JP5727903B2 - Co-base alloy for surface hardening - Google Patents
Co-base alloy for surface hardening Download PDFInfo
- Publication number
- JP5727903B2 JP5727903B2 JP2011200151A JP2011200151A JP5727903B2 JP 5727903 B2 JP5727903 B2 JP 5727903B2 JP 2011200151 A JP2011200151 A JP 2011200151A JP 2011200151 A JP2011200151 A JP 2011200151A JP 5727903 B2 JP5727903 B2 JP 5727903B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- hardening
- less
- alloy
- age
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 48
- 239000000956 alloy Substances 0.000 title claims description 48
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 238000003483 aging Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000011651 chromium Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 238000007751 thermal spraying Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 238000003466 welding Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910001347 Stellite Inorganic materials 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000007550 Rockwell hardness test Methods 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Description
本発明は、溶射法や肉盛溶接法で施工される耐摩耗性と耐熱性を有し、かつ高い靭性を兼ね備えた表面硬化用Co基合金に関するものであり、特にこの表面硬化用Co基合金は時効硬化性を有することから、高温環境に長時間晒されると硬さが上昇して耐摩耗性がさらに向上することを特徴とする。また、高い靭性を備えていることから、熱衝撃に強く、オーステナイト系ステンレス鋼などの熱膨張率の大きな部材への表面被覆にも適応できることを特徴とする。 The present invention relates to a surface-hardening Co-base alloy having wear resistance and heat resistance and high toughness applied by thermal spraying or overlay welding, and in particular, this surface-hardening Co-base alloy. Since it has age-hardening properties, it is characterized by increased hardness and further improved wear resistance when exposed to a high temperature environment for a long time. Further, since it has high toughness, it is characterized by being resistant to thermal shock and adaptable to surface coating on a member having a large coefficient of thermal expansion such as austenitic stainless steel.
従来、高温環境で用いられる表面硬化用合金には、JIS H 8303:2010に規定される高Crを含有するニッケルもしくはコバルト自溶合金や、ステライトに代表されるCo-Cr-W-C系合金(特許文献1、2を含む)が広く使用されている。 Conventionally, surface-hardening alloys used in high-temperature environments include nickel or cobalt self-fluxing alloys containing high Cr as defined in JIS H 8303: 2010, and Co-Cr-WC alloys represented by stellite (patents) Documents 1 and 2) are widely used.
高Crを含有するニッケルもしくはコバルト自溶合金(SFNi 4、SFNi 5、SFCo 1、SFCo 2)は、優れた耐摩耗性を有しているが、オーステナイト系ステンレス鋼などの熱膨張率の大きな部材に溶射や肉盛溶接法で被覆した皮膜は、靭性が低いため部材の膨張収縮に追随できず、割れや剥離が発生して機器の機能が大きく低下する場合がある。 Nickel or cobalt self-fluxing alloy containing high Cr (SFNi 4, SFNi 5, SFCo 1, SFCo 2) has excellent wear resistance, but has a high coefficient of thermal expansion such as austenitic stainless steel In addition, since the coating film coated by thermal spraying or overlay welding has low toughness, it cannot follow the expansion and contraction of the member, and cracking and peeling may occur, and the function of the device may be greatly deteriorated.
ステライトに代表されるCo-Cr-W-C系合金は、非常に高い靭性を有しており、溶射法や肉盛溶接法で形成した皮膜は、剥離や割れは生じにくく、オーステナイト系ステンレス鋼への溶射・肉盛は可能であるが、硬さが低く、また時効硬化性を備えていないため、高温環境における耐摩耗性に問題がある。 Co-Cr-WC alloys represented by stellite have very high toughness, and coatings formed by thermal spraying and overlay welding are less prone to peeling and cracking. Although thermal spraying and overlaying are possible, there is a problem in wear resistance in a high temperature environment because of low hardness and lack of age hardening.
以上のように、現在使用されている表面硬化用合金には、耐熱性、耐摩耗性、高靭性と時効硬化性を兼ね備えた材料はなく、特に高温環境で使用されるオーステナイト系ステンレス鋼に耐摩耗性を付与することを目的とした表面硬化用合金を見出すことは困難である。 As described above, currently used surface hardening alloys do not have materials that combine heat resistance, wear resistance, high toughness and age hardening, and are particularly resistant to austenitic stainless steels used in high temperature environments. It is difficult to find a surface hardening alloy for the purpose of imparting wear.
近年、環境負荷低減を目的に、各種産業分野で燃焼効率や燃費の向上、部材や機器の長寿命化が進められている。特に石炭焚火力発電用ボイラの過熱器・再熱器では、長寿命化を目的として表面硬化用合金による被覆が検討されているが、ボイラチューブ基材はオーステナイト系ステンレス鋼管が適用されているため、この基材に被覆しても被覆層の剥離や割れの発生がなく、十分な耐摩耗性を有する表面硬化用合金の開発が課題となっている。 In recent years, in order to reduce the environmental load, improvements in combustion efficiency and fuel consumption, and longer life of members and equipment have been promoted in various industrial fields. In particular, in superheaters and reheaters for coal-fired thermal power generation boilers, coating with a surface hardening alloy is being studied for the purpose of extending the service life, but austenitic stainless steel pipes are used as boiler tube base materials. However, even if this substrate is coated, there is no problem of peeling or cracking of the coating layer, and development of a surface hardening alloy having sufficient wear resistance has been an issue.
本発明では、耐熱性、耐摩耗性と高靭性を有し、時効硬化性を備えた材料の開発を行うための合金組成の検討にあたって、下記の目標を設定し、これを全て満足することを条件とした。
〔目標値〕
(1) 耐熱性 → Crを25.0質量%以上含有するCo基合金。
(2) 耐摩耗性 → ロックウェル硬さ(HRC)が44以上を有すること。
(3) 高靭性 → シャルピー衝撃値が15J/cm2以上を有すること。
(4) 時効硬化性→ 650℃、1000時間の熱処理において、ビッカース硬さ(HV)が熱処理前と比較して100以上、上昇すること。
In the present invention, in the study of the alloy composition for developing a material having heat resistance, wear resistance and high toughness, and having age-hardening properties, the following targets are set, and all of them must be satisfied. Condition.
[Target value]
(1) Heat resistance → Co-based alloy containing 25.0% by mass or more of Cr.
(2) Abrasion resistance → Rockwell hardness (HRC) must be 44 or more.
(3) High toughness → Charpy impact value must be 15 J / cm 2 or more.
(4) Age-hardening → Vickers hardness (HV) increases by 100 or more in heat treatment at 650 ° C for 1000 hours compared to before heat treatment.
上記の目標(1)〜(4)を全て満足する本発明の表面硬化用Co基合金は、その組成がCrを25.0質量%以上45.0質量%以下、Feを8.0質量%以上35.0質量%以下、Siを1.0質量%以上5.0質量%以下、Bを0.2質量%以上2.0質量%以下含み、残部が30.0質量%以上60.0質量%以下のCoおよび不可避不純物からなることを特徴とする。さらに本発明の表面硬化用Co基合金は、前記組成を有することにより優れた時効硬化性を有する。
ここで、不可避不純物とは、意図的に添加していないのに、各原料の製造工程等で不可避的に混入する不純物のことであり、このような不純物としては、Mg、S、O、N、V、Zr、Snなどが挙げられ、これらの総量は通常0.3質量%以下であり、本発明合金の特性に影響を及ぼす程ではない。
Co-base alloy for surface hardening of the present invention that satisfies all of the above goals (1) to (4), the composition of which Cr is 25.0 mass% or more and 45.0 mass% or less, Fe is 8.0 mass% or more and 35.0 mass% or less, Si is contained in an amount of 1.0% to 5.0% by mass, B is contained in an amount of 0.2% to 2.0% by mass, and the balance is 30.0% to 60.0% by mass of Co and inevitable impurities. Furthermore, the surface-hardening Co-based alloy of the present invention has excellent age-hardening properties by having the above composition.
Here, inevitable impurities are impurities that are inevitably mixed in the manufacturing process of each raw material, although not intentionally added, and such impurities include Mg, S, O, N , V, Zr, Sn, etc., and the total amount thereof is usually 0.3% by mass or less and does not affect the properties of the alloy of the present invention.
また、本発明は、上記の特徴を有する表面硬化用Co基合金において、WとMoの少なくとも一種を合計で6.0質量%以下含有することを特徴とするものである。 Further, the present invention is characterized in that the surface hardening Co-based alloy having the above-described characteristics contains at least one of W and Mo in a total amount of 6.0% by mass or less.
さらに、本発明は、上記の特徴を有する表面硬化用Co基合金において、特性に影響を及ぼさない添加元素として、Niを12.0質量%以下、Cu、Mnを3.0質量%以下、Al、Ti、Nbを1.0質量%以下、Cを0.2質量%以下含有し、Ni、Cu、Mn、Al、Ti、Nb、Cの合計量が12.0質量%以下であることを特徴とするものでもある。 Further, the present invention provides a surface-hardening Co-based alloy having the above-described characteristics, as additive elements that do not affect the characteristics, Ni is 12.0 mass% or less, Cu, Mn is 3.0 mass% or less, Al, Ti, Nb Is 1.0 mass% or less, C is 0.2 mass% or less, and the total amount of Ni, Cu, Mn, Al, Ti, Nb, and C is 12.0 mass% or less.
次に、本発明に係る表面硬化用Co基合金(以下、「本発明合金」という)の各成分を限定した理由を述べる。 Next, the reason why each component of the surface hardening Co-based alloy according to the present invention (hereinafter referred to as “the present invention alloy”) is limited will be described.
Co基合金はNi基合金と比較して一般に衝撃特性が優れており、本発明合金のベース金属として選定した。ただし、Co量が30.0質量%未満ではCoリッチな固溶体が得られず、衝撃特性が大幅に低下する。また、60.0質量%を超えると、他の添加元素が付与すべき特性、すなわち、耐熱性や耐摩耗性が得られないため、Coは30.0質量%以上60.0質量%以下の範囲に定めた。 Co-based alloys generally have better impact properties than Ni-based alloys and were selected as the base metal for the alloys of the present invention. However, if the amount of Co is less than 30.0% by mass, a Co-rich solid solution cannot be obtained, and the impact characteristics are greatly deteriorated. Further, if it exceeds 60.0% by mass, the characteristics to be imparted by other additive elements, that is, heat resistance and wear resistance cannot be obtained, so Co was set in the range of 30.0% by mass to 60.0% by mass.
Crは、Co固溶体に固溶する他、その一部はBと化合して金属間化合物であるクロムホウ化物を晶出し、耐熱性や耐摩耗性を付与するが、25.0質量%未満では安定な不働態皮膜を形成せず、耐熱性が低下する。また、45.0質量%を超えるとCrリッチな固溶体を晶出、もしくは粗大なクロムホウ化物を形成して大幅に強度(衝撃値及び硬さ)が低下する。このため、Crは25.0質量%以上45.0質量%以下の範囲に定めた。 In addition to solid solution in the Co solid solution, Cr partly combines with B to crystallize chromium boride, which is an intermetallic compound, and imparts heat resistance and wear resistance, but is less stable than 25.0% by mass. No heat transfer film is formed and heat resistance is reduced. On the other hand, if it exceeds 45.0% by mass, a Cr-rich solid solution is crystallized or a coarse chromium boride is formed, and the strength (impact value and hardness) is greatly reduced. For this reason, Cr was set in the range of 25.0 mass% or more and 45.0 mass% or less.
Feは、Co固溶体に固溶してfcc構造を安定化させている他、高温環境ではfcc構造からhcp構造への相変態を生じさせる。この変態により本発明合金は、時効硬化して耐摩耗性が向上する特性を有するが、8.0質量%未満では安定したfcc構造が得られないため、相変態(時効硬化)が起こらない。また、35.0質量%を超えるとCo固溶体に固溶するFeがリッチな状態となり、耐熱性が低下する。このため、Feは8.0質量%以上35.0質量%以下の範囲に定めた。 Fe stabilizes the fcc structure by dissolving in a Co solid solution, and causes a phase transformation from the fcc structure to the hcp structure in a high temperature environment. By this transformation, the alloy of the present invention has the property of age hardening to improve the wear resistance. However, if it is less than 8.0% by mass, a stable fcc structure cannot be obtained, and therefore phase transformation (age hardening) does not occur. On the other hand, if it exceeds 35.0% by mass, Fe dissolved in the Co solid solution becomes rich and heat resistance is lowered. For this reason, Fe was determined in the range of 8.0 mass% or more and 35.0 mass% or less.
Siは、Co固溶体に固溶して、マトリックスの耐熱性、耐摩耗性を向上させるとともに、Bと複合添加することで、自溶性を付与して溶射や肉盛溶接施工における作業性を向上する。しかし、1.0質量%未満では、耐熱性、耐摩耗性が不十分となり、満足する施工作業性も得られない。また、5.0質量%を超えると金属間化合物のコバルト珪化物が晶出して、大幅に強度(衝撃値)が低下する。このため、Siは1.0質量%以上5.0質量%以下の範囲に定めた。 Si is dissolved in Co solid solution to improve the heat resistance and wear resistance of the matrix, and by adding it together with B, it gives self-fluxing and improves workability in thermal spraying and overlay welding. . However, if it is less than 1.0% by mass, the heat resistance and wear resistance are insufficient, and satisfactory workability cannot be obtained. On the other hand, if it exceeds 5.0% by mass, cobalt silicide of the intermetallic compound crystallizes, and the strength (impact value) is greatly reduced. For this reason, Si was determined in the range of 1.0 mass% or more and 5.0 mass% or less.
Bは、Crと金属間化合物を形成して耐摩耗性を付与するとともに、Siと複合添加することで自溶性を付与して、溶射や肉盛溶接施工などの作業性を向上させるが、0.2質量%未満では、耐摩耗性が不十分であり、満足する施工作業性が得られない。また、2.0質量%を超えるとクロムホウ化物が粗大化して強度(衝撃値)が大幅に低下する。このため、Bは0.2質量%以上2.0質量%以下の範囲に定めた。 B forms an intermetallic compound with Cr and imparts wear resistance, and by adding it in combination with Si, imparts self-fluxing and improves workability such as thermal spraying and overlay welding. If it is less than mass%, the wear resistance is insufficient and satisfactory workability cannot be obtained. On the other hand, if it exceeds 2.0% by mass, the chromium boride coarsens and the strength (impact value) is greatly reduced. Therefore, B is set in the range of 0.2% by mass or more and 2.0% by mass or less.
WとMoは、Co固溶体に固溶して耐摩耗性を向上させる他、高温強度特性を改善し、さらに時効硬化を促進する働きがある。ただし、これら成分の合計量が6.0質量%を超えると、クロムホウ化物の粗大化を誘発して、大幅な強度(衝撃値)低下を引き起こす。このため、WとMoの少なくとも一種の含有量は6.0質量%以下の範囲に定めた。 W and Mo are dissolved in a Co solid solution to improve wear resistance, improve high-temperature strength characteristics, and further promote age hardening. However, when the total amount of these components exceeds 6.0% by mass, coarsening of the chromium boride is induced, and a significant reduction in strength (impact value) is caused. Therefore, the content of at least one of W and Mo is set to a range of 6.0% by mass or less.
本発明合金において、特性に影響を及ぼさない添加元素として、Niを12.0質量%以下、Cu、Mnを3.0質量%以下、Al、Ti、Nbを1.0質量%以下、Cを0.2質量%以下含むことができるが、特に耐熱衝撃性を損なわないため、Ni、Cu、Mn、Al、Ti、Nb、Cの合計量の上限を12.0質量%に定めた。 In the alloy of the present invention, as additive elements that do not affect the characteristics, Ni is 12.0 mass% or less, Cu, Mn is 3.0 mass% or less, Al, Ti, Nb is 1.0 mass% or less, C is 0.2 mass% or less However, in order not to impair the thermal shock resistance in particular, the upper limit of the total amount of Ni, Cu, Mn, Al, Ti, Nb and C was set to 12.0% by mass.
本発明合金は、以下の特徴を有しているので、石炭焚火力発電用ボイラチューブへの被覆材以外にも、広範囲な用途への適応が可能となる。
(1) Crを25.0質量%以上含有するCo基合金で、耐熱性に優れている。
(2) ロックウェル硬さ(HRC)が44以上を有するため、耐摩耗性に優れている。
(3) シャルピー衝撃値が15J/cm2以上を有し、表面硬化用合金として高靭性を備えている。
(4) 時効硬化性を有しているため、高温環境で耐摩耗性がさらに向上する。
Since the alloy of the present invention has the following characteristics, it can be applied to a wide range of applications in addition to a coating material for a boiler tube for coal-fired thermal power generation.
(1) Co-based alloy containing 25.0% by mass or more of Cr and excellent in heat resistance.
(2) It has excellent wear resistance due to Rockwell hardness (HRC) of 44 or more.
(3) The Charpy impact value is 15 J / cm 2 or more, and it has high toughness as a surface hardening alloy.
(4) Due to age-hardening, the wear resistance is further improved in a high temperature environment.
本発明合金は、ベースとなるCoと、添加成分のCr、Fe、Si、Bを調整・配合し、必要に応じてW、Mo、Ni、Cu、Mnなどが所定の質量%になるように添加した地金を、溶解炉のルツボ内で完全に溶解した後、溶融合金をアトマイズ法や溶融粉砕法により粉末状とするか、所定の型に鋳造して棒状や板状にして、得ることができる。 The alloy of the present invention is prepared by adjusting and blending the base Co and the additive components Cr, Fe, Si, and B, so that W, Mo, Ni, Cu, Mn, etc. become a predetermined mass% as necessary. After the added metal is completely melted in the crucible of the melting furnace, the molten alloy is powdered by the atomization method or melt pulverization method, or cast into a predetermined mold to obtain a rod shape or plate shape Can do.
特にアトマイズ法で製造した合金粉末は、目的の溶射施工方法に適した粒度に調整することにより、溶射法あるいは粉体肉盛溶接法を用いた表面改質施工に適用することができる。 In particular, the alloy powder produced by the atomizing method can be applied to surface modification using a thermal spraying method or a powder overlaying method by adjusting the particle size to be suitable for the intended thermal spraying method.
上記のように調整・配合した本発明の実施例合金及び比較例合金を溶製し、以下に示す方法で、シャルピー衝撃値とロックウェル硬さ、および時効硬化性を評価した。 The Example alloy and Comparative Example alloy of the present invention prepared and mixed as described above were melted, and Charpy impact value, Rockwell hardness, and age-hardening property were evaluated by the following methods.
(1)シャルピー衝撃試験;各合金の配合組成を有する100gの地金を、電気炉を用いアルゴン気流中で約1600℃に加熱、溶解し、シェル鋳型に鋳造して、JIS Z 2242:2005記載の試験片(ノッチなし)に加工した。そして、シャルピー衝撃試験機を用いJIS Z 2242:2005に準拠した衝撃試験を行った。 (1) Charpy impact test: 100g of ingot with the composition of each alloy was heated and melted at about 1600 ° C in an argon stream using an electric furnace, cast into a shell mold, and described in JIS Z 2242: 2005 The test piece (without notch) was processed. And the impact test based on JIS Z 2242: 2005 was done using the Charpy impact tester.
(2)ロックウェル硬さ試験;上記(1)と同じ方法で溶解した鋳造片を角状に研削し、平行面を出して、その平行面上部をJIS Z 2245:2005に準拠したロックウェル硬さ試験を行った。なお、測定はCスケールで行った。 (2) Rockwell hardness test: Cast pieces melted by the same method as in (1) above are ground into a square shape to give a parallel surface, and the upper portion of the parallel surface is compliant with JIS Z 2245: 2005 The test was conducted. The measurement was performed on the C scale.
(3)時効硬化性評価試験;まず、上記(1)と同じ方法で作製した試験片を1500番の耐水研磨紙にて最終研磨し、微小ビッカース硬度計を用いてJIS Z 2244:2009に規定する硬さ試験を行い、基準硬さを測定した。次に、所定温度(650℃)に設定したマッフル炉に同試験片を1000時間保持し、大気放冷して常温となった試験片の酸化皮膜を除去した後、1500番の耐水研磨紙で最終研磨して、同様に硬さ測定を行い、熱処理後の硬さを測定した。そして、熱処理前後における硬さの上昇度合いが100以上認められたものを「時効硬化性がある」と判定した。 (3) Age-hardening evaluation test: First, a test piece prepared by the same method as in (1) above is finally polished with a 1500-thick water-resistant abrasive paper and specified in JIS Z 2244: 2009 using a micro Vickers hardness tester A hardness test was performed and a reference hardness was measured. Next, hold the test piece in a muffle furnace set at a predetermined temperature (650 ° C) for 1000 hours, and after removing the oxide film from the test piece that was allowed to cool to the air and brought to room temperature, use a 1500 water-resistant abrasive paper. After final polishing, the hardness was measured in the same manner, and the hardness after the heat treatment was measured. And the thing with which the raise degree of the hardness before and behind heat processing was recognized 100 or more was determined to be "age hardening".
表1に本発明の実施例を、表2に比較例を示す。 Table 1 shows examples of the present invention, and Table 2 shows comparative examples.
比較例1〜5は、従来、高温環境に使用されている表面硬化用合金で、比較例1、2、3はJIS H 8303:2010に記載の自溶合金(SFNi 4、5、SFCo 2)、比較例4、5はステライトに代表されるCo-Cr-W系合金である。いずれも、衝撃値あるいは硬さを満足しておらず、時効硬化性も認められなかった。 Comparative Examples 1 to 5 are surface-hardening alloys conventionally used in high-temperature environments, and Comparative Examples 1, 2, and 3 are self-fluxing alloys (SFNi 4, 5, SFCo 2) described in JIS H 8303: 2010 Comparative Examples 4 and 5 are Co—Cr—W alloys represented by stellite. In either case, the impact value or hardness was not satisfied, and no age hardening was observed.
比較例6〜23は本発明合金の請求範囲を外れた合金で、比較例6、7はFeが請求範囲の下限を外れたもの、比較例8、9はCrが請求範囲の上下限を外れたもの、比較例10はFeが請求範囲の上限を外れ、さらにCoが請求範囲の下限を外れたもの、比較例11、12はSiが請求範囲の上下限を外れたもの、比較例13、14はBが請求範囲の上下限を外れ、比較例13はさらにCoが請求範囲の上限を外れたもの、比較例15はMoが請求範囲の上限を上回ったもの、比較例16はWとMoの合計量が請求範囲の上限を上回ったもの、比較例17〜23はNi、Mn、Cu、Al、Ti、Nb、Cが請求範囲の上限を上回ったものである。そして、比較例6、7は時効硬化性が目標を満足しておらず、比較例8〜23は、いずれも衝撃値あるいは硬さが目標値を満足していなかった。 Comparative Examples 6 to 23 are alloys outside the claimed range of the alloys of the present invention. Comparative Example 10, Fe is outside the upper limit of the claim, Co is further outside the lower limit of the claim, Comparative Examples 11 and 12 are those Si is outside the upper and lower limits of the claim, Comparative Example 13, 14 is that B is outside the upper and lower limits of the claims, Comparative Example 13 is further Co is outside the upper limit of the claims, Comparative Example 15 is that Mo exceeds the upper limit of the claims, Comparative Example 16 is W and Mo In Comparative Examples 17 to 23, Ni, Mn, Cu, Al, Ti, Nb, and C exceeded the upper limit of the claims. In Comparative Examples 6 and 7, the age-curing property did not satisfy the target, and in Comparative Examples 8 to 23, the impact value or hardness did not satisfy the target value.
これに対して本発明合金である実施例1〜20は表1からも明らかなように、衝撃値、硬さ、時効硬化性の全てを満足していた。これにより、本発明合金は、耐摩耗性と高靭性を有し、かつ時効硬化性を備えていることから、高温環境でさらに耐摩耗性が向上する。 On the other hand, as is clear from Table 1, Examples 1 to 20 which are the alloys of the present invention satisfied all of the impact value, hardness and age-hardening properties. As a result, the alloy of the present invention has wear resistance and high toughness, and has age-hardening properties, so that the wear resistance is further improved in a high temperature environment.
以上、述べたように、本発明による耐摩耗性に優れた表面硬化用として好適である時効硬化性Co基合金は、特に高い靭性を有しているので、耐衝撃特性が必要な部材やオーステナイト系ステンレス鋼のように熱膨張率の大きい部材への表面硬化用合金として適用が有効で、あわせて耐摩耗性を有し、さらに時効硬化するため、広範な用途に適用できる。 As described above, the age-hardenable Co-based alloy that is suitable for surface hardening with excellent wear resistance according to the present invention has particularly high toughness, and therefore, a member or austenite that requires impact resistance characteristics. It is effective as a surface hardening alloy for members with a large coefficient of thermal expansion, such as stainless steel, and is wear resistant and age hardened, so it can be applied to a wide range of applications.
本発明合金は、火力発電用ボイラチューブの過熱器・再熱器に限らず、エンジンバルブの表面硬化などにも適応することができる。 The alloy of the present invention can be applied not only to a superheater / reheater of a boiler tube for thermal power generation but also to surface hardening of an engine valve.
また、本発明合金は、肉盛溶接、溶射等の各種表面改質プロセスやHIPなどの焼結に適応することにより、さらに幅広い用途に活用できるものである。 The alloy of the present invention can be used for a wider range of applications by adapting to various surface modification processes such as overlay welding and thermal spraying and sintering of HIP and the like.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011200151A JP5727903B2 (en) | 2011-09-14 | 2011-09-14 | Co-base alloy for surface hardening |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011200151A JP5727903B2 (en) | 2011-09-14 | 2011-09-14 | Co-base alloy for surface hardening |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013060633A JP2013060633A (en) | 2013-04-04 |
JP5727903B2 true JP5727903B2 (en) | 2015-06-03 |
Family
ID=48185542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011200151A Active JP5727903B2 (en) | 2011-09-14 | 2011-09-14 | Co-base alloy for surface hardening |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5727903B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5676808B1 (en) * | 2014-06-25 | 2015-02-25 | 電源開発株式会社 | Co-base alloy for welding, filler metal and overlay metal parts |
CN104372205B (en) * | 2014-10-29 | 2016-09-07 | 沈阳黎明航空发动机(集团)有限责任公司 | The CoCrW based high-temperature alloy powder of engine turbine outer shroud wear-resistant coating and preparation method |
CN107398653A (en) * | 2017-08-19 | 2017-11-28 | 安徽鼎恒再制造产业技术研究院有限公司 | A kind of valve built-up welding continuous casting casting rod and its welding procedure |
CN107414336A (en) * | 2017-08-19 | 2017-12-01 | 安徽鼎恒再制造产业技术研究院有限公司 | Gate valve built-up welding continuous casting casting rod and its welding procedure in high temperature corrosion medium |
CN116497259B (en) * | 2023-05-11 | 2024-04-19 | 大连理工大学 | Preparation method of high-entropy bulk nanocrystalline magnetically soft alloy |
JP7460980B1 (en) | 2023-12-01 | 2024-04-03 | 兵庫県 | Cobalt-based alloy |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5550449A (en) * | 1978-10-03 | 1980-04-12 | Boc Ltd | Surfacing or welding alloy or consumable material |
JPS57174431A (en) * | 1980-12-22 | 1982-10-27 | Ebara Corp | Filling material for preventing crevice corrosion of austenite stainless steel |
JPS6152340A (en) * | 1984-08-20 | 1986-03-15 | Daido Steel Co Ltd | Wear and corrosion resistant alloy |
JPS62136544A (en) * | 1985-12-06 | 1987-06-19 | Kubota Ltd | Alloy for electrically conductive roll for electroplating |
JPS62164844A (en) * | 1986-01-13 | 1987-07-21 | Mitsubishi Metal Corp | Co-base alloy for engine valve and engine valve seat |
JPH03146297A (en) * | 1989-11-02 | 1991-06-21 | Kubota Corp | Composite member for cavitation resistance and earth and sand wear resistance |
JPH0428839A (en) * | 1990-05-25 | 1992-01-31 | Hitachi Metals Ltd | Cylinder for molding machine and its manufacture |
JP3285055B2 (en) * | 1993-09-07 | 2002-05-27 | 日立金属株式会社 | Molding machine cylinder and method of manufacturing the same |
JP2007131937A (en) * | 2005-11-14 | 2007-05-31 | Mitsubishi Materials Corp | Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER |
-
2011
- 2011-09-14 JP JP2011200151A patent/JP5727903B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013060633A (en) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101843070B1 (en) | Engine valve coated with ni-fe-cr-based alloy | |
US9080230B2 (en) | Steel alloy for ferritic steel having excellent creep strength and oxidation resistance at elevated usage temperatures | |
JP5727903B2 (en) | Co-base alloy for surface hardening | |
JP5742447B2 (en) | High hardness overlaying alloy powder | |
US20130221261A1 (en) | Wear-resistant cobalt-based alloy and engine valve coated with same | |
CN105624469B (en) | Ultra-supercritical boiler nickel base superalloy and its preparation method and application | |
US9206715B2 (en) | High-toughness cobalt-based alloy and engine valve coated with same | |
JP5216839B2 (en) | Ni-base heat-resistant alloy, gas turbine member, and turbine with excellent segregation characteristics | |
JP5755819B2 (en) | Ni-Cr-Co alloy with high-temperature corrosion resistance and surface-modified poppet valve using the same | |
JP2011162803A (en) | Powder alloy for build-up thermal spraying having excellent wear resistance and high temperature corrosion resistance | |
KR101542447B1 (en) | Engine valve | |
JP3853322B2 (en) | Powder composite material for thermal spraying, thermal spray coating member and method for producing the member | |
TWI785246B (en) | Ni-Fe-based alloy powder and method for producing alloy film using the Ni-Fe-based alloy powder | |
JP2008115444A (en) | HEAT RESISTANT Cr-BASED ALLOY HAVING HIGH HARDNESS FOR SURFACE HARDENING | |
JP2024094761A (en) | Ni-based self-fluxing alloy | |
CN117127077A (en) | Wear and corrosion resistant alloy composition | |
JPH08157991A (en) | Hydrochloric acid corrosion resisting alloy for surface hardening | |
TW201224165A (en) | Cobalt-based alloy with improved high temperature property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150403 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5727903 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |