JP2020136016A - Method for manufacturing electrode - Google Patents
Method for manufacturing electrode Download PDFInfo
- Publication number
- JP2020136016A JP2020136016A JP2019026318A JP2019026318A JP2020136016A JP 2020136016 A JP2020136016 A JP 2020136016A JP 2019026318 A JP2019026318 A JP 2019026318A JP 2019026318 A JP2019026318 A JP 2019026318A JP 2020136016 A JP2020136016 A JP 2020136016A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- active material
- wet powder
- current collector
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本開示は、全固体電池に用いられる電極の製造方法に関する。 The present disclosure relates to a method for manufacturing electrodes used in an all-solid-state battery.
全固体電池は、正極活物質層および負極活物質層の間に固体電解質層を有する電池であり、可燃性の有機溶媒を含む電解液を有する液系電池に比べて、安全装置の簡素化が図りやすいという利点を有する。 An all-solid-state battery is a battery having a solid electrolyte layer between a positive electrode active material layer and a negative electrode active material layer, and has a simpler safety device than a liquid-based battery having an electrolytic solution containing a flammable organic solvent. It has the advantage of being easy to plan.
通常電池における電極は、活物質層と、活物質層の集電を行う集電体を有している。例えば特許文献1には、液系の電池に用いられる電極の製造方法が開示されており、特許文献2には、全固体電池に用いられる電極の製造方法が開示されている。 An electrode in a normal battery has an active material layer and a current collector that collects electricity from the active material layer. For example, Patent Document 1 discloses a method for manufacturing an electrode used in a liquid-based battery, and Patent Document 2 discloses a method for manufacturing an electrode used in an all-solid-state battery.
全固体電池の性能向上の観点から、活物質層における電極材料の分散性は高いことが求められている。また、生産性の観点から、電極の製造方法においては、作業効率がよいことが求められている。本開示は、上記実情に鑑みてなされたものであり、活物質層における電極材料の分散性が高い電極を、作業効率よく製造できる方法を提供することを主目的とする。 From the viewpoint of improving the performance of the all-solid-state battery, the electrode material is required to have high dispersibility in the active material layer. Further, from the viewpoint of productivity, the electrode manufacturing method is required to have good work efficiency. The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a method capable of efficiently producing an electrode having a high dispersibility of an electrode material in an active material layer.
全固体電池における電極は、特許文献2に開示されているように、活物質、バインダー、および固体電界質などを適当な溶媒でスラリー化(ペースト化)し、この電極スラリーを集電体上に塗布して乾燥させた後、プレスすることで製造されている。一方、液系電池では、特許文献1に開示されているように、少なくとも活物質とバインダーを含む粉末材料に、少量の溶媒を添加して造粒体を作製し、この造粒体を集電体上にプレス形成して電極を形成する工法(湿潤粉体成膜法:Moisture Powder Sheeting(MPS))が行われている。特許文献1に記載された上記工法は、特許文献2に記載された上記工法に比べて、溶媒量が少量であるため、電極の乾燥に時間を要しないという利点がある。本発明者は、全固体電池に用いる電極の製造方法において、作業効率を向上させるためにこの工法を応用することに想到した。ところが、電極材料を均一に混練することが困難であり、活物質層における電極材料の分散性が低くなるという課題が生じた。そこで、本発明者は鋭意検討を行った結果、造粒体に対して所定のせん断応力を加えることで、分散性が向上することを見出し、本発明を完成させた。 For an electrode in an all-solid-state battery, as disclosed in Patent Document 2, an active material, a binder, a solid electric field material, and the like are slurried (pasted) with an appropriate solvent, and this electrode slurry is placed on a current collector. It is manufactured by applying, drying, and then pressing. On the other hand, in a liquid battery, as disclosed in Patent Document 1, a granule is prepared by adding a small amount of solvent to a powder material containing at least an active material and a binder, and the granule is collected. A method of forming electrodes by press forming on the body (wet powder forming method: Moisture Powder Sheeting (MPS)) is performed. The above-mentioned method described in Patent Document 1 has an advantage that it does not take time to dry the electrodes because the amount of the solvent is smaller than that of the above-mentioned method described in Patent Document 2. The present inventor has come up with the idea of applying this method in order to improve work efficiency in a method for manufacturing electrodes used in an all-solid-state battery. However, it is difficult to uniformly knead the electrode material, and there is a problem that the dispersibility of the electrode material in the active material layer becomes low. Therefore, as a result of diligent studies, the present inventor has found that the dispersibility is improved by applying a predetermined shear stress to the granulated material, and completed the present invention.
すなわち、本開示においては、全固体電池に用いられ、集電体および活物質層を有する電極の製造方法であって、少なくとも活物質、バインダー、および固体電解質を含む粉末材料に溶媒を混合して、固形分率が80重量%以上90重量%未満の湿潤粉体を造粒する、造粒工程と、上記湿潤粉体に対して、29kPa以上181kPa以下のせん断応力を加える、せん断工程と、上記せん断応力が加えられた上記湿潤粉体を隣り合う回転ロールの間に通し、上記集電体上に転写することにより、上記活物質層を成膜する、成膜工程と、を有する電極の製造方法を提供する。 That is, in the present disclosure, it is a method for producing an electrode used for an all-solid-state battery and having a current collector and an active material layer, in which a solvent is mixed with a powder material containing at least an active material, a binder, and a solid electrolyte. A granulation step of granulating a wet powder having a solid content of 80% by weight or more and less than 90% by weight, and a shearing step of applying a shear stress of 29 kPa or more and 181 kPa or less to the wet powder. Manufacture of an electrode having a film forming step of forming the active material layer by passing the wet powder to which shear stress has been applied between adjacent rotating rolls and transferring the wet powder onto the current collector. Provide a method.
本開示によれば、活物質層における電極材料の分散性が高い電極を、効率よく製造することができる。 According to the present disclosure, an electrode having a high dispersibility of an electrode material in an active material layer can be efficiently manufactured.
本開示によれば、活物質層における電極材料の分散性が高い電極を、効率よく製造することができるという効果を奏する。 According to the present disclosure, there is an effect that an electrode having a high dispersibility of an electrode material in an active material layer can be efficiently manufactured.
図1は、本開示における電極の製造方法の一例を示すフロー図である。図1に示したように、本開示における電極の製造方法では、少なくとも活物質、バインダー、および固体電解質(SE)を含む粉末材料に溶媒を混合して、固形分率が所定範囲である湿潤粉体を造粒する(造粒工程)。次に、上記湿潤粉体に対して、所定のせん断応力を加える(せん断工程)。そして、上記せん断応力が加えられた上記湿潤粉体を隣り合う回転ロールの間に通し、集電体上に転写することにより、活物質層を成膜する(成膜工程)。 FIG. 1 is a flow chart showing an example of the electrode manufacturing method in the present disclosure. As shown in FIG. 1, in the method for producing an electrode in the present disclosure, a wet powder having a solid content in a predetermined range by mixing a solvent with a powder material containing at least an active material, a binder, and a solid electrolyte (SE). Granulate the body (granulation process). Next, a predetermined shear stress is applied to the wet powder (shear step). Then, the wet powder to which the shear stress is applied is passed between adjacent rotating rolls and transferred onto the current collector to form an active material layer (deposition step).
本開示によれば、活物質層における電極材料の分散性が高い電極を、作業効率よく製造できる。具体的には、粉末状態のバインダーを含む粉末材料に溶媒を添加しているため、バインダーを溶液に調製する必要がなく、また、湿潤粉体の固形分率が高いために電極の乾燥時間を短縮することができる。これにより、作業効率を向上させることができる。さらに、湿潤粉体に所定のせん断応力を加えることで、活物質層における電極材料を分散させることができる。このように、本開示における方法で製造された電極は電極材料が良好に分散しているため、これを用いた電池では、例えば電極の抵抗が抑制された電池となる。 According to the present disclosure, an electrode having a high dispersibility of an electrode material in an active material layer can be manufactured with high work efficiency. Specifically, since the solvent is added to the powder material containing the powdered binder, it is not necessary to prepare the binder as a solution, and since the solid content of the wet powder is high, the drying time of the electrode is increased. It can be shortened. Thereby, work efficiency can be improved. Further, by applying a predetermined shear stress to the wet powder, the electrode material in the active material layer can be dispersed. As described above, since the electrode material of the electrode manufactured by the method of the present disclosure is well dispersed, a battery using the electrode is, for example, a battery in which the resistance of the electrode is suppressed.
以下、本開示における電極の製造方法の各工程について詳細に説明する。 Hereinafter, each step of the electrode manufacturing method in the present disclosure will be described in detail.
1.造粒工程
本開示における造粒工程は、少なくとも活物質、バインダー、および固体電解質を含む粉末材料に溶媒を混合して、固形分率が80重量%以上90重量%未満の湿潤粉体を造粒する工程である。
1. 1. Granulation step In the granulation step in the present disclosure, a solvent is mixed with a powder material containing at least an active material, a binder, and a solid electrolyte to granulate a wet powder having a solid content of 80% by weight or more and less than 90% by weight. It is a process to do.
(1)粉末材料
本開示における粉末材料は、活物質とバインダーと固体電解質を少なくとも含有する。上記粉末材料は、活物質とバインダーと固体電解質のみを含有していてもよく、他の材料をさらに含有していてもよい。他の材料としては、例えば導電剤を挙げることができる。
(1) Powder material The powder material in the present disclosure contains at least an active material, a binder, and a solid electrolyte. The powder material may contain only an active material, a binder and a solid electrolyte, or may further contain other materials. Examples of other materials include conductive agents.
活物質は、Liイオンと反応可能であり、充放電により膨張収縮する材料であることが好ましい。電極を負極として用いる場合には、上記活物質としては、例えばSi系活物質を挙げることができる。また、電極を正極として用いる場合には、上記活物質としては、例えばLiCoO2、LiMn2O4、LiNiO2、LiNi0.5Mn1.5O4、LiNi1/3Mn1/3Co1/3O2、LiNi0.5Mn0.5O2、LiCoPO4、LiFePO4、LiMnPO4等を挙げることができる。 The active material is preferably a material that can react with Li ions and expands and contracts by charging and discharging. When the electrode is used as the negative electrode, examples of the active material include Si-based active materials. When the electrode is used as the positive electrode, the active materials include, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 0.5 Mn 1.5 O 4 , LiNi 1/3 Mn 1/3 Co 1 / 3 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiCoPO 4 , LiFePO 4 , LiMnPO 4, and the like can be mentioned.
活物質の形状としては、例えば、粒子状が挙げられる。活物質の平均粒径(D50)は、例えば、0.1μm〜50μmの範囲内であり、1μm〜20μmの範囲内であってもよい。活物質の平均粒径(D50)は、例えば、レーザー回折散乱法による粒度分布測定の結果から求めることができる。 Examples of the shape of the active material include particulate matter. The average particle size (D 50 ) of the active material is, for example, in the range of 0.1 μm to 50 μm, and may be in the range of 1 μm to 20 μm. The average particle size (D 50 ) of the active material can be obtained from, for example, the result of particle size distribution measurement by the laser diffraction / scattering method.
粉末材料における活物質の割合は、電池容量の観点からはより多いことが好ましく、例えば30重量%以上であり、50重量%以上であることが好ましく、70重量%以上であることがより好ましい。 The proportion of the active material in the powder material is preferably higher, for example, 30% by weight or more, preferably 50% by weight or more, and more preferably 70% by weight or more from the viewpoint of battery capacity.
バインダーの種類は特に限定されないが、後述する溶媒に溶解するか、膨潤する材料であることが好ましい。バインダーとしては、例えば、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダーを挙げることができる。 The type of binder is not particularly limited, but it is preferably a material that dissolves or swells in a solvent described later. Examples of the binder include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
粉末材料におけるバインダーの割合は、例えば、0.1重量%〜10重量%の範囲内であり、0.5重量%〜5重量%の範囲内であってもよい。 The proportion of the binder in the powder material is, for example, in the range of 0.1% by weight to 10% by weight, and may be in the range of 0.5% by weight to 5% by weight.
固体電解質の種類は特に限定されないが、例えば硫化物固体電解質を挙げることができる。硫化物固体電解質としては、例えば、Li2S−P2S5、Li2S−P2S5−LiI、Li2S−P2S5−LiCl、Li2S−P2S5−LiBr、Li2S−P2S5−Li2O、Li2S−P2S5−Li2O−LiI、Li2S−SiS2、Li2S−SiS2−LiI、Li2S−SiS2−LiBr、Li2S−SiS2−LiCl、Li2S−SiS2−B2S3−LiI、Li2S−SiS2−P2S5−LiI、Li2S−B2S3、Li2S−P2S5−ZmSn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか)、Li2S−GeS2、Li2S−SiS2−Li3PO4、Li2S−SiS2−LixMOy(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか)、Li10GeP2S12等を挙げることができる。 The type of the solid electrolyte is not particularly limited, and examples thereof include a sulfide solid electrolyte. Examples of the sulfide solid electrolyte include Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -Li I, Li 2 S-P 2 S 5- LiCl, and Li 2 SP 2 S 5- LiBr. , Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2- LiBr, Li 2 S-SiS 2- LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 SB 2 S 3 , Li 2 S-P 2 S 5- Z m S n (where m and n are positive numbers. Z is one of Ge, Zn or Ga), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li x MO y (where x, y are positive numbers, M is any of P, Si, Ge, B, Al, Ga, In), Li 10 GeP 2 S 12 and the like can be mentioned.
粉末材料における固体電解質の割合は、例えば20重量%〜70重量%の範囲内であり、40重量%〜60重量%の範囲内であってもよい。粉末材料は、通常溶媒を含有しない。 The proportion of the solid electrolyte in the powder material is, for example, in the range of 20% by weight to 70% by weight, and may be in the range of 40% by weight to 60% by weight. Powdered materials usually do not contain solvents.
(2)溶媒
溶媒の種類は特に限定されないが、上述したバインダーが溶解できる溶媒であればよい。溶媒としては、例えば酪酸ブチル等を挙げることができる。なお、本開示において溶媒とは、上述した粉末材料を分散できる溶液を意味し、分散媒を包含した用語である。
(2) Solvent The type of solvent is not particularly limited, but any solvent may be used as long as it can dissolve the above-mentioned binder. Examples of the solvent include butyl butyrate and the like. In the present disclosure, the term "solvent" means a solution capable of dispersing the above-mentioned powder material, and is a term including a dispersion medium.
溶媒の添加量は、得られる湿潤粉体の固形分率が80重量%以上90重量%未満となる量であり、85重量%以上88重量%以下となる量がより好ましい。溶媒量が少なすぎたり、多すぎたりすると、集電体上に転写できない恐れがある。また、溶媒量が多すぎると、電極の乾燥に時間を要し、作業効率が悪化する恐れがある。 The amount of the solvent added is such that the solid content of the obtained wet powder is 80% by weight or more and less than 90% by weight, and more preferably 85% by weight or more and 88% by weight or less. If the amount of solvent is too small or too large, it may not be transferred onto the current collector. Further, if the amount of the solvent is too large, it takes time to dry the electrode, and the work efficiency may be deteriorated.
(3)造粒方法
本開示における湿潤粉体を造粒する方法は特に限定されないが、多段階の撹拌とすることができる。例えば、図1に示したような、活物質、バインダー、固体電解質、および導電剤を混合して粉末材料を調製する第1の撹拌、および粉末材料に溶媒添加後の2段階の撹拌(第2の撹拌および第3の撹拌)の合計3段階の撹拌を行うことで、湿潤粉体を造粒することができる。撹拌装置としては、例えば回転羽を有する撹拌機が挙げられ、具体例としてはプラネタリミキサが挙げられる。
(3) Granulation Method The method for granulating the wet powder in the present disclosure is not particularly limited, but can be a multi-step stirring. For example, as shown in FIG. 1, a first stirring for mixing an active material, a binder, a solid electrolyte, and a conductive agent to prepare a powder material, and a two-step stirring after adding a solvent to the powder material (second). Wet powder can be granulated by performing a total of three steps of stirring (stirring and third stirring). Examples of the stirring device include a stirring device having a rotating blade, and specific examples thereof include a planetary mixer.
第1の撹拌は、例えば2000rpm〜5000rpmの速度で1秒〜30秒の条件で行うことができる。 The first stirring can be performed at a speed of, for example, 2000 rpm to 5000 rpm under the condition of 1 second to 30 seconds.
第2の撹拌では300〜1800rpmの速度で1秒〜30秒撹拌し、第3の撹拌では2000rpm〜5000rpmの速度で0.5秒〜8秒間撹拌することができる。このように、溶媒を添加した後に複数段階の撹拌を行うことで、溶媒を添加した粉末材料が二次凝集することを防止できる。 The second stirring can be stirred at a speed of 300 to 1800 rpm for 1 second to 30 seconds, and the third stirring can be stirred at a speed of 2000 rpm to 5000 rpm for 0.5 seconds to 8 seconds. In this way, by performing a plurality of steps of stirring after adding the solvent, it is possible to prevent the powder material to which the solvent has been added from secondary aggregation.
2.せん断工程
本開示におけるせん断工程は、上述した湿潤粉体に対して、29kPa以上181kPa以下のせん断応力を加える工程である。
2. 2. Shear step The shear step in the present disclosure is a step of applying a shear stress of 29 kPa or more and 181 kPa or less to the above-mentioned wet powder.
せん断応力は29kPa以上181kPa以下であり、40kPa以上100kPa以下であってもよく、50kPa以上80kPa以下であってもよい。またせん断応力は、せん断速度における粘度×せん断速度によって算出することができる。せん断速度は、π×ロータ外径×ロータ回転数/クリアランスによって算出することができる。そのため、せん断応力は、例えば湿潤粉体の粘度、ロータ回転数で調整することができる。 The shear stress is 29 kPa or more and 181 kPa or less, and may be 40 kPa or more and 100 kPa or less, or 50 kPa or more and 80 kPa or less. The shear stress can be calculated by multiplying the viscosity at the shear rate by the shear rate. The shear rate can be calculated by π × rotor outer diameter × rotor rotation speed / clearance. Therefore, the shear stress can be adjusted by, for example, the viscosity of the wet powder and the rotor rotation speed.
この工程の処理時間は、特に限定されないが、例えば30秒以上であり、1分以上であってもよく、5分以上であってもよく、10分以上であってもよい。一方で、処理時間は例えば30分以下であり、20分以下であってもよい。 The processing time of this step is not particularly limited, but may be, for example, 30 seconds or more, 1 minute or more, 5 minutes or more, or 10 minutes or more. On the other hand, the processing time is, for example, 30 minutes or less, and may be 20 minutes or less.
本開示におけるせん断工程では、上記せん断応力を加えられる装置であれば特に限定されずに使用できるが、例えばミンサーなどを使用することができる。 In the shearing step in the present disclosure, any device that can apply the shear stress can be used without particular limitation, but for example, a mincer or the like can be used.
3.成膜工程
本開示における成膜工程は、上述したせん断応力が加えられた湿潤粉体を隣り合う回転ロールの間に通し、集電体上に転写することにより、活物質層を成膜する工程である。
3. 3. Film formation step The film formation step in the present disclosure is a step of forming an active material layer by passing the wet powder to which the above-mentioned shear stress is applied between adjacent rotating rolls and transferring it onto a current collector. Is.
集電体に湿潤粉体を転写するための装置としては、回転ロールを有する成膜装置であれば特に限定されず使用できる。例えば図3に示したような、成膜装置10が例示できる。 The apparatus for transferring the wet powder to the current collector is not particularly limited as long as it is a film forming apparatus having a rotating roll. For example, the film forming apparatus 10 as shown in FIG. 3 can be exemplified.
集電体としては、全固体電池に通常用いられる集電体を例示することができる。集電体の材料としては、例えば、ニッケル、SUS、銅、カーボン等を挙げることができる。 As the current collector, a current collector usually used for an all-solid-state battery can be exemplified. Examples of the material of the current collector include nickel, SUS, copper, carbon and the like.
湿潤粉体を集電体上に転写した後に、通常乾燥処理を行うことで、集電体と活物質層を有する電極を製造することができる。 An electrode having a current collector and an active material layer can be produced by transferring the wet powder onto the current collector and then performing a normal drying treatment.
4.電極
本開示の方法で製造される電極は、集電体と、集電体上に形成された活物質層とを有する。
4. Electrodes An electrode manufactured by the method of the present disclosure has a current collector and an active material layer formed on the current collector.
本開示における電極は、全固体電池に用いられ、特に全固体リチウムイオン電池に用いられることが好ましい。全固体電池において本開示における電極は、正極として用いられてもよく、負極として用いられてもよい。 The electrodes in the present disclosure are used in all-solid-state batteries, and are particularly preferably used in all-solid-state lithium-ion batteries. In the all-solid-state battery, the electrodes in the present disclosure may be used as a positive electrode or a negative electrode.
また、上記全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。 Further, the all-solid-state battery may be a primary battery or a secondary battery, but a secondary battery is preferable. This is because it can be repeatedly charged and discharged, and is useful as an in-vehicle battery, for example. Examples of the shape of the battery include a coin type, a laminated type, a cylindrical type, a square type, and the like.
なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 The present disclosure is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same structure as the technical idea described in the claims of the present disclosure and exhibiting the same action and effect is described in this invention. Included in the technical scope of disclosure.
[実施例1]
活物質(Si粒子)、バインダー(PVDFの粉末)、導電剤(VGCF)、および硫化物固体電解質(Li2S−P2S5系)を、負極活物質:バインダー:導電剤:硫化物固体電解質が53.3:1.1:4.3:41.4の重量比となるように秤量した。これらを、回転羽を有する撹拌機内で4500rpmで15秒間撹拌して粉末材料の混合物を得た。得られた混合物に、固形分率が89重量%となるように酪酸ブチルを添加して800rpmで30秒間の条件の撹拌を行い、次いで4500rpmで2秒間の条件の撹拌を行った。これにより湿潤粉体を造粒した。得られた湿潤粉体に対して、167kPaのせん断応力を720秒間加えた。その後、湿潤粉体を3本ロール成膜機を通して集電体(Cu箔)状に転写し、加熱乾燥させた。これにより、集電体上に活物質層が形成された電極を得た。
[Example 1]
Active material (Si particles), binder (PVDF powder), conductive agent (VGCF), and sulfide solid electrolyte (Li 2 SP 2 S 5 system), negative electrode Active material: binder: conductive agent: sulfide solid The electrolyte was weighed to a weight ratio of 53.3: 1.1: 4.3: 41.4. These were stirred at 4500 rpm for 15 seconds in a stirrer with rotary blades to obtain a mixture of powder materials. Butyl butyrate was added to the obtained mixture so that the solid content was 89% by weight, and the mixture was stirred at 800 rpm for 30 seconds, and then at 4500 rpm for 2 seconds. As a result, a wet powder was granulated. A shear stress of 167 kPa was applied to the obtained wet powder for 720 seconds. Then, the wet powder was transferred to a current collector (Cu foil) through a three-roll film forming machine and dried by heating. As a result, an electrode having an active material layer formed on the current collector was obtained.
[実施例2〜8]
湿潤粉体の固体分率とせん断応力を、表1のように変更したこと以外は、実施例1と同様にして電極を作製した。
[Examples 2 to 8]
Electrodes were produced in the same manner as in Example 1 except that the solid fraction and shear stress of the wet powder were changed as shown in Table 1.
[比較例1]
従来のように、電極の製造は以下のようにスラリーを塗布して行った。まずPVDFを酪酸ブチルに溶解させてバインダー溶液を調製した。このバインダー溶液と、上記実施例1と同様の活物質、導電剤、および硫化物固体電解質を酪酸ブチルに溶かしてスラリーを調製した。このスラリーを、集電体(Cu箔)上に、ペーカーアプリケータを用いて均一な厚みとなるように塗工した。その後、乾燥させて、電極を得た。なお、調製したスラリーの固形分率は43重量%であった。
[Comparative Example 1]
As in the conventional case, the electrode was manufactured by applying a slurry as follows. First, PVDF was dissolved in butyl butyrate to prepare a binder solution. A slurry was prepared by dissolving this binder solution and the same active material, conductive agent, and sulfide solid electrolyte as in Example 1 above in butyl butyrate. This slurry was applied onto a current collector (Cu foil) using a paker applicator so as to have a uniform thickness. Then, it was dried to obtain an electrode. The solid content of the prepared slurry was 43% by weight.
[比較例2]
バインダーとしてPVDFの酪酸ブチル溶液を用いたこと、せん断工程を行わなかったこと以外は、実施例1と同様にして電極を得た。
[Comparative Example 2]
Electrodes were obtained in the same manner as in Example 1 except that a butyl butyrate solution of PVDF was used as a binder and no shearing step was performed.
[比較例3〜8]
表1に示すように、固形分率およびせん断応力を変更したこと以外は、実施例1と同様にして電極を得た。
[Comparative Examples 3 to 8]
As shown in Table 1, electrodes were obtained in the same manner as in Example 1 except that the solid content and shear stress were changed.
[評価用電池の作製]
せん断応力を45kPaに変更したこと以外は、実施例1と同様の方法で負極を作製した。正極活物質(LiNi1/3Co1/3Mn1/3O2)および硫化物固体電解質(LiI−Li2O−Li2S−P2S5)を、正極活物質:硫化物固体電解質=75:25の重量比で秤量した。その後、正極活物質100重量部に対して、PVDFバインダーが1.5重量部、導電剤(VGCF)が3.0重量部となるように秤量した。これらの材料を混合し、酪酸ブチルを添加した。その後、超音波ホモジナイザーを用いて1分間混練し、正極スラリーを得た。得られた正極スラリーを、集電体(Al箔)の表面に、アプリケータ(350μm)を用いて塗工し、加熱乾燥した。その後、25℃、線圧1ton/cmでロールプレスした。これにより集電体上に正極活物質層を有する正極を得た。不活性ガス雰囲気化で、上記正極の正極活物質層と上記負極の負極活物質層とを、固体電解質層を介して対向するように配置しプレスした。その後Alラミネートで封止して、評価用電池1を得た。
また、負極を比較例1と同様の方法で作製したこと以外は、上記と同様にして評価用電池2を得た。さらに、負極の作製においてせん断工程を行わなかったこと以外は、上記と同様にして評価用電池3を得た。
[Manufacturing of evaluation battery]
A negative electrode was prepared in the same manner as in Example 1 except that the shear stress was changed to 45 kPa. Positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and sulfide solid electrolyte (LiI-Li 2 O-Li 2 SP 2 S 5 ), positive electrode active material: sulfide solid electrolyte Weighed at a weight ratio of = 75:25. Then, the PVDF binder was weighed to 1.5 parts by weight and the conductive agent (VGCF) was weighed to 3.0 parts by weight with respect to 100 parts by weight of the positive electrode active material. These materials were mixed and butyl butyrate was added. Then, it was kneaded for 1 minute using an ultrasonic homogenizer to obtain a positive electrode slurry. The obtained positive electrode slurry was applied to the surface of the current collector (Al foil) using an applicator (350 μm) and dried by heating. Then, it was roll-pressed at 25 ° C. and a linear pressure of 1 ton / cm. As a result, a positive electrode having a positive electrode active material layer on the current collector was obtained. In an inert gas atmosphere, the positive electrode active material layer of the positive electrode and the negative electrode active material layer of the negative electrode were arranged and pressed so as to face each other via the solid electrolyte layer. Then, it was sealed with Al laminate to obtain an evaluation battery 1.
Further, the evaluation battery 2 was obtained in the same manner as described above except that the negative electrode was produced by the same method as in Comparative Example 1. Further, the evaluation battery 3 was obtained in the same manner as described above except that the shearing step was not performed in the production of the negative electrode.
[評価]
(成膜の可否)
実施例1〜8および比較例2〜8で得られた湿潤粉体を集電体上に転写する際に、目視にて、集電体への転写状態と回転ロールへの湿潤粉体の残存状態を観察して、評価した。結果を表1に示す。なお、表1では、成膜ができた場合を○、一部回転ロールに湿潤粉体が張り付き集電体に転写ができなかった場合を△、集電体上に全く転写ができなかった場合を×と表記とした。
[Evaluation]
(Availability of film formation)
When the wet powders obtained in Examples 1 to 8 and Comparative Examples 2 to 8 were transferred onto the current collector, the state of transfer to the current collector and the residual wet powder on the rotating roll were visually observed. The condition was observed and evaluated. The results are shown in Table 1. In Table 1, the case where the film was formed was ○, the case where the wet powder was partially attached to the rotating roll and could not be transferred to the current collector was Δ, and the case where the transfer could not be performed on the current collector at all. Was written as x.
(作業効率)
従来法で電極を作製した比較例1において、バインダーの調製に要した時間および電極を乾燥させるために要した時間を基準とし、各実施例および比較例においてバインダーを調製するために要した時間および電極を乾燥させるために要した時間を比較した。結果を表1に示す。なお、表1では、比較例1よりも時間が短縮されていた場合を○、比較例1と同等の時間を要した場合は×と表記した。
(Work efficiency)
In Comparative Example 1 in which the electrode was prepared by the conventional method, the time required for preparing the binder and the time required for preparing the binder in each Example and Comparative Example were based on the time required for preparing the binder and the time required for drying the electrode. The time required to dry the electrodes was compared. The results are shown in Table 1. In Table 1, the case where the time was shortened as compared with Comparative Example 1 was indicated by ◯, and the case where the time equivalent to that of Comparative Example 1 was required was indicated by ×.
(分散度)
スキャナ(GT−F740、エプソン株式会社製)を用いて、成膜した各電極をグレースケールでスキャンを行い、0〜255の範囲の輝度の個数を求め、標準偏差を算出して比較を行った。結果を表1に示す。なお、表1では、標準偏差が3未満の場合は○、標準偏差が3以上の場合は×と表記した。
(Dispersity)
Using a scanner (GT-F740, manufactured by Epson Corporation), each electrode formed was scanned on a gray scale, the number of brightness in the range of 0 to 255 was calculated, and the standard deviation was calculated for comparison. .. The results are shown in Table 1. In Table 1, when the standard deviation is less than 3, it is indicated by ◯, and when the standard deviation is 3 or more, it is indicated by ×.
以上の評価項目において、全て○だった場合は総合評価○と判断し、1つでも×がある場合は総合評価×と判断した。また、実施例1〜8および比較例2〜8の結果を図2にプロットする。 In the above evaluation items, if all of them were ○, it was judged as a comprehensive evaluation ○, and if there was even one ×, it was judged as a comprehensive evaluation ×. The results of Examples 1 to 8 and Comparative Examples 2 to 8 are plotted in FIG.
(インピーダンス測定)
得られた3つの評価用電池に対して、25℃、SOC(State-Of-Charge)が60%の条件で、インピーダンス測定を行った。結果を図4に示す。
(Impedance measurement)
Impedance measurements were performed on the obtained three evaluation batteries under the conditions of 25 ° C. and an SOC (State-Of-Charge) of 60%. The results are shown in FIG.
表1に示したように、バインダーを溶液状態で添加した比較例2では、電極の分散度は良好であったものの、バインダーを溶液に調製したため作業効率が悪かった。また、バインダーを粉末状態で添加した比較例3〜8では、電極の乾燥時間は短縮されたものの、固形分率(NV)とせん断応力が所定の範囲外であったため、成膜ができなかったり、分散度が悪かったりした。一方で、実施例1〜8では、作業効率も良好であり、電極における粉末材料が良好に分散した電極を製造することができた。 As shown in Table 1, in Comparative Example 2 in which the binder was added in the solution state, the dispersity of the electrodes was good, but the work efficiency was poor because the binder was prepared in the solution. Further, in Comparative Examples 3 to 8 in which the binder was added in a powder state, although the drying time of the electrodes was shortened, the solid content (NV) and the shear stress were out of the predetermined ranges, so that the film could not be formed. , The degree of dispersion was bad. On the other hand, in Examples 1 to 8, the work efficiency was also good, and the electrode in which the powder material in the electrode was well dispersed could be produced.
図4はインピーダンス測定の結果であり、右側のプロットが評価用電池3、左側のプロットが評価用電池1および評価用電池2である。図4からわかるように、本開示における方法で負極を製造した評価用電池1は、スラリー化法で負極を作製した評価用電池2とプロットが重なっており同等の抵抗値を示したが、せん断工程を行わず負極を製造した評価用電池3は、評価電池1および評価電池2よりも電極抵抗が高かった。これは、評価用電池3ではせん断工程を行わなかったために、負極内で固体電解質が密集してしまう場所が存在し、イオン伝導パスが切れてしまったためと推察される。 FIG. 4 shows the results of impedance measurement. The plot on the right side is the evaluation battery 3, and the plot on the left side is the evaluation battery 1 and the evaluation battery 2. As can be seen from FIG. 4, the evaluation battery 1 in which the negative electrode was manufactured by the method in the present disclosure showed the same resistance value as the evaluation battery 2 in which the negative electrode was manufactured by the slurrying method, and showed the same resistance value. The evaluation battery 3 in which the negative electrode was manufactured without performing the step had higher electrode resistance than the evaluation battery 1 and the evaluation battery 2. It is presumed that this is because the evaluation battery 3 did not undergo the shearing step, so that there was a place where the solid electrolyte was concentrated in the negative electrode, and the ion conduction path was cut off.
1 … 湿潤粉体
2 … 集電体
3 … 回転ロール
10 … 成膜装置
1 ... Wet powder 2 ... Current collector 3 ... Rotating roll 10 ... Film forming equipment
Claims (1)
少なくとも活物質、バインダー、および固体電解質を含む粉末材料に溶媒を混合して、固形分率が80重量%以上90重量%未満の湿潤粉体を造粒する、造粒工程と、
前記湿潤粉体に対して、29kPa以上181kPa以下のせん断応力を加える、せん断工程と、
前記せん断応力が加えられた前記湿潤粉体を隣り合う回転ロールの間に通し、前記集電体上に転写することにより、前記活物質層を成膜する、成膜工程と、
を有する電極の製造方法。 A method for manufacturing electrodes used in all-solid-state batteries and having a current collector and an active material layer.
A granulation step of mixing a solvent with a powder material containing at least an active material, a binder, and a solid electrolyte to granulate a wet powder having a solid content of 80% by weight or more and less than 90% by weight.
A shearing step of applying a shear stress of 29 kPa or more and 181 kPa or less to the wet powder.
A film forming step of forming the active material layer by passing the wet powder to which the shear stress is applied between adjacent rotating rolls and transferring the wet powder onto the current collector.
A method for manufacturing an electrode having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026318A JP7159902B2 (en) | 2019-02-18 | 2019-02-18 | Electrode manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026318A JP7159902B2 (en) | 2019-02-18 | 2019-02-18 | Electrode manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020136016A true JP2020136016A (en) | 2020-08-31 |
JP7159902B2 JP7159902B2 (en) | 2022-10-25 |
Family
ID=72279002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019026318A Active JP7159902B2 (en) | 2019-02-18 | 2019-02-18 | Electrode manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7159902B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220108730A (en) | 2021-01-27 | 2022-08-03 | 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 | Electrode material comprising moisture powder, electrode, method for producing same, and secondary battery provided with said electrode |
CN115084426A (en) * | 2021-03-15 | 2022-09-20 | 泰星能源解决方案有限公司 | Method for manufacturing electrode |
CN116636048A (en) * | 2020-12-25 | 2023-08-22 | 大金工业株式会社 | Method for producing electrode for secondary battery using nonaqueous electrolyte, and binder for secondary battery electrode using nonaqueous electrolyte |
WO2023223627A1 (en) * | 2022-05-19 | 2023-11-23 | パナソニックホールディングス株式会社 | Solid electrolyte composition and method for manufacturing same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012243476A (en) * | 2011-05-17 | 2012-12-10 | Nippon Zeon Co Ltd | Method for manufacturing all-solid secondary battery |
JP2015062186A (en) * | 2011-01-26 | 2015-04-02 | トヨタ自動車株式会社 | Composite particle, solid battery electrode, and method for manufacturing composite particle |
JP2015138658A (en) * | 2014-01-22 | 2015-07-30 | トヨタ自動車株式会社 | Method for manufacturing electrode for lithium secondary battery, and granulated material |
JP2016207508A (en) * | 2015-04-23 | 2016-12-08 | トヨタ自動車株式会社 | Stirring device and electrode manufacturing method using the same |
JP2016219212A (en) * | 2015-05-19 | 2016-12-22 | トヨタ自動車株式会社 | Method for manufacturing secondary battery electrode |
JP2017152348A (en) * | 2016-02-26 | 2017-08-31 | トヨタ自動車株式会社 | Method for manufacturing composite active material |
JP2018004579A (en) * | 2016-07-08 | 2018-01-11 | トヨタ自動車株式会社 | Method for calculating characteristics of wet particles |
-
2019
- 2019-02-18 JP JP2019026318A patent/JP7159902B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015062186A (en) * | 2011-01-26 | 2015-04-02 | トヨタ自動車株式会社 | Composite particle, solid battery electrode, and method for manufacturing composite particle |
JP2012243476A (en) * | 2011-05-17 | 2012-12-10 | Nippon Zeon Co Ltd | Method for manufacturing all-solid secondary battery |
JP2015138658A (en) * | 2014-01-22 | 2015-07-30 | トヨタ自動車株式会社 | Method for manufacturing electrode for lithium secondary battery, and granulated material |
JP2016207508A (en) * | 2015-04-23 | 2016-12-08 | トヨタ自動車株式会社 | Stirring device and electrode manufacturing method using the same |
JP2016219212A (en) * | 2015-05-19 | 2016-12-22 | トヨタ自動車株式会社 | Method for manufacturing secondary battery electrode |
JP2017152348A (en) * | 2016-02-26 | 2017-08-31 | トヨタ自動車株式会社 | Method for manufacturing composite active material |
JP2018004579A (en) * | 2016-07-08 | 2018-01-11 | トヨタ自動車株式会社 | Method for calculating characteristics of wet particles |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116636048A (en) * | 2020-12-25 | 2023-08-22 | 大金工业株式会社 | Method for producing electrode for secondary battery using nonaqueous electrolyte, and binder for secondary battery electrode using nonaqueous electrolyte |
KR20220108730A (en) | 2021-01-27 | 2022-08-03 | 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 | Electrode material comprising moisture powder, electrode, method for producing same, and secondary battery provided with said electrode |
EP4037006A2 (en) | 2021-01-27 | 2022-08-03 | Prime Planet Energy & Solutions, Inc. | Electrode material comprising moisture powder, electrode, method for producing same, and secondary battery provided with said electrode |
CN115084426A (en) * | 2021-03-15 | 2022-09-20 | 泰星能源解决方案有限公司 | Method for manufacturing electrode |
CN115084426B (en) * | 2021-03-15 | 2024-03-01 | 泰星能源解决方案有限公司 | Method for manufacturing electrode |
WO2023223627A1 (en) * | 2022-05-19 | 2023-11-23 | パナソニックホールディングス株式会社 | Solid electrolyte composition and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP7159902B2 (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11251464B2 (en) | All solid state battery and method for producing all solid state battery | |
JP6262503B2 (en) | All-solid secondary battery and method for producing all-solid secondary battery | |
JP7159902B2 (en) | Electrode manufacturing method | |
US20190181432A1 (en) | Cathode mixture, cathode active material layer, all solid state battery, and method for producing cathode active material layer | |
JP6183360B2 (en) | Electrode of lithium ion secondary battery and lithium ion secondary battery using the same | |
WO2012046305A1 (en) | Method of producing battery | |
US10297818B2 (en) | Device and method for producing composite active material powder using a production device including a rotating body with blades each having a tapered section at an end part thereof on a front side in a rotation/movement direction of the rotating body | |
KR20150027026A (en) | Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode | |
JP2015005398A (en) | Positive electrode for all-solid lithium ion battery | |
JP2019091632A (en) | All-solid battery manufacturing method, all-solid battery and slurry | |
JP2016134269A (en) | Method of manufacturing electrode | |
JP2018186033A (en) | Manufacturing method of electrode | |
JP2014241282A (en) | Method for manufacturing electrode body | |
US20240234699A9 (en) | Electrode material, method of producing electrode material, and method of producing all-solid-state battery | |
JP6167708B2 (en) | Method for producing electrode forming slurry | |
JP7139973B2 (en) | negative electrode layer | |
JP6705400B2 (en) | Method for manufacturing secondary battery electrode | |
JP6296075B2 (en) | Electrode plate manufacturing method | |
JP2022153951A (en) | All-solid-state battery | |
JP2022168684A (en) | Manufacturing method of positive electrode for lithium ion battery | |
JP6583069B2 (en) | Method for producing lithium ion secondary battery | |
JP2020126807A (en) | Positive electrode active material layer for all-solid-state battery | |
US20230178747A1 (en) | Method for manufacturing electrode for all-solid-state batteries by semi-dry process | |
JP2016103391A (en) | Method for manufacturing positive electrode active material paste for lithium ion secondary battery | |
JP6620718B2 (en) | Method for manufacturing battery electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220926 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7159902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |