solvent 60, so that a positive electrode slurry can be produced.

次に、実施形態に係る正極電極スラリーの製造方法について説明する。   Next, the manufacturing method of the positive electrode slurry which concerns on embodiment is demonstrated.

図1を参照して、投入口11から正極活物質および導電助剤を含む粉末材料50を投入する。粉末材料50は材料混合ゾーン30へ流し込まれる。   Referring to FIG. 1, a powder material 50 containing a positive electrode active material and a conductive auxiliary agent is charged from a charging port 11. The powder material 50 is poured into the material mixing zone 30.

図2を参照して、回転ブレード23と固定ブレード25との間に形成された凹凸状の窪み29に粉末材料50が押し込まれる。正極活物質の粉末粒子51および導電助剤の粉末粒子53に圧縮力が作用する。   Referring to FIG. 2, the powder material 50 is pushed into a concave / convex recess 29 formed between the rotating blade 23 and the fixed blade 25. A compressive force acts on the powder particles 51 of the positive electrode active material and the powder particles 53 of the conductive additive.

ブレード23、25間に粉末材料50を保持させた状態で回転軸21を回転させる。回転軸21の回転に伴って回転ブレード23が回転する。正極活物質の粉末粒子51と導電助剤の粉末粒子53とを混合させながら、それぞれの粉末粒子51、53に対してずりせん断力を付与する。正極活物質の粉末粒子51および導電助剤の粉末粒子53を破砕し、粒径を小さくさせる。乾式方式により粉末材料50の粉末粒子51、53の粒径を調整するため、表面が液膜で覆われた状態にある粉末粒子に対してせん断力を付与する湿式方式による粒径調整方法を採用する場合と比較して、破砕に要するせん断力を容易に付与することができる。さらに、各粉末粒子51、53に均等にせん断力を付与することができ、粒径を均質化させることができる。   The rotating shaft 21 is rotated with the powder material 50 held between the blades 23 and 25. The rotating blade 23 rotates as the rotating shaft 21 rotates. While mixing the powder particles 51 of the positive electrode active material and the powder particles 53 of the conductive additive, a shearing shear force is applied to each of the powder particles 51 and 53. The powder particles 51 of the positive electrode active material and the powder particles 53 of the conductive additive are crushed to reduce the particle size. In order to adjust the particle size of the powder particles 51 and 53 of the powder material 50 by a dry method, a particle size adjustment method by a wet method in which shear force is applied to the powder particles whose surface is covered with a liquid film is adopted. Compared with the case where it does, the shear force required for crushing can be provided easily. Furthermore, a shearing force can be equally applied to the powder particles 51 and 53, and the particle size can be homogenized.

カーボン材などからなる導電助剤にあっては、粉末粒子を構成するカーボン同士が粒状、および鎖状に連なってネットワーク(鎖状構造)を構成し、凝集体(だま)の状態を形成する。また、凝集体と正極活物質の粉末粒子との間においても鎖状のネットワークが形成され、これらが一体となってより大きな凝集体が形成されることがある。凝集体が形成されると、正極活物質の粉末粒子と導電助剤の粉末粒子との混合性が低下し、正極電極スラリーの品質の低下を招くことになる。また、溶剤と混練させる混練作業時に鎖状構造の解砕を行うことが必要となり、混練作業により多くの時間を費やすことが必要になる。   In a conductive additive made of a carbon material or the like, carbons constituting powder particles are connected in a granular form and in a chain form to form a network (chain structure) to form an aggregate (duck) state. In addition, a chain network may be formed between the aggregate and the powder particles of the positive electrode active material, and these may be integrated to form a larger aggregate. When the aggregate is formed, the mixing property of the powder particles of the positive electrode active material and the powder particles of the conductive additive is lowered, and the quality of the positive electrode slurry is deteriorated. Further, it is necessary to crush the chain structure during the kneading operation for kneading with the solvent, and it is necessary to spend more time for the kneading operation.

石臼機構を利用した粒径調整方法にあっては、正極活物質の粉末粒子51および導電助剤の粉末粒子53に対して圧縮力を付与しつつずりせん断力を付与し得る機械的なエネルギーを作用させることができる。これにより、導電助剤の粉末粒子53間における鎖状構造、および導電助剤の粉末粒子53と正極活物質の粉末粒子51との間における鎖状構造を容易に解砕させることができ、導電助剤の粉末粒子53を正極活物質中に均等に分散させることができる。   In the particle size adjustment method using a stone mortar mechanism, mechanical energy capable of applying a shearing force while applying a compressive force to the powder particles 51 of the positive electrode active material and the powder particles 53 of the conductive additive is provided. Can act. Thus, the chain structure between the conductive auxiliary agent powder particles 53 and the chain structure between the conductive auxiliary agent powder particles 53 and the positive electrode active material powder particles 51 can be easily crushed. The powder particles 53 of the auxiliary agent can be evenly dispersed in the positive electrode active material.

次に、粒径が調整された粉末粒子51、53を含む粉末材料50と、溶剤60とをミキサー41によって混練させる。溶剤60中に粉末材料50を分散させ、正極電極スラリーを取得する。粉末材料50の鎖状構造を予め解砕させているため、溶剤60に対する粉末粒子51、53の分散性を向上させることができる。   Next, the powder material 50 including the powder particles 51 and 53 with the adjusted particle size and the solvent 60 are kneaded by the mixer 41. The powder material 50 is dispersed in the solvent 60 to obtain a positive electrode slurry. Since the chain structure of the powder material 50 is crushed in advance, the dispersibility of the powder particles 51 and 53 in the solvent 60 can be improved.

乾式方式により粉末材料50の粉末粒子51、53を破砕して粒径を調整した後、湿式方式による混練作業を行うため、粉末粒子51、53を破砕するための大きなせん断力を付与する作業を混練作業時に行う必要がない。このため、混練作業に要する作業時間の短縮化を図ることができる。   After crushing the powder particles 51 and 53 of the powder material 50 by the dry method and adjusting the particle size, a kneading operation by the wet method is performed, and therefore, a large shearing force for crushing the powder particles 51 and 53 is applied. There is no need to carry out the kneading operation. For this reason, the working time required for the kneading work can be shortened.

結着成分を含む従来公知の溶剤を利用して、湿式方式により粉末材料の粒径を調整しながら混練を実施すると、一般的に、スラリー化後の固形分は60±5%程度の範囲で調整される。一方、乾式方式により粉末状態での破砕、および解砕を行った後、溶剤に対して粉末材料を分散させてスラリー化を行うと、スラリー化後の固形分を70±5%程度の範囲で調整することが可能になる。このように、従来公知の方法と比較してスラリー化後の固形分を増加させることができるため、湿式方式の混練において、より大きなせん断を付与しながら分散化を行うことも可能である。   When kneading is carried out while adjusting the particle size of the powder material by a wet method using a conventionally known solvent containing a binder component, the solid content after slurrying is generally in the range of about 60 ± 5%. Adjusted. On the other hand, after crushing and crushing in a powder state by a dry method, if the powder material is dispersed in a solvent and slurried, the solid content after slurrying is in the range of about 70 ± 5%. It becomes possible to adjust. Thus, since solid content after slurrying can be increased as compared with conventionally known methods, it is possible to disperse while applying greater shear in wet-type kneading.

以上、上述した本実施形態によれば、乾式方式により粉末材料50の粉末粒子51、53を破砕して粒径を調整した後、湿式方式による混練作業を行うため、粉末粒子51、53を破砕するためのせん断力を付与する作業を混練作業時に行う必要がない。したがって、混練作業に要する作業時間の短縮化、ひいては正極電極スラリーの製造作業の作業時間の短縮化を図ることができる。さらに、粉末粒子の粒径を均質化することができ、正極電極スラリーの品質のばらつきを抑えることができる。   As described above, according to the above-described embodiment, the powder particles 51 and 53 of the powder material 50 are crushed by the dry method to adjust the particle size, and then the powder particles 51 and 53 are crushed to perform the kneading operation by the wet method. Therefore, it is not necessary to perform the work of applying a shearing force for the kneading operation. Therefore, it is possible to shorten the work time required for the kneading work, and in turn shorten the work time of the production work of the positive electrode slurry. Furthermore, the particle size of the powder particles can be homogenized, and variations in the quality of the positive electrode slurry can be suppressed.

また、正極活物質の粉末粒子51と導電助剤の粉末粒子53とを乾式方式により混合させながら、導電助剤の粉末粒子53間における鎖状構造、および導電助剤の粉末粒子53と正極活物質の粉末粒子51との間における鎖状構造を解砕させることができる。導電助剤の粉末粒子53が正極活物質中に均等に分散されるため、正極電極スラリー内における粉末粒子51、53の分散性を向上させることができる。これにより、正極電極スラリーの品質のより一層の向上を図ることができるとともに、混練作業の作業時間のさらなる短縮化を図ることができる。   Further, while mixing the positive electrode active material powder particles 51 and the conductive additive powder particles 53 by a dry method, the chain structure between the conductive additive powder particles 53 and the conductive auxiliary powder particles 53 and the positive electrode active material are mixed. The chain structure between the powder particles 51 of the substance can be crushed. Since the conductive additive powder particles 53 are uniformly dispersed in the positive electrode active material, the dispersibility of the powder particles 51 and 53 in the positive electrode slurry can be improved. As a result, the quality of the positive electrode slurry can be further improved, and the working time of the kneading operation can be further shortened.

また、石臼機構を利用することにより、正極活物質の粉末粒子51および導電助剤の粉末粒子53に対して圧縮力を付与しつつずりせん断力を付与し得る機械的なエネルギーを作用させることができる。   Further, by utilizing a stone mortar mechanism, mechanical energy capable of applying a shearing force can be applied to the powder particles 51 of the positive electrode active material and the powder particles 53 of the conductive additive while applying a compressive force. it can.

また、石臼機構に設けられたブレード23間に粉末材料50を保持させた状態でブレード23を回転させることによって、粉末材料50の粉末粒子51、53の破砕と粉末粒子51、53間に形成される鎖状構造の解砕とを同時に行うことができる。これにより、製造作業の作業効率を向上させることができる。   Further, by rotating the blade 23 while the powder material 50 is held between the blades 23 provided in the stone mill mechanism, the powder particles 51 and 53 of the powder material 50 are crushed and formed between the powder particles 51 and 53. The chain structure can be crushed simultaneously. Thereby, the working efficiency of manufacturing work can be improved.

また、回転ブレード23に調整部材27を設置することにより、ブレード23間において保持される粉末材料50の保持量を調整することができる。保持量を調整することにより、粉末粒子51、53に作用する圧縮力を調整することができる。   Further, by installing the adjusting member 27 on the rotating blade 23, the holding amount of the powder material 50 held between the blades 23 can be adjusted. By adjusting the holding amount, the compressive force acting on the powder particles 51 and 53 can be adjusted.

<変形例>
次に、上述した実施形態の変形例について説明する。説明中において上述した実施形態と同一の部材には同一の符号を付し、その説明を一部省略する。
<Modification>
Next, a modification of the above-described embodiment will be described. In the description, the same members as those in the above-described embodiment are denoted by the same reference numerals, and a part of the description is omitted.

図3に示すように変形例にあっては、回転ブレード23の側面に設置した調整部材27および固定ブレード25の側面に設置した調整部材27の大きさをブレード毎に異ならせている。これにより、回転ブレード23と固定ブレード25との間に大きさの異なる複数種類の凹凸状の窪み29を形成させている。   As shown in FIG. 3, in the modification, the size of the adjusting member 27 installed on the side surface of the rotating blade 23 and the size of the adjusting member 27 installed on the side surface of the fixed blade 25 are different for each blade. Thereby, a plurality of types of concave and convex recesses 29 having different sizes are formed between the rotary blade 23 and the fixed blade 25.

粉末材料50の供給方向の上流側(図中右側)に位置する調整部材27よりも下流側(図中左側)に位置する調整部材27の寸法を大きくしている。上流側に位置する窪み29において付与されるせん断力は、下流側に位置する窪み29において付与されるせん断力よりも大きくなる。   The size of the adjusting member 27 located on the downstream side (left side in the figure) is larger than the adjusting member 27 located on the upstream side (right side in the figure) in the supply direction of the powder material 50. The shearing force applied in the depression 29 located on the upstream side is larger than the shearing force applied in the depression 29 located on the downstream side.

上流側において粉末粒子51、53の粒径が比較的小さく調整される。下流側にいくにしたがって、窪み29の大きさが徐々に大きくなるため、粉末粒子51、53の円滑な流れが形成される。このように調整部材27を利用して、材料混合ゾーン30に形成される窪み29の大きさを調整することにより、粉末粒子51、53の粒径の調整を効率的に短時間で行うことができる。さらに、材料混合ゾーン30におけるブレードの刃数の削減や、材料混合ゾーン30の少スペース化を図ることもできる。   The particle diameters of the powder particles 51 and 53 are adjusted to be relatively small on the upstream side. Since the size of the recess 29 gradually increases as going downstream, a smooth flow of the powder particles 51 and 53 is formed. In this way, by adjusting the size of the recess 29 formed in the material mixing zone 30 using the adjusting member 27, the particle size of the powder particles 51 and 53 can be adjusted efficiently and in a short time. it can. Furthermore, the number of blades in the material mixing zone 30 can be reduced, and the space of the material mixing zone 30 can be reduced.

上述した実施形態は適宜変更することが可能である。   The above-described embodiments can be changed as appropriate.

ブレードの形状、ブレードの刃数、ブレードと装置本体間とのクリアランス、ブレード回転速度、装置のジャケット温度等は特に限定されず、粉末材料の粉末粒子に圧縮力およびずりせん断力を付与し得る限りにおいて適宜設計することが可能である。   The shape of the blade, the number of blades, the clearance between the blade and the device body, the blade rotation speed, the jacket temperature of the device, etc. are not particularly limited, as long as compressive force and shear shear force can be applied to the powder particles of the powder material. It is possible to design appropriately.

調整部材の形状、設置位置等も実施形態において説明したものに特に限定されるものではなく、適宜変更することが可能である。   The shape, installation position, and the like of the adjustment member are not particularly limited to those described in the embodiment, and can be changed as appropriate.

粉末材料および溶剤に含まれる構成材料は、実施形態において説明したものに特に限定されるものではない。正極電極スラリーの適用対象である電池の種類等に応じて適宜変更することが可能である。   The constituent materials contained in the powder material and the solvent are not particularly limited to those described in the embodiment. It can be appropriately changed according to the type of battery to which the positive electrode slurry is applied.

10 正極電極スラリーの製造装置、
20 調整機構(石臼機構)、
21 回転軸、
23 回転ブレード(ブレード)、
25 固定ブレード、
27 調整部材、
29 窪み、
30 材料混合ゾーン、
40 混練機構、
41 ミキサー、
43 供給部、
50 粉末材料、
51 正極活物質の粉末粒子、
53 導電助剤の粉末粒子、
60 溶剤。
10 Positive electrode slurry manufacturing equipment,
20 Adjustment mechanism (stone mill mechanism),
21 rotation axis,
23 Rotating blade (blade),
25 fixed blade,
27 adjustment member,
29 Dimple,
30 material mixing zone,
40 kneading mechanism,
41 mixer,
43 supply section,
50 powder material,
51 powder particles of a positive electrode active material,
53 Powder particles of conductive aid,
60 Solvent.

Claims (3)

電池の正極活物質層に用いられる粉末材料の粉末粒径を乾式方式によって調整する調整工程と、
粉末粒径が調整された前記粉末材料と溶剤とを湿式方式によって混練する混練工程と、を含み、
前記乾式方式は、前記粉末材料の供給方向の上流側から下流側にいくにしたがって寸法が大きくなるように区画形成された混合空間において保持した前記粉末材料の粉末粒子に圧縮力を付与しつつせん断力を付与する石臼機構によるものであり、
前記調整工程は、前記石臼機構に設けられたブレードの回転によって前記粉末材料の粉末粒子を破砕することを特徴とする正極電極スラリーの製造方法。
An adjustment step of adjusting the powder particle size of the powder material used for the positive electrode active material layer of the battery by a dry method;
A kneading step of kneading and a solvent wherein the powder material powder particle size was adjusted by a wet method, only including,
The dry method is a method in which a compressive force is applied to the powder particles of the powder material held in the mixing space formed so as to increase in size as it goes from the upstream side to the downstream side in the powder material supply direction. This is due to the mortar mechanism that gives power,
The said adjustment process crushes the powder particle of the said powder material by rotation of the blade provided in the said stone mill mechanism, The manufacturing method of the positive electrode slurry characterized by the above-mentioned .
前記粉末材料は、正極活物質と導電助剤とを少なくとも含み、
前記調整工程は、前記正極活物質と前記導電助剤とを混合しながら前記導電助剤の粉末粒子同士の鎖状構造を解砕することを特徴とする請求項1に記載の正極電極スラリーの製造方法。
The powder material includes at least a positive electrode active material and a conductive additive,
2. The positive electrode slurry according to claim 1, wherein the adjusting step crushes a chain structure of powder particles of the conductive additive while mixing the positive electrode active material and the conductive additive. Production method.
電池の正極活物質層に用いられる粉末材料の粉末粒径を乾式方式によって調整する調整機構と、  An adjustment mechanism for adjusting the powder particle size of the powder material used for the positive electrode active material layer of the battery by a dry method;
粉末粒径が調整された前記粉末材料と溶剤とを湿式方式によって混練する混練機構と、を備え、  A kneading mechanism for kneading the powder material having a adjusted particle size with the solvent by a wet method,
前記調整機構は、前記粉末材料の粉末粒子に圧縮力を付与しつつせん断力を付与する石臼機構であり、  The adjustment mechanism is a mortar mechanism that applies a shear force while applying a compressive force to the powder particles of the powder material,
前記石臼機構は、回転自在な回転軸と、前記回転軸の軸方向に互いに間隔を空けて配置された複数のブレードと、前記複数のブレード間の間隔を調整して前記粉末材料の供給方向の上流側から下流側にいくにしたがって寸法が大きくなる混合空間を隣接する前記ブレード間に区画形成する調整部材と、を備え、  The stone mortar mechanism includes a rotatable rotating shaft, a plurality of blades spaced apart from each other in the axial direction of the rotating shaft, and an interval between the plurality of blades to adjust the powder material supply direction. An adjusting member that forms a mixing space between adjacent blades, the dimension of which increases as it goes from the upstream side to the downstream side, and
前記混合空間に前記粉末材料が存在する状態で前記回転軸の回転に伴う前記複数のブレードの回転によって前記粉末材料の粉末粒子を破砕することを特徴とする正極電極スラリーの製造装置。  An apparatus for producing a positive electrode slurry, wherein the powder particles of the powder material are crushed by the rotation of the plurality of blades accompanying the rotation of the rotating shaft in a state where the powder material is present in the mixing space.
JP2010283474A 2010-12-20 2010-12-20 Method for producing positive electrode slurry and apparatus for producing positive electrode slurry Active JP5625880B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010283474A JP5625880B2 (en) 2010-12-20 2010-12-20 Method for producing positive electrode slurry and apparatus for producing positive electrode slurry
KR1020110133317A KR101414939B1 (en) 2010-12-20 2011-12-13 Producing method for slurry for positive electrode and producing apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283474A JP5625880B2 (en) 2010-12-20 2010-12-20 Method for producing positive electrode slurry and apparatus for producing positive electrode slurry

Publications (2)

Publication Number Publication Date
JP2012133931A JP2012133931A (en) 2012-07-12
JP5625880B2 true JP5625880B2 (en) 2014-11-19

Family

ID=46649327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283474A Active JP5625880B2 (en) 2010-12-20 2010-12-20 Method for producing positive electrode slurry and apparatus for producing positive electrode slurry

Country Status (2)

Country Link
JP (1) JP5625880B2 (en)
KR (1) KR101414939B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058158B (en) * 2016-07-21 2018-05-08 青岛海达新能源材料有限公司 The production equipment and method of Full-automatic continuous lithium ion battery negative material
KR102380410B1 (en) 2017-12-26 2022-04-01 마츠모토 아키히코 Suspension manufacturing apparatus
CN112259717A (en) * 2020-10-14 2021-01-22 安徽益佳通电池有限公司 Dry-mixing preparation method of lithium ion battery anode slurry
KR102646768B1 (en) 2021-05-19 2024-03-13 마츠모토 아키히코 Suspension manufacturing equipment and on-off valves used therein

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012003A (en) * 1998-06-23 2000-01-14 Sony Corp Lithium ion secondary battery production equipment
JP3154692B2 (en) * 1998-07-24 2001-04-09 増幸産業株式会社 Fine grinding equipment
JP4187524B2 (en) * 2002-01-31 2008-11-26 日本化学工業株式会社 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5119570B2 (en) * 2004-12-24 2013-01-16 日産自動車株式会社 Method for manufacturing battery electrode
JP4971646B2 (en) * 2006-02-17 2012-07-11 有限会社ケイシーケイ応用技術研究所 Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
US7494744B2 (en) * 2006-03-08 2009-02-24 Changs-Ascending Enterprise Co. Cathode material for Li-ion battery applications

Also Published As

Publication number Publication date
KR101414939B1 (en) 2014-07-04
KR20120069569A (en) 2012-06-28
JP2012133931A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5561559B2 (en) Method for manufacturing lithium secondary battery
US20190181432A1 (en) Cathode mixture, cathode active material layer, all solid state battery, and method for producing cathode active material layer
JP2017054720A (en) Negative electrode for all-solid battery
CA2776205A1 (en) Lithium-ion secondary battery and method of producing same
JP5625880B2 (en) Method for producing positive electrode slurry and apparatus for producing positive electrode slurry
JP2008047512A (en) Positive electrode for nonaqueous electrolyte secondary battery
KR101834072B1 (en) Device for producing composite active material powder and method for producing composite active material powder
CN104067421A (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode
JP2017104784A (en) Granulated material sheet manufacturing apparatus
JP2016134269A (en) Method of manufacturing electrode
JP6700204B2 (en) Electrode manufacturing method
CN103972471A (en) Positive pole piece of large multiplying power lithium iron phosphate battery and preparation method thereof
JP2020136016A (en) Method for manufacturing electrode
JP2023017807A (en) Crushing device, production method of inorganic material, and crushing method
JP2018186033A (en) Manufacturing method of electrode
JP2010027458A (en) Secondary battery positive electrode material and its manufacturing method
JP2000123876A (en) Manufacture of lithium ion battery material
CN112121660B (en) Method for preparing anode slurry of lithium ion battery
JP6128096B2 (en) Method for producing non-aqueous electrolyte secondary battery
US10569239B2 (en) Continuous extruding kneader for producing mixture for electrode active material layer, and method for producing mixture for electrode active material layer, electrode laminate, and all-solid-state battery using it
CN110915031B (en) Method and apparatus for producing positive electrode slurry for nonaqueous electrolyte secondary battery
JP2018085182A (en) Manufacturing method of electrode
JP2015018712A (en) Method for manufacturing slurry for electrode formation
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
Guo et al. Solvent mediated sodium storage enhancement in van der Waals layered materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R151 Written notification of patent or utility model registration

Ref document number: 5625880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250