JP2000123876A - Manufacture of lithium ion battery material - Google Patents

Manufacture of lithium ion battery material

Info

Publication number
JP2000123876A
JP2000123876A JP10290569A JP29056998A JP2000123876A JP 2000123876 A JP2000123876 A JP 2000123876A JP 10290569 A JP10290569 A JP 10290569A JP 29056998 A JP29056998 A JP 29056998A JP 2000123876 A JP2000123876 A JP 2000123876A
Authority
JP
Japan
Prior art keywords
graphite
lithium
positive electrode
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10290569A
Other languages
Japanese (ja)
Other versions
JP4297533B2 (en
Inventor
Hisato Naganori
久登 永徳
Kenji Takebayashi
賢治 竹林
Kazuki Suhara
一樹 須原
Toyokazu Yokoyama
豊和 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP29056998A priority Critical patent/JP4297533B2/en
Publication of JP2000123876A publication Critical patent/JP2000123876A/en
Application granted granted Critical
Publication of JP4297533B2 publication Critical patent/JP4297533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of a lithium ion battery material capable of enhancing battery performance. SOLUTION: A positive active material made of either one powder of lithium cobaltate, lithium manganate, and lithium nickelate, a conductive material comprising at least one powder of acetylene black, carbon, and graphite, and a binder comprising polyvinylidene fluoride powder are mixed, a mixture is complex-treated by applying compressing force and shearing force, then kneaded together with a solvent to prepare a positive electrode material of a lithium ion battery. A negative active material comprising at least one of carbon, graphite, and polyacene based polymer and a binder comprising polyvinylidene fluoride powder are mixed, a mixture is complex-treated by applying compressive force and shearing force, then kneaded together with a solvent to prepare a negative electrode material of the lithium ion battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池材料の製造方法に関する。
[0001] The present invention relates to a method for producing a lithium ion battery material.

【0002】[0002]

【従来の技術】従来、この種のリチウムイオン電池材料
の製造は以下のごとく行っていた。例えば、リチウムイ
オン電池の正極を形成するための正極材料は、コバルト
酸リチウム(LiCoO2)等の正極活物質と、カーボン等の
導電剤、ポリフッ化ビニリデン等の結着剤、さらには、
これらの材料をスラリー状にするための1−メチル−2
−ピロリドン等の溶剤とを混練して製造していた。この
うちコバルト酸リチウムは半導体であり、それ自身でも
ある程度の導電性を有しているが、電極の導電性をより
向上させるために前記カーボン等を添加している。一
方、リチウムイオン電池の負極を形成するための負極材
料は、カーボン等からなる負極活物質、および、ポリフ
ッ化ビニリデン等の結着剤、溶剤を混練してやはりスラ
リー状のものとしていた。このようにして得たスラリー
のうち、正極材料はアルミニウム箔の両面に塗付し、負
極材料は銅箔の両面に塗付して、正極と負極とを製造し
ていた。
2. Description of the Related Art Heretofore, the production of this type of lithium ion battery material has been carried out as follows. For example, a positive electrode material for forming a positive electrode of a lithium ion battery includes a positive electrode active material such as lithium cobalt oxide (LiCoO 2 ), a conductive agent such as carbon, a binder such as polyvinylidene fluoride,
1-methyl-2 for slurrying these materials
And kneading with a solvent such as pyrrolidone. Among them, lithium cobalt oxide is a semiconductor and has a certain degree of conductivity by itself, but the carbon or the like is added in order to further improve the conductivity of the electrode. On the other hand, as a negative electrode material for forming a negative electrode of a lithium ion battery, a negative electrode active material made of carbon or the like, a binder such as polyvinylidene fluoride, and a solvent were kneaded to form a slurry. Of the slurry thus obtained, the positive electrode material was applied on both sides of the aluminum foil, and the negative electrode material was applied on both sides of the copper foil, to produce a positive electrode and a negative electrode.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のリ
チウムイオン電池の製造方法による場合には以下のよう
な不都合が生じていた。例えば正極材料を製造する場合
には、前記正極活物質と、導電剤、結着剤、溶剤とを混
ぜ合わせて粘土状としたものを、所定の時間に亘って混
練するのであるが、その際には、それぞれの原料が部分
的に凝集して、原料の混合が充分に行われない場合があ
った。このように原料に未混合の部分が残存し、正極活
物質と導電剤とが適切に混合されていないと電極の導電
性が高まらず、それだけ電池性能を損なうこととなる。
一方、上記従来の方法で負極材料を製造する場合には、
充填率が一定以上に高まらないという不都合が生じてい
た。即ち、一般に負極材料を構成するカーボン等は表面
に多数の孔部を有していたり、全体の形状が角張ってい
たりするため、所定の体積中に充填し得るカーボン量が
制限され、電池容量を高めるにも一定の限界があった。
However, the conventional method of manufacturing a lithium ion battery has the following disadvantages. For example, in the case of producing a positive electrode material, a mixture of the positive electrode active material, a conductive agent, a binder, and a solvent to form a clay is kneaded for a predetermined time. In some cases, the raw materials were partially aggregated, and the raw materials were not sufficiently mixed. As described above, the unmixed portion remains in the raw material, and if the positive electrode active material and the conductive agent are not properly mixed, the conductivity of the electrode does not increase, thereby deteriorating the battery performance.
On the other hand, when producing a negative electrode material by the above-mentioned conventional method,
The inconvenience that the filling rate does not increase beyond a certain level has occurred. That is, in general, carbon or the like constituting the negative electrode material has a large number of holes on the surface or has an angular shape as a whole, so that the amount of carbon that can be filled in a predetermined volume is limited, and the battery capacity is reduced. There was a certain limit to raising.

【0004】また、正極材料および負極材料を製造する
際の共通点として、原料が凝集していると混合物の見掛
け密度が低いものとなるが、その場合には電極の内部に
多くの隙間が残存し、吸水性が高まるという不都合があ
った。即ち、リチウムイオン電池では、電解液として
LiPF6 や LiBF4 を用いることが多く、その場合に
は、水と電解質とが反応してフッ化水素酸(HF)が遊
離し、このフッ化水素酸がリチウムや正極活物質と反応
して電池容量を低下させたり、サイクル劣化を生じさせ
たりするのである。
[0004] Further, as a common point in producing the positive electrode material and the negative electrode material, when the raw materials are agglomerated, the apparent density of the mixture becomes low, but in this case, many gaps remain inside the electrode. However, there is a disadvantage that the water absorption is increased. That is, in a lithium ion battery,
LiPF 6 and LiBF 4 are often used, in which case water and the electrolyte react to release hydrofluoric acid (HF), which reacts with lithium and the positive electrode active material. This will lower the battery capacity or cause cycle deterioration.

【0005】本発明の目的は、上記従来の問題点を解消
し、電池性能を向上し得るリチウムイオン電池材料の製
造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a lithium ion battery material which can solve the above-mentioned conventional problems and improve battery performance.

【0006】[0006]

【課題を解決するための手段】〔手段1〕本発明に係る
リチウムイオン電池材料の製造方法は、請求項1に示す
ごとく、コバルト酸リチウム、および、マンガン酸リチ
ウム、ニッケル酸リチウムの各粉体のうち何れか一種か
らなる正極活物質と、アセチレンブラックおよびカーボ
ン、グラファイトの各粉体のうち少なくとも一種からな
る導電剤と、ポリフッ化ビニリデンの粉体からなる結着
剤とを混ぜ合わせながら、加圧力およびせん断力を加え
て前記正極活物質の表面に前記導電剤と前記結着剤とを
付着させて複合化処理した後、溶剤を投入し、混練する
ことで正極材料を得る点に特徴を有する。 〔作用効果〕本発明のごとく正極活物質と導電剤、結着
剤とに加圧力およびせん断力を加えて正極活物質の表面
に導電剤と結着剤とを融合させ、複合粒子を形成するこ
とができる。ここで、複合化処理とは、複数の原料を混
ぜ合わせたものに加圧力およびせん断力を加えて特定の
原料の表面に他の原料を融合し、一体化する処理をい
う。これにより、夫々の材料の分布が均質なものとなっ
て材料の歩留まりが向上する上に、処理品の見掛け密度
が高まり、容積密度・体積エネルギー密度も高まる。ま
た、処理品の見掛け密度が高まると、これら正極材料お
よび負極材料のBET比表面積が低下し、後に得られる
正極板あるいは負極板の吸水性を小さくすることができ
るため、上記従来のような電解液の分解を抑制すること
ができる。尚、ここでBET比表面積とは、吸着法の一
種であるBET法によって測定した試料の比表面積をい
う。即ち、試料粉体の表面に吸着占有面積が既知である
分子を吸着させ、その吸着量から試料の比表面積を求め
るものである。
[Means for Solving the Problems] [Means 1] A method for producing a lithium ion battery material according to the present invention is characterized in that each of lithium cobaltate, lithium manganate and lithium nickelate powders While mixing a positive electrode active material composed of any one of the above, a conductive agent composed of at least one of acetylene black, carbon, and graphite powder, and a binder composed of polyvinylidene fluoride powder. After applying a pressure and a shearing force to cause the conductive agent and the binder to adhere to the surface of the positive electrode active material and perform a complexing process, a solvent is charged, and the mixture is kneaded to obtain a positive electrode material. Have. [Effects] As in the present invention, a positive electrode active material and a conductive agent, a pressing force and a shearing force are applied to the binder to fuse the conductive agent and the binder on the surface of the positive electrode active material to form composite particles. be able to. Here, the compounding process refers to a process of applying a pressing force and a shearing force to a mixture of a plurality of raw materials to fuse and integrate other raw materials on the surface of a specific raw material. As a result, the distribution of the respective materials becomes uniform, the yield of the materials is improved, and the apparent density of the processed product is increased, and the volume density and the energy density are also increased. In addition, when the apparent density of the treated product increases, the BET specific surface area of the cathode material and the anode material decreases, and the water absorption of the cathode plate or the anode plate obtained later can be reduced. Decomposition of the liquid can be suppressed. Here, the BET specific surface area refers to a specific surface area of a sample measured by a BET method which is a kind of an adsorption method. That is, molecules having a known adsorption occupation area are adsorbed on the surface of the sample powder, and the specific surface area of the sample is determined from the amount of adsorption.

【0007】〔手段2〕本発明に係るリチウムイオン電
池材料の製造方法においては、請求項2に示すごとく、
酸化コバルト、あるいは、酸化マンガン、酸化ニッケル
の各粉体のうち何れか一種からなる第1原料と、炭酸リ
チウムの粉体からなる第2原料とを混ぜ合わせながら、
加圧力およびせん断力を加えて、前記第1原料と前記第
2原料とを精密混合することで前記正極活物質を製造す
ることができる。 〔作用効果〕本発明のごとく、第1原料と第2原料とを
混合して加圧力およびせん断力を加えることで、両者を
精密混合することもできる。ここで精密混合とは、異種
の原料を単一粒子レベルで均一に分散させた状態に混合
することをいう。例えば、リチウムイオン電池を製造す
る場合には、第1原料である酸化コバルトと第2原料で
ある炭酸リチウムとを混合した後、これを焼成して正極
活物質であるコバルト酸リチウムを生成するのである
が、上記のごとく精密混合が可能であれば、均一な焼成
が行われ、電池材料の機能を向上させることができる。
[Means 2] In the method for producing a lithium ion battery material according to the present invention, as set forth in claim 2,
Cobalt oxide, or manganese oxide, while mixing the first raw material consisting of any one of the powder of nickel oxide and the second raw material consisting of lithium carbonate powder,
The positive electrode active material can be manufactured by applying a pressing force and a shearing force to precisely mix the first raw material and the second raw material. [Function and Effect] As in the present invention, by mixing the first raw material and the second raw material and applying a pressing force and a shearing force, the both can also be precisely mixed. Here, the term “precise mixing” refers to mixing different kinds of raw materials in a state of being uniformly dispersed at a single particle level. For example, in the case of manufacturing a lithium-ion battery, the first raw material, cobalt oxide, and the second raw material, lithium carbonate, are mixed and then calcined to produce a positive electrode active material, lithium cobalt oxide. However, if precise mixing is possible as described above, uniform firing is performed, and the function of the battery material can be improved.

【0008】〔手段3〕本発明に係るリチウムイオン電
池材料の製造方法は、請求項3に示すごとく、カーボ
ン、および、グラファイト、ポリアセン系高分子材料の
各粉体のうち少なくとも一種からなる負極活物質と、ポ
リフッ化ビニリデンの粉体からなる結着剤とを混ぜ合わ
せながら、加圧力およびせん断力を加えて前記負極活物
質の表面に前記結着剤を付着させて複合化処理した後、
溶剤を投入し、混練することで負極材料を得る点に特徴
を有する。 〔作用効果〕本発明のごとく、負極活物質である粉体お
よび結着剤である粉体に加圧力およびせん断力を加えて
前記負極活物質の表面に前記結着剤を融合し、所謂、複
合化処理を行うことにより、上記手段1で説明したのと
同様に、これら混合物のBET比表面積が低下し、見掛
け密度を高めることができる。この結果、負極材料の成
形時の歩留まりがよくなり、容積密度・体積エネルギー
密度が高まるうえに、負極材料の吸湿性を小さくして電
解液の分解を抑制することができる。
[Means 3] According to a third aspect of the present invention, there is provided a method for producing a lithium ion battery material, comprising a negative electrode active material comprising at least one of carbon, graphite and a powder of a polyacene-based polymer material. While mixing the substance and the binder made of polyvinylidene fluoride powder, after applying a pressing force and a shearing force to cause the binder to adhere to the surface of the negative electrode active material and perform a complexing treatment,
It is characterized in that a solvent is charged and kneaded to obtain a negative electrode material. [Function and Effect] As in the present invention, the binder is fused to the surface of the negative electrode active material by applying a pressing force and a shearing force to the powder that is the negative electrode active material and the powder that is the binder, so-called, By performing the complexing treatment, the BET specific surface area of these mixtures can be reduced and the apparent density can be increased, as described in the means 1 above. As a result, the yield at the time of molding the negative electrode material is improved, the volume density and the volume energy density are increased, and the hygroscopicity of the negative electrode material is reduced so that the decomposition of the electrolytic solution can be suppressed.

【0009】〔手段4〕本発明に係るリチウムイオン電
池材料の製造方法においては、請求項4に示すごとく、
黒鉛単体、あるいは、黒鉛にピッチを混入したものに加
圧力および摩砕力を加えて、前記黒鉛の表面を滑らかに
すると共に当該黒鉛の形状を球状化することで前記負極
活物質を製造することができる。 〔作用効果〕本発明においても、負極活物質として黒鉛
を用いる。ただし、黒鉛は、その層状構造のため偏平状
であることが多く、充填性に劣っている。よって、黒鉛
原料をそのまま負極材料として用いたのでは、形成され
た負極の内部に多くの空隙が残存することとなり、電池
の体積エネルギー密度が小さくなるばかりでなく、当該
空隙のために吸水性が増大して前述のごとく電解液が分
解され易くなってしまう。そこで、本発明のごとく、黒
鉛単体、あるいは、黒鉛にピッチを混入したものに加圧
力および摩砕力を加え、前記黒鉛の表面を滑らかにする
と共に前記黒鉛の形状を球状化することで充填性が改善
され、見掛け密度が高まって、負極活物質を充填する際
の容積密度あるいは体積エネルギー密度が高まる。よっ
て、体積が小さくても大容量の電池を製造することがで
きる。尚、ここで球状化とは、複数の原料に加圧力ある
いはせん断力を作用させて、球状を有しない特定の原料
の表面に他の原料を付着させ、当該特定の原料を球状に
整形することをいう他、球状を有しない原料に加圧力等
を作用させてその一部を破砕する等により当該原料を球
状に整形することをいう。また、前記球状化を行うこと
で、手段1の効果等で説明したのと同様に黒鉛のBET
比表面積が低下して電解液の分解を抑制するという効果
を得ることもできる。
[Means 4] In the method for producing a lithium ion battery material according to the present invention, as set forth in claim 4,
Manufacturing the negative electrode active material by applying a pressing force and a crushing force to graphite alone or a mixture of graphite and pitch, thereby smoothing the surface of the graphite and spheroidizing the shape of the graphite. Can be. [Function and Effect] In the present invention, graphite is used as the negative electrode active material. However, graphite is often flat due to its layered structure, and is inferior in fillability. Therefore, if the graphite raw material was used as a negative electrode material as it was, many voids would remain inside the formed negative electrode, not only reducing the volume energy density of the battery, but also reducing the water absorption due to the voids. As a result, the electrolyte solution is easily decomposed as described above. Therefore, as in the present invention, a pressing force and a crushing force are applied to graphite alone or a mixture of graphite and pitch, thereby smoothing the surface of the graphite and spheroidizing the shape of the graphite to improve the filling property. Is improved, the apparent density is increased, and the volume density or volume energy density at the time of filling the negative electrode active material is increased. Therefore, a large-capacity battery can be manufactured even if the volume is small. Here, the spheroidization is to apply a pressing force or a shearing force to a plurality of raw materials to cause other raw materials to adhere to the surface of a specific raw material having no sphere and to shape the specific raw material into a sphere. Means that the raw material having no sphere is shaped into a sphere by applying a pressing force or the like to the raw material and crushing a part thereof. Further, by performing the spheroidization, the BET of graphite can be performed in the same manner as described in the effect of the means 1 and the like.
The effect of reducing the specific surface area and suppressing the decomposition of the electrolytic solution can also be obtained.

【0010】尚、上述のように、図面との対照を便利に
するために符号を記したが、該記入により本発明は添付
図面の構成に限定されるものではない。
[0010] As described above, the reference numerals are used for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。尚、図面において従来例と同一の
符号で表示した部分は、同一又は相当の部分を示してい
る。本発明に係るリチウムイオン電池材料の製造方法
は、特に、正極材料あるいは負極材料を製造する際に用
いる所定の原料どうしを複合化したり混合したりするの
に分子レベルでこれらの作業を行う点に特徴を有する。
本発明の方法においては、上記複合化あるいは混合等を
行うのに、例えば以下に示す粉体処理装置を用いる。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, portions denoted by the same reference numerals as those of the conventional example indicate the same or corresponding portions. The method for producing a lithium-ion battery material according to the present invention is particularly advantageous in that these operations are performed at a molecular level to combine or mix predetermined raw materials used in producing a positive electrode material or a negative electrode material. Has features.
In the method of the present invention, for example, a powder processing apparatus described below is used to perform the above-described compounding or mixing.

【0012】(粉体処理装置)本発明に用いる粉体処理
装置の概略を図1に示す。当該装置は、主に、基台1に
設置した略円筒形状のケーシング2、および、当該ケー
シング2の内部に設けた同じく略円筒形状の筒状回転体
3、当該筒状回転体3との間に押圧力を発生させて被処
理物4を処理すべく前記筒状回転体3の内部に配設した
インナーピース5とからなる。前記筒状回転体3を回転
させることで、当該筒状回転体3の内周面に形成した受
け面6と前記インナーピース5とを相対回転させ、前記
受け面6と前記インナーピース5との間の空間7に存す
る被処理物4に押圧力およびせん断力を付与して、前述
のごとく原料どうしの複合化・混合・球状化等を行うの
である。尚、本発明においては、これらの処理を総称し
てメカノフュージョン処理という。前記インナーピース
5によって押圧力等を付与された前記被処理物4は、主
に前記筒状回転体3の周壁8に設けた孔部9を介して外
方に排出され、前記周壁8の外周部に形成した羽根部材
10によって再び前記筒状回転体3の内部に循環させ
る。本構成にすることで、インナーピース5と受け面6
との間に挟まれた被処理物4を積極的に流動・循環さ
せ、前記受け面6に対する被処理物4の付着量を少なく
することができる。尚、電池材料の種類によっては、過
大な押圧力あるいはせん断力を加えると物性を損ねたり
する場合がある。しかし、当該粉体処理装置のごとく、
孔部9を介して被処理物4を循環させる構成の装置を用
いることとすれば、被処理物4に作用させる押圧力等を
適宜加減することができる。例えば、前記孔部9の開口
面積を広く設定しておけば、被処理物4は筒状回転体3
の外部に容易に排出されるから、被処理物4に対するイ
ンナーピース5の作用時間が短かくなり、被処理物4に
作用する押圧力が結果的に弱まることとなる。逆に、前
記孔部9の開口面積を狭く設定しておけば、被処理物4
に対するインナーピース5の作用時間が長くなり、前記
押圧力は強まることとなる。このように、本構成の粉体
処理装置を用いる場合には、被処理物4に作用させる押
圧力等を任意に変更して最適な粉体処理条件を得ること
が可能であり、優れた品質の製品を得ることができる。
(Powder Processing Apparatus) FIG. 1 schematically shows a powder processing apparatus used in the present invention. The apparatus mainly includes a substantially cylindrical casing 2 installed on a base 1, a substantially cylindrical tubular rotating body 3 provided inside the casing 2, and the cylindrical rotating body 3. And an inner piece 5 disposed inside the cylindrical rotary member 3 so as to process the workpiece 4 by generating a pressing force. By rotating the cylindrical rotating body 3, the receiving surface 6 formed on the inner peripheral surface of the cylindrical rotating body 3 and the inner piece 5 are relatively rotated, and the rotation of the receiving surface 6 and the inner piece 5 is performed. By applying a pressing force and a shearing force to the object to be processed 4 existing in the space 7 between the raw materials, compounding, mixing, spheroidizing and the like of the raw materials are performed as described above. In the present invention, these processes are collectively referred to as mechanofusion processes. The object 4 to which the pressing force or the like is applied by the inner piece 5 is discharged outward mainly through a hole 9 provided in the peripheral wall 8 of the cylindrical rotating body 3, and the outer periphery of the peripheral wall 8 is It is circulated again inside the cylindrical rotating body 3 by the blade member 10 formed in the portion. With this configuration, the inner piece 5 and the receiving surface 6
The object 4 sandwiched between the two can be positively flown and circulated, and the amount of the object 4 attached to the receiving surface 6 can be reduced. Depending on the type of battery material, physical properties may be impaired if an excessive pressing force or shearing force is applied. However, like the powder processing apparatus,
If a device configured to circulate the workpiece 4 through the hole 9 is used, the pressing force or the like applied to the workpiece 4 can be appropriately adjusted. For example, if the opening area of the hole 9 is set to be large, the workpiece 4 is
Is easily discharged to the outside, the action time of the inner piece 5 on the object to be processed 4 is shortened, and the pressing force acting on the object to be processed 4 is eventually weakened. Conversely, if the opening area of the hole 9 is set small,
The action time of the inner piece 5 with respect to the pressure increases, and the pressing force increases. As described above, in the case of using the powder processing apparatus of the present configuration, it is possible to obtain optimal powder processing conditions by arbitrarily changing the pressing force or the like applied to the workpiece 4 and obtain excellent quality. Products can be obtained.

【0013】処理する電池材料によっては、粉体処理装
置の内部を減圧したり所定のガス雰囲気にする場合があ
る。そのため、本発明に係る粉体処理装置では、例え
ば、ケーシング2と筒状回転体3の軸体3aとの間、あ
るいは、ケーシング2とインナーピース5の支持杆5a
との間にシール部材11a,11bを設けてある。
Depending on the battery material to be processed, the inside of the powder processing apparatus may be reduced in pressure or set to a predetermined gas atmosphere. Therefore, in the powder processing apparatus according to the present invention, for example, between the casing 2 and the shaft 3a of the cylindrical rotary member 3, or between the casing 2 and the support rod 5a of the inner piece 5
And seal members 11a and 11b.

【0014】本発明の製造方法においては、上記粉体処
理装置を、例えば次の工程において使用する。即ち、前
記正極材料を構成する正極活物質を製造する工程、およ
び、当該正極活物資等によって正極材料を製造する工
程、前記負極材料を構成する負極活物質を製造する工
程、当該負極活物資等によって負極材料を製造する工程
である。
In the manufacturing method of the present invention, the above powder processing apparatus is used, for example, in the following step. That is, a step of producing a positive electrode active material constituting the positive electrode material, a step of producing a positive electrode material using the positive electrode active material and the like, a step of producing a negative electrode active material constituting the negative electrode material, the negative electrode active material and the like This is a step of producing a negative electrode material by the following method.

【0015】(正極活物質の製造)リチウムイオン電池
では、電池の充放電時にリチウムイオンが正極と負極と
の間を行き来して電力を発生させる。つまり、リチウム
を含む化合物を用いて正極を構成し、当該正極のリチウ
ムが充電に伴って正極から抜け出し(以下、「脱ドープ
する」と称する)、放電の際には再び正極に入り込む
(以下、「ドープする」と称する)ことができるように
するのである。そのためには、前述したごとく、コバル
ト酸リチウム、あるいは、マンガン酸リチウム、ニッケ
ル酸リチウム等の材料が正極を構成するのに好適であ
る。このような材料を正極活物質と称する。
(Manufacture of Positive Electrode Active Material) In a lithium ion battery, lithium ions move between the positive electrode and the negative electrode during charge and discharge of the battery to generate electric power. That is, a positive electrode is formed using a compound containing lithium, and lithium of the positive electrode escapes from the positive electrode with charging (hereinafter, referred to as “undoping”), and re-enters the positive electrode during discharging (hereinafter, referred to as “doping”). This is called "doping"). For this purpose, as described above, a material such as lithium cobaltate, lithium manganate, lithium nickelate, or the like is suitable for forming the positive electrode. Such a material is referred to as a positive electrode active material.

【0016】これらの正極活物質を得るには、表1に示
すごとく、酸化コバルト、あるいは、酸化マンガン、酸
化ニッケルの各粉体のうち何れか一種からなる第1原料
と、炭酸リチウムの粉体からなる第2原料とを混ぜ合わ
せながら、加圧力およびせん断力を加えて、前記第1原
料と前記第2原料とを精密混合する。当該精密混合を行
うに際して前記粉体処理装置を用いる。当該精密混合が
終了した混合物を焼成してコバルト酸リチウム等を生成
し、当該生成物を粉砕・整粒して前記正極活物質として
の製品を得る。本方法のごとく、前記第1原料と前記第
2原料とを精密混合すれば、原料の凝集が発生せず、混
合物の見掛け密度を向上させることができる。その結
果、体積エネルギー密度が高い等優れた性能を有するリ
チウムイオン電池を得ることができる。
In order to obtain these positive electrode active materials, as shown in Table 1, a first raw material composed of one of powders of cobalt oxide, manganese oxide and nickel oxide, and a powder of lithium carbonate A pressure and a shearing force are applied while mixing the second raw material composed of the first raw material and the second raw material, and the first raw material and the second raw material are precisely mixed. The powder processing apparatus is used for performing the precise mixing. The mixture after the completion of the precision mixing is fired to produce lithium cobaltate and the like, and the product is pulverized and sized to obtain a product as the positive electrode active material. When the first raw material and the second raw material are precisely mixed as in the present method, the raw materials do not agglomerate and the apparent density of the mixture can be improved. As a result, a lithium ion battery having excellent performance such as high volume energy density can be obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】(正極材料の製造)リチウムイオン電池を
製造するには、上記のごとく得られた正極活物質を用い
て正極を形成する。リチウムイオン電池の正極材料とし
ては、例えば、図2に示すごとく、前記正極活物質と導
電剤、結着剤、溶剤とを混合してスラリーとしたものを
用いる。このスラリーをアルミニウム箔に塗布し、乾燥
させて正極板を形成する。そして、当該正極板を巻き回
して電池の正極とするのである。
(Production of Positive Electrode Material) To produce a lithium ion battery, a positive electrode is formed using the positive electrode active material obtained as described above. As the positive electrode material of the lithium ion battery, for example, as shown in FIG. 2, a slurry obtained by mixing the positive electrode active material with a conductive agent, a binder, and a solvent is used. This slurry is applied to an aluminum foil and dried to form a positive electrode plate. Then, the positive electrode plate is wound to form a positive electrode of the battery.

【0019】本発明においては、上記工程のうち正極活
物質と導電剤、結着剤との混合を、前記粉体処理装置を
用いて行う。ここで用いる正極活物質は前述したごとく
例えばコバルト酸リチウム、あるいは、マンガン酸リチ
ウム、ニッケル酸リチウムのうちの一つである。前記導
電剤は、アセチレンブラックおよびカーボン、グラファ
イトの各粉体のうち少なくとも一種で構成する。前記結
着剤は、ポリフッ化ビニリデン(PVDF)等の粉体で
構成する。前記粉体処理装置を用いてこれらの粉体を処
理することで、それぞれの粉体に加圧力およびせん断力
を加えて前記正極活物質の表面に前記導電剤と前記結着
剤とを融合させて、所謂、複合化処理を行う。当該処理
を行うことにより、これら混合物のBET比表面積が低
下し、見掛け密度が高まる。この結果、正極材料の容積
密度・体積エネルギー密度が高まるうえに、正極材料の
吸湿性を小さくして電解液の分解を抑制することができ
る。
In the present invention, the mixing of the positive electrode active material, the conductive agent, and the binder in the above steps is performed using the powder processing apparatus. The positive electrode active material used here is, for example, one of lithium cobaltate, lithium manganate, and lithium nickelate as described above. The conductive agent is composed of at least one of acetylene black, carbon, and graphite powders. The binder is composed of a powder such as polyvinylidene fluoride (PVDF). By processing these powders using the powder processing apparatus, a pressing force and a shearing force are applied to each powder to fuse the conductive agent and the binder on the surface of the positive electrode active material. Then, a so-called compounding process is performed. By performing the treatment, the BET specific surface area of these mixtures decreases, and the apparent density increases. As a result, the volume density and the volume energy density of the positive electrode material are increased, and the hygroscopicity of the positive electrode material is reduced, so that the decomposition of the electrolytic solution can be suppressed.

【0020】以上のごとく複合化処理が終了した混合物
に対して溶剤を混合してスラリーとし、アルミニウム箔
に塗布する。当該溶剤としては、例えば、1−メチル−
2−ピロリドンを用いる。
A solvent is mixed with the mixture which has been subjected to the complexing treatment as described above to form a slurry, which is applied to an aluminum foil. As the solvent, for example, 1-methyl-
Use 2-pyrrolidone.

【0021】(負極活物質の製造)リチウムイオン電池
では、充電時にリチウムイオンが負極にドープするので
あるが、リチウムイオンがドープし易い材料として黒鉛
が良く用いられる。黒鉛は微視的に見て層状構造を有し
ており、リチウムイオンが、この層状構造の内部に対し
てドープ・脱ドープするのである。本発明においても、
負極活物質として黒鉛を用いる。ただし、黒鉛は、その
層状構造のため偏平状であることが多く、充填性に劣っ
ている。よって、黒鉛原料をそのまま負極材料として用
いたのでは、形成された負極の内部に多くの空隙が残存
することとなり、電池の体積エネルギー密度が小さくな
るばかりでなく、当該空隙のために吸水性が増大して前
述のごとく電解液が分解され易くなってしまう。そこ
で、本発明においては、粉体処理装置を用いて前記黒鉛
に加圧力および摩砕力を加え、前記黒鉛の表面を滑らか
にすると共に前記黒鉛の形状を球状化する。
(Manufacture of Negative Electrode Active Material) In a lithium ion battery, lithium ions are doped into the negative electrode during charging. Graphite is often used as a material easily doped with lithium ions. Graphite has a layered structure when viewed microscopically, and lithium ions dope and undope the interior of the layered structure. In the present invention,
Graphite is used as the negative electrode active material. However, graphite is often flat due to its layered structure, and is inferior in fillability. Therefore, if the graphite raw material was used as a negative electrode material as it was, many voids would remain inside the formed negative electrode, not only reducing the volume energy density of the battery, but also reducing the water absorption due to the voids. As a result, the electrolyte solution is easily decomposed as described above. Therefore, in the present invention, a pressing force and a grinding force are applied to the graphite by using a powder processing apparatus to smooth the surface of the graphite and to make the shape of the graphite spherical.

【0022】尚、負極活物質を製造する際には、黒鉛単
体を処理しても良いが、黒鉛にピッチを混入しつつ上記
処理を行うと、前記ピッチが黒鉛の凹凸部に充填されて
黒鉛の球状化およびBET比表面積の減少が促進され
る。
When producing the negative electrode active material, the graphite alone may be treated. However, if the above treatment is carried out while mixing the pitch into the graphite, the pitch is filled in the irregular portions of the graphite and the graphite is filled. And the reduction of the BET specific surface area are promoted.

【0023】(負極材料の製造)リチウムイオン電池の
負極材料としては、例えば、図2に示すごとく、前記負
極活物質と結着剤、溶剤とを混合したスラリーを用い
る。このスラリーを銅箔に塗布し、乾燥させて負極板を
形成する。そして、当該負極板を巻き回して電池の負極
とするのである。本発明においては、上記工程のうち負
極活物質と結着剤との混合を、前記粉体処理装置を用い
て行う。ここで用いる負極活物質は、前述したごとく、
例えばカーボン、および、グラファイト、ポリアセン系
高分子材料の各粉体のうち少なくとも一種で構成する。
前記結着剤は、ポリフッ化ビニリデン(PVDF)等の
粉体で構成する。前記粉体処理装置を用いてこれらの粉
体を処理することで、それぞれの粉体に加圧力およびせ
ん断力を加えて前記負極活物質の表面に前記結着剤を融
合させて、所謂、複合化処理を行う。当該処理を行うこ
とにより、これら混合物のBET比表面積が低下し、見
掛け密度を高めることができる。この結果、負極材料の
容積密度・体積エネルギー密度が高まるうえに、負極材
料の吸湿性を小さくして電解液の分解を抑制することが
できる。
(Production of Negative Electrode Material) As a negative electrode material of a lithium ion battery, for example, as shown in FIG. 2, a slurry obtained by mixing the negative electrode active material, a binder and a solvent is used. This slurry is applied to a copper foil and dried to form a negative electrode plate. Then, the negative electrode plate is wound to form a negative electrode of the battery. In the present invention, the mixing of the negative electrode active material and the binder in the above steps is performed using the powder processing apparatus. The negative electrode active material used here is, as described above,
For example, it is composed of at least one of powders of carbon, graphite, and polyacene-based polymer material.
The binder is composed of a powder such as polyvinylidene fluoride (PVDF). By processing these powders using the powder processing apparatus, a pressing force and a shearing force are applied to each powder to fuse the binder on the surface of the negative electrode active material, a so-called composite Perform the conversion process. By performing the treatment, the BET specific surface area of these mixtures decreases, and the apparent density can be increased. As a result, the volume density and the volume energy density of the negative electrode material are increased, and the hygroscopicity of the negative electrode material is reduced so that the decomposition of the electrolytic solution can be suppressed.

【0024】(効果)本発明のごとく、リチウムイオン
電池を製造するために、中間生成物である正極活物質お
よび負極活物質、正極材料、負極材料を、粉体処理装置
を用いて製造することで、それぞれの材料を構成する物
質どうしを複合化・精密混合・球状化するいわゆるメカ
ノフュージョン処理することができる。その結果、処理
品の固め見掛け密度が高まり、容積密度・体積エネルギ
ー密度を向上させることができる。また、夫々の材料を
構成する成分の分布が均質化されて製品の品質が向上す
る上に、材料の歩留まりも向上する。さらには、それぞ
れの材料を構成する成分粒子どうしが確実に複合化され
るため製品のBET比表面積が低下するが、このこと
は、当該製品を用いて電極を構成した場合に、微視的に
見て前記製品粒子は高密度に充填された状態で電極を構
成することとなる。この結果、電極の吸水性を低下させ
ることができ、リチウムイオン電池を構成する電解液が
水分によって分解されるのを抑制して、電池性能を向上
させることができる。
(Effect) As in the present invention, in order to manufacture a lithium ion battery, a positive electrode active material, a negative electrode active material, a positive electrode material, and a negative electrode material, which are intermediate products, are manufactured using a powder processing apparatus. Thus, a so-called mechanofusion treatment in which the substances constituting each material are combined, precisely mixed, and spheroidized can be performed. As a result, the apparent bulk density of the processed product is increased, and the volume density and the volume energy density can be improved. In addition, the distribution of the components constituting each material is homogenized to improve the quality of the product, and the yield of the material is also improved. Furthermore, since the component particles constituting each material are surely combined with each other, the BET specific surface area of the product is reduced. As seen, the product particles constitute the electrode in a state of being densely packed. As a result, the water absorption of the electrode can be reduced, and the electrolytic solution constituting the lithium ion battery can be prevented from being decomposed by moisture, so that the battery performance can be improved.

【0025】[0025]

【実施例】(正極材料の製造)本発明の製造方法によっ
て前記正極材料を製造した場合の一例を示す。本実施例
では、表2に示すごとく、主剤として前記正極活物質で
あるコバルト酸リチウムを用い、添加剤として前記導電
剤であるカーボングラファイトあるいは黒鉛化カーボン
ブラックを用いた例を示す。主剤と添加剤とは重量比で
97:3に配合したものを用いた。表3には粉体処理装
置の運転条件を、および、図3には、本実施例における
処理結果を示す。この結果は、電池材料のスラリー生成
に先立って行う、乾燥状態にある原料の混合処理の結果
であり、このような乾燥原料の混合処理を行っていなか
った従来技術と比較するものではない。従来において
は、原料粉体や結着剤あるいは溶剤などの個々の電池材
料を例えば真空ミキサーに投入し、混合・混練してスラ
リーを生成するのであるが、これら電池材料を均一かつ
十分に混合するためには複雑な投入・混練操作が必要と
され、粉体処理の効率向上が望まれていた。その点、本
方法による場合は、スラリーを生成する前に、乾燥状態
にある電池材料について前記粉体処理装置を用いた混合
処理等を行うので、これら電池材料を複雑な方法で投入
することなく混合処理を行うことができる。このように
前記混合処理が確実になされる結果、その後の溶剤を加
えた混練作業も極めて単純なものとなる。
EXAMPLES (Production of Positive Electrode Material) An example in which the positive electrode material is produced by the production method of the present invention will be described. In this example, as shown in Table 2, an example is shown in which lithium cobalt oxide as the positive electrode active material is used as the main agent and carbon graphite or graphitized carbon black as the conductive agent is used as an additive. The main agent and the additive were used in a weight ratio of 97: 3. Table 3 shows the operating conditions of the powder processing apparatus, and FIG. 3 shows the processing results in this embodiment. This result is a result of the mixing of the raw materials in a dry state, which is performed prior to the generation of the slurry of the battery material, and is not compared with the prior art in which the mixing of the dry raw materials is not performed. Conventionally, individual battery materials such as raw material powders, binders or solvents are put into, for example, a vacuum mixer and mixed and kneaded to produce a slurry. These battery materials are uniformly and thoroughly mixed. For this purpose, complicated charging and kneading operations are required, and an improvement in powder processing efficiency has been desired. In this regard, in the case of using the present method, before the slurry is generated, a mixing process or the like using the powder processing device is performed on the battery material in a dry state, so that these battery materials are not charged by a complicated method. A mixing process can be performed. As a result, the mixing process is performed reliably, so that the subsequent kneading operation with the addition of the solvent is also extremely simple.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】(負極材料の製造)本発明の製造方法によ
って前記負極材料を製造した場合の一例を示す。本実施
例では、表4に示す黒鉛を用いて、当該黒鉛の球形化処
理を行った。また、表5には粉体処理装置の運転条件を
示す。本実施例の結果を、図4に示す。図4は、黒鉛の
単位質量あたりの融合エネルギーとかさ密度との関係を
示している。ここでは、かさ密度が約30%増加してい
ることがわかる。
(Production of Negative Electrode Material) An example in which the negative electrode material is produced by the production method of the present invention will be described. In the present example, the spheroidizing treatment of the graphite was performed using the graphite shown in Table 4. Table 5 shows the operating conditions of the powder processing apparatus. FIG. 4 shows the results of this example. FIG. 4 shows the relationship between the fusion energy per unit mass of graphite and the bulk density. Here, it can be seen that the bulk density has increased by about 30%.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】(別実施形態)上記実施形態では、ケーシ
ング2の内部に略円筒形状の筒状回転体3を設けた粉体
処理装置を用いてリチウムイオン電池材料を製造する方
法を示した。しかし、リチウムイオン電池材料の製造に
際しては、前記ケーシング2を有さず、主に筒状回転体
3とインナーピース5とからなる粉体処理装置を用いる
ことも可能である。その場合には、前述したような被処
理物4の循環が行われないので、筒状回転体3の受け面
6に付着する被処理物4の量が増加して、材料の歩留ま
り等がやや低下するものと考えられる。しかし、インナ
ーピース5と受け面6とによって被処理物4に押圧力お
よびせん断力を付与できるから、原料どうしの複合化・
混合・球状化等を行うことは十分に可能である。
(Another Embodiment) In the above embodiment, a method of manufacturing a lithium ion battery material using a powder processing apparatus in which a substantially cylindrical tubular rotating body 3 is provided inside a casing 2 has been described. However, when manufacturing the lithium ion battery material, it is also possible to use a powder processing apparatus mainly including the cylindrical rotating body 3 and the inner piece 5 without the casing 2. In this case, since the object 4 is not circulated as described above, the amount of the object 4 adhering to the receiving surface 6 of the cylindrical rotator 3 is increased, and the yield of the material is slightly increased. It is thought to decrease. However, since the pressing force and the shearing force can be applied to the processing object 4 by the inner piece 5 and the receiving surface 6, the compounding of the raw materials can be performed.
Mixing, spheroidization and the like are sufficiently possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いる粉体処理装置の概要を示
す説明図
FIG. 1 is an explanatory view showing an outline of a powder processing apparatus used for carrying out the present invention.

【図2】正極板および負極板の形成工程を示すフローチ
ャート
FIG. 2 is a flowchart showing a process for forming a positive electrode plate and a negative electrode plate.

【図3】正極材料の粉体処理の結果を示す説明図FIG. 3 is an explanatory diagram showing a result of powder treatment of a positive electrode material.

【図4】負極材料の粉体処理の結果を示す説明図FIG. 4 is an explanatory diagram showing a result of powder treatment of a negative electrode material.

【符号の説明】[Explanation of symbols]

1 基台 2 ケーシング 3 筒状回転体 4 被処理物 5 インナーピース 6 受け面 7 空間 8 筒状回転体の周壁 9 孔部 10 羽根部材 DESCRIPTION OF SYMBOLS 1 Base 2 Casing 3 Cylindrical rotating body 4 Object to be processed 5 Inner piece 6 Receiving surface 7 Space 8 Peripheral wall of cylindrical rotating body 9 Hole 10 Blade member

フロントページの続き (72)発明者 横山 豊和 京都府久世郡久御山町佐山北代2―29 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AL06 AL16 CJ03 CJ08 DJ06 DJ16 EJ04 EJ11 Continuation of front page (72) Inventor Toyokazu Yokoyama 2-29 F, Kitayama-cho, Kuseyama-cho, Kuseyama-gun, Kyoto F-term (reference) 5H029 AJ02 AJ03 AJ05 AK03 AL06 AL16 CJ03 CJ08 DJ06 DJ16 EJ04 EJ11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コバルト酸リチウム、および、マンガン
酸リチウム、ニッケル酸リチウムの各粉体のうち何れか
一種からなる正極活物質と、 アセチレンブラックおよびカーボン、グラファイトの各
粉体のうち少なくとも一種からなる導電剤と、 ポリフッ化ビニリデンの粉体からなる結着剤とを混ぜ合
わせながら、加圧力およびせん断力を加えて前記正極活
物質の表面に前記導電剤と前記結着剤とを付着させて複
合化処理した後、 溶剤を投入し、混練することで正極材料を得るリチウム
イオン電池材料の製造方法。
1. A positive electrode active material comprising at least one of lithium cobaltate, lithium manganate, and lithium nickelate powders, and at least one of acetylene black, carbon, and graphite powders. While mixing a conductive agent and a binder made of polyvinylidene fluoride powder, a pressing force and a shearing force are applied to cause the conductive agent and the binder to adhere to the surface of the positive electrode active material to form a composite. A method for producing a lithium-ion battery material in which a positive electrode material is obtained by introducing a solvent after kneading, followed by kneading.
【請求項2】 前記正極活物質の製造を、 酸化コバルト、あるいは、酸化マンガン、酸化ニッケル
の各粉体のうち何れか一種からなる第1原料と、炭酸リ
チウムの粉体からなる第2原料とを混ぜ合わせながら、
加圧力およびせん断力を加えて、前記第1原料と前記第
2原料とを精密混合することで行う請求項1に記載のリ
チウムイオン電池材料の製造方法。
2. The method according to claim 1, wherein the positive electrode active material is produced by using a first raw material composed of any one of powders of cobalt oxide, manganese oxide and nickel oxide, and a second raw material composed of a powder of lithium carbonate. While mixing
The method for manufacturing a lithium ion battery material according to claim 1, wherein the first raw material and the second raw material are precisely mixed by applying a pressing force and a shearing force.
【請求項3】 カーボン、および、グラファイト、ポリ
アセン系高分子材料の各粉体のうち少なくとも一種から
なる負極活物質と、 ポリフッ化ビニリデンの粉体からなる結着剤とを混ぜ合
わせながら、加圧力およびせん断力を加えて前記負極活
物質の表面に前記結着剤を付着させて複合化処理した
後、 溶剤を投入し、混練することで負極材料を得るリチウム
イオン電池材料の製造方法。
3. A pressing force while mixing a negative electrode active material made of at least one of powders of carbon, graphite, and polyacene-based polymer material with a binder made of polyvinylidene fluoride powder. And a method for producing a lithium ion battery material in which a binder is attached to the surface of the negative electrode active material by applying a shearing force to form a composite material, and then a solvent is added and kneaded to obtain a negative electrode material.
【請求項4】 前記負極活物質の製造を、 黒鉛単体、あるいは、黒鉛にピッチを混入したものに加
圧力および摩砕力を加えて、前記黒鉛の表面を滑らかに
すると共に当該黒鉛の形状を球状化することで行う請求
項3に記載のリチウムイオン電池材料の製造方法。
4. The production of the negative electrode active material is performed by applying a pressing force and a grinding force to graphite alone or a mixture of graphite and pitch to smooth the surface of the graphite and to reduce the shape of the graphite. The method for producing a lithium ion battery material according to claim 3, which is performed by spheroidizing.
JP29056998A 1998-10-13 1998-10-13 Method for producing lithium ion battery material Expired - Fee Related JP4297533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29056998A JP4297533B2 (en) 1998-10-13 1998-10-13 Method for producing lithium ion battery material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29056998A JP4297533B2 (en) 1998-10-13 1998-10-13 Method for producing lithium ion battery material

Publications (2)

Publication Number Publication Date
JP2000123876A true JP2000123876A (en) 2000-04-28
JP4297533B2 JP4297533B2 (en) 2009-07-15

Family

ID=17757730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29056998A Expired - Fee Related JP4297533B2 (en) 1998-10-13 1998-10-13 Method for producing lithium ion battery material

Country Status (1)

Country Link
JP (1) JP4297533B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319656A (en) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd Active material powder for lithium ion battery and electrode for the same, and their manufacturing methods and lithium ion battery
JP2002231250A (en) * 2001-02-01 2002-08-16 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and method of manufacturing the same
KR20030008514A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Method for manufacturing lithium polymer battery
JP2004006285A (en) * 2002-03-28 2004-01-08 Tdk Corp Lithium secondary battery
JP2005044794A (en) * 2003-07-07 2005-02-17 Tdk Corp Electrochemical element
US6929788B2 (en) 1999-12-15 2005-08-16 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel oxide having improved electrochemical performance
WO2007066581A1 (en) * 2005-12-09 2007-06-14 K & W Limited Reaction method, metal oxide nanoparticles or carbon carrying the nanoparticles, obtained by the method, electrodes containing the carbon, and electrochemical devices with the electrodes
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
JP2010225590A (en) * 2010-03-31 2010-10-07 Nippon Chemicon Corp Carbon carrying high-dispersion metal oxide nano particle, electrode material containing this carbon, electrode using the electrode material, and electrochemical element
JP2013219009A (en) * 2012-10-29 2013-10-24 Nippon Chemicon Corp Reaction method and metal oxide nanoparticle obtained by the same, or carbon carrying metal oxide nanoparticle, electrode containing carbon, and electrochemical element using electrode
JP2015141737A (en) * 2014-01-27 2015-08-03 Necエナジーデバイス株式会社 Method for producing electrode slurry
JP2015163582A (en) * 2015-03-31 2015-09-10 日本ケミコン株式会社 Manufacturing method of metallic oxide, electrode and electrochemical element
JP2021002444A (en) * 2019-06-20 2021-01-07 株式会社豊田中央研究所 Granular material, water-repellent layer, and manufacturing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929788B2 (en) 1999-12-15 2005-08-16 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel oxide having improved electrochemical performance
JP2001319656A (en) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd Active material powder for lithium ion battery and electrode for the same, and their manufacturing methods and lithium ion battery
JP4712158B2 (en) * 2000-05-09 2011-06-29 パナソニック株式会社 Production method of active material powder for lithium ion battery and electrode for lithium ion battery
JP2002231250A (en) * 2001-02-01 2002-08-16 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and method of manufacturing the same
KR20030008514A (en) * 2001-07-18 2003-01-29 성남전자공업주식회사 Method for manufacturing lithium polymer battery
JP2004006285A (en) * 2002-03-28 2004-01-08 Tdk Corp Lithium secondary battery
JP4561041B2 (en) * 2002-03-28 2010-10-13 Tdk株式会社 Lithium secondary battery
JP2005044794A (en) * 2003-07-07 2005-02-17 Tdk Corp Electrochemical element
US7368202B2 (en) 2003-07-07 2008-05-06 Tdk Corporation Electrochemical device having opposing electrodes
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
US20100025627A1 (en) * 2005-12-09 2010-02-04 K & W Limited Reaction method, metal oxide nanoparticle or carbon carrying the nanoparticle, obtained by the method, electrode containing the carbon, and electrochemical device with the electrode
JP2007160151A (en) * 2005-12-09 2007-06-28 K & W Ltd Reaction method, metal oxide nanoparticle or metal oxide nanoparticle-deposited carbon obtained thereby, electrode containing the carbon and electrochemical element using the electrode
WO2007066581A1 (en) * 2005-12-09 2007-06-14 K & W Limited Reaction method, metal oxide nanoparticles or carbon carrying the nanoparticles, obtained by the method, electrodes containing the carbon, and electrochemical devices with the electrodes
US20140209833A1 (en) * 2005-12-09 2014-07-31 Nippon Chemi-Con Corporation Carbon that carries a metal oxide nanoparticle, an electrode, and an electrochemical device incorporating the same
US20170279116A1 (en) * 2005-12-09 2017-09-28 Nippon Chemi-Con Corporation Carbon that carries a metal oxide nanoparticle, an electrode, and an electrochemical device incorporating the same
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
JP2010225590A (en) * 2010-03-31 2010-10-07 Nippon Chemicon Corp Carbon carrying high-dispersion metal oxide nano particle, electrode material containing this carbon, electrode using the electrode material, and electrochemical element
JP2013219009A (en) * 2012-10-29 2013-10-24 Nippon Chemicon Corp Reaction method and metal oxide nanoparticle obtained by the same, or carbon carrying metal oxide nanoparticle, electrode containing carbon, and electrochemical element using electrode
JP2015141737A (en) * 2014-01-27 2015-08-03 Necエナジーデバイス株式会社 Method for producing electrode slurry
JP2015163582A (en) * 2015-03-31 2015-09-10 日本ケミコン株式会社 Manufacturing method of metallic oxide, electrode and electrochemical element
JP2021002444A (en) * 2019-06-20 2021-01-07 株式会社豊田中央研究所 Granular material, water-repellent layer, and manufacturing method thereof
JP7293901B2 (en) 2019-06-20 2023-06-20 株式会社豊田中央研究所 Granule, water-repellent layer and method for producing the same

Also Published As

Publication number Publication date
JP4297533B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
EP1906472B1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
CN112573923A (en) High-rate lithium ion battery artificial graphite negative electrode material and preparation method thereof
EP2037515A1 (en) Negative electrode active material for lithium ion rechargeable battery, and negative electrode
CN107910498B (en) Modified lithium titanate negative electrode material, preparation method and lithium titanate battery
JP4297533B2 (en) Method for producing lithium ion battery material
KR20150020185A (en) Predoping method for lithium, lithium­predoped electrode, and electricity storage device
JP7480284B2 (en) Spheroidized carbon-based negative electrode active material, its manufacturing method, negative electrode including the same, and lithium secondary battery
EP2631972A1 (en) Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
EP4049971A1 (en) Graphite negative electrode material, negative electrode, lithium-ion battery and preparation method therefor
WO2015056760A1 (en) Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
WO2015056759A1 (en) Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
WO2015133586A1 (en) Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
JP7252988B2 (en) Prelithiated negative electrode, method of making same, lithium ion battery containing prelithiated negative electrode, and supercapacitor
JP5061718B2 (en) Carbon material powder and method for producing the same
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
WO2014030691A1 (en) Electrode material, electrode paste for lithium ion cell, electrode for lithium ion cell, and lithium ion cell
JP2003086174A (en) Composite particle material for electrode, electrode plate, and method of manufacturing
JPH10162825A (en) Positive electrode active material for lithium secondary battery, manufacture thereof, and positive electrode for lithium secondary battery
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
CN112670459B (en) Graphite negative electrode material and preparation and application thereof
WO2019221075A1 (en) Electrode, method for producing said electrode, and electricity storage device provided with said electrode
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
CN101369650A (en) Production method for lithium ion battery material
JP2015176744A (en) Method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees