JP5622165B2 - Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance - Google Patents

Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance Download PDF

Info

Publication number
JP5622165B2
JP5622165B2 JP2010023137A JP2010023137A JP5622165B2 JP 5622165 B2 JP5622165 B2 JP 5622165B2 JP 2010023137 A JP2010023137 A JP 2010023137A JP 2010023137 A JP2010023137 A JP 2010023137A JP 5622165 B2 JP5622165 B2 JP 5622165B2
Authority
JP
Japan
Prior art keywords
mass
less
resistance
thermal spraying
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010023137A
Other languages
Japanese (ja)
Other versions
JP2011162803A (en
Inventor
亘 岩▲崎▼
亘 岩▲崎▼
植田 茂紀
茂紀 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010023137A priority Critical patent/JP5622165B2/en
Publication of JP2011162803A publication Critical patent/JP2011162803A/en
Application granted granted Critical
Publication of JP5622165B2 publication Critical patent/JP5622165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Description

本発明は、肉盛溶射用粉末合金に関するもので、更に詳しくは、重油或いは石炭焚きボイラー管、舶用バルブ、ガソリン精製装置等にて問題となる摩耗及び高温腐食に対して優れた特性を有する溶射用粉末合金に関する。   TECHNICAL FIELD The present invention relates to a powder alloy for overlay spraying, and more particularly, thermal spraying having excellent characteristics against wear and high temperature corrosion which are problematic in heavy oil or coal-fired boiler tubes, marine valves, gasoline refining equipment, and the like. It relates to a powder alloy.

船舶用のディーゼルエンジンは、主に重油を燃料としており、重油を爆発燃焼させることにより出力を得ている。排気バルブは燃焼行程では閉じており、触火面が高温の燃焼ガスに曝されると共に、バルブシート面は弁座と接触した状態になっている。次に、排気行程になると排気バルブが開いてシート面と弁座との間隙から排気ガスが排出されていく。そのため、排気バルブで最も高温に晒される場所は、触火面の中央部付近で、最高温度で650〜700℃の温度にまで達するため、耐熱性に優れた材料であることが必要である。一方、バルブシート面は、それほど高温にはならないものの、腐食環境下で弁座と接触を繰り返すために、硬さが高く耐摩耗性に優れた材料であることが必要となる。   Marine diesel engines mainly use heavy oil as fuel, and output is obtained by explosive combustion of heavy oil. The exhaust valve is closed during the combustion stroke, the flaming surface is exposed to high-temperature combustion gas, and the valve seat surface is in contact with the valve seat. Next, at the exhaust stroke, the exhaust valve opens and exhaust gas is discharged from the gap between the seat surface and the valve seat. Therefore, the place exposed to the highest temperature by the exhaust valve reaches a temperature of 650 to 700 ° C. at the maximum temperature near the center of the flaming surface, and therefore it is necessary to be a material having excellent heat resistance. On the other hand, although the valve seat surface is not so hot, it is required to be a material having high hardness and excellent wear resistance in order to repeat contact with the valve seat in a corrosive environment.

また、燃料の重油にはV(バナジウム)やS(サルファ)などが多く含有されている。Sはバルブ表面に付着生成する硫化物によるSアタックを引き起こし、同様にVもVアタックという高温腐食を引き起こすため、排気バルブの要求特性には、VやSを含む高温環境に曝されても腐食が進行しない耐Vアタック性や耐Sアタック性など高温での耐食性が要求される。   Fuel heavy oil contains a large amount of V (vanadium), S (sulfa), and the like. Since S causes S attack due to sulfide generated on the valve surface, and V also causes high temperature corrosion called V attack, the exhaust valve is required to corrode even when exposed to a high temperature environment including V and S. Corrosion resistance at high temperatures such as V attack resistance and S attack resistance that do not progress is required.

更に、重油は、燃焼すると硬質の粉塵が多量に発生するために、排気バルブの摩耗を激しくする。排気バルブ用の材料は、その硬さが高く、耐摩耗性に優れた材料であることも重要になる。   Furthermore, heavy oil generates a large amount of hard dust when burned, so that exhaust valve wear becomes severe. It is also important that the material for the exhaust valve is a material having high hardness and excellent wear resistance.

従来、船舶用のディーゼルエンジンの排気バルブ用としてはSUH35(Fe−9Mn−21Cr−4Ni−0.5C−0.4N)等の耐熱鋼、また、燃焼ガスの高温化する高出力エンジンにはNi基超耐熱合金である20Cr含有のNimonic80A(登録商標)が使用されてきた。   Conventionally, heat exhaust steel such as SUH35 (Fe-9Mn-21Cr-4Ni-0.5C-0.4N) is used for exhaust valves of marine diesel engines, and Ni is used for high output engines where the temperature of combustion gas is increased. Nimonic 80A (registered trademark) containing 20Cr, which is a basic superalloy, has been used.

しかしながら、近年、船舶用のディーゼルエンジンは更なる高出力化、高効率化によって燃焼ガスの高温化が進んできており、Nimonic80A(登録商標)でも、耐摩耗性及び耐Sアタック性、耐Vアタック性が十分で無くなってきている。   However, in recent years, marine diesel engines have become increasingly hot due to higher output and higher efficiency, and even Nimonic 80A (registered trademark) has wear resistance, S attack resistance, and V attack resistance. Sex is not enough.

そこで、上記の様な問題を解決する方法として、例えば、特許文献1のように、重量%でC:0.1%以下、Si:1.0%以下、Mn:1.0%以下、Cr:25超〜32%、Ti:2.0超〜3.0%、Al:1.0〜2.0%、Co:12〜20%、残部実質的にNiから成ることを特徴と排気バルブ合金の開示があり、排気バルブ合金そのものを高性能化させることで、耐摩耗性及び耐Sアタック性、耐Vアタック性を向上させるものがある。   Therefore, as a method for solving the above-described problems, for example, as in Patent Document 1, C: 0.1% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr, : Exhaust valve characterized by consisting of more than 25 to 32%, Ti: more than 2.0 to 3.0%, Al: 1.0 to 2.0%, Co: 12 to 20%, and the balance substantially Ni There is an alloy disclosure, and there is one that improves wear resistance, S attack resistance, and V attack resistance by improving the performance of the exhaust valve alloy itself.

一方、特許文献2のように、バルブシート面にステライト合金を肉盛し、触火面にCr、Al、Ti、Niを必須成分とし、Cr:10〜30重量%、Al+Ti:2.5〜6.0重量%、Co+Mo+W+Nb+Fe:30重量%以下、およびNiをバランス成分とする時効硬化型Ni基合金を肉盛するといった最も苛酷な環境に曝される部位に耐摩耗性及び耐Sアタック性、耐Vアタック性に優れた材料を肉盛することで排気バルブの開示がある。   On the other hand, as in Patent Document 2, a stellite alloy is built up on the valve seat surface, Cr, Al, Ti, and Ni are essential components on the flaming surface, Cr: 10 to 30 wt%, Al + Ti: 2.5 6.0% by weight, Co + Mo + W + Nb + Fe: 30% by weight or less, and wear resistance and S-attack resistance to the most severe environments such as building up an age-hardening Ni-based alloy containing Ni as a balance component, There is a disclosure of an exhaust valve by building up a material excellent in V-attack resistance.

特開2000−328163号公報JP 2000-328163 A 特開平11−50821号公報Japanese Patent Laid-Open No. 11-50821

しかしながら、特許文献1のようにバルブ材料そのものを高性能化する手法は、高価な元素を多量に添加する必要があり原材料費がかさむ上に、その様な合金は総じて製造性が非常に劣り、製造コストも高くなるため、1本1本のサイズが非常に大きい船舶用のバルブでは、単価が非常に高価格になる問題がある。   However, the technique for improving the performance of the valve material itself as in Patent Document 1 requires the addition of a large amount of expensive elements, which increases raw material costs, and such alloys are generally very inferior in productivity. Since the manufacturing cost also increases, there is a problem that the unit price is very high for a ship valve having a very large size.

一方、特許文献2のように、排気バルブ本体に安価なオーステナイト系耐熱鋼を使用し、最も苛酷な環境に曝される部位に耐摩耗性及び耐Sアタック性、耐Vアタック性に優れた材料を肉盛する手法は、必要な部分に必要となる特性に優れた合金を肉盛すれば良いのでバルブ単価を大幅に低減できる。   On the other hand, as disclosed in Patent Document 2, an inexpensive austenitic heat-resistant steel is used for the exhaust valve body, and a material excellent in wear resistance, S-attack resistance, and V-attack resistance in a part exposed to the most severe environment. In the method of overlaying, it is only necessary to overlay an alloy having excellent characteristics required for a necessary portion, so that the valve unit price can be greatly reduced.

しかし、これまでの肉盛合金は、排気バルブに要求されるバルブシート面の耐摩耗性及び触火面の耐Sアタック性、耐Vアタック性を同時に満たす合金がなかったため、特許文献2のように、耐摩耗性が必要なバルブシート面には、硬度が高く耐摩耗性に優れるステライト合金を肉盛し、耐Sアタック性、耐Vアタック性が必要な触火面には高温での耐食性に優れる時効硬化型Ni基発明合金を肉盛するというように、全く別の合金を肉盛する必要があった。   However, since there is no alloy that satisfies the wear resistance of the valve seat surface, the S-attack resistance and the V-attack resistance of the flaming surface required for the exhaust valve at the same time, there is no conventional cladding alloy as in Patent Document 2. In addition, the valve seat surface that requires wear resistance is built up of a high hardness and high wear resistance stellite alloy, and the contact surface that requires S attack resistance and V attack resistance is corrosion resistant at high temperatures. Therefore, it was necessary to build up a completely different alloy, such as building up an age-hardening type Ni-based invention alloy that is superior to the above.

上記の様に、1つの排気バルブに全く異なる2種類の合金を肉盛した場合、肉盛後の時効硬化等の熱処理は、どちらか片方の合金特性がピークになるような条件を選ぶと、もう片方の合金の特性が劣化するという問題があり、結局、バルブシート面及び触火面に求められる要求特性と2つの肉盛合金の特性を考慮しバランスさせた条件で行うことになる。従って、お互いの合金の最も良い特性を利用できず、排気バルブ自体の性能も下がる結果となってしまう。さらに、熱処理時間が長くなってしまうなどの問題もあり、コストの面からも熱処理条件の選択が非常に難しい。   As described above, when two kinds of completely different alloys are built up on one exhaust valve, heat treatment such as age hardening after building up is selected so that one of the alloy properties has a peak. There is a problem that the characteristics of the other alloy deteriorate, and eventually, the conditions are balanced in consideration of the required characteristics required for the valve seat surface and the contact surface and the characteristics of the two overlaying alloys. Therefore, the best characteristics of each alloy cannot be used, resulting in a decrease in the performance of the exhaust valve itself. Furthermore, there are problems such as a long heat treatment time, and it is very difficult to select heat treatment conditions from the viewpoint of cost.

本発明は、上記事情を鑑みてなされたものであり、その目的は、高い硬度と優れた高温での耐食性の双方を兼ね備えることにより耐摩耗性及び耐高温腐食性に対して優れた特性を有し、短時間で時効処理が可能な溶射用粉末合金に関する。   The present invention has been made in view of the above circumstances, and its purpose is to have both excellent hardness and high temperature corrosion resistance by combining both high hardness and excellent high temperature corrosion resistance. In addition, the present invention relates to a thermal spraying powder alloy capable of aging treatment in a short time.

上記課題を解決するために、本発明者等は、Ni−Cr−Al系の成分組成について鋭意研究した。その結果、Feの添加により、Crの固溶相であるα−Cr相と、γ相内部にγ’(ガンマプライム)相が微細に析出したγ/γ’相によってなるラメラー組織のセル状析出を促進させることにより、時効処理時間が短縮できる上に、耐摩耗性、耐高温腐食性を殆ど損なうことない知見を得た。   In order to solve the above-described problems, the present inventors diligently studied on the Ni—Cr—Al-based component composition. As a result, by addition of Fe, cellular precipitation of a lamellar structure comprising an α-Cr phase, which is a solid solution phase of Cr, and a γ / γ 'phase in which a γ' (gamma prime) phase is finely precipitated inside the γ phase. As a result of accelerating, the aging treatment time can be shortened, and the knowledge that the wear resistance and the hot corrosion resistance are hardly impaired is obtained.

本発明は、この知見に基づいてなされたものであり、本発明に係る溶射用粉末合金は、質量%で、Cr:32%〜50%、Al:0.5%〜10%、Fe:0.1%〜20%を含み、残部Niおよび不可避的不純物からなることを要旨とする。   This invention is made | formed based on this knowledge, The powder alloy for thermal spraying which concerns on this invention is the mass%, Cr: 32% -50%, Al: 0.5% -10%, Fe: 0 Including the content of 1% to 20%, the balance being Ni and inevitable impurities.

本発明に係る溶射用粉末合金は、必要に応じてさらに、質量%で、Si:0.5%〜5%、B:0.001%〜0.01%、C:0.01%〜0.1%、Cu:0.1%〜5%、Ti、Nb、Ta、Vの1種又は2種以上をTi:0.1%以下、Nb:0.1%以下、Ta:0.1%以下、V:0.1%以下で、且つ、Ti+Nb+Ta+V:0.1%以下の範囲で添加してもよい。   The powder alloy for thermal spraying according to the present invention is further in mass% as necessary, Si: 0.5% to 5%, B: 0.001% to 0.01%, C: 0.01% to 0 1%, Cu: 0.1% to 5%, Ti, Nb, Ta, or one or more of V: Ti: 0.1% or less, Nb: 0.1% or less, Ta: 0.1 % Or less, V: 0.1% or less, and Ti + Nb + Ta + V: 0.1% or less.

本発明に係る溶射用粉末合金は、質量%で、Cr:32%〜50%、Al:0.5%〜10%、Fe:0.1%〜20%を含有するものであるから、摩耗及び高温腐食に対して優れた特性が得られる。よって、排気バルブ用肉盛材料として特に適している。   Since the powder alloy for thermal spraying according to the present invention contains, in mass%, Cr: 32% to 50%, Al: 0.5% to 10%, Fe: 0.1% to 20%, wear. And excellent properties against high temperature corrosion. Therefore, it is particularly suitable as a build-up material for exhaust valves.

以下に、本発明の一実施形態について詳細に説明する。本発明に係る溶射用粉末合金は、以下の構成元素を含有し、残部がNiおよび不可避的不純物よりなる。含まれる構成元素の種類、含有率および限定理由などは、以下の通りである。   Hereinafter, an embodiment of the present invention will be described in detail. The powder alloy for thermal spraying according to the present invention contains the following constituent elements, and the balance consists of Ni and inevitable impurities. The types, content ratios, reasons for limitation, and the like of the constituent elements included are as follows.

Cr:32質量%〜50質量%
Crは、α−Cr相の主な形成元素でありγ’と複合析出することで高強度、高硬度に寄与する重要な元素である。また、耐高温腐食性の向上にも寄与する。32質量%を下回ると十分な硬さが得られない。好ましくは35質量%以上であるとよい。一方、過剰な添加は、逆に高温腐食性が悪くなる。そのため、Cr添加量を50質量%以下に制限する。好ましくは45質量%以下であるとよい。
Cr: 32% by mass to 50% by mass
Cr is a main forming element of the α-Cr phase and is an important element contributing to high strength and high hardness by complex precipitation with γ ′. It also contributes to the improvement of high temperature corrosion resistance. If it is less than 32% by mass, sufficient hardness cannot be obtained. Preferably it is good in it being 35 mass% or more. On the other hand, excessive addition makes the hot corrosiveness worse. Therefore, the Cr addition amount is limited to 50% by mass or less. Preferably it is 45 mass% or less.

Al:0.5質量%〜10質量%
Alはγ’相を形成する重要な元素である。また、耐高温腐食性、耐酸化性の向上にも寄与する。0.5質量%を下回ると十分な硬さが得られない。好ましくは、3.4質量%以上であるとよい。一方、過剰の添加は、過剰なγ’相の形成によって肉盛層が脆くなり、逆に特性を劣化させるため、10質量%以下に制限する。好ましくは5.0質量%以下であるとよい。
Al: 0.5 mass% to 10 mass%
Al is an important element that forms the γ 'phase. It also contributes to improvement of high temperature corrosion resistance and oxidation resistance. If it is less than 0.5% by mass, sufficient hardness cannot be obtained. Preferably, it is 3.4 mass% or more. On the other hand, excessive addition makes the built-up layer brittle due to the formation of an excessive γ ′ phase, and conversely deteriorates the characteristics, so it is limited to 10% by mass or less. Preferably it is 5.0 mass% or less.

Fe:0.1質量%〜20質量%
FeはCrの固溶相であるα−Cr相と、γ相内部にγ’相が微細に析出したγ/γ’相によってなるラメラー組織のセル状析出を早める効果があり添加する元素である。その効果を得るためには0.1質量%以上の添加が必要である。好ましくは2質量%以上であるとよい。一方、過剰の添加は、耐高温腐食性を劣化させるため20質量%以下に制限する。好ましくは10質量%以下であるとよい。
Fe: 0.1% by mass to 20% by mass
Fe is an element to be added that has the effect of accelerating cellular precipitation of a lamellar structure composed of an α-Cr phase, which is a solid solution phase of Cr, and a γ / γ 'phase in which a γ' phase is finely precipitated inside the γ phase. . In order to obtain the effect, addition of 0.1% by mass or more is necessary. Preferably it is 2 mass% or more. On the other hand, excessive addition is limited to 20% by mass or less in order to deteriorate the hot corrosion resistance. Preferably it is 10 mass% or less.

Si:0.5質量%〜5質量%
Siは、Alと同様な効果を有し、γ’相を形成する元素である。また、耐高温腐食性、耐酸化性の向上にも寄与する。0.5質量%を下回ると効果が顕著に現れない。
そのため、0.5質量%以上の添加が必要である。好ましくは、1.0質量%以上であるとよい。一方、過剰の添加は、過剰なγ’相の形成によって肉盛層が脆くなり、逆に特性を劣化させるため、その添加量を5質量%以下に制限する。好ましくは3.5質量%以下であるとよい。
Si: 0.5% by mass to 5% by mass
Si is an element having the same effect as Al and forming a γ ′ phase. It also contributes to improvement of high temperature corrosion resistance and oxidation resistance. If the amount is less than 0.5% by mass, the effect does not appear remarkably.
Therefore, addition of 0.5% by mass or more is necessary. Preferably, it is 1.0% by mass or more. On the other hand, excessive addition makes the built-up layer brittle due to the formation of an excessive γ ′ phase, and conversely deteriorates the characteristics. Therefore, the addition amount is limited to 5% by mass or less. Preferably it is 3.5 mass% or less.

B:0.001質量%〜0.01質量%
Bは結晶粒界に偏析して粒界を強める効果があり添加する元素である。また、
溶射時に溶融金属の粘性を低下させて基盤材料との濡れ性を増加させ、基盤と被膜および被膜同士の密着力を向上させる効果もある。その効果を得るためには0.001質量%以上の添加が必要である。好ましくは、0.002質量%以上であるとよい。一方、過剰の添加は、結晶粒界が脆くなるため、Bの添加量を0.01質量%以下に制限する。好ましくは、0.005質量%以下であるとよい。
B: 0.001 mass% to 0.01 mass%
B is an element which has the effect of segregating at the grain boundaries and strengthening the grain boundaries. Also,
It also has the effect of reducing the viscosity of the molten metal during spraying to increase the wettability with the base material and improving the adhesion between the base and the coating and between the coatings. In order to obtain the effect, addition of 0.001% by mass or more is necessary. Preferably, it is good in it being 0.002 mass% or more. On the other hand, since excessive addition makes the grain boundaries brittle, the amount of B added is limited to 0.01% by mass or less. Preferably, it is 0.005 mass% or less.

C:0.01質量%〜0.1質量%
Cは、炭化物を形成し硬さの向上に寄与する。その効果を得るためには、0.01質量%以上の添加が必要である。一方、上限を超えて添加すると、耐高温腐食性が劣化する。そのため、Cの添加量を0.1質量%以下に制限する。
C: 0.01% by mass to 0.1% by mass
C forms carbides and contributes to improvement in hardness. In order to obtain the effect, addition of 0.01% by mass or more is necessary. On the other hand, if it exceeds the upper limit, the high temperature corrosion resistance deteriorates. Therefore, the addition amount of C is limited to 0.1% by mass or less.

Ti:0.1質量%以下、Nb:0.1質量%以下、Ta:0.1質量%以下、V:0.1質量%以下で、且つ、Ti+Nb+Ta+V:0.1質量%以下
Ti、Nb、Ta、Vは、炭化物形成元素であり、Cと結合し炭化物を形成することで硬さの向上に寄与するために添加しても良い。但し、過剰の添加は、炭化物が増加しすぎて耐高温腐食性を劣化させるので、Ti:0.1質量%以下、Nb:0.1質量%以下、Ta:0.1質量%以下、V:0.1質量%以下で、且つ、Ti+Nb+Ta+V:0.1質量%以下とする。
Ti: 0.1 mass% or less, Nb: 0.1 mass% or less, Ta: 0.1 mass% or less, V: 0.1 mass% or less, and Ti + Nb + Ta + V: 0.1 mass% or less Ti, Nb , Ta and V are carbide forming elements, and may be added to contribute to improvement in hardness by forming a carbide by combining with C. However, excessive addition causes excessive carbide to deteriorate the hot corrosion resistance, so Ti: 0.1% by mass or less, Nb: 0.1% by mass or less, Ta: 0.1% by mass or less, V : 0.1% by mass or less and Ti + Nb + Ta + V: 0.1% by mass or less.

Cu:0.1質量%〜5質量%
Cuは、Feよりは効果が小さいもののγ‐αCrのセル状組織の析出を早める効果がある元素である。その効果を得るためには0.1質量%以上の添加が必要である。好ましくは1.0質量%以上であるとよい。一方、過剰の添加は、母相のγ相に過剰に固溶することにより肉盛層が脆くなるため5質量%以下に制限する。
Cu: 0.1% by mass to 5% by mass
Although Cu is less effective than Fe, Cu is an element that has the effect of accelerating the precipitation of the cellular structure of γ-αCr. In order to obtain the effect, addition of 0.1% by mass or more is necessary. Preferably it is 1.0 mass% or more. On the other hand, the excessive addition is limited to 5% by mass or less because the build-up layer becomes brittle due to excessive solid solution in the γ phase of the parent phase.

以下、本発明の実施例及び比較例について説明する。
(溶射用粉末の組成)
まず。実施例1〜29および比較例1〜9について、表1、2に示す各成分元素(質量%)を有する溶射用粉末をガスアトマイズ法で作成した。
Examples of the present invention and comparative examples will be described below.
(Composition of thermal spraying powder)
First. About Examples 1-29 and Comparative Examples 1-9, the powder for thermal spraying which has each component element (mass%) shown in Tables 1 and 2 was created by the gas atomization method.

(試験片の作成)
その粉末を、予め準備しておいたSNCRW(0.3C−1.2Si−1.0Mn−8.6Ni−18.6Cr−0.5Mo−1.7W−Bal.Fe)の100mmx100mm板材の上に、プラズマ溶射によって厚さ20mm肉盛し、その肉盛部分の上の方から、つまり、粉末成分と同じ組成を有する部分から試験用試料採取し、各種試験に供した。
(Creation of specimen)
The powder was placed on a pre-prepared SNCRW (0.3C-1.2Si-1.0Mn-8.6Ni-18.6Cr-0.5Mo-1.7W-Bal.Fe) 100 mm x 100 mm plate. Then, a thickness of 20 mm was built up by plasma spraying, and a test sample was taken from the top of the built-up portion, that is, from a portion having the same composition as the powder component, and subjected to various tests.

Figure 0005622165
Figure 0005622165

Figure 0005622165
Figure 0005622165

上記で得られた素材から、10mmx10mmx厚さ2mmを切り出し、750℃で時効処理を施した。その後、埋め込み研磨し、マイクロビッカース硬さ試験機を用いて硬さを測定した。750℃時効処理のピーク硬さを表3、4に示す。また、そのピーク硬さが得られた熱処理時間も合わせて示す。   A 10 mm × 10 mm × 2 mm thickness was cut out from the material obtained above and subjected to an aging treatment at 750 ° C. Then, it grind | polished and grind | polished and measured hardness using the micro Vickers hardness tester. Tables 3 and 4 show the peak hardness of the 750 ° C. aging treatment. In addition, the heat treatment time at which the peak hardness was obtained is also shown.

耐食性試験として、Sアタック試験、Vアタック試験を、ZIS Z 2292に準拠して以下の試験条件で行った。試験後、スケールを除去後の重量を測定し、処理前からの腐食減量を測定した。その測定結果を表3、4に示す。
<試験条件>
・試験片寸法:15mmx10mmx4mm
・塗布量:20mg/cm
・試験温度:800℃
・保持時間:20時間
・塩:90%NaSO+10%NaCl(Sアタック試験)
85%V+15%NaSO(Vアタック試験)
As a corrosion resistance test, an S attack test and a V attack test were performed under the following test conditions in accordance with ZIS Z 2292. After the test, the weight after removing the scale was measured, and the corrosion weight loss from before the treatment was measured. The measurement results are shown in Tables 3 and 4.
<Test conditions>
・ Test specimen dimensions: 15 mm x 10 mm x 4 mm
Application amount: 20 mg / cm 2
Test temperature: 800 ° C
Retention time: 20 hours Salt: 90% Na 2 SO 4 + 10% NaCl (S attack test)
85% V 2 O 5 + 15% Na 2 SO 4 (V attack test)

Figure 0005622165
Figure 0005622165

Figure 0005622165
Figure 0005622165

750℃時効後のピーク硬さは、HVが500以上のものを◎、400以上500未満のものを○、400未満のものを×として評価した。同様に、750℃時効後のピーク硬さが得られた時効時間が、1時間以内のものを◎、1時間超〜2時間以内のものを○、2時間超〜4時間以内のものを△、4時間超のものを×として評価し、Sアタックは、腐食減量が、2.0mg/cm未満のものを◎、2.0mg/cm以上10.0mg/cm未満のものを○、10.0mg/cm以上のものを×として、Vアタックは、腐食減量が、18mg/cm未満のものを◎、18mg/cm以上24mg/cm未満のものを○、24mg/cm以上のものを×として評価した。尚、表中の比較粉末6、7は肉盛後に割れが発生したため評価できなかった。 The peak hardness after aging at 750 ° C. was evaluated as ◎ when the HV was 500 or more, ◯ when 400 or more and less than 500, and × when 400 or less. Similarly, when the peak hardness after aging at 750 ° C. is obtained, the aging time is within 1 hour, ◎ over 1 hour to 2 hours, ◯ over 2 hours to 4 hours, △ evaluates those 4 hours than as ×, S attack, corrosion weight loss, 2.0 mg / cm 2 less than what the ◎, 2.0 mg / cm 2 or more 10.0 mg / cm 2 less than that of ○ as × ones 10.0 mg / cm 2 or more, V attack, corrosion weight loss, those of less than 18mg / cm 2 ◎, 18mg / cm 2 or more 24 mg / cm 2 less ○ things, 24 mg / cm Two or more were evaluated as x. The comparative powders 6 and 7 in the table could not be evaluated because cracks occurred after building up.

表4に示す通り、Feを添加していない比較粉末1、2は時効時間が長くなっており、製造性が劣ると考えられる。Crの添加量が低い比較粉末3、4はα−Cr相が十分でないため析出の駆動力が低く硬さが低く且つ析出に時間が掛かる。Crの添加量が多すぎる比較粉末5は、高温腐食性が劣化している。SiまたはCuの添加量が多すぎる比較粉末6、7は肉盛層が脆くなって割れが発生してしまったと考えられる。Cの添加量が多すぎる比較粉末8、9は、炭化物が過剰に生成してしまったために耐高温腐食性に劣る結果になったものと考えられる。Feの添加量が多すぎる比較粉末10は、相対的にNiの含有量が低下したために耐高温腐食性に劣る結果になったものと考えられる。   As shown in Table 4, the comparative powders 1 and 2 to which Fe was not added have a long aging time, and are considered to be inferior in manufacturability. Since the comparative powders 3 and 4 having a low Cr addition amount do not have sufficient α-Cr phase, the driving force for precipitation is low, the hardness is low, and precipitation takes time. The comparative powder 5 in which the added amount of Cr is too large is deteriorated in high temperature corrosivity. It is considered that the comparative powders 6 and 7 in which the added amount of Si or Cu was too large were cracked due to brittleness of the build-up layer. It is considered that the comparative powders 8 and 9 in which the addition amount of C is too large resulted in inferior hot-corrosion resistance due to excessive generation of carbides. It is considered that the comparative powder 10 in which the amount of Fe added is too large is inferior in high-temperature corrosion resistance because the Ni content is relatively reduced.

一方、表3から明らかなように、発明粉末は硬さに優れ、時効時間も短く、耐高温腐食性に優れていることがわかる。   On the other hand, as is apparent from Table 3, the inventive powder is excellent in hardness, short in aging time, and excellent in high temperature corrosion resistance.

Claims (5)

質量%で、
Cr:32%〜50%、
Al:0.5%〜10%、
Fe:0.1%〜20%を含み、
残部Niおよび不可避的不純物からなることを特徴とする耐摩耗性及び耐高温腐食性に優れた溶射用粉末合金。
% By mass
Cr: 32% to 50%,
Al: 0.5% to 10%
Fe: including 0.1% to 20%,
Wear resistance and high temperature corrosion resistance with excellent thermal spraying powder alloy that you the balance Ni and unavoidable impurities and feature.
質量%で
Si:0.5%〜5%を更に含有することを特徴とする請求項1記載の溶射用粉末合金。
The powder alloy for thermal spraying according to claim 1, further comprising Si: 0.5% to 5% by mass.
質量%で
B:0.001%〜0.01%、
を更に含有することを特徴とする請求項1または2記載の溶射用粉末合金。
B: 0.001% to 0.01% by mass%,
The powder alloy for thermal spraying according to claim 1, further comprising:
質量%で
C:0.01%〜0.1%、
Ti、Nb、Ta、Vの1種又は2種以上をTi+Nb+Ta+V:0.1%以下、を更
に含有することを特徴とする請求項1〜3の何れかに記載の溶射用粉末合金。
C: 0.01% to 0.1% by mass%
The powder alloy for thermal spraying according to any one of claims 1 to 3 , further comprising Ti + Nb + Ta + V: 0.1% or less of one or more of Ti, Nb, Ta, and V.
質量%で
Cu:0.1%〜5%、
を更に含有することを特徴とする請求項1〜4の何れかに記載の溶射用粉末合金。
Cu by mass: 0.1% to 5%,
The powder alloy for thermal spraying according to any one of claims 1 to 4, further comprising:
JP2010023137A 2010-02-04 2010-02-04 Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance Active JP5622165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023137A JP5622165B2 (en) 2010-02-04 2010-02-04 Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023137A JP5622165B2 (en) 2010-02-04 2010-02-04 Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance

Publications (2)

Publication Number Publication Date
JP2011162803A JP2011162803A (en) 2011-08-25
JP5622165B2 true JP5622165B2 (en) 2014-11-12

Family

ID=44593848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023137A Active JP5622165B2 (en) 2010-02-04 2010-02-04 Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance

Country Status (1)

Country Link
JP (1) JP5622165B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011098B2 (en) * 2011-07-25 2016-10-19 大同特殊鋼株式会社 Manufacturing method of engine exhaust valve for large ship
WO2014014069A1 (en) * 2012-07-20 2014-01-23 大同特殊鋼株式会社 Method of manufacturing engine exhaust valve for large vessel
BR102013021206A2 (en) * 2012-12-11 2014-09-09 Wärtsilä Schweiz AG GAS EXCHANGE VALVE AS WELL AS METHOD FOR MANUFACTURING GAS EXCHANGE VALVE
CN103878363A (en) * 2013-12-20 2014-06-25 华北电力大学 Powder material for boiler tube high temperature resistance and wear resistance protecting and preparation method thereof
JP6736819B2 (en) * 2017-03-09 2020-08-05 株式会社三井E&Sマシナリー Nickel based alloy for overlay welding
JP7035291B2 (en) * 2020-02-28 2022-03-15 株式会社三井E&Sマシナリー Nickel-based alloy for overlay welding and overlay welding method for exhaust valve rods
JP2021188069A (en) 2020-05-26 2021-12-13 大同特殊鋼株式会社 Nickel-based alloy, and nickel-based alloy manufacture and manufacturing method thereof
CN113930642B (en) * 2021-09-30 2022-04-22 中南大学 High-strength and high-toughness multi-component precision high-resistance alloy and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH616960A5 (en) * 1976-02-25 1980-04-30 Sulzer Ag Components resistant to high-temperature corrosion.
JPH0649573A (en) * 1990-12-28 1994-02-22 Daido Steel Co Ltd High hardness roll material
JPH05195137A (en) * 1992-01-13 1993-08-03 Daido Steel Co Ltd Production of electric conductive roll
JP4023288B2 (en) * 2002-10-30 2007-12-19 大同特殊鋼株式会社 Metal composite tube with excellent carburization resistance

Also Published As

Publication number Publication date
JP2011162803A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5622165B2 (en) Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance
JP5742447B2 (en) High hardness overlaying alloy powder
JP5642295B2 (en) Ni-Fe-Cr-based alloy and engine valve plated with it
JP5254693B2 (en) Welding material for Ni-base alloy
JP5052724B2 (en) Ni-Co-Cr high temperature strength and corrosion resistant alloy
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
US20090081073A1 (en) Alloys with high corrosion resistance for engine valve applications
CN107138876B (en) High-temperature creep resistant low-nickel copper-containing T/P92 steel welding material
CA2688507C (en) Alloys with high corrosion resistance for engine valve applications
JP2010280950A (en) Heat resistant steel for exhaust valve and method for producing the same
JP2000512345A (en) Nickel-chromium-molybdenum-alloy
WO1984002928A1 (en) Cobalt-based alloy for engine valve and engine valve sheet
JP5727903B2 (en) Co-base alloy for surface hardening
JP4839388B2 (en) Welding material and welding rotor
US20160102387A1 (en) Alloy powder for overlay welding, and weld overlay alloy member and engine valve obtained using the same
JP2014111265A (en) Cladding powder alloy
JP5791640B2 (en) Nickel / chromium / cobalt / molybdenum alloy
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP2013052441A (en) Anvil for hot forging and hot forging method
JP2021008649A (en) Austenitic stainless cast steel
CN102031461A (en) Heat-resisting alloy with high yield ratio, high toughness and long-run elasticity stability
JP6736819B2 (en) Nickel based alloy for overlay welding
JP2860260B2 (en) High corrosion resistance Ni-based alloy
JP2010084167A (en) Nickel-based alloy and high-temperature member for turbine using the same
JP4439881B2 (en) Welding material and roll for continuous casting roll overlay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5622165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140914