JP7159902B2 - Electrode manufacturing method - Google Patents

Electrode manufacturing method Download PDF

Info

Publication number
JP7159902B2
JP7159902B2 JP2019026318A JP2019026318A JP7159902B2 JP 7159902 B2 JP7159902 B2 JP 7159902B2 JP 2019026318 A JP2019026318 A JP 2019026318A JP 2019026318 A JP2019026318 A JP 2019026318A JP 7159902 B2 JP7159902 B2 JP 7159902B2
Authority
JP
Japan
Prior art keywords
electrode
active material
weight
powder
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026318A
Other languages
Japanese (ja)
Other versions
JP2020136016A (en
Inventor
有岐 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019026318A priority Critical patent/JP7159902B2/en
Publication of JP2020136016A publication Critical patent/JP2020136016A/en
Application granted granted Critical
Publication of JP7159902B2 publication Critical patent/JP7159902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、全固体電池に用いられる電極の製造方法に関する。 The present disclosure relates to a method for manufacturing electrodes used in all-solid-state batteries.

全固体電池は、正極活物質層および負極活物質層の間に固体電解質層を有する電池であり、可燃性の有機溶媒を含む電解液を有する液系電池に比べて、安全装置の簡素化が図りやすいという利点を有する。 An all-solid-state battery is a battery that has a solid electrolyte layer between a positive electrode active material layer and a negative electrode active material layer. It has the advantage of being easy to plot.

通常電池における電極は、活物質層と、活物質層の集電を行う集電体を有している。例えば特許文献1には、液系の電池に用いられる電極の製造方法が開示されており、特許文献2には、全固体電池に用いられる電極の製造方法が開示されている。 An electrode in a normal battery has an active material layer and a current collector that collects current from the active material layer. For example, Patent Document 1 discloses a method for manufacturing electrodes used in liquid-based batteries, and Patent Document 2 discloses a method for manufacturing electrodes used in all-solid-state batteries.

特開2016-219212号公報JP 2016-219212 A 特開2015-115103号公報JP 2015-115103 A

全固体電池の性能向上の観点から、活物質層における電極材料の分散性は高いことが求められている。また、生産性の観点から、電極の製造方法においては、作業効率がよいことが求められている。本開示は、上記実情に鑑みてなされたものであり、活物質層における電極材料の分散性が高い電極を、作業効率よく製造できる方法を提供することを主目的とする。 From the viewpoint of improving the performance of all-solid-state batteries, high dispersibility of the electrode material in the active material layer is required. In addition, from the viewpoint of productivity, the electrode manufacturing method is required to have good working efficiency. The present disclosure has been made in view of the above circumstances, and a main object of the present disclosure is to provide a method for manufacturing an electrode with high dispersibility of an electrode material in an active material layer with high work efficiency.

全固体電池における電極は、特許文献2に開示されているように、活物質、バインダー、および固体電界質などを適当な溶媒でスラリー化(ペースト化)し、この電極スラリーを集電体上に塗布して乾燥させた後、プレスすることで製造されている。一方、液系電池では、特許文献1に開示されているように、少なくとも活物質とバインダーを含む粉末材料に、少量の溶媒を添加して造粒体を作製し、この造粒体を集電体上にプレス形成して電極を形成する工法(湿潤粉体成膜法:Moisture Powder Sheeting(MPS))が行われている。特許文献1に記載された上記工法は、特許文献2に記載された上記工法に比べて、溶媒量が少量であるため、電極の乾燥に時間を要しないという利点がある。本発明者は、全固体電池に用いる電極の製造方法において、作業効率を向上させるためにこの工法を応用することに想到した。ところが、電極材料を均一に混練することが困難であり、活物質層における電極材料の分散性が低くなるという課題が生じた。そこで、本発明者は鋭意検討を行った結果、造粒体に対して所定のせん断応力を加えることで、分散性が向上することを見出し、本発明を完成させた。 As disclosed in Patent Document 2, the electrode in the all-solid-state battery is made by slurrying (pasting) an active material, a binder, a solid electrolyte, etc. with an appropriate solvent, and applying this electrode slurry on a current collector. It is manufactured by applying, drying, and pressing. On the other hand, in a liquid battery, as disclosed in Patent Document 1, a powder material containing at least an active material and a binder is added with a small amount of solvent to prepare a granule, and the granule is used as a current collector. A method (moisture powder sheeting (MPS)) in which electrodes are formed by press forming on a body is used. Compared with the method described in Patent Document 2, the method described in Patent Document 1 uses a smaller amount of solvent, and thus has the advantage that it does not take much time to dry the electrode. The inventor of the present invention came up with the idea of applying this construction method in order to improve work efficiency in the method of manufacturing electrodes used in all-solid-state batteries. However, it is difficult to uniformly knead the electrode material, and the problem arises that the dispersibility of the electrode material in the active material layer is low. As a result of intensive studies, the inventors have found that the dispersibility is improved by applying a predetermined shearing stress to the granules, and completed the present invention.

すなわち、本開示においては、全固体電池に用いられ、集電体および活物質層を有する電極の製造方法であって、少なくとも活物質、バインダー、および固体電解質を含む粉末材料に溶媒を混合して、固形分率が80重量%以上90重量%未満の湿潤粉体を造粒する、造粒工程と、上記湿潤粉体に対して、29kPa以上181kPa以下のせん断応力を加える、せん断工程と、上記せん断応力が加えられた上記湿潤粉体を隣り合う回転ロールの間に通し、上記集電体上に転写することにより、上記活物質層を成膜する、成膜工程と、を有する電極の製造方法を提供する。 That is, in the present disclosure, a method for manufacturing an electrode used in an all-solid-state battery and having a current collector and an active material layer, wherein a powder material containing at least an active material, a binder, and a solid electrolyte is mixed with a solvent. , a granulation step of granulating a wet powder having a solid content of 80% by weight or more and less than 90% by weight; a shearing step of applying a shear stress of 29 kPa or more and 181 kPa or less to the wet powder; a film-forming step of forming the active material layer by passing the wet powder to which the shear stress is applied between adjacent rotating rolls and transferring it onto the current collector. provide a way.

本開示によれば、活物質層における電極材料の分散性が高い電極を、効率よく製造することができる。 According to the present disclosure, it is possible to efficiently manufacture an electrode in which the electrode material is highly dispersed in the active material layer.

本開示によれば、活物質層における電極材料の分散性が高い電極を、効率よく製造することができるという効果を奏する。 Advantageous Effects of Invention According to the present disclosure, it is possible to efficiently manufacture an electrode in which an electrode material is highly dispersed in an active material layer.

本開示における電極の製造方法の一例を示すフロー図である。FIG. 3 is a flow chart showing an example of a method for manufacturing an electrode in the present disclosure; 実施例および比較例の結果を示すグラフである。4 is a graph showing the results of Examples and Comparative Examples. 本開示における製造方法で用いることができる、回転ロールを有する成膜装置の一例を示す概略図である。1 is a schematic diagram showing an example of a film forming apparatus having rotating rolls that can be used in the manufacturing method of the present disclosure; FIG. インピーダンス測定の結果を示すグラフである。It is a graph which shows the result of an impedance measurement.

図1は、本開示における電極の製造方法の一例を示すフロー図である。図1に示したように、本開示における電極の製造方法では、少なくとも活物質、バインダー、および固体電解質(SE)を含む粉末材料に溶媒を混合して、固形分率が所定範囲である湿潤粉体を造粒する(造粒工程)。次に、上記湿潤粉体に対して、所定のせん断応力を加える(せん断工程)。そして、上記せん断応力が加えられた上記湿潤粉体を隣り合う回転ロールの間に通し、集電体上に転写することにより、活物質層を成膜する(成膜工程)。 FIG. 1 is a flow diagram showing an example of a method for manufacturing an electrode according to the present disclosure. As shown in FIG. 1, in the electrode manufacturing method of the present disclosure, a powder material containing at least an active material, a binder, and a solid electrolyte (SE) is mixed with a solvent, and a wet powder having a solid content within a predetermined range is obtained. Granulate the body (granulation process). Next, a predetermined shearing stress is applied to the wet powder (shearing step). Then, the wet powder to which the shear stress is applied is passed between adjacent rotating rolls and transferred onto a current collector to form an active material layer (film formation step).

本開示によれば、活物質層における電極材料の分散性が高い電極を、作業効率よく製造できる。具体的には、粉末状態のバインダーを含む粉末材料に溶媒を添加しているため、バインダーを溶液に調製する必要がなく、また、湿潤粉体の固形分率が高いために電極の乾燥時間を短縮することができる。これにより、作業効率を向上させることができる。さらに、湿潤粉体に所定のせん断応力を加えることで、活物質層における電極材料を分散させることができる。このように、本開示における方法で製造された電極は電極材料が良好に分散しているため、これを用いた電池では、例えば電極の抵抗が抑制された電池となる。 According to the present disclosure, an electrode in which the electrode material is highly dispersed in the active material layer can be manufactured with good work efficiency. Specifically, since the solvent is added to the powder material containing the binder in the powder state, there is no need to prepare the binder into a solution, and the drying time of the electrode is reduced due to the high solid content of the wet powder. can be shortened. Thereby, working efficiency can be improved. Furthermore, by applying a predetermined shearing stress to the wet powder, the electrode material in the active material layer can be dispersed. As described above, since the electrode material is well dispersed in the electrode manufactured by the method of the present disclosure, a battery using the electrode has, for example, a suppressed resistance of the electrode.

以下、本開示における電極の製造方法の各工程について詳細に説明する。 Hereinafter, each step of the electrode manufacturing method according to the present disclosure will be described in detail.

1.造粒工程
本開示における造粒工程は、少なくとも活物質、バインダー、および固体電解質を含む粉末材料に溶媒を混合して、固形分率が80重量%以上90重量%未満の湿潤粉体を造粒する工程である。
1. Granulation step In the granulation step of the present disclosure, a powder material containing at least an active material, a binder, and a solid electrolyte is mixed with a solvent to granulate a wet powder having a solid content of 80% by weight or more and less than 90% by weight. It is a process to do.

(1)粉末材料
本開示における粉末材料は、活物質とバインダーと固体電解質を少なくとも含有する。上記粉末材料は、活物質とバインダーと固体電解質のみを含有していてもよく、他の材料をさらに含有していてもよい。他の材料としては、例えば導電剤を挙げることができる。
(1) Powder material The powder material in the present disclosure contains at least an active material, a binder and a solid electrolyte. The powder material may contain only the active material, the binder, and the solid electrolyte, or may further contain other materials. Other materials include, for example, conductive agents.

活物質は、Liイオンと反応可能であり、充放電により膨張収縮する材料であることが好ましい。電極を負極として用いる場合には、上記活物質としては、例えばSi系活物質を挙げることができる。また、電極を正極として用いる場合には、上記活物質としては、例えばLiCoO、LiMn、LiNiO、LiNi0.5Mn1.5、LiNi1/3Mn1/3Co1/3、LiNi0.5Mn0.5、LiCoPO、LiFePO、LiMnPO等を挙げることができる。 The active material is preferably a material that can react with Li ions and that expands and contracts due to charging and discharging. When the electrode is used as a negative electrode, examples of the active material include Si-based active materials. Further, when the electrode is used as a positive electrode, the active material includes, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 0.5 Mn 1.5 O 4 , LiNi 1/3 Mn 1/3 Co 1 /3 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiCoPO 4 , LiFePO 4 , LiMnPO 4 and the like.

活物質の形状としては、例えば、粒子状が挙げられる。活物質の平均粒径(D50)は、例えば、0.1μm~50μmの範囲内であり、1μm~20μmの範囲内であってもよい。活物質の平均粒径(D50)は、例えば、レーザー回折散乱法による粒度分布測定の結果から求めることができる。 Examples of the shape of the active material include particulate. The average particle diameter (D 50 ) of the active material is, for example, within the range of 0.1 μm to 50 μm, and may be within the range of 1 μm to 20 μm. The average particle size (D 50 ) of the active material can be determined, for example, from the results of particle size distribution measurement by a laser diffraction scattering method.

粉末材料における活物質の割合は、電池容量の観点からはより多いことが好ましく、例えば30重量%以上であり、50重量%以上であることが好ましく、70重量%以上であることがより好ましい。 From the viewpoint of battery capacity, the proportion of the active material in the powder material is preferably higher, for example, 30% by weight or more, preferably 50% by weight or more, and more preferably 70% by weight or more.

バインダーの種類は特に限定されないが、後述する溶媒に溶解するか、膨潤する材料であることが好ましい。バインダーとしては、例えば、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダーを挙げることができる。 Although the type of binder is not particularly limited, it is preferably a material that dissolves or swells in the solvent described below. Examples of binders include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

粉末材料におけるバインダーの割合は、例えば、0.1重量%~10重量%の範囲内であり、0.5重量%~5重量%の範囲内であってもよい。 The proportion of binder in the powder material is, for example, in the range 0.1% to 10% by weight, and may be in the range 0.5% to 5% by weight.

固体電解質の種類は特に限定されないが、例えば硫化物固体電解質を挙げることができる。硫化物固体電解質としては、例えば、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiO、LiS-P-LiO-LiI、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、LiS-P-Z(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiMO(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか)、Li10GeP12等を挙げることができる。 Although the type of solid electrolyte is not particularly limited, for example, a sulfide solid electrolyte can be used. Sulfide solid electrolytes include, for example, Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiI, Li 2 SP 2 S 5 -LiCl, Li 2 SP 2 S 5 -LiBr , Li 2 SP 2 S 5 —Li 2 O, Li 2 SP 2 S 5 —Li 2 O—LiI, Li 2 S SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 -LiBr, Li2S - SiS2 - LiCl, Li2S - SiS2 - B2S3 - LiI, Li2S - SiS2 - P2S5 - LiI, Li2S - B2S3 , Li 2 SP 2 S 5 -Z m S n (where m and n are positive numbers; Z is one of Ge, Zn, and Ga), Li 2 S—GeS 2 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 —Li x MO y (where x and y are positive numbers and M is any one of P, Si, Ge, B, Al, Ga and In), Li 10 GeP 2 S 12 and the like can be mentioned.

粉末材料における固体電解質の割合は、例えば20重量%~70重量%の範囲内であり、40重量%~60重量%の範囲内であってもよい。粉末材料は、通常溶媒を含有しない。 The proportion of the solid electrolyte in the powder material is, for example, within the range of 20% to 70% by weight, and may be within the range of 40% to 60% by weight. Powdered materials usually do not contain solvents.

(2)溶媒
溶媒の種類は特に限定されないが、上述したバインダーが溶解できる溶媒であればよい。溶媒としては、例えば酪酸ブチル等を挙げることができる。なお、本開示において溶媒とは、上述した粉末材料を分散できる溶液を意味し、分散媒を包含した用語である。
(2) Solvent The type of solvent is not particularly limited as long as it can dissolve the above binder. Examples of the solvent include butyl butyrate and the like. In the present disclosure, the solvent means a solution capable of dispersing the powdery material described above, and is a term that includes a dispersion medium.

溶媒の添加量は、得られる湿潤粉体の固形分率が80重量%以上90重量%未満となる量であり、85重量%以上88重量%以下となる量がより好ましい。溶媒量が少なすぎたり、多すぎたりすると、集電体上に転写できない恐れがある。また、溶媒量が多すぎると、電極の乾燥に時間を要し、作業効率が悪化する恐れがある。 The amount of the solvent to be added is such that the solid content of the resulting wet powder is 80% by weight or more and less than 90% by weight, and more preferably 85% by weight or more and 88% by weight or less. If the amount of solvent is too small or too large, there is a risk that the transfer onto the current collector will not be possible. On the other hand, if the amount of solvent is too large, it may take time to dry the electrodes, resulting in deterioration of working efficiency.

(3)造粒方法
本開示における湿潤粉体を造粒する方法は特に限定されないが、多段階の撹拌とすることができる。例えば、図1に示したような、活物質、バインダー、固体電解質、および導電剤を混合して粉末材料を調製する第1の撹拌、および粉末材料に溶媒添加後の2段階の撹拌(第2の撹拌および第3の撹拌)の合計3段階の撹拌を行うことで、湿潤粉体を造粒することができる。撹拌装置としては、例えば回転羽を有する撹拌機が挙げられ、具体例としてはプラネタリミキサが挙げられる。
(3) Granulation method The method of granulating the wet powder in the present disclosure is not particularly limited, but multistage stirring can be used. For example, as shown in FIG. 1, first stirring for mixing an active material, a binder, a solid electrolyte, and a conductive agent to prepare a powder material, and two-stage stirring after adding a solvent to the powder material (second and the third stirring), the wet powder can be granulated. Examples of the stirring device include a stirrer having rotating blades, and a specific example thereof is a planetary mixer.

第1の撹拌は、例えば2000rpm~5000rpmの速度で1秒~30秒の条件で行うことができる。 The first stirring can be performed, for example, at a speed of 2000 rpm to 5000 rpm for 1 second to 30 seconds.

第2の撹拌では300~1800rpmの速度で1秒~30秒撹拌し、第3の撹拌では2000rpm~5000rpmの速度で0.5秒~8秒間撹拌することができる。このように、溶媒を添加した後に複数段階の撹拌を行うことで、溶媒を添加した粉末材料が二次凝集することを防止できる。 The second stirring can be performed at a speed of 300-1800 rpm for 1 second to 30 seconds, and the third stirring can be performed at a speed of 2000 rpm to 5000 rpm for 0.5 seconds to 8 seconds. In this way, by performing a plurality of stages of stirring after adding the solvent, it is possible to prevent secondary agglomeration of the powder material to which the solvent has been added.

2.せん断工程
本開示におけるせん断工程は、上述した湿潤粉体に対して、29kPa以上181kPa以下のせん断応力を加える工程である。
2. Shearing step The shearing step in the present disclosure is a step of applying a shearing stress of 29 kPa or more and 181 kPa or less to the wet powder described above.

せん断応力は29kPa以上181kPa以下であり、40kPa以上100kPa以下であってもよく、50kPa以上80kPa以下であってもよい。またせん断応力は、せん断速度における粘度×せん断速度によって算出することができる。せん断速度は、π×ロータ外径×ロータ回転数/クリアランスによって算出することができる。そのため、せん断応力は、例えば湿潤粉体の粘度、ロータ回転数で調整することができる。 The shear stress is 29 kPa or more and 181 kPa or less, may be 40 kPa or more and 100 kPa or less, or may be 50 kPa or more and 80 kPa or less. Moreover, the shear stress can be calculated by multiplying the viscosity at the shear rate by the shear rate. The shear rate can be calculated by π×rotor outer diameter×rotor speed/clearance. Therefore, the shear stress can be adjusted by, for example, the viscosity of wet powder and the rotor speed.

この工程の処理時間は、特に限定されないが、例えば30秒以上であり、1分以上であってもよく、5分以上であってもよく、10分以上であってもよい。一方で、処理時間は例えば30分以下であり、20分以下であってもよい。 The treatment time of this step is not particularly limited, but may be, for example, 30 seconds or longer, 1 minute or longer, 5 minutes or longer, or 10 minutes or longer. On the other hand, the processing time is, for example, 30 minutes or less, and may be 20 minutes or less.

本開示におけるせん断工程では、上記せん断応力を加えられる装置であれば特に限定されずに使用できるが、例えばミンサーなどを使用することができる。 In the shearing step in the present disclosure, any device that can apply the above shear stress can be used without particular limitation, and for example, a mincer or the like can be used.

3.成膜工程
本開示における成膜工程は、上述したせん断応力が加えられた湿潤粉体を隣り合う回転ロールの間に通し、集電体上に転写することにより、活物質層を成膜する工程である。
3. Film-forming process The film-forming process in the present disclosure is a process of forming an active material layer by passing the above-described wet powder to which shear stress is applied between adjacent rotating rolls and transferring it onto a current collector. is.

集電体に湿潤粉体を転写するための装置としては、回転ロールを有する成膜装置であれば特に限定されず使用できる。例えば図3に示したような、成膜装置10が例示できる。 A device for transferring the wet powder to the current collector is not particularly limited as long as it has a rotating roll and can be used. For example, a film forming apparatus 10 as shown in FIG. 3 can be exemplified.

集電体としては、全固体電池に通常用いられる集電体を例示することができる。集電体の材料としては、例えば、ニッケル、SUS、銅、カーボン等を挙げることができる。 Examples of current collectors include current collectors commonly used in all-solid-state batteries. Examples of materials for the current collector include nickel, SUS, copper, and carbon.

湿潤粉体を集電体上に転写した後に、通常乾燥処理を行うことで、集電体と活物質層を有する電極を製造することができる。 An electrode having a current collector and an active material layer can be manufactured by usually performing a drying treatment after transferring the wet powder onto the current collector.

4.電極
本開示の方法で製造される電極は、集電体と、集電体上に形成された活物質層とを有する。
4. Electrode An electrode manufactured by the method of the present disclosure has a current collector and an active material layer formed on the current collector.

本開示における電極は、全固体電池に用いられ、特に全固体リチウムイオン電池に用いられることが好ましい。全固体電池において本開示における電極は、正極として用いられてもよく、負極として用いられてもよい。 The electrodes in the present disclosure are used in all-solid-state batteries, and preferably used in all-solid-state lithium-ion batteries. The electrode in the present disclosure may be used as a positive electrode or a negative electrode in an all-solid-state battery.

また、上記全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。 Further, the all-solid-state battery may be a primary battery or a secondary battery, and is preferably a secondary battery. This is because they can be repeatedly charged and discharged, and are useful, for example, as batteries for vehicles. Examples of the shape of the battery include coin type, laminate type, cylindrical type, rectangular type, and the like.

なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 Note that the present disclosure is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present disclosure and achieves the same effect is the present invention. It is included in the technical scope of the disclosure.

[実施例1]
活物質(Si粒子)、バインダー(PVDFの粉末)、導電剤(VGCF)、および硫化物固体電解質(LiS-P系)を、負極活物質:バインダー:導電剤:硫化物固体電解質が53.3:1.1:4.3:41.4の重量比となるように秤量した。これらを、回転羽を有する撹拌機内で4500rpmで15秒間撹拌して粉末材料の混合物を得た。得られた混合物に、固形分率が89重量%となるように酪酸ブチルを添加して800rpmで30秒間の条件の撹拌を行い、次いで4500rpmで2秒間の条件の撹拌を行った。これにより湿潤粉体を造粒した。得られた湿潤粉体に対して、167kPaのせん断応力を720秒間加えた。その後、湿潤粉体を3本ロール成膜機を通して集電体(Cu箔)状に転写し、加熱乾燥させた。これにより、集電体上に活物質層が形成された電極を得た。
[Example 1]
An active material (Si particles), a binder (PVDF powder), a conductive agent (VGCF), and a sulfide solid electrolyte (Li 2 SP 2 S 5 system) were mixed into a negative electrode active material: binder: conductive agent: sulfide solid. The electrolytes were weighed in a weight ratio of 53.3:1.1:4.3:41.4. These were stirred at 4500 rpm for 15 seconds in a stirrer with rotating blades to obtain a mixture of powdered materials. To the resulting mixture, butyl butyrate was added so that the solid content was 89% by weight, and the mixture was stirred at 800 rpm for 30 seconds, and then stirred at 4500 rpm for 2 seconds. This granulated the wet powder. A shear stress of 167 kPa was applied to the resulting wet powder for 720 seconds. After that, the wet powder was transferred to a current collector (Cu foil) through a three-roll film-forming machine, and dried by heating. As a result, an electrode having an active material layer formed on the current collector was obtained.

[実施例2~8]
湿潤粉体の固体分率とせん断応力を、表1のように変更したこと以外は、実施例1と同様にして電極を作製した。
[Examples 2 to 8]
An electrode was produced in the same manner as in Example 1, except that the solid fraction and shear stress of the wet powder were changed as shown in Table 1.

[比較例1]
従来のように、電極の製造は以下のようにスラリーを塗布して行った。まずPVDFを酪酸ブチルに溶解させてバインダー溶液を調製した。このバインダー溶液と、上記実施例1と同様の活物質、導電剤、および硫化物固体電解質を酪酸ブチルに溶かしてスラリーを調製した。このスラリーを、集電体(Cu箔)上に、ペーカーアプリケータを用いて均一な厚みとなるように塗工した。その後、乾燥させて、電極を得た。なお、調製したスラリーの固形分率は43重量%であった。
[Comparative Example 1]
Conventionally, electrode fabrication was performed by applying a slurry as follows. First, PVDF was dissolved in butyl butyrate to prepare a binder solution. This binder solution, the same active material, conductive agent, and sulfide solid electrolyte as in Example 1 were dissolved in butyl butyrate to prepare a slurry. This slurry was applied onto a current collector (Cu foil) using a paper applicator so as to have a uniform thickness. Then, it was dried to obtain an electrode. The solid content of the prepared slurry was 43% by weight.

[比較例2]
バインダーとしてPVDFの酪酸ブチル溶液を用いたこと、せん断工程を行わなかったこと以外は、実施例1と同様にして電極を得た。
[Comparative Example 2]
An electrode was obtained in the same manner as in Example 1, except that a solution of PVDF in butyl butyrate was used as the binder and the shearing process was not performed.

[比較例3~8]
表1に示すように、固形分率およびせん断応力を変更したこと以外は、実施例1と同様にして電極を得た。
[Comparative Examples 3 to 8]
As shown in Table 1, electrodes were obtained in the same manner as in Example 1, except that the solid content and shear stress were changed.

[評価用電池の作製]
せん断応力を45kPaに変更したこと以外は、実施例1と同様の方法で負極を作製した。正極活物質(LiNi1/3Co1/3Mn1/3)および硫化物固体電解質(LiI-LiO-LiS-P)を、正極活物質:硫化物固体電解質=75:25の重量比で秤量した。その後、正極活物質100重量部に対して、PVDFバインダーが1.5重量部、導電剤(VGCF)が3.0重量部となるように秤量した。これらの材料を混合し、酪酸ブチルを添加した。その後、超音波ホモジナイザーを用いて1分間混練し、正極スラリーを得た。得られた正極スラリーを、集電体(Al箔)の表面に、アプリケータ(350μm)を用いて塗工し、加熱乾燥した。その後、25℃、線圧1ton/cmでロールプレスした。これにより集電体上に正極活物質層を有する正極を得た。不活性ガス雰囲気化で、上記正極の正極活物質層と上記負極の負極活物質層とを、固体電解質層を介して対向するように配置しプレスした。その後Alラミネートで封止して、評価用電池1を得た。
また、負極を比較例1と同様の方法で作製したこと以外は、上記と同様にして評価用電池2を得た。さらに、負極の作製においてせん断工程を行わなかったこと以外は、上記と同様にして評価用電池3を得た。
[Preparation of battery for evaluation]
A negative electrode was produced in the same manner as in Example 1, except that the shear stress was changed to 45 kPa. A positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and a sulfide solid electrolyte (LiI—Li 2 O—Li 2 SP 2 S 5 ) are combined into a positive electrode active material: a sulfide solid electrolyte = 75:25 weight ratio. After that, 1.5 parts by weight of the PVDF binder and 3.0 parts by weight of the conductive agent (VGCF) were weighed with respect to 100 parts by weight of the positive electrode active material. These materials were mixed and butyl butyrate was added. After that, the mixture was kneaded for 1 minute using an ultrasonic homogenizer to obtain a positive electrode slurry. The resulting positive electrode slurry was applied to the surface of a current collector (Al foil) using an applicator (350 μm), and dried by heating. Then, it was roll-pressed at 25° C. and a linear pressure of 1 ton/cm. Thus, a positive electrode having a positive electrode active material layer on the current collector was obtained. In an inert gas atmosphere, the positive electrode active material layer of the positive electrode and the negative electrode active material layer of the negative electrode were arranged and pressed so as to face each other with the solid electrolyte layer interposed therebetween. After that, it was sealed with an Al laminate to obtain a battery 1 for evaluation.
Evaluation battery 2 was obtained in the same manner as described above, except that the negative electrode was produced in the same manner as in Comparative Example 1. Furthermore, evaluation battery 3 was obtained in the same manner as above, except that the shearing process was not performed in the preparation of the negative electrode.

[評価]
(成膜の可否)
実施例1~8および比較例2~8で得られた湿潤粉体を集電体上に転写する際に、目視にて、集電体への転写状態と回転ロールへの湿潤粉体の残存状態を観察して、評価した。結果を表1に示す。なお、表1では、成膜ができた場合を○、一部回転ロールに湿潤粉体が張り付き集電体に転写ができなかった場合を△、集電体上に全く転写ができなかった場合を×と表記とした。
[evaluation]
(Possibility of film formation)
When the wet powders obtained in Examples 1 to 8 and Comparative Examples 2 to 8 were transferred onto the current collector, the transfer state to the current collector and the residual wet powder on the rotating roll were visually observed. The condition was observed and evaluated. Table 1 shows the results. In Table 1, ◯ means that the film was formed, △ means that the wet powder was partially stuck to the rotating roll and could not be transferred to the current collector, and △ means that the transfer was not possible on the current collector at all. was written as x.

(作業効率)
従来法で電極を作製した比較例1において、バインダーの調製に要した時間および電極を乾燥させるために要した時間を基準とし、各実施例および比較例においてバインダーを調製するために要した時間および電極を乾燥させるために要した時間を比較した。結果を表1に示す。なお、表1では、比較例1よりも時間が短縮されていた場合を○、比較例1と同等の時間を要した場合は×と表記した。
(work efficiency)
In Comparative Example 1 in which an electrode was produced by a conventional method, the time required to prepare the binder and the time required to dry the electrode were used as the reference, and the time required to prepare the binder and The time required to dry the electrodes was compared. Table 1 shows the results. In Table 1, the case where the time was shorter than that of Comparative Example 1 was indicated by ◯, and the case where the same time as Comparative Example 1 was required was indicated by x.

(分散度)
スキャナ(GT-F740、エプソン株式会社製)を用いて、成膜した各電極をグレースケールでスキャンを行い、0~255の範囲の輝度の個数を求め、標準偏差を算出して比較を行った。結果を表1に示す。なお、表1では、標準偏差が3未満の場合は○、標準偏差が3以上の場合は×と表記した。
(dispersion degree)
Using a scanner (GT-F740, manufactured by Epson Corporation), each film-formed electrode was scanned in grayscale, the number of brightnesses in the range of 0 to 255 was obtained, and the standard deviation was calculated and compared. . Table 1 shows the results. In Table 1, when the standard deviation is less than 3, it is indicated by ◯, and when the standard deviation is 3 or more, it is indicated by x.

以上の評価項目において、全て○だった場合は総合評価○と判断し、1つでも×がある場合は総合評価×と判断した。また、実施例1~8および比較例2~8の結果を図2にプロットする。 In the above evaluation items, when all of the evaluation items were ◯, the overall evaluation was judged to be ◯, and when even one of the evaluation items was x, the overall evaluation was judged to be ×. The results of Examples 1-8 and Comparative Examples 2-8 are also plotted in FIG.

(インピーダンス測定)
得られた3つの評価用電池に対して、25℃、SOC(State-Of-Charge)が60%の条件で、インピーダンス測定を行った。結果を図4に示す。
(impedance measurement)
Impedance measurement was performed on the obtained three batteries for evaluation under conditions of 25° C. and SOC (State-Of-Charge) of 60%. The results are shown in FIG.

Figure 0007159902000001
Figure 0007159902000001

表1に示したように、バインダーを溶液状態で添加した比較例2では、電極の分散度は良好であったものの、バインダーを溶液に調製したため作業効率が悪かった。また、バインダーを粉末状態で添加した比較例3~8では、電極の乾燥時間は短縮されたものの、固形分率(NV)とせん断応力が所定の範囲外であったため、成膜ができなかったり、分散度が悪かったりした。一方で、実施例1~8では、作業効率も良好であり、電極における粉末材料が良好に分散した電極を製造することができた。 As shown in Table 1, in Comparative Example 2 in which the binder was added in the form of a solution, the dispersion of the electrode was good, but the working efficiency was poor because the binder was prepared in the form of a solution. In addition, in Comparative Examples 3 to 8 in which the binder was added in powder form, although the drying time of the electrode was shortened, the solid content (NV) and shear stress were outside the predetermined ranges, so film formation was not possible. , the degree of dispersion was poor. On the other hand, in Examples 1 to 8, work efficiency was also good, and an electrode in which the powder material in the electrode was well dispersed could be manufactured.

図4はインピーダンス測定の結果であり、右側のプロットが評価用電池3、左側のプロットが評価用電池1および評価用電池2である。図4からわかるように、本開示における方法で負極を製造した評価用電池1は、スラリー化法で負極を作製した評価用電池2とプロットが重なっており同等の抵抗値を示したが、せん断工程を行わず負極を製造した評価用電池3は、評価電池1および評価電池2よりも電極抵抗が高かった。これは、評価用電池3ではせん断工程を行わなかったために、負極内で固体電解質が密集してしまう場所が存在し、イオン伝導パスが切れてしまったためと推察される。 FIG. 4 shows the results of impedance measurement, with the right plot for evaluation battery 3 and the left plot for evaluation batteries 1 and 2. In FIG. As can be seen from FIG. 4 , the evaluation battery 1 whose negative electrode was produced by the method of the present disclosure showed the same resistance value as the plot of the evaluation battery 2 whose negative electrode was produced by the slurrying method. The evaluation battery 3, in which the negative electrode was manufactured without performing the process, had a higher electrode resistance than the evaluation batteries 1 and 2. This is presumably because evaluation battery 3 did not undergo the shearing process, and thus there were places in the negative electrode where the solid electrolyte was densely packed, and the ionic conduction path was broken.

1 … 湿潤粉体
2 … 集電体
3 … 回転ロール
10 … 成膜装置
DESCRIPTION OF SYMBOLS 1... Wet powder 2... Current collector 3... Rotating roll 10... Film-forming apparatus

Claims (1)

全固体電池に用いられ、集電体および活物質層を有する電極の製造方法であって、
少なくとも活物質、バインダー、および硫化物固体電解質を含み、かつ、前記硫化物固体電解質の割合が20重量%以上70重量%以下である粉末材料に溶媒を混合して、固形分率が80重量%以上90重量%未満の湿潤粉体を造粒する、造粒工程と、
前記湿潤粉体に対して、29kPa以上181kPa以下のせん断応力を加える、せん断工程と、
前記せん断応力が加えられた前記湿潤粉体を隣り合う回転ロールの間に通し、前記集電体上に転写することにより、前記活物質層を成膜する、成膜工程と、
を有する電極の製造方法。
A method for manufacturing an electrode used in an all-solid-state battery and having a current collector and an active material layer,
A solvent is mixed with a powder material containing at least an active material, a binder, and a sulfide solid electrolyte , and the ratio of the sulfide solid electrolyte is 20% by weight or more and 70% by weight or less, and the solid content is 80% by weight. A granulation step of granulating wet powder of 90% by weight or more,
A shearing step of applying a shearing stress of 29 kPa or more and 181 kPa or less to the wet powder;
a film forming step of forming the active material layer by passing the wet powder to which the shear stress is applied between adjacent rotating rolls and transferring it onto the current collector;
A method for manufacturing an electrode having
JP2019026318A 2019-02-18 2019-02-18 Electrode manufacturing method Active JP7159902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026318A JP7159902B2 (en) 2019-02-18 2019-02-18 Electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026318A JP7159902B2 (en) 2019-02-18 2019-02-18 Electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2020136016A JP2020136016A (en) 2020-08-31
JP7159902B2 true JP7159902B2 (en) 2022-10-25

Family

ID=72279002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026318A Active JP7159902B2 (en) 2019-02-18 2019-02-18 Electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP7159902B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138939A1 (en) * 2020-12-25 2022-06-30 ダイキン工業株式会社 Method for manufacturing electrode for secondary battery in which non-aqueous electrolyte solution is used, and binder for secondary battery electrode in which non-aqueous electrolyte solution is used
EP4037006A3 (en) 2021-01-27 2022-12-07 Prime Planet Energy & Solutions, Inc. Electrode material comprising moisture powder, electrode, method for producing same, and secondary battery provided with said electrode
JP7297005B2 (en) * 2021-03-15 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 Electrode manufacturing method
WO2023223627A1 (en) * 2022-05-19 2023-11-23 パナソニックホールディングス株式会社 Solid electrolyte composition and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243476A (en) 2011-05-17 2012-12-10 Nippon Zeon Co Ltd Method for manufacturing all-solid secondary battery
JP2015062186A (en) 2011-01-26 2015-04-02 トヨタ自動車株式会社 Composite particle, solid battery electrode, and method for manufacturing composite particle
JP2015138658A (en) 2014-01-22 2015-07-30 トヨタ自動車株式会社 Method for manufacturing electrode for lithium secondary battery, and granulated material
JP2016207508A (en) 2015-04-23 2016-12-08 トヨタ自動車株式会社 Stirring device and electrode manufacturing method using the same
JP2016219212A (en) 2015-05-19 2016-12-22 トヨタ自動車株式会社 Method for manufacturing secondary battery electrode
JP2017152348A (en) 2016-02-26 2017-08-31 トヨタ自動車株式会社 Method for manufacturing composite active material
JP2018004579A (en) 2016-07-08 2018-01-11 トヨタ自動車株式会社 Method for calculating characteristics of wet particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062186A (en) 2011-01-26 2015-04-02 トヨタ自動車株式会社 Composite particle, solid battery electrode, and method for manufacturing composite particle
JP2012243476A (en) 2011-05-17 2012-12-10 Nippon Zeon Co Ltd Method for manufacturing all-solid secondary battery
JP2015138658A (en) 2014-01-22 2015-07-30 トヨタ自動車株式会社 Method for manufacturing electrode for lithium secondary battery, and granulated material
JP2016207508A (en) 2015-04-23 2016-12-08 トヨタ自動車株式会社 Stirring device and electrode manufacturing method using the same
JP2016219212A (en) 2015-05-19 2016-12-22 トヨタ自動車株式会社 Method for manufacturing secondary battery electrode
JP2017152348A (en) 2016-02-26 2017-08-31 トヨタ自動車株式会社 Method for manufacturing composite active material
JP2018004579A (en) 2016-07-08 2018-01-11 トヨタ自動車株式会社 Method for calculating characteristics of wet particles

Also Published As

Publication number Publication date
JP2020136016A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP7159902B2 (en) Electrode manufacturing method
JP6936959B2 (en) Method for manufacturing positive electrode mixture, positive electrode active material layer, all-solid-state battery and positive electrode active material layer
JP5561567B2 (en) Battery manufacturing method
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
KR20150027026A (en) Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
KR20160087756A (en) Manufacturing method of electrode and wet granules
JP6264055B2 (en) Method for producing electrode for lithium secondary battery and granulated product
JP2016103433A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP7414758B2 (en) Secondary battery electrode and secondary battery equipped with the same
JP2014241282A (en) Method for manufacturing electrode body
JP6167708B2 (en) Method for producing electrode forming slurry
US20240234699A9 (en) Electrode material, method of producing electrode material, and method of producing all-solid-state battery
JP7139973B2 (en) negative electrode layer
JP7364359B2 (en) All-solid-state battery and its manufacturing method
JP6156406B2 (en) Electrode manufacturing method
JP6705400B2 (en) Method for manufacturing secondary battery electrode
JP2022168684A (en) Manufacturing method of positive electrode for lithium ion battery
JP2022153951A (en) All-solid-state battery
JP2016170881A (en) Nonaqueous electrolyte secondary battery
JP7334759B2 (en) All-solid battery
US20230178747A1 (en) Method for manufacturing electrode for all-solid-state batteries by semi-dry process
JP7517242B2 (en) All-solid-state battery
JP2017168189A (en) Method for manufacturing lithium ion secondary battery
CN115882040A (en) Solid-state battery and method for manufacturing solid-state battery
JP2022160120A (en) Method for manufacturing electrode for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R151 Written notification of patent or utility model registration

Ref document number: 7159902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151