JP5625324B2 - 飛翔体速度検出システムおよび飛翔体速度検出方法 - Google Patents

飛翔体速度検出システムおよび飛翔体速度検出方法 Download PDF

Info

Publication number
JP5625324B2
JP5625324B2 JP2009251799A JP2009251799A JP5625324B2 JP 5625324 B2 JP5625324 B2 JP 5625324B2 JP 2009251799 A JP2009251799 A JP 2009251799A JP 2009251799 A JP2009251799 A JP 2009251799A JP 5625324 B2 JP5625324 B2 JP 5625324B2
Authority
JP
Japan
Prior art keywords
speed
flying object
flying
sliding device
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009251799A
Other languages
English (en)
Other versions
JP2011095206A (ja
Inventor
和夫 島村
和夫 島村
雅人 石崎
雅人 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009251799A priority Critical patent/JP5625324B2/ja
Publication of JP2011095206A publication Critical patent/JP2011095206A/ja
Application granted granted Critical
Publication of JP5625324B2 publication Critical patent/JP5625324B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J13/00Bullet catchers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

本発明は、飛翔体の打ち込み試験における飛翔体の貫通後の残留速度を検出する飛翔体速度検出システムおよび飛翔体速度検出方法に関する。
飛行機に用いられる例えばジェットエンジンのファンケースや船舶や車両に用いられる装甲板の材料特性、特に耐弾性能を評価するため、ファンケースや装甲板に相当する供試体に高速で飛翔体を打ち込んで、飛翔体の貫通の有無を確認したり、貫通限界速度や貫通後の残留速度を測定して供試体に吸収されたエネルギーを推定する耐弾性能試験が実施されている。かかる試験において、貫通後とはいえ、飛翔体は毎秒数百メートルの速度で空間を移動するため、その飛翔速度(残留速度)の測定は容易ではない。
飛翔体の残留速度の代表的な測定方法は2つに分類される。1つは、複数の時点を固定し、その時点間の移動距離を測定する手法で、例えば、高速度カメラと高速ストロボの組み合わせにより飛翔体を数万コマ/秒で連続的に撮像し、飛翔体の移動距離を時点間で除算して速度を導出する方法である。このとき、飛翔体を3以上の時点で撮像可能であれば、その3以上の時点間それぞれの移動距離を最小二乗法により平均化することで、より高精度に飛翔体の残留速度を導出することができる。
もう1つは、複数の通過点を固定し、その通過点の通過時間を測定する手法で、例えば、飛翔体の飛翔軌道上の複数の通過点に検速紙を設置し、検速紙間の距離を、飛翔体が検速紙を切断した時点間で除算して速度を導出する方法である(例えば、特許文献1)。また、所定の間隔で配置された通過検出器で飛翔体が通過する時点を測定すると共に、その通過時点をトリガとして飛翔体を撮像し、撮像画像における飛翔体の形状に基づいて通過時点を補正し直してから正確な通過時点間の速度を導出する技術も開示されている(例えば、特許文献2)。
特開2003−004756号公報 特開2005−201728号公報
しかし、上述した高速度カメラや高速ストロボは非常に高価であり、常備性やバックアップ性に乏しい。また、飛翔体の短い飛翔期間に高速度カメラの撮像タイミングを同期させる高度な処理も要し、さらに、飛翔体が供試体を貫通することによって飛翔体と共に供試体の破片や粉塵が舞った場合に撮像画像内の飛翔体を特定できなくなり正確な速度を割り出せないといった問題が生じていた。
また、検速紙や通過検出器を用いる場合であっても、飛散する供試体の破片や粉塵を排除することができないため、検知した対象が飛翔体であるか破片であるかを特定できず、通過時点を正確に計測することができなかった。
本発明は、このような課題に鑑み、簡易かつ安価な構成で、飛翔体の貫通によって供試体の破片や粉塵が飛散する場合においても、飛翔体の残留速度を確実に特定可能な、飛翔体速度検出システムおよび飛翔体速度検出方法を提供することを目的としている。
上記課題を解決するために、供試体への飛翔体の打ち込み試験における供試体を貫通した後の飛翔体の残留速度を検出する本発明の飛翔体速度検出システムは、飛翔体の飛翔方向に対向する面が露出された緩衝材を支持する筐体と、飛翔体の飛翔方向に移動自在に筐体を摺動させる摺動機構とを有する飛翔体より質量が大きい摺動装置と、飛翔体が緩衝材に到達した後の摺動装置の移動速度を測定する速度測定装置と、測定された摺動装置の移動速度と、摺動装置と飛翔体との質量比とに基づいて飛翔体の残留速度を特定する速度特定装置と、を備える。
本発明では、運動量保存の法則を用い、質量は小さいが高速に飛翔する飛翔体の運動量を質量が大きい摺動装置の運動量に置換し、摺動装置の比較的低速な移動速度を測定することで飛翔体の残留速度を特定する。こうして、高価な高速度カメラや高速ストロボを用いることなく、簡易かつ安価な構成で、飛翔体の残留速度を確実に特定することができる。また、飛翔体の貫通によって生じる破片や粉塵の質量および速度は飛翔体と比較して小さいので摺動装置の運動量への影響も小さく、供試体の破片や粉塵による誤計測の誘発を回避することも可能となる。
速度測定装置は、摺動装置の移動軌跡を連続的に撮像可能な撮像装置を含んで構成され、複数の撮像時点の撮像画像間における摺動装置の変位に基づいて摺動装置の移動速度を導出してもよい。
上述したように、本発明では、低速かつ占有体積の大きい摺動装置の移動速度を測定するだけで、飛翔体の残留速度を特定することができる。したがって、安価なカメラ、例えば、市販のビデオカメラやデジタルスチルカメラ等で十分な測定精度を確保できる。また、本発明では、飛翔体および飛翔体の貫通によって生じる破片や粉塵を一旦摺動装置で受容した後、摺動装置のみを撮像すればよいので、破片や粉塵が舞った場合においても占有体積の大きい摺動装置を確実に視認でき、飛翔体の速度を容易に特定することが可能となる。
速度測定装置は、摺動装置の移動方向に並置された2つの接触子と、摺動装置と2つの接触子との接触時点を特定可能な時点特定器と、を含んで構成され、2つの接触子との接触時点の差分時間と2つの接触子間の距離とに基づいて摺動装置の移動速度を導出してもよい。
本発明では、飛翔体および飛翔体の貫通によって生じる破片や粉塵を一旦摺動装置で受容した後、摺動装置との接触時点のみを特定すればよいので、破片や粉塵が舞った場合においても摺動機構によって移動軌跡が定まった摺動装置との接触時点を確実に測定でき、飛翔体の速度を容易に特定することが可能となる。
速度測定装置は、自体の移動速度を導出可能な速度センサを含んで構成され、摺動装置と一体的に用いられてもよい。
飛翔体に関しては、その質量や材質の均一性が求められるが、摺動装置は、供試体との貫通も想定されていないので自由に構成することができ、質量の制限もない。したがって、様々な電子機器を付設することも可能である。ここでは、速度センサを摺動装置に直接付す構成により、正確に摺動装置の速度を測定できる。さらに、速度センサの質量を筐体の質量として換算できるので、その分筐体のダミーウェイトを少なくすることが可能となる。
速度測定装置は、摺動装置の移動方向に伸縮自在な弾性体を含んで構成され、摺動装置が弾性体を押縮したときの弾性体の縮み量に基づいて摺動装置の移動速度を導出してもよい。
ここでは、運動エネルギー保存の法則を用いて、摺動装置の運動エネルギーを弾性体の弾性エネルギーに置換し、その弾性体の縮み量に基づいて摺動装置の移動速度を間接的に導出することができる。
上記課題を解決するために、供試体への飛翔体の打ち込み試験における供試体を貫通した後の飛翔体の残留速度を検出する本発明の飛翔体速度検出方法は、飛翔体の飛翔方向に対向する面が露出された緩衝材を支持する筐体を有し飛翔体より質量が大きい摺動装置を飛翔体の飛翔方向に移動自在に設置し、飛翔体を供試体に射出し、供試体を貫通した飛翔体が緩衝材に到達した後の摺動装置の移動速度を測定し、測定された摺動装置の移動速度と、摺動装置と飛翔体との質量比とに基づいて飛翔体の残留速度を特定する。
上述した、飛翔体速度検出システムの技術的思想に基づく構成要素やその説明は、当該摺動装置や飛翔体速度検出方法にも適用可能である。
本発明によれば、簡易かつ安価な構成で、飛翔体の貫通によって供試体の破片や粉塵が飛散する場合においても、飛翔体の残留速度を確実に特定することが可能となる。
第1の実施形態における飛翔体速度検出システムの概略的な配置関係を示した説明図である。 摺動装置の構成を説明するための説明図である。 低機能撮像装置を用いた速度測定を説明するための説明図である。 他の速度測定装置を説明するための説明図である。 他の速度測定装置を説明するための説明図である。 飛翔体速度検出方法の全体的な流れを示したフローチャートである。 第2の実施形態における飛翔体速度検出システムの準備段階の概略的な配置関係を示した説明図である。 飛翔体が衝止材に衝突した状態を示す説明図である。 飛翔体の飛翔速度と衝止材の痕跡情報との関係情報を説明するための説明図である。 多層の衝止材を説明するための説明図である。 飛翔体速度検出システムの測定段階の概略的な配置関係を示した説明図である。 飛翔体速度検出方法の全体的な流れを示したフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(耐弾性能試験)
例えば、飛行機のジェットエンジンにおけるファンを包囲するファンケースは、不慮の事故により高速のファンが脱離してもそのファンケースからのファンの放出を防止すべく、高いコンテインメント性能が求められる。コンテインメント性能は、ファンケースの外壁に相当する供試体の厚み方向に、ファンに見立てた飛翔体を高速で打ち込んだときの供試体の変形状態や飛翔体の最終的な速度によって求めることができる。
具体的に、例えば、任意の速度で飛翔体を供試体に射出し、飛翔体が貫通しない限界速度を求めたり、貫通が50%の確率で生じ得る速度を求めたりする。本実施形態では、このような耐弾性能試験の一態様である打ち込み試験(高速衝突試験)における貫通後の残留速度測定を説明する。打ち込み試験では、飛翔体を高速で射出し、供試体を貫通させた後の残留速度を測定して貫通前後の飛翔体の速度から供試体に吸収されたエネルギーを定量的に求めることができる。しかし、測定対象である飛翔体は、毎秒数百メートルの残留速度で空間を移動しているというだけで測定困難である上、貫通後においては供試体の破片や粉塵の飛散によって視覚的な識別さえ容易ではなくなる。
ここでは、このような飛翔体の貫通によって供試体の破片や粉塵が飛散する場合においても、飛翔体の残留速度を簡易かつ安価な構成で確実に特定可能な、飛翔体速度検出システムを説明し、その後、飛翔体速度検出方法を詳述する。
(第1の実施形態:飛翔体速度検出システム100)
図1は、飛翔体速度検出システム100の概略的な配置関係を示した説明図である。飛翔体速度検出システム100は、射出装置110と、供試体固定装置120と、摺動装置130と、速度測定装置140と、速度特定装置150とを含んで構成され、打ち込み試験を実現する。
射出装置110は、圧縮ガスや爆薬の爆発エネルギーを利用して飛翔体112を加速し、供試体122に高速で衝突させる。飛翔体112は、球形や円柱形の剛体、例えば銅で形成され、射出装置110によって射出された後、初速毎秒数百メートルで飛翔する。供試体固定装置120は、当該打ち込み試験の対象である供試体122の飛翔体112との衝突面が飛翔体112の飛翔方向に垂直になるように供試体122を固定する。
摺動装置130は、射出装置110と供試体固定装置120とを結ぶ直線上に設けられ、供試体122を貫通した飛翔体112を受け、運動量保存の法則に則って飛翔体112の飛翔方向に移動する。摺動装置130の具体的な構成は後ほど詳述する。
速度測定装置140は、摺動装置130の移動速度を測定する。速度特定装置150は、パーソナルコンピュータ等の計算機で構成され、速度測定装置140によって測定された摺動装置130の移動速度と、摺動装置130と飛翔体112との質量比とに基づいて飛翔体112の残留速度を特定する。
本実施形態における飛翔体速度検出システム100では、運動量保存の法則を用い、質量は小さいが高速で飛翔する飛翔体112の運動量を質量が大きい摺動装置130の運動量に置換し、摺動装置130の比較的低速な移動速度を測定することで飛翔体112の残留速度を確実に特定することができる。
こうして、高価な高速度カメラや高速ストロボを用いることなく、簡易かつ安価な構成で、飛翔体112の残留速度を確実に特定することができる。また、飛翔体112の貫通によって生じる供試体122の破片や粉塵124の質量および速度は飛翔体と比較して小さいので摺動装置130の運動量への影響も小さく、供試体122の破片や粉塵による誤計測の誘発を回避することも可能となる。以下、上述した摺動装置130、速度測定装置140、速度特定装置150の具体的な構成を説明する。
(摺動装置130)
図2は、摺動装置130の構成を説明するための説明図である。摺動装置130は、緩衝材132と、筐体134と、摺動機構136とを含んで構成される。
緩衝材132は、図2(a)のように、飛翔体112の飛翔方向に対向する面を露出させ、飛翔体112の摺動装置130への衝突の衝撃を和らげるべく、図2(b)のように飛翔体112を埋没させて運動エネルギーを吸収する役を担う。緩衝材132は、複数の紙や段ボールを重畳させた厚さ30mm〜100mmの紙束、木材、防振ゴム、粘度、高粘性固体状のゲル等の弾性を有する部材で構成することができる。また、緩衝材132は、上述した弾性部材に限らず、飛翔体112を跳ね返したり、緩衝材132を部分的に分離させたりすることなく、高速の飛翔体112を衝止できれば様々な弾性部材を採用することができる。また、緩衝材132の面の露出は直接的な露出に限らず、運動量を伝達可能な表皮体を介する場合も含む。
当該打ち込み試験においては、図2(b)に示すように、飛翔体112と共に供試体122の破片や粉塵124も緩衝材132に到達する可能性がある。しかし、上述したように、本実施形態では、飛翔体112を被写体や接触対象として用いるのではなく、飛翔体112の質量を利用しているので、そもそも質量の小さい破片や粉塵124は摺動装置130の移動に影響を与えない。
また、高速かつ剛性の高い飛翔体112を緩衝材132で衝止する構成により、飛翔体112を受け付けるための別途の設備を設ける必要もなく、さらに、飛翔体112の跳ね返りによる機材破損等の被害を回避でき、打ち込み試験の安全性を高めることが可能となる。
筐体134は、図2(a)のように、緩衝材132の飛翔体112の飛翔方向に対向する面以外の面を支持し、飛翔体112の運動量を吸収する。したがって、筐体134および緩衝材132は、図2(b)のように、飛翔体112の運動量に相当する運動量で飛翔体112の飛翔方向に移動する。本実施形態では、緩衝材132の露出面以外を包囲して支持しているが、かかる場合に限られず、後述する摺動機構136の機能の障害になることなく、緩衝材132による飛翔体112の衝止を実現できれば、様々な支持機構を採用し得る。
摺動機構136は、地面側に固定されたリニアガイドレール136aと、筐体134側に固定され、リニアガイドレール136aを回転しながら滑動する滑車136bとで構成され、図2(b)のように、筐体134を飛翔体112の飛翔方向に移動自在に摺動させる。
上述したように本実施形態では運動量保存の法則を用いているため、摺動装置130は、質量m、残留速度(飛翔速度)vで飛翔する飛翔体112を緩衝材132に衝止することで、リニアガイドレール136a上を移動速度Vで摺動することとなる。ここで、移動速度Vを測定できれば、摺動装置130の質量M(ただし、摺動機構136におけるリニアガイドレール136aを除く)を用いて飛翔体112の残留速度vは、
Figure 0005625324

…(数式1)
で特定することが可能となる。したがって、以下で説明する速度測定装置140は、飛翔体112ではなく、低速の摺動装置130を測定する。
ところで、飛翔体112に関しては、その質量や材質の均一性が求められるが、摺動装置130の質量は自由に調整することができる。したがって、飛翔体112の質量、想定される残留速度、および速度測定装置140で測定し易い速度に基づいて摺動装置130の質量を調整できるように構成してもよい。
また、摺動機構136を通じた摩擦エネルギーの損失は最小限に抑えることが望ましいが、エネルギー損失が無視できない場合は、そのエネルギー損失を考慮した校正曲線を予め求めておくことで試験時にはエネルギー損失を考慮しなくてよくなる。飛翔体112や摺動装置130の移動に伴う空気との摩擦エネルギーは、同様に校正曲線で吸収することもできるが、当該飛翔体速度検出システム100を真空中で実行してもその影響を回避することが可能となる。
さらに、飛翔体112と摺動装置130との移動方向が異なる場合、その2つの方向がなす角に応じて摺動装置130の移動速度を補正することもできるが、上記同様、校正曲線に吸収することもできる。校正曲線は、飛翔体112を、供試体122に貫通させることなく、摺動装置130に直接射出することで取得できる。ここでは、供試体122の破片や粉塵124が無いので、レーザー速度計等既存の様々な速度計で飛翔体112の飛翔速度を測定することが可能となる。
(速度測定装置140)
速度測定装置140は、摺動装置130の移動速度、概ね数m/sec以下の速度を直接的または間接的に測定することができる。ここでは、直接的な速度測定装置140として、1.低機能撮像装置、2.接触子および時点特定器、3.速度センサを、間接的な速度測定装置140として、4.弾性体を説明する。また、ここで説明する速度測定手段に限らず、レーザー速度計をはじめとする非接触光学式の速度計等、様々な速度計を用いることもできる。以下で説明する速度測定手段はすべて互いに補完(バックアップ)できる関係にあるので、一度の打ち込み試験で飛翔体112の残留速度を複数導出し、その中の確からしい値または平均値を測定結果として採用することも可能である。
(1.低機能撮像装置)
まず、速度測定装置140として、摺動装置130の移動軌跡を連続的に撮像可能な撮像装置、特に、高速度カメラではない、数コマ/秒程度の撮像が可能な低機能の撮像装置、例えば、市販のビデオカメラやデジタルスチルカメラ等を用いることができる。
図3は、低機能撮像装置を用いた速度測定を説明するための説明図である。低機能の撮像装置の連続撮像によって撮像された、図3(a)に示すような複数の撮像時点の撮像画像(1)、(2)、(3)間における摺動装置130の変位(移動距離)d、d、…を特定し、その値を図3(b)のようにプロットする。そして、複数の撮像時点間の変位との差分の二乗平均が最小となる近似曲線(一次近似曲線)138の勾配を摺動装置130の移動速度とすることができる。
ここでは、低速かつ占有体積の大きい摺動装置130の移動速度を測定するだけで、飛翔体112の残留速度を特定することができる。したがって、上述したような安価なカメラで十分な測定精度を確保できる。また、本実施形態では、飛翔体112および飛翔体112の貫通によって生じる破片や粉塵124を一旦摺動装置130で受容した後、摺動装置130のみを撮像すればよいので、破片や粉塵124が舞った場合においても占有体積の大きい摺動装置130を確実に視認でき、飛翔体112の速度を容易に特定することが可能となる。
(2.接触子および時点特定器)
図4は、他の速度測定装置140を説明するための説明図である。他の速度測定装置140としては、銀ペーストを螺旋状に配した検速紙や対象物との接触抵抗を検出する素子等を摺動装置130の移動方向に2つ並置した接触子142と、摺動装置130と2つの接触子142との接触時点を特定可能なオシロスコープ等の時点特定器144と、を含んで構成される。
図4を参照すると、摺動装置130の移動速度Vは、2つの接触子142との接触時点(図4(b)、図4(c)の時点)の差分時間tと、予め把握されている2つの接触子間の距離dとを用い、関係式V=d/tによって導出される。
ここでは、飛翔体112および飛翔体112の貫通によって生じる破片や粉塵124が一旦摺動装置130で受容され、摺動装置130との接触時点のみを特定すればよいことになるので、破片や粉塵124が舞った場合においても摺動機構136によって移動軌跡が定まった摺動装置130との接触時点のみを確実に測定でき、飛翔体112の速度を容易に特定することが可能となる。
(3.速度センサ)
さらに他の速度測定装置140として、自体の移動速度を導出可能な速度センサを摺動装置130と一体的に用いることもできる。飛翔体112に関しては、その質量や材質の均一性が求められるが、摺動装置130は、供試体122との貫通も想定されていないので自由に構成することができ、質量の制限もない。したがって、様々な電子機器を付設することも可能である。ここでは、速度測定装置140として速度センサを摺動装置130に直接付す構成により、正確に摺動装置130の速度を測定できる。さらに、速度センサの質量を筐体134の質量として換算できるので、その分筐体134のダミーウェイトを少なくすることが可能となる。
(4.弾性体)
図5は、他の速度測定装置140を説明するための説明図である。ここでは、他の速度測定装置140として、摺動装置130の移動方向に伸縮自在なバネ等の弾性体146が挙げられる。かかる速度測定装置140は、図5(a)のように、弾性体146の一端がリニアガイドレール136a同様地面側に固定され、他端が記録ペン148を備えて移動自在に構成されている。そして、摺動装置130が移動速度Vで弾性体146に到達し、弾性体146を押縮したときの最大の縮み量dに基づいて、運動エネルギー保存の法則により摺動装置130の移動速度Vを導出する。本実施形態では縮み量dの測定に記録ペンを用いているが、非接触光学式の距離センサ等、既存の様々な距離センサを用いることもできる。
具体的に、摺動装置130の質量をM、移動速度をV、飛翔体112の質量をmとしたときの運動エネルギーEは、
Figure 0005625324

…(数式2)
となり、摺動装置130の速度が0になったときの弾性体146の縮み量をd、弾性係数をkとしたときの弾性エネルギーEは、
Figure 0005625324


…(数式3)
となる。運動エネルギー保存の法則から運動エネルギーE=弾性エネルギーEとなるので、摺動装置130の移動速度Vは、
Figure 0005625324

…(数式4)
で導き出せる。
かかる弾性体146による速度測定装置140は、上述した他の速度測定装置140を補完することを想定しているため、摺動装置130の摺動領域を設けるべく弾性体146を地面側に固定し、摺動装置130と離隔させて配置しているが、単独で用いる場合、摺動装置130と弾性体146とを予め連結しておくことで、摺動装置130と弾性体146との衝突に付随するエネルギー損失を削減することができる。ただし、衝突に付随するエネルギー損失が生じたとしても、上述した校正曲線に吸収させさえすれば、高精度に摺動装置130の移動速度を特定することも可能である。
(速度特定装置150)
速度特定装置150は、このようにして測定された摺動装置130の移動速度Vと、摺動装置130と飛翔体112との質量比(M:m)とに基づいて飛翔体112の残留速度を上述した数式1を用いて特定する。
したがって、摺動装置130と飛翔体112との質量比を例えば99:1とした場合、摺動装置130と飛翔体112との速度比は1:100となり、摺動装置130の移動速度Vを数十cm/sec〜数m/secとした場合、飛翔体112の残留速度vは、数十m/sec〜数百m/secといった具合に導き出せる。
かかる残留速度vの計算では、数式1のように飛翔体112の残留速度vと摺動装置130の移動速度Vとを線形関数で示しているが、他の損失エネルギーで校正した場合、単なる一次式となるとは限らない。しかし、少なくとも1対1で単調増加する漸増関数で示すことができるので、いずれにしても摺動装置130の移動速度Vから飛翔体112の残留速度vを一義的に求めることは可能である。
以上、説明した飛翔体速度検出システム100によって、簡易かつ安価な構成で、飛翔体112の貫通によって供試体122の破片や粉塵124が飛散する場合においても、飛翔体112の残留速度vを確実に特定することが可能となる。
また、供試体122への飛翔体112の打ち込み試験における供試体122を貫通した後の飛翔体112の残留速度を検出する飛翔体速度検出方法も提供される。以下、このような飛翔体速度検出方法を詳細に説明する。
(飛翔体速度検出方法)
図6は、飛翔体速度検出方法の全体的な流れを示したフローチャートである。ここでは、まず、飛翔体112より質量が大きい摺動装置130を飛翔体112の飛翔方向に移動自在に設置し(S200)、射出装置110に所定の速度で飛翔体112を供試体122に向けて射出させる(S202)。
そして、飛翔体112が供試体122を貫通し緩衝材132に到達すると、摺動装置130が運動量保存の法則に従ってリニアガイドレール136a上を摺動し(S204)、速度測定装置140が摺動装置130の移動速度を測定する(S206)。
最後に、速度特定装置150は、測定された摺動装置130の移動速度Vと、摺動装置130と飛翔体112との質量比(M:m)とに基づいて、数式1を用い飛翔体112の残留速度を特定する(S208)。こうして、飛翔体速度検出方法においても、簡易かつ安価な構成で、飛翔体112の貫通によって供試体122の破片や粉塵124が飛散する場合においても、飛翔体112の残留速度vを確実に特定することが可能となる。
(第2の実施形態:飛翔体速度検出システム300)
上述した第1の実施形態では、運動量保存の法則を用い、高速で飛翔する飛翔体112の運動量を摺動装置130の運動量に置換し、摺動装置130の比較的低速な移動速度を測定することで飛翔体112の残留速度を特定した。本実施形態では、供試体122を貫通した飛翔体112をさらに衝止材に衝突させると、飛翔体112の飛翔速度と衝突後の衝止材の痕跡とに所定の関係が成り立つことに着目し、その関係を利用して、飛翔体112の残留速度を特定する。
飛翔体速度検出システム300では、飛翔体112の飛翔速度と飛翔体112による衝止材の痕跡との関係を予め導出しておき、同一の条件で速度不定の飛翔体112を衝止材に衝突させたときの痕跡から飛翔体112の残留速度を逆算する。したがって、飛翔体速度検出システム300は、飛翔体112の飛翔速度と衝止材の痕跡との関係情報を導出する準備段階と、飛翔体112を実際に供試体122に打ち込む測定段階との2段階を経て飛翔体112の残留速度を特定することとなる。以下、準備段階と測定段階とに分けて飛翔体速度検出システム300を説明する。
(準備段階)
図7は、飛翔体速度検出システム300の準備段階の概略的な配置関係を示した説明図である。飛翔体速度検出システム300は、射出装置110と、衝止材固定装置330と、痕跡測定装置340と、速度特定装置350とを含んで構成され、予め飛翔体112の飛翔速度と衝止材の痕跡情報との関係情報を導出する。第1の実施形態における構成要素として既に述べた射出装置110は、実質的に機能が同一なので重複説明を省略し、ここでは、構成が相違する衝止材固定装置330と、痕跡測定装置340と、速度特定装置350とを主に説明する。
飛翔体速度検出システム300において射出装置110に射出される飛翔体112は、第1の実施形態同様、球形や円柱形の剛体、例えば銅で形成されている。ここでは、打ち込み対象である供試体122や後述する衝止材との関係で、飛翔体112の材質(硬度)、形状、寸法(質量)等の形態が選択される。ここで選択された形態は測定段階でも維持される。
衝止材固定装置330は、飛翔体112を最終的に衝止する衝止材332の面が飛翔体112の飛翔方向に垂直になるように衝止材332を固定する。衝止材332は、アルミ等、基本的に飛翔体112より硬度の低い金属で形成される。また、衝止材332は飛翔体112の想定飛翔速度に応じてその材質(硬度)等の形態が選択され、選択された形態は測定段階でも維持される。ここでは、衝止材332を平面板で形成する例を挙げるが、かかる場合に限られず、飛翔体112の飛翔方向が変動する場合を考慮して、貫通点が中心となる球を描くように対向面を内側に屈曲させた曲板を用いることもできる。
準備段階において射出装置110は、供試体122を介すことなく衝止材固定装置330の衝止材332に飛翔体112を直接射出する。
図8は、飛翔体112が衝止材332に衝突した状態を示す説明図である。図8(a)のように衝止材332に向かって垂直に飛翔してくる直径Dの球形の飛翔体112は、衝突後、図8(b)のように衝止材332に埋没し、クレーターのような打痕(痕跡)を形成する。
痕跡測定装置340は、レーザー測距装置等の空間距離を測定可能な機器で構成され、飛翔体が衝突した後の衝止材332の痕跡情報を測定する。痕跡情報は、例えば、痕跡の深さ、および/または、痕跡の大きさである。痕跡の深さは、図8(b)に示すように、衝止材332の既存面から痕跡の最深位置までの距離dであり、痕跡の大きさは、突出部342の最突出部で形成される略円の直径dである。痕跡の深さや大きさはその測定方法が一義的に確立されていればよく、痕跡の深さを突出部342の最突出位置から測定してもよいし、痕跡の大きさとして突出部342の最外縁(突出部342の立ち上がり部分)で形成される円を測定してもよい。
速度特定装置350は、パーソナルコンピュータ等の計算機で構成され、痕跡測定装置340によって測定された複数の痕跡情報から飛翔体112の飛翔速度と衝止材の痕跡情報との関係情報を生成する。
図9は、飛翔体112の飛翔速度と衝止材332の痕跡情報との関係情報を説明するための説明図である。図9(a)では、飛翔速度を複数異ならせて(例えば75、100、150、500m/sec)、射出装置110から飛翔体112を衝止材332に直接衝突させ、痕跡測定装置340でそれぞれの痕跡情報を測定している。ここで飛翔体112の飛翔速度と衝止材332の痕跡情報との関係をプロットすると、図9(b)のようになる。かかる関係情報は、複数次の曲線で近似可能であるが、少なくとも1対1で単調増加する漸増関数で示すことができるので、いずれにしても痕跡情報から飛翔体112の残留速度vを一義的に求めることは可能である。このとき、環境条件、例えば気温や気圧も考慮するとより高精度な測定が可能となる。
また、飛翔体112の飛翔速度と衝止材332の痕跡情報との関係情報は、近似曲線による関係式で表してもよいが、速度特定装置350の処理能力が低い場合、衝止材332の痕跡情報から飛翔体112の残留速度vを一義的に求められるテーブルを用いることもできる。
ここで、測定段階における飛翔体112の残留速度を予め予想できる場合、準備段階において、その残留速度に合わせ衝止材332の硬度を選択することもできる。例えば、残留速度が低くなると予想できる場合、硬度の低い(降伏点の低い)衝止材332を選択することで、飛翔体112の飛翔速度が低い場合であっても、痕跡の深さや大きさが比較的顕著な値になり、低速の残留速度を細かい分解能で測定することが可能となる。また、残留速度が高くなることが予想できる場合、硬度の高い(降伏点の高い)衝止材332を選択することで、飛翔体112が高速で衝止材332に衝突する場合であっても、適度な大きさの痕跡を残すことができ、当然、貫通してしまうこともない。
ただし、測定段階における飛翔体112の残留速度のレンジが広範囲に及ぶ場合、問題が生じ得る。例えば、残留速度が低い場合を想定して、硬度の低い(降伏点の低い)衝止材332のみを準備した場合、飛翔体112の残留速度が低いうちはよいが、飛翔体112の残留速度が高くなると痕跡の深さおよび大きさが増大してしまい衝止材332を貫通してしまう可能性すら生じる。したがって、厚みが大きい衝止材332を予め準備しなければならない。
また、残留速度が高い場合を想定して、硬度の高い(降伏点の高い)衝止材332のみを準備した場合、飛翔体112の残留速度が低いとき飛翔体112が衝止材332との衝突後跳ね返ってしまい、十分な測定結果を得ることができない可能性がある。
ここで、硬度が異なる複数の衝止材332を準備しておき、その複数の衝止材332それぞれについて後述する測定段階同様、実際に供試体122を貫通させ、各衝止材332の痕跡を比較して1の衝止材332を選択してから準備段階に入ることも考えられる。しかし、このような試験構成は多くの供試体122や衝止材332を無駄に費やすことになるので有効な手段とは言えない。そこで、硬度が異なる肉薄な板を複数重畳させて1の衝止材332を生成し、準備段階および測定段階で用いることとする。
図10は、多層の衝止材332を説明するための説明図である。ここでは、図10(a)に示すように、飛翔体112の飛翔方向に対向する面側に硬度の低い板360を配置し、飛翔方向に進むに連れ硬度が高い板362、364を重畳する。飛翔体112の飛翔速度と各板360、362、364との痕跡情報(ここでは痕跡の深さおよび大きさの両方を指す)との関係情報が、それぞれ図10(b)における軌跡370、372、374のようになるとき、飛翔体112と多層化された衝止材332とによる痕跡情報376は、飛翔体112が板360に衝突した後、板362に到達する地点Aまで、板360の軌跡370上を推移し、飛翔体112が板362に到達した後、板364に到達する地点Bまで、板362の軌跡372と等しい勾配で推移し、板364に到達した後は、板364の軌跡374と等しい勾配で推移する。
このように、上記の多層化された衝止材332を用いると、飛翔体112の飛翔速度が低い場合には、板360の領域において、痕跡の深さや大きさが比較的顕著な値になり、低速の残留速度を細かい分解能で測定できる。また、飛翔体112の飛翔速度が高い場合には、板362または板364の領域において、その痕跡を確実に測定することが可能となる。したがって、測定段階における飛翔体112の残留速度のレンジが広範囲に及ぶ場合であっても、一様な、多層化された1種類の衝止材332によって飛翔体112の残留速度を確実に特定することができるようになる。ここでは、説明の便宜上、3枚の板を多層化する構成を述べたが、層数はかかる場合に限られず、飛翔体112の残留速度のレンジや求められる分解能に応じて2枚とすることも、4枚以上とすることも可能である。
(測定段階)
図11は、飛翔体速度検出システム300の測定段階の概略的な配置関係を示した説明図である。測定段階において、飛翔体速度検出システム300は、射出装置110と、供試体固定装置120と、衝止材固定装置330と、痕跡測定装置340と、速度特定装置350とを含んで構成され、打ち込み試験(高速衝突試験)を実現する。供試体固定装置120は第1の実施形態において既に説明しているので、ここではその詳細な説明を省略する。
射出装置110は、飛翔体112を加速し、供試体固定装置120に固定された供試体122に高速で衝突させる。飛翔体112は、供試体122を貫通して衝止材固定装置330に固定された衝止材332に衝突する。
速度特定装置350は、痕跡測定装置340で測定された痕跡情報に基づいて、予め準備段階で求められた、飛翔体112の飛翔速度と衝止材332の痕跡情報との関係情報を用い飛翔体112の残留速度を特定する。例えば、痕跡の大きさが1.6mmであれば、図9(b)を参照して残留速度を略300m/secと特定することが可能である。また、準備段階において、多層化された衝止材332を用いた場合、測定段階でも同一形態の衝止材332を利用し、図10(b)の痕跡情報376を参照して残留速度を特定することができる。
本実施形態における飛翔体速度検出システム300では、飛翔体112の飛翔速度と衝突後の衝止材332の痕跡情報とに所定の関係が成り立つことを利用しているので、衝止材332の痕跡さえ測定できれば、衝突した飛翔体112の残留速度を確実に特定することができる。
こうして、高価な高速度カメラや高速ストロボを用いることなく、簡易かつ安価な構成で、飛翔体112の残留速度を確実に特定することができる。また、飛翔体112の貫通によって供試体122の破片や粉塵124が生じたとしても、衝止材332に衝突した飛翔体112の痕跡を識別し、その飛翔体112の痕跡のみによって残留速度を特定するので、供試体122の破片や粉塵による誤計測の誘発を回避することも可能となる。
(飛翔体速度検出方法)
図12は、飛翔体速度検出方法の全体的な流れを示したフローチャートである。準備段階において、まず、供試体122を用いず、射出装置110から射出した飛翔体112を直接衝止材332に複数の飛翔速度で衝突させ、飛翔体112の飛翔速度と衝止材332の痕跡情報との関係情報を生成する(S400)。
そして、測定段階に移行すると、供試体固定装置120に供試体122を設置し(S402)、今度は、射出装置110に所定の速度で飛翔体112を供試体122に向けて射出させる(S404)。
飛翔体112が供試体122を貫通し衝止材332に衝突した後、痕跡測定装置340を通じて痕跡情報を測定し(S406)、速度特定装置350は、痕跡測定装置340で測定された痕跡情報に基づいて、予め準備段階で求められた、飛翔体112の飛翔速度と衝止材332の痕跡情報との関係情報を用い飛翔体112の残留速度を特定する(S408)。こうして、飛翔体速度検出方法においても、簡易かつ安価な構成で、飛翔体112の貫通によって供試体122の破片や粉塵124が飛散する場合においても、飛翔体112の残留速度vを確実に特定することが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
なお、本明細書の飛翔体速度検出方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。
本発明は、飛翔体の打ち込み試験における飛翔体の貫通後の残留速度を検出する飛翔体速度検出システムおよび飛翔体速度検出方法に利用することができる。
100、300 …飛翔体速度検出システム
110 …射出装置
112 …飛翔体
120 …供試体固定装置
122 …供試体
130 …摺動装置
132 …緩衝材
134 …筐体
136 …摺動機構
140 …速度測定装置
142 …接触子
144 …時点特定器
146 …弾性体
148 …記録ペン
150、350 …速度導出装置
330 …衝止材固定装置
332 …衝止材
340 …痕跡測定装置
342 …突出部

Claims (6)

  1. 供試体への飛翔体の打ち込み試験における該供試体を貫通した後の該飛翔体の残留速度を検出する飛翔体速度検出システムであって、
    前記飛翔体の飛翔方向に対向する面が露出された緩衝材を支持する筐体と、該飛翔体の飛翔方向に移動自在に該筐体を摺動させる摺動機構とを有する該飛翔体より質量が大きい摺動装置と、
    前記飛翔体が前記緩衝材に到達した後の前記摺動装置の移動速度を測定する速度測定装置と、
    測定された前記摺動装置の移動速度と、前記摺動装置と前記飛翔体との質量比とに基づいて該飛翔体の残留速度を特定する速度特定装置と、
    を備える飛翔体速度検出システム。
  2. 前記速度測定装置は、
    前記摺動装置の移動軌跡を連続的に撮像可能な撮像装置を含んで構成され、
    複数の撮像時点の撮像画像間における前記摺動装置の変位に基づいて該摺動装置の移動速度を導出することを特徴とする請求項1に記載の飛翔体速度検出システム。
  3. 前記速度測定装置は、
    前記摺動装置の移動方向に並置された2つの接触子と、該摺動装置と該2つの接触子との接触時点を特定可能な時点特定器と、を含んで構成され、
    前記2つの接触子との接触時点の差分時間と該2つの接触子間の距離とに基づいて前記摺動装置の移動速度を導出することを特徴とする請求項1または2に記載の飛翔体速度検出システム。
  4. 前記速度測定装置は、自体の移動速度を導出可能な速度センサを含んで構成され、前記摺動装置と一体的に用いられることを特徴とする請求項1から3のいずれか1項に記載の飛翔体速度検出システム。
  5. 前記速度測定装置は、
    前記摺動装置の移動方向に伸縮自在な弾性体を含んで構成され、
    前記摺動装置が前記弾性体を押縮したときの弾性体の縮み量に基づいて該摺動装置の移動速度を導出することを特徴とする請求項1から4のいずれか1項に記載の飛翔体速度検出システム。
  6. 供試体への飛翔体の打ち込み試験における該供試体を貫通した後の該飛翔体の残留速度を検出する飛翔体速度検出方法であって、
    前記飛翔体の飛翔方向に対向する面が露出された緩衝材を支持する筐体を有し該飛翔体より質量が大きい摺動装置を該飛翔体の飛翔方向に移動自在に設置し、
    前記飛翔体を前記供試体に射出し、
    前記供試体を貫通した前記飛翔体が前記緩衝材に到達した後の前記摺動装置の移動速度を測定し、
    測定された前記摺動装置の移動速度と、前記摺動装置と前記飛翔体との質量比とに基づいて該飛翔体の残留速度を特定することを特徴とする飛翔体速度検出方法。
JP2009251799A 2009-11-02 2009-11-02 飛翔体速度検出システムおよび飛翔体速度検出方法 Expired - Fee Related JP5625324B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251799A JP5625324B2 (ja) 2009-11-02 2009-11-02 飛翔体速度検出システムおよび飛翔体速度検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251799A JP5625324B2 (ja) 2009-11-02 2009-11-02 飛翔体速度検出システムおよび飛翔体速度検出方法

Publications (2)

Publication Number Publication Date
JP2011095206A JP2011095206A (ja) 2011-05-12
JP5625324B2 true JP5625324B2 (ja) 2014-11-19

Family

ID=44112266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251799A Expired - Fee Related JP5625324B2 (ja) 2009-11-02 2009-11-02 飛翔体速度検出システムおよび飛翔体速度検出方法

Country Status (1)

Country Link
JP (1) JP5625324B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827222B1 (ko) 2017-10-13 2018-02-08 국방과학연구소 파편 속도 측정 장치 및 파편 속도 측정 방법
CN107894514A (zh) * 2017-11-07 2018-04-10 湖北航天化学技术研究所 一种爆炸驱动破片的速度测定装置及方法
CN107990795B (zh) * 2017-12-01 2023-05-26 西安工业大学 一种炮弹测速装置及其使用方法
CN109307533B (zh) * 2018-11-27 2020-11-10 北京理工大学 基于分区域pvdf压电薄膜的破片多参数测试装置及方法
CN109490571B (zh) * 2018-12-27 2023-10-17 衡磊科技集团股份有限公司 一种危险枪支射击用测试装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659132B2 (ja) * 2000-06-16 2005-06-15 株式会社村田製作所 荷重制御型アクチュエータ
JP2003161741A (ja) * 2001-11-27 2003-06-06 Murata Mfg Co Ltd 電子部品の衝撃荷重測定方法およびその測定装置
JP4101642B2 (ja) * 2002-12-26 2008-06-18 シバタ工業株式会社 銃弾着弾装置
JP2007040653A (ja) * 2005-08-05 2007-02-15 Toyobo Co Ltd 耐弾構造体及び耐弾構造体の形成方法
US20120017754A1 (en) * 2006-09-15 2012-01-26 Joynt Vernon P Armor system and method for defeating high energy projectiles that include metal jets
JP2009180567A (ja) * 2008-01-30 2009-08-13 National Institute Of Advanced Industrial & Technology 材料の動的物性評価方法及びシステム

Also Published As

Publication number Publication date
JP2011095206A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5625324B2 (ja) 飛翔体速度検出システムおよび飛翔体速度検出方法
KR101827222B1 (ko) 파편 속도 측정 장치 및 파편 속도 측정 방법
EP1607731B1 (en) Apparatus and method for bulge testing an article
Nakamura et al. Development of in-situ micro-debris measurement system
JP2017525568A (ja) 液体ジェットの位置を特定するための方法
RU2416103C2 (ru) Способ определения траектории и скорости объекта
EP3165897B1 (en) Apparatus for measuring coefficient of restitution and hardness tester
Yu et al. Performance characterization of a miniaturized exploding foil initiator via modified VISAR interferometer and shock wave analysis
EP2239551B1 (en) Characterisation of soft body impacts
CN108663184A (zh) 一种机床防护罩冲击试验设备
Lastunen et al. Impact test facility
Vargas et al. Ice particle impacts on a flat plate
CN103698235B (zh) 一种用于低速冲击测试的测速装置
JP6325879B2 (ja) ゴルフボールの接触状態観察装置及びゴルフボールの接触状態観察方法
US8914253B2 (en) Aerial bogey discrimination technique
US10775403B2 (en) Acceleration event detection and differential sensory devices and methods
Kumar et al. Effect of curvature on shock loading response of aluminum panels
Muster et al. Ricochet quantification using a multiple sensor approach
CN212723326U (zh) 一种激光雷达防爆装置
Li et al. An innovative instrumented projectile for measuring impact-induced force history
Muster et al. Defence Technology
WO2020141292A1 (en) Test-rig and method for assessing the performance of barrelled disruptors
RU2413917C1 (ru) Устройство и способ проводной электрической связи для регистрации параметров функционирования метаемого тела в полном баллистическом цикле
Jepsen et al. Diagnostics for liquid dispersion due to a high-speed impact with accident or vulnerability assessment application
JP6921551B2 (ja) 速度計測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

LAPS Cancellation because of no payment of annual fees