JP2007131937A - Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER - Google Patents

Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER Download PDF

Info

Publication number
JP2007131937A
JP2007131937A JP2005328784A JP2005328784A JP2007131937A JP 2007131937 A JP2007131937 A JP 2007131937A JP 2005328784 A JP2005328784 A JP 2005328784A JP 2005328784 A JP2005328784 A JP 2005328784A JP 2007131937 A JP2007131937 A JP 2007131937A
Authority
JP
Japan
Prior art keywords
lead
thermal spraying
alloy powder
based alloy
free soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005328784A
Other languages
Japanese (ja)
Inventor
Katsuo Sugawara
克生 菅原
Akira Mihashi
章 三橋
Sadao Saito
定雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005328784A priority Critical patent/JP2007131937A/en
Publication of JP2007131937A publication Critical patent/JP2007131937A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Molten Solder (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Co alloy powder for thermal spraying intended for forming a Co alloy-sprayed layer which is excellent in resistance to corrosion by lead-free solder, especially lead-free Sn-Ag solder in a molten state. <P>SOLUTION: The Co alloy powder for thermal spraying has a composition which contains 20.0-35.0% Cr, 0.1-40.0% Fe, 0.05-1.20% C, 0.5-2.0% Mn, 0.1-3.0% Si, 0.001-0.3% B and, if required, at least one chosen from (a) 3.0-15.0% W, (b) at least one chosen from 0.01-0.15% La and 0.01-0.15% Ce and (c) 0.001-0.05% Mg and the balance being Co and unavoidable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、溶融鉛フリーはんだ、特に溶融状態のSn−Ag系はんだに対する耐侵食性に優れたCo基合金溶射層を得ることができる溶射用Co基合金粉末に関するものであり、さらにその溶射用Co基合金粉末を溶射して得られたCo基合金溶射層を有する鉛フリーはんだ付け装置用複合部材に関するものであり、さらに前記複合部材からなる鉛フリーはんだ付け装置におけるはんだ槽、ノズル、プロペラ、シャフトなどの鉛フリーはんだ付け装置用部品に関するものである。   The present invention relates to a Co-based alloy powder for thermal spraying capable of obtaining a Co-based alloy sprayed layer excellent in erosion resistance against molten lead-free solder, in particular, a Sn-Ag solder in a molten state. The present invention relates to a composite member for a lead-free soldering device having a Co-based alloy sprayed layer obtained by spraying a Co-based alloy powder, and further a solder bath, a nozzle, a propeller in the lead-free soldering device comprising the composite member, The present invention relates to a lead-free soldering device component such as a shaft.

一般に、鉛はんだ付け装置の材料としてSUS304(Cr:18〜20質量%、Ni:8〜10.5質量%、残部:Feおよび不可避不純物)、SUS309S(Cr:22〜24質量%、Ni:12〜15質量%、残部:Feおよび不可避不純物)、SUS316(Cr:16〜18質量%、Ni:10〜14質量%、Mo:2〜3質量%、残部:Feおよび不可避不純物)などのステンレス鋼が使用されていた。
近年、環境問題に関する関心が高まり、例えば、ヨーロッパでは電子機器などへの有害物質の含有を規制することが決定されている。その規制物質の1つとして鉛が取り上げられている。そのために鉛を主成分とする鉛はんだの使用が規制され、鉛を全く使用しないSn−Ag系の鉛フリーはんだ(鉛フリーはんだであるSn−Ag系はんだの組成としてSn−3.5%Ag、Sn−3.0%Ag−0.1%Cuなどが知られている)が開発され、従来の鉛はんだとの置き換えが進みつつある。したがって、現在では鉛フリーはんだと言えば前記Sn−Ag系はんだを一般に示している。
ところが、鉛フリーはんだである前記Sn−Ag系はんだは、従来の鉛はんだに比べて反応性が高くかつ溶融温度が高く、そのために従来から使用されているSUS304、SUS309S、SUS316などのステンレス鋼で作製したはんだ付け装置では溶融鉛フリーはんだに対する侵食に耐えられず、したがって、従来のステンレス鋼で作製したはんだ付け装置では損傷して短期間で使用寿命に至り、早期にはんだ付け装置の交換を余儀なくされることが明らかとなってきた。
Generally, SUS304 (Cr: 18 to 20% by mass, Ni: 8 to 10.5% by mass, balance: Fe and inevitable impurities), SUS309S (Cr: 22 to 24% by mass, Ni: 12) as a material for the lead soldering apparatus SUS316 (Cr: 16-18 mass%, Ni: 10-14 mass%, Mo: 2-3 mass%, balance: Fe and inevitable impurities), etc. Was used.
In recent years, interest in environmental issues has increased, and in Europe, for example, it has been decided to regulate the inclusion of harmful substances in electronic devices. Lead is one of the regulated substances. Therefore, the use of lead solder containing lead as a main component is regulated, and Sn-Ag lead-free solder that does not use lead at all (Sn-3.5% Ag as the composition of Sn-Ag solder that is lead-free solder). Sn-3.0% Ag-0.1% Cu etc. are known) and replacement with conventional lead solder is progressing. Therefore, at present, the Sn-Ag solder is generally shown for lead-free solder.
However, the Sn-Ag solder, which is a lead-free solder, has a higher reactivity and a higher melting temperature than conventional lead solder, and is therefore made of stainless steel such as SUS304, SUS309S, and SUS316. The produced soldering device cannot withstand the erosion of molten lead-free solder. Therefore, the conventional soldering device made of stainless steel is damaged and reaches the service life in a short period of time, and the soldering device must be replaced early. It has become clear that

ここで、溶融鉛フリーはんだである溶融Sn−Ag系はんだによるステンレス鋼の侵食について説明する。一般に、ステンレス鋼の表面には不働態皮膜と呼ばれる酸化皮膜などの非反応性物質が形成されており、この酸化皮膜などの非反応性物質により溶融Sn−Ag系はんだが直接金属面に接することを防ぎ、損傷を免れている。しかし、使用中に溶融金属の対流などにより摩耗を受けて表面皮膜が消滅すると、溶融Sn−Ag系はんだとメタルが直接反応するようになり、損傷の原因となる。すなわち、融点の高いFe、Niなどの金属がその融点より低い温度で低融点のSnと反応すると、低融点金属であるSnが高融点金属であるFe、Niなどに固体内拡散し、Snと反応生成物を形成し、この反応生成物のSn含有量が高まるに従い、融点が下がり、最終的には溶融金属中に溶融して損傷の原因となる。
そのため、鉛フリーはんだに対するはんだ付け装置の損傷を少しでもやわらげるために、はんだ付け装置を構成するステンレス鋼表面をセラミックコーティングしたり、ステンレス鋼表面に窒化層を設けるなどして装置の溶融鉛フリーはんだに対する耐侵食性を改善しようとしている(非特許文献1、非特許文献2、非特許文献3、非特許文献4などを参照)。
NIKKEI ELECTRONICS 2003.9.1 第49〜52頁 NiKKEI ELECTRONICS 2004.1.5 第91〜98頁 NIKKEI ELECTRONICS 2004.2.2 第37頁 NIKKEI ELECTRONICS 2004.2.16 第35頁
Here, erosion of stainless steel by molten Sn-Ag solder that is molten lead-free solder will be described. In general, a non-reactive substance such as an oxide film called a passive film is formed on the surface of stainless steel, and the molten Sn-Ag solder contacts the metal surface directly by the non-reactive substance such as the oxide film. Prevent and avoid damage. However, when the surface film disappears due to convection of the molten metal during use, the molten Sn—Ag solder and the metal directly react with each other, causing damage. That is, when a metal such as Fe or Ni having a high melting point reacts with Sn having a low melting point at a temperature lower than the melting point, Sn, which is a low melting point metal, diffuses into the solid, such as Fe or Ni, which has a high melting point, and Sn and As the reaction product is formed and the Sn content of the reaction product increases, the melting point decreases and eventually melts into the molten metal causing damage.
Therefore, in order to alleviate the damage of the soldering device against lead-free solder, the molten lead-free solder of the device is coated by ceramic coating the surface of the stainless steel that constitutes the soldering device or by providing a nitride layer on the stainless steel surface. (See Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, etc.).
NIKKEI ELECTRONICS 2003.9.1 pages 49-52 NiKKEI ELECTRONICS 2004.1.5 pp. 91-98 NIKKEI ELECTRONICS 2004.2.2, page 37 NIKKEI ELECTRONICS 2004.2.16 page 35

しかし、セラミックコーティングでは、SUSなどのステンレス鋼基材に対する密着性が不十分であるために剥離することがあり、その剥離部分からステンレス鋼基材を侵食することがあるので信頼性がなく、また、SUSなどのステンレス鋼基材表面を窒化処理して得られた窒化層は鉛フリーはんだに対する耐侵食性が十分でなく、長期間使用すると窒化層が減肉し消滅し、その窒化層が消滅した部分からステンレス鋼基材が侵食されるようになるので鉛フリーはんだに対する耐侵食性が十分でないなどの課題があり、やはり耐侵食性に対する信頼性が十分ではなかった。そのために、セラミックコーティングまたは窒化処理などの表面処理よりも一層長期間溶融鉛フリーはんだに対する耐侵食性の高い表面処理方法が求められていた。   However, the ceramic coating may be peeled off due to insufficient adhesion to a stainless steel substrate such as SUS, and the stainless steel substrate may be eroded from the peeled portion. The nitrided layer obtained by nitriding the surface of stainless steel such as SUS is not sufficiently erosion resistant to lead-free solder, and when used for a long time, the nitrided layer loses its thickness and disappears, and the nitrided layer disappears Since the stainless steel base material is eroded from the damaged portion, there is a problem that the erosion resistance against lead-free solder is not sufficient, and the reliability with respect to the erosion resistance is still insufficient. Therefore, there has been a demand for a surface treatment method having a higher erosion resistance against molten lead-free solder for a longer period of time than a surface treatment such as ceramic coating or nitriding treatment.

そこで、本発明者は、セラミックコーティングまたは窒化処理などの表面処理よりも溶融鉛フリーはんだに対する耐侵食性の高い表面処理方法を開発すべく鋭意研究を行った。   Therefore, the present inventor has conducted intensive research to develop a surface treatment method having higher erosion resistance against molten lead-free solder than surface treatment such as ceramic coating or nitriding treatment.

その結果、CoのSnに対する固溶限がNiやFeよりも格段に小さいことに着目し、種々の添加元素を最適化することにより、溶融鉛フリーはんだに対する耐侵食性に優れたCr:20.0〜35.0%(%は質量%を示す。以下、同じ)、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらに必要に応じて下記の(a)〜(c)の内の1種または2種以上を含有し、残部がCoおよび不可避不純物からなる組成を有するCo基合金粉末をステンレス鋼の表面に溶射して得られたCo基合金溶射層は前記Co基合金粉末と成分組成が同じであり、このCo基合金溶射層は、溶融鉛フリーはんだに対する耐侵食性に極めて優れており、さらにステンレス鋼基材に対する密着性がセラミックコーティングに比べて格段に優れているので先に述べたようなセラミックコーティングの剥離による侵食を防止することができ、さらに窒化層に比べて溶融鉛フリーはんだに対する耐侵食性が一層優れており、しかも窒化層よりも厚くステンレス鋼基材表面に形成することができるので長期間使用しても耐侵食性に対する信頼性を損なうことはない、などの知見を得たのである。ただし、前記(a)〜(c)は、
(a)W:3.0〜15.0%、
(b)La:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種、
(c)Mg:0.001〜0.05%、である。
As a result, focusing on the fact that the solid solubility limit of Co to Sn is much smaller than that of Ni and Fe, and by optimizing various additive elements, Cr having excellent erosion resistance against molten lead-free solder: 20. 0 to 35.0% (% represents mass%, hereinafter the same), Fe: 0.1 to 40.0%, C: 0.05 to 1.20%, Mn: 0.5 to 2.0 %, Si: 0.1 to 3.0%, B: 0.001 to 0.3%, and if necessary, one or more of the following (a) to (c) The Co-based alloy sprayed layer obtained by spraying a Co-based alloy powder having a composition consisting of Co and unavoidable impurities on the surface of stainless steel has the same component composition as the Co-based alloy powder, This Co-based alloy sprayed layer is extremely excellent in erosion resistance against molten lead-free solder. The adhesion to the stainless steel substrate is much better than the ceramic coating, so it can prevent erosion due to the peeling of the ceramic coating as mentioned above, and more resistant to molten lead-free solder than the nitride layer. We obtained the knowledge that the erosion resistance is even better, and it can be formed on the surface of a stainless steel substrate thicker than the nitride layer, so that it does not impair the reliability of erosion resistance even if it is used for a long time. It is. However, said (a)-(c)
(A) W: 3.0 to 15.0%,
(B) one or two of La: 0.01 to 0.15% and Ce: 0.01 to 0.15%;
(C) Mg: 0.001 to 0.05%.

この発明は、かかる知見に基づいてなされたものであって、
(1)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(2)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(3)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(4)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(5)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(6)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(7)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(8)質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有する溶射用Co基合金粉末、
(9)前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載の成分組成を有する溶融鉛フリーはんだに対する耐侵食性に優れたCo基合金溶射層、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% Co-based alloy powder for thermal spraying containing Si: 0.1 to 3.0%, B: 0.001 to 0.3%, and the balance consisting of Co and inevitable impurities,
(2) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0%, with the balance being Co and inevitable impurities Co-based alloy powder for thermal spraying,
(3) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, and La: 0.01 to 0.15% and Ce: 0.01 to 0.15% A Co-based alloy powder for thermal spraying containing one or two of the following, with the balance being Co and inevitable impurities,
(4) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, further Mg: 0.001 to 0.05%, the balance consisting of Co and inevitable impurities Co-based alloy powder for thermal spraying,
(5) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0%, and La: 0.01 to 0. Co-based alloy powder for thermal spraying containing 15% and Ce: one or two of 0.01 to 0.15%, the balance being composed of Co and inevitable impurities,
(6) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0%, and Mg: 0.001 to 0. Co-based alloy powder for thermal spraying having a composition containing 05% and the balance consisting of Co and inevitable impurities,
(7) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, and La: 0.01 to 0.15% and Ce: 0.01 to 0.15% A Co-based alloy powder for thermal spraying, containing Mg: 0.001 to 0.05%, and the balance comprising Co and inevitable impurities,
(8) By mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0% , Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0%, and La: 0.01 to 0. 15% and Ce: containing one or two of 0.01 to 0.15%, further containing Mg: 0.001 to 0.05%, the balance consisting of Co and inevitable impurities Co-based alloy powder for thermal spraying,
(9) For erosion resistance to molten lead-free solder having the component composition described in (1), (2), (3), (4), (5), (6), (7) or (8) It is characterized by an excellent Co-based alloy sprayed layer.

この発明の前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載の成分組成を有する溶射用Co基合金粉末を溶射して得られたCo基合金溶射層は溶融鉛フリーはんだに対する耐侵食性に優れており、このCo基合金溶射層をステンレス鋼などの基材に形成して得られた複合部材は鉛フリーはんだ付け装置の部材として有効であり、この複合部材は鉛フリーはんだ付け装置におけるはんだ槽、噴射ノズル、プロペラ、シャフト、ダクト、ヒーター保護管、ヒーター被覆管など鉛フリーはんだ付け装置の各種構成部品の部材として有効である。したがって、この発明は、
(10)前記(9)記載の溶融鉛フリーはんだに対する耐侵食性に優れたCo基合金溶射層を基材に形成した鉛フリーはんだ付け装置用複合部材、
(11)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用はんだ槽、
(12)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用噴射ノズル、
(13)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用プロペラ、
(14)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用シャフト、
(15)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用ダクト、
(16)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用ヒーター保護管、
(17)前記(10)記載の鉛フリーはんだ付け装置用複合部材からなる鉛フリーはんだ付け装置用ヒーター被覆管、に特徴を有するものである。
Thermally spraying a Co-based alloy powder for thermal spraying having the component composition described in (1), (2), (3), (4), (5), (6), (7) or (8) of this invention. The resulting Co-based alloy sprayed layer is excellent in corrosion resistance against molten lead-free solder, and composite materials obtained by forming this Co-based alloy sprayed layer on a substrate such as stainless steel are lead-free soldered. This composite member is effective as a member of equipment, and as a member of various components of lead-free soldering equipment such as solder tanks, injection nozzles, propellers, shafts, ducts, heater protection tubes, and heater cladding tubes in lead-free soldering equipment. It is valid. Therefore, the present invention
(10) A composite member for a lead-free soldering device in which a Co-based alloy sprayed layer having excellent erosion resistance against the molten lead-free solder described in (9) is formed on a base material,
(11) A solder bath for a lead-free soldering device comprising the composite member for a lead-free soldering device according to (10),
(12) An injection nozzle for a lead-free soldering device comprising the composite member for a lead-free soldering device according to (10),
(13) A propeller for a lead-free soldering device comprising the composite member for a lead-free soldering device according to (10),
(14) A shaft for a lead-free soldering device comprising the composite member for a lead-free soldering device according to (10),
(15) A lead-free soldering device duct comprising the composite member for a lead-free soldering device according to (10),
(16) A heater protective tube for a lead-free soldering device comprising the composite member for a lead-free soldering device according to (10),
(17) A heater-coated tube for a lead-free soldering device comprising the composite member for a lead-free soldering device according to (10).

次に、この発明の溶射用Co基合金粉末およびCo基合金溶射層の合金組成における各元素の限定理由について詳述する。
Cr:
Crは、表面に濃縮して薄くて緻密なCrを主体とする不働態被膜を形成することにより、溶融鉛フリーはんだである溶融Sn−Ag系はんだが直接Co基合金溶射層と接して反応してしまうことを阻害する効果があるが、Crを20.0%未満含有しても所望の効果が得られず、一方、35.0%を超えて含有すると溶射層の基材への密着力が低下して好ましくない。従って、この発明の溶射用Co基合金粉末およびCo基合金溶射層に含まれるCrは20.0〜35.0%に定めた。一層好ましくは、21.0〜25.0%である。
Next, the reason for limitation of each element in the alloy composition of the Co-based alloy powder for thermal spraying and the Co-based alloy sprayed layer according to the present invention will be described in detail.
Cr:
Cr is concentrated on the surface to form a thin and dense passive film mainly composed of Cr 2 O 3 , so that the molten Sn-Ag solder, which is a molten lead-free solder, directly contacts the Co-based alloy sprayed layer. However, if Cr is contained in an amount of less than 20.0%, a desired effect cannot be obtained. This is not preferable because the adhesive strength of the resin is reduced. Therefore, Cr contained in the Co-based alloy powder for thermal spraying and the Co-based alloy sprayed layer of the present invention was set to 20.0 to 35.0%. More preferably, it is 21.0-25.0%.

Fe:
Feは、溶射層と基材との密着性を向上させる効果があるので添加するが、Feは0.1%未満含有しても所望の効果が得られず、一方、40.0%を超えて含有すると鉛フリーはんだに対する耐侵食性が劣化するので好ましくない。したがって、Feの含有量を0.1〜40.0%とした。一層好ましくは、1〜20%である。
Fe:
Fe is added because it has the effect of improving the adhesion between the sprayed layer and the substrate. However, even if Fe is contained in an amount of less than 0.1%, the desired effect cannot be obtained, whereas it exceeds 40.0%. If contained, the corrosion resistance against lead-free solder deteriorates, which is not preferable. Therefore, the content of Fe is set to 0.1 to 40.0%. More preferably, it is 1 to 20%.

C:
Cは同時に含有するCrと共に硬化相であるCrカーバイドを形成し、これを素地中に微細に分散させることで耐摩耗性を著しく向上させ、流動する溶融鉛フリーはんだに対する耐侵食性を著しく向上させる作用があるが、Cは0.05%未満を含有しても所望の効果が得られず、一方、1.20%を越えて含有すると、溶射層が脆化し、使用中の振動等により剥離し易くなるので好ましくない。したがって、Cの含有量を0.05〜1.20%に定めた。一層好ましい範囲は0.06〜0.2%である。
C:
C forms Cr carbide, which is a hardened phase, together with Cr contained at the same time, and finely disperses this in the substrate to significantly improve the wear resistance and remarkably improve the erosion resistance against the flowing molten lead-free solder. Although the desired effect is not obtained even if C is contained less than 0.05%, on the other hand, if it exceeds 1.20%, the sprayed layer becomes brittle and peels due to vibration during use. Since it becomes easy to do, it is not preferable. Therefore, the content of C is set to 0.05 to 1.20%. A more preferable range is 0.06 to 0.2%.

Mn:
Mnは、母相の結晶構造であるオーステナイト構造を安定化させることにより、溶射層の脆化を抑制し、その結果、基材との密着性を高める作用があるが、Mnが0.5%未満含有しても所望の効果が得られず、一方、2.0%を超えて含有すると鉛フリーはんだとの濡れ性を高め、溶融鉛フリーハンダとの反応を促進することとなり、損傷を加速するので好ましくない。したがって、Mnの含有量を0.5〜2.0%(一層好ましくは、0.5〜1.5%)とした。
Mn:
Mn stabilizes the austenite structure which is the crystal structure of the parent phase, thereby suppressing the embrittlement of the sprayed layer and, as a result, has an effect of improving the adhesion to the base material. If less than 2.0%, the desired effect cannot be obtained. On the other hand, if it exceeds 2.0%, the wettability with lead-free solder is increased and the reaction with molten lead-free solder is promoted, thereby accelerating damage. This is not preferable. Therefore, the Mn content is set to 0.5 to 2.0% (more preferably 0.5 to 1.5%).

Si:
Siは酸素との親和性が高いために表面にSiOを形成し、Crと共に溶融鉛フリーはんだであるSn−Ag合金が直接金属と接して反応してしまうことを阻害する効果があるが、Siを0.1%未満含有しても所望の効果が得られず、一方、3.0%を越えて含有すると、合金の脆化が顕在化し、基材との密着性が低下するので好ましくない。したがって、Siの含有量を0.1〜3.0%に定めた。一層好ましい範囲は0.5〜2.0%である。
Si:
Since Si has a high affinity with oxygen, SiO 2 is formed on the surface, and the Sn—Ag alloy, which is a molten lead-free solder, together with Cr 2 O 3 has an effect of inhibiting the direct contact with the metal and reacting. However, even if Si is contained in less than 0.1%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, embrittlement of the alloy becomes obvious, and the adhesion to the substrate decreases. This is not preferable. Therefore, the Si content is set to 0.1 to 3.0%. A more preferable range is 0.5 to 2.0%.

B:
Bは溶射層の靭性および基材との密着性を向上させる効果があるので添加するが、その含有量が0.001%未満では所望の効果が得られず、一方、0.5%を越えて含有すると、逆に溶射層の靭性および基材との密着性が低下するようになるので好ましくない。したがって、Bの含有量を0.001〜0.5%に定めた。一層好ましい範囲は0.01〜0.2%である。
B:
B is added because it has the effect of improving the toughness of the sprayed layer and the adhesion to the substrate, but if its content is less than 0.001%, the desired effect cannot be obtained, while it exceeds 0.5%. On the other hand, the toughness of the sprayed layer and the adhesion to the base material are lowered, which is not preferable. Therefore, the content of B is set to 0.001 to 0.5%. A more preferable range is 0.01 to 0.2%.

W:
Wは、CとWCを形成することにより耐摩耗性が向上し、溶融鉛フリーはんだによる損傷を抑制する効果があるため、必要に応じて添加されるが、Wを3.0%未満添加しても所望の効果が得られず、一方、15.0%を越えて含有するとCrの効果を著しく損ない、結果的に鉛フリーはんだに対する耐侵食性が低下するようになるので好ましくない。したがって、Wの含有量を3.0〜15.0%に定めた。一層好ましい範囲は13.0〜15.0%である。
W:
W is added as needed because it improves the wear resistance by forming C and WC and has the effect of suppressing damage caused by molten lead-free solder. However, W is added in an amount of less than 3.0%. However, the desired effect cannot be obtained. On the other hand, if the content exceeds 15.0%, the effect of Cr is remarkably impaired, and as a result, the erosion resistance against lead-free solder is lowered. Therefore, the content of W is set to 3.0 to 15.0%. A more preferable range is 13.0 to 15.0%.

LaおよびCe:
これら成分は、微量に添加することにより、溶融鉛フリーはんだ中で形成される表面皮膜の密着性を向上させることにより溶融鉛フリーはんだに対する耐侵食性を向上させる効果があるところから、必要に応じて添加される。しかし、Laの含有量が0.01%未満では所望の効果が得られず、一方、0.15%を越えて含有すると、逆に表面皮膜は剥離し易くなり、有害となるので好ましくない。したがって、Laの含有量を0.01〜0.15%に定めた。Laの含有量の一層好ましい範囲は0.05〜0.12%である。
同様に、Ceの含有量が0.01%未満では表面皮膜の密着性を向上させるに十分な効果が得られず、一方、0.15%を越えて含有すると、逆に表面皮膜は剥離し易くなり、有害となるので好ましくない。したがって、Ceの含有量を0.01〜0.15%に定めた。Ceの含有量の一層好ましい範囲は0.05〜0.12%である。
La and Ce:
These components can be added in trace amounts to improve the erosion resistance of molten lead-free solder by improving the adhesion of the surface film formed in the molten lead-free solder. Added. However, if the content of La is less than 0.01%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.15%, the surface film tends to peel off and becomes harmful, which is not preferable. Therefore, the content of La is set to 0.01 to 0.15%. A more preferable range of the La content is 0.05 to 0.12%.
Similarly, if the Ce content is less than 0.01%, a sufficient effect for improving the adhesion of the surface film cannot be obtained. On the other hand, if the Ce content exceeds 0.15%, the surface film peels off. Since it becomes easy and harmful, it is not preferable. Therefore, the Ce content is determined to be 0.01 to 0.15%. A more preferable range of the Ce content is 0.05 to 0.12%.

Mg:
MgはMnと共存させることにより母相の結晶構造であるオーステナイト構造を安定化させ、それにより脆化を抑制し、溶射層の靭性を付与することで基材との密着性を向上させる効果があるので必要に応じて添加するが、Mgの含有量が0.001%未満では所望の効果が発揮されず、一方、0.05%を超えて含有すると、逆に相安定性を劣化させ鉛フリーはんだ中での耐侵食性を劣化させてしまうので好ましくない。したがって、Mgの含有量を0.001〜0.05%(一層好ましくは、0.002%〜0.010%)とした。
Mg:
When Mg coexists with Mn, it stabilizes the austenite structure which is the crystal structure of the parent phase, thereby suppressing embrittlement and imparting the toughness of the sprayed layer, thereby improving the adhesion to the substrate. However, if the Mg content is less than 0.001%, the desired effect is not exhibited. On the other hand, if the Mg content exceeds 0.05%, lead stability is deteriorated and lead is deteriorated. Since erosion resistance in free solder is deteriorated, it is not preferable. Therefore, the Mg content is set to 0.001 to 0.05% (more preferably 0.002% to 0.010%).

不可避不純物:
不可避不純物としてはPやSなどが挙げられるが、これら不純物は、できるだけ低減されることが好ましい。また、Co原料の不純物やスクラップ原料を使用する際にNiを含有してしまうが、5%未満の含有であれば許容される。
Inevitable impurities:
Inevitable impurities include P and S. These impurities are preferably reduced as much as possible. Further, Ni is contained when using Co raw material impurities and scrap raw materials, but it is acceptable if the content is less than 5%.

この発明の溶射用Co基合金粉末溶射して得られた溶射層は、鉛フリーはんだに対する耐侵食性に優れており、さらに基材に対する密着性が優れているので、鉛フリーはんだ付け装置を長期間損傷することなく使用することができ、電子・電気産業上優れた効果をもたらすものである。   The thermal spray layer obtained by thermal spraying the Co-based alloy powder for thermal spraying according to the present invention is excellent in erosion resistance against lead-free solder and has excellent adhesion to the base material. It can be used without being damaged for a long period of time, and has excellent effects on the electronic and electrical industries.

通常の高周波溶解炉を用いて溶解し鋳造して得られたCo基合金溶湯を通常のガスアトマイズ法により粉末化することにより表1〜4に示される成分組成を有し平均粒径:40〜100μmの範囲内の本発明溶射用Co基合金粉末(以下、本発明溶射用粉末という)1〜32および比較本発明溶射用Co基合金粉末(以下、比較溶射用粉末という)1〜17を作製し用意した。
さらに、市販のアルミナからなる溶射用セラミックス粉末を購入し従来溶射用粉末として用意した。
さらに、SUS304からなる厚さ:3mmのステンレス鋼板を用意し、このステンレス鋼板の表面をアルミナグリッド#20でブラスすることにより前処理し、この前処理したステンレス鋼板を縦:5mm、横:50mmの寸法を有するように切断してステンレス鋼基板を作製し用意した。
さらに、鉛フリーはんだの基本組成として知られているSn−3.2%Ag−0.1%Cuの組成の鉛フリーはんだを用意した。
A Co-based alloy melt obtained by melting and casting using a normal high-frequency melting furnace is pulverized by a normal gas atomizing method to have the component composition shown in Tables 1 to 4 and an average particle size of 40 to 100 μm. The Co-based alloy powders for thermal spraying of the present invention (hereinafter referred to as powders for thermal spraying) 1 to 32 and the Co-based alloy powders for thermal spraying of comparative inventions (hereinafter referred to as powders for comparative thermal spraying) 1 to 17 are prepared. Prepared.
Further, a ceramic powder for thermal spraying made of commercially available alumina was purchased and prepared as a conventional thermal spraying powder.
Further, a stainless steel plate having a thickness of 3 mm made of SUS304 is prepared, and the surface of the stainless steel plate is pretreated by blasting with alumina grid # 20. The pretreated stainless steel plate is 5 mm in length and 50 mm in width. A stainless steel substrate was prepared by cutting so as to have dimensions.
Furthermore, a lead-free solder having a composition of Sn-3.2% Ag-0.1% Cu, which is known as a basic composition of lead-free solder, was prepared.

先に用意した本発明溶射用粉末1〜32、比較溶射用粉末1〜17および従来溶射用粉末を用い、通常のプラズマ溶射法により先に用意したステンレス鋼基板の表面に厚さ:0.4mmの溶射層を形成し、複合板を作製した。   The present invention thermal spraying powders 1 to 32, comparative thermal spraying powders 1 to 17 and the conventional thermal spraying powder are prepared on the surface of the stainless steel substrate previously prepared by the usual plasma spraying method: 0.4 mm A thermal spray layer was formed to prepare a composite plate.

さらに、Sn−3.2%Ag−0.1%Cuの組成の鉛フリーはんだを430℃に加熱しこの温度に保持することにより溶融鉛フリーはんだを作製した。この溶融鉛フリーはんだを撹拌翼により対流させ、この対流している溶融鉛フリーはんだに複合板を浸漬し、1000時間保持した。1000時間保持後、複合板を取り出し、外部観察することにより溶射層剥離の有無を観察してその結果を表1〜4に示し、さらに溶射層剥離の無い複合板の表面を光学顕微鏡観察することにより最大侵食深さを測定し、その結果を表1〜4に示し、溶融鉛フリーはんだに対する耐侵食性を評価した。 Further, a lead-free solder having a composition of Sn-3.2% Ag-0.1% Cu was heated to 430 ° C. and maintained at this temperature to produce a molten lead-free solder. The molten lead-free solder was convected by a stirring blade, and the composite plate was immersed in the convected molten lead-free solder and held for 1000 hours. After holding for 1000 hours, the composite plate is taken out and externally observed to observe the presence or absence of thermal spray layer peeling. The results are shown in Tables 1 to 4, and the surface of the composite plate without thermal spray layer peeling is observed with an optical microscope. The maximum erosion depth was measured, and the results are shown in Tables 1 to 4, and the erosion resistance against molten lead-free solder was evaluated.

Figure 2007131937
Figure 2007131937

Figure 2007131937
Figure 2007131937

Figure 2007131937
Figure 2007131937

Figure 2007131937
Figure 2007131937

表1〜4に示された結果から、
(イ)従来溶射用粉末を用いて作製したセラミックス溶射層は対流している溶融鉛フリーはんだ中に長時間浸漬すると剥離するが、本発明溶射用粉末1〜32を用いて作製した溶射層は剥離することがなく、ステンレス鋼基板に対する密着性が格段に優れている、
(ロ)本発明溶射用粉末1〜32を用いて作製した溶射層は剥離することがなく最大侵食深さは小さいが、この発明の範囲を外れた比較溶射用粉末1〜17で作製した溶射層は剥離するものがあり、剥離しない場合でも最大侵食深さが格段に大きくなって耐浸食性に対する信頼性が低い、ことが分かる。
なお、実施例では溶射層について試験したが、この発明の溶射用Co基合金粉末を用いて形成した肉盛り層についても同じような結果が得られた。
From the results shown in Tables 1-4,
(B) A ceramic sprayed layer produced using a conventional thermal spraying powder peels off when immersed in a convection molten lead-free solder for a long time, but a thermal sprayed layer produced using the present thermal spraying powders 1 to 32 is There is no exfoliation and the adhesion to the stainless steel substrate is remarkably excellent.
(B) The thermal spray layer produced using the thermal spraying powders 1 to 32 of the present invention does not peel and the maximum erosion depth is small, but the thermal spraying produced by the comparative thermal spraying powders 1 to 17 outside the scope of the present invention. It can be seen that some of the layers peel off, and even when they do not peel off, the maximum erosion depth is remarkably increased and the reliability against erosion resistance is low.
In addition, although tested about the sprayed layer in the Example, the same result was obtained also about the build-up layer formed using the Co-based alloy powder for thermal spraying of this invention.

Claims (17)

質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: A Co-based alloy powder for thermal spraying comprising 0.1 to 3.0%, B: 0.001 to 0.3%, and the balance being composed of Co and inevitable impurities. 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: It contains 0.1 to 3.0%, B: 0.001 to 0.3%, further contains W: 3.0 to 15.0%, and the balance is composed of Co and inevitable impurities. Co-based alloy powder for thermal spraying characterized by 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: Contains 0.1 to 3.0%, B: 0.001 to 0.3%, and La: 0.01 to 0.15% and Ce: 0.01 to 0.15% Alternatively, a Co-based alloy powder for thermal spraying, which contains two types and the balance is composed of Co and inevitable impurities. 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: It contains 0.1 to 3.0%, B: 0.001 to 0.3%, further contains Mg: 0.001 to 0.05%, and the balance is composed of Co and inevitable impurities. Co-based alloy powder for thermal spraying characterized by 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0% further, La: 0.01 to 0.15% and Ce: Co-based alloy powder for thermal spraying, characterized in that it contains one or two of 0.01 to 0.15%, and the balance is composed of Co and inevitable impurities. 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0%, Mg: 0.001 to 0.05% A Co-based alloy powder for thermal spraying, characterized in that it has a composition comprising Co and inevitable impurities. 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: Contains 0.1 to 3.0%, B: 0.001 to 0.3%, and La: 0.01 to 0.15% and Ce: 0.01 to 0.15% Alternatively, a Co-based alloy powder for thermal spraying, characterized in that it contains two types, further contains Mg: 0.001 to 0.05%, and the balance is composed of Co and inevitable impurities. 質量%で、Cr:20.0〜35.0%、Fe:0.1〜40.0%、C:0.05〜1.20%、Mn:0.5〜2.0%、Si:0.1〜3.0%、B:0.001〜0.3%を含有し、さらにW:3.0〜15.0%を含有し、さらにLa:0.01〜0.15%およびCe:0.01〜0.15%の内の1種または2種を含有し、さらにMg:0.001〜0.05%を含有し、残部がCoおよび不可避不純物からなる組成を有することを特徴とする溶射用Co基合金粉末。 In mass%, Cr: 20.0-35.0%, Fe: 0.1-40.0%, C: 0.05-1.20%, Mn: 0.5-2.0%, Si: 0.1 to 3.0%, B: 0.001 to 0.3%, W: 3.0 to 15.0% further, La: 0.01 to 0.15% and Ce: containing one or two of 0.01 to 0.15%, further containing Mg: 0.001 to 0.05%, the balance having a composition consisting of Co and inevitable impurities Characteristic Co-based alloy powder for thermal spraying. 請求項1、2、3、4、5、6、7または8記載の成分組成を有する溶融鉛フリーはんだに対する耐侵食性に優れたCo基合金溶射層。 A Co-based alloy sprayed layer having excellent erosion resistance against molten lead-free solder having the composition according to claim 1, 2, 3, 4, 5, 6, 7, or 8. 請求項9記載の溶融鉛フリーはんだに対する耐侵食性に優れたCo基合金溶射層を基材に形成したことを特徴とする鉛フリーはんだ付け装置用複合部材。 A composite member for a lead-free soldering apparatus, wherein a Co-based alloy sprayed layer having excellent erosion resistance against molten lead-free solder according to claim 9 is formed on a base material. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用はんだ槽。 A solder bath for a lead-free soldering apparatus, comprising the composite member for a lead-free soldering apparatus according to claim 10. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用噴射ノズル。 An injection nozzle for a lead-free soldering device, comprising the composite member for a lead-free soldering device according to claim 10. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用プロペラ。 A propeller for a lead-free soldering device comprising the composite member for a lead-free soldering device according to claim 10. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用シャフト。 A shaft for a lead-free soldering device, comprising the composite member for a lead-free soldering device according to claim 10. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用ダクト。 A lead-free soldering device duct comprising the composite member for a lead-free soldering device according to claim 10. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用ヒーター保護管。 A heater protective tube for a lead-free soldering device, comprising the composite member for a lead-free soldering device according to claim 10. 請求項10記載の鉛フリーはんだ付け装置用複合部材からなることを特徴とする鉛フリーはんだ付け装置用ヒーター被覆管。
A heater-coated tube for a lead-free soldering device, comprising the composite member for a lead-free soldering device according to claim 10.
JP2005328784A 2005-11-14 2005-11-14 Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER Withdrawn JP2007131937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328784A JP2007131937A (en) 2005-11-14 2005-11-14 Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328784A JP2007131937A (en) 2005-11-14 2005-11-14 Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER

Publications (1)

Publication Number Publication Date
JP2007131937A true JP2007131937A (en) 2007-05-31

Family

ID=38153830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328784A Withdrawn JP2007131937A (en) 2005-11-14 2005-11-14 Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER

Country Status (1)

Country Link
JP (1) JP2007131937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060633A (en) * 2011-09-14 2013-04-04 Fukuda Metal Foil & Powder Co Ltd Co-BASED ALLOY FOR SURFACE HARDENING
CN106756729A (en) * 2016-12-10 2017-05-31 湘潭大学 A kind of FeB/Co liquid zinc corrosion resistants wear-proof metal ceramic coating and preparation method
CN108359913A (en) * 2018-02-08 2018-08-03 盐城市鑫洋电热材料有限公司 A kind of ferromanganese chromium low-carbon alloy and preparation method thereof
CN109338163A (en) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 Cobalt base superalloy powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060633A (en) * 2011-09-14 2013-04-04 Fukuda Metal Foil & Powder Co Ltd Co-BASED ALLOY FOR SURFACE HARDENING
CN106756729A (en) * 2016-12-10 2017-05-31 湘潭大学 A kind of FeB/Co liquid zinc corrosion resistants wear-proof metal ceramic coating and preparation method
CN108359913A (en) * 2018-02-08 2018-08-03 盐城市鑫洋电热材料有限公司 A kind of ferromanganese chromium low-carbon alloy and preparation method thereof
CN109338163A (en) * 2018-12-24 2019-02-15 南通金源智能技术有限公司 Cobalt base superalloy powder

Similar Documents

Publication Publication Date Title
CN103429773A (en) Ni-fe-cr-based alloy and engine valve coated with same
WO2012128356A1 (en) Lead-free solder alloy
JP2007196289A (en) Lead-free metallic material for electronic component
US11193195B2 (en) Component for hot-dip metal plating bath
WO2012063511A1 (en) High-toughness cobalt-based alloy and engine valve coated with same
EP3162909A1 (en) Nickel-based amorphous alloy ribbon for brazing, and stainless steel joined object using same
JP4532343B2 (en) Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same
JP2007131937A (en) Co ALLOY POWDER FOR THERMAL SPRAYING AND COMPOSITE MATERIAL FOR LEAD-FREE SOLDERING EQUIPMENT OBTAINED BY THERMAL SPRAYING OF THE Co ALLOY POWDER
Xin et al. Microstructure evolution, IMC growth, and microhardness of Cu, Ni, Ag-microalloyed Sn–5Sb/Cu solder joints under isothermal aging
Kim et al. Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems
JP2005246480A (en) Solder alloy for preventing fe erosion and method for preventing fe erosion
WO1988004593A1 (en) Laser padding material and method for laser padding using same
WO2003059564A1 (en) Soldering method and solder alloy for additional supply
JP6255386B2 (en) Cermet spray powder
JP2006257541A (en) Co-base alloy having excellent erosion resistance to molten lead-free solder and lead-free soldering equipment member composed of the co-base alloy
JP4974834B2 (en) Brazing material
JP3966554B2 (en) Solder alloy
JP4857629B2 (en) Lead-free soldering equipment made of a Co-based alloy with excellent corrosion resistance against molten lead-free solder
JP4857641B2 (en) Lead-free soldering equipment made of Fe-based alloy with excellent corrosion resistance against molten lead-free solder
JP2005240124A (en) Thermally sprayed film coated on hearth roll
JP5008113B2 (en) Solder corrosion resistant material
Qi et al. The effect of Bi on the IMC growth in Sn-3Ag-0.5 Cu solder interface during aging process
JP4762583B2 (en) Ni-based self-fluxing alloy powder and corrosion and wear resistant parts using the powder
CA2634897A1 (en) Strand-shaped product for producing an anticorrosive and antiabrasive layer on a substrate
JP2006225695A (en) Member for lead-free soldering apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203