JP5620019B2 - タッチパネルシステムおよび電子機器 - Google Patents

タッチパネルシステムおよび電子機器 Download PDF

Info

Publication number
JP5620019B2
JP5620019B2 JP2013554720A JP2013554720A JP5620019B2 JP 5620019 B2 JP5620019 B2 JP 5620019B2 JP 2013554720 A JP2013554720 A JP 2013554720A JP 2013554720 A JP2013554720 A JP 2013554720A JP 5620019 B2 JP5620019 B2 JP 5620019B2
Authority
JP
Japan
Prior art keywords
touch panel
signal
sense
unit
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013554720A
Other languages
English (en)
Other versions
JP2014519066A (ja
Inventor
宮本 雅之
雅之 宮本
湯元 学
学 湯元
眞一 芳田
眞一 芳田
健吾 ▲高▼濱
健吾 ▲高▼濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/066288 external-priority patent/WO2012090537A1/en
Priority claimed from PCT/JP2012/059824 external-priority patent/WO2013035370A1/en
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013554720A priority Critical patent/JP5620019B2/ja
Priority claimed from PCT/JP2012/065929 external-priority patent/WO2012176857A1/en
Publication of JP2014519066A publication Critical patent/JP2014519066A/ja
Application granted granted Critical
Publication of JP5620019B2 publication Critical patent/JP5620019B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タッチパネルシステムおよびそれを備えた電子機器に関し、特に、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、垂直方向に所定の間隔を空けて垂直電極面に平行な水平電極面上に配置された複数の水平電極と、垂直電極面と水平電極面との間に配置されて複数の垂直電極と複数の水平電極とを絶縁する絶縁体とを備え、表示装置等により発生するノイズの除去(キャンセル)を確実に効果的に行うことが可能であるタッチパネルシステムおよび電子機器に関するものである。
現在、スマートフォン等の携帯情報機器、自動券売機等の自動販売機を始めとする様々な電子機器に、タッチパネルシステムの搭載が急速に進んでいる。
このようなタッチパネルシステムは、通常、表示装置の上部(前面)に、タッチパネルが積層された構造となっている。このため、タッチパネル上に設けられたセンサは、表示装置に発生するクロック等のノイズだけでなく、その他外来からのノイズの影響を受けやすい。このようなノイズは、タッチ操作の検出感度の低下につながる。
特許文献1には、このようなノイズ対策が施されたタッチパネルシステム(座標入力装置)が記載されている。特許文献1のタッチパネルシステムは、ノイズを除去するために、ノイズ処理部を備えている。図19は、特許文献1のタッチパネルシステムに設けられたノイズ処理部100を示すブロック図である。図19に示すように、ノイズ処理部100は、フィルタ部101と、論理反転部102と、加算部103とを備えている。フィルタ部101は、図示しないタッチパネルに設けられたセンサからの出力信号(アナログ信号)を受信する。さらに、フィルタ部101は、その入力信号に含まれるAC信号成分を、ノイズ信号として抽出する。論理反転部102は、抽出されたノイズ信号の位相を、180度反転させる。加算部103は、フィルタ部101に入力されたノイズ信号を含む入力信号に、位相を180度反転させたノイズ信号を加算する。
このように、特許文献1のタッチパネルシステムでは、フィルタ部101で抽出されたノイズ信号を反転し、反転された信号が、センサからの入力信号(アナログ信号)に加算される。つまり、センサからの入力信号に含まれるノイズ成分に、ノイズ成分と同レベルの反転した信号が加算される。これにより、センサからの入力信号に重畳されたノイズが相殺される。従って、センサからの入力信号に含まれるノイズの影響を低減することが可能とされている。
一方、従来の静電容量型タッチセンサパネルにおける垂直電極及び水平電極の構成を説明する。図55は、従来の静電容量型タッチセンサパネルの垂直電極91及び水平電極92の構成を示す図であり、特許文献2のFIG.3に対応する。
特許文献2に示される従来の静電容量型タッチセンサパネルには、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極91と、垂直方向に所定の間隔を空けて垂直電極面に平行な水平電極面上に配置された複数の水平電極92とが設けられている。
垂直電極91は、ダイヤモンド形状をした四角形状部93・94を垂直方向に繰り返し接続して形成されており、水平電極92は、ダイヤモンド形状をした四角形状部95・96を水平方向に繰り返し接続して形成されている。
このようなダイヤモンド形状をした垂直電極91及び水平電極92を交差配置した静電容量型のタッチセンサパネルを、表示装置の上に重ねて使用する場合は、通常、ITO(Indium Tin Oxide)等の透明な導電膜によって垂直電極91及び水平電極92を構成する。近年はグラフェンの活用も研究されている。
図55に示すようなダイヤモンド形状をITO等で面の形で形成すると、そのダイヤモン
ド形状は中心線対称であり中心点対称であるため、ペン等のタッチ面積の小さい物体による容量変化には同様な対称性がある。この容量変化の対称性を用いることにより、タッチ位置検出の際に対称な位置補正が行え、位置検出精度を向上することができる。
図56は、特許文献3に示される従来の他の静電容量型タッチセンサパネルの垂直電極81及び水平電極82の構成を示す図である。垂直電極81及び水平電極82は、それぞれ一定間隔で並べられ、互いに直交する方向を向いている。そして、垂直電極81及び水平電極82で格子状に形成される。垂直電極81及び水平電極82そのものは、それぞれ細線によって構成され、この細線によって網目が構成されている。
図57の(a)は、特許文献4に示される従来のさらに他の静電容量型タッチセンサパネルの垂直電極71の構成を示す図であり、図57の(b)はその水平電極72の構成を示す図である。
図57の(a)ではダイヤモンドに似た形状が垂直方向に接続された垂直電極71が整列しており、図57の(b)では同様にダイヤモンドに似た形状が水平方向に接続された水平電極72が整列している。
図59の(a)は特許文献5に示される従来のさらに他の静電容量型タッチセンサパネルの垂直電極の構成を示す図であり、図59の(b)はその水平電極の構成を示す図である。
静電容量式タッチパネルスイッチは、X方向に複数の導電X軸162が僅かな間隔で並ぶ導電性のXパターン群161と、Y方向に複数の導電Y軸167が僅かな間隔で並ぶ導電性のYパターン群166とを備えている。
導電X軸162は、Y軸方向に沿って配置されて輪郭が略菱形状の複数の導電Xパッド163と、複数の導電Xパッド163を挟むようにY軸方向に沿って配置されて輪郭が略二等辺三角形状の導電Xパッド163aとを有している。隣接する導電Xパッド163、及び隣接する導電Xパッド163・163aは、導電Xライン164により接続されている。
各導電Xパッド163・163aは、X方向に延びる細線とY方向に延びる細線とによりメッシュ状に形成されている。各導電Xライン164は、Y方向に延びてX方向に所定の間隔で並ぶ3本の直線ライン165により細長く形成されている。
導電Y軸167は、X軸方向に沿って配置されて輪郭が略菱形状の複数の導電Yパッド168と、複数の導電Yパッド168を挟むようにX軸方向に沿って配置されて輪郭が略二等辺三角形状の導電Yパッド168aとを有している。隣接する導電Yパッド168、及び隣接する導電Yパッド168・168aは、導電Yライン169により接続されている。
各導電Yパッド168・168aは、X方向に延びる細線とY方向に延びる細線とによりメッシュ状に形成されている。各導電Yライン169は、X方向に延びてY方向に所定の間隔で並ぶ3本の直線ライン160により細長く形成されている。
このように構成されたXパターン群161とYパターン群166とを平面視で直交させる場合に、導電X軸162の導電Xライン164と導電Y軸167の導電Yライン169とを積層して、導電Xパッド163及び導電Yパッド168と略同様の光透過性を有する光透過領域を形成するようにしている。
日本国公開特許公報「特開2001−125744号公報(2001年5月11日公開)」 米国特許第4,639,720号明細書(1987年1月27日) 日本国公開特許公報「特開2011-113149公報(2011年6月9日公開)」 日本国公開特許公報「特開2010-39537号公報(2010年2月18日公開)」 日本国公開特許公報「特開2011-175412号公報(2011年9月8日公開)」
しかしながら、特許文献1のタッチパネルシステムは、AC信号成分以外のノイズを除去することができないという問題がある。
具体的には、上述のように、特許文献1のタッチパネルシステムは、センサからの入力信号に対し、その入力信号に含まれるAC信号成分をノイズとして扱う。このAC信号は、フィルタ部101で抽出された後、論理反転部102で位相が180度反転される。そして、加算部103では、反転された信号が、AC信号成分を含む入力信号に加算される。このように、特許文献1においては、フィルタ部101においてAC信号成分を抽出する処理が、ノイズ処理上、最も重要となる。
しかし、特許文献1には、フィルタ部101の構成が詳細に開示されていない。このため、特許文献1のタッチパネルシステムが、どの程度ノイズを除去することができるかは不明である。また、特許文献1では、アナログ信号に含まれるAC信号成分がノイズとして扱われる。つまり、特許文献1のタッチパネルシステムでは、基本的にインパルスノイズのみを除去することが想定されており、インパルスノイズ以外のノイズが、除去対象外となっている。このため、インパルスノイズ以外の多種多様なノイズを確実にキャンセルすることができない。
また、図55に示す構成では、30インチ以上の大きな静電容量型のタッチセンサパネルを実現しようとする場合に、ITOやグラフェンでは抵抗値が大きすぎる。この
ため、抵抗値の低い金属(AgやCu)の細い配線を用いてダイヤモンド形状を作成する方法がとられる(特許文献3(図56)・特許文献4(図57))。
図56に示す構成では、格子の存在しない十字状の開口97が周期的に存在するため、開口97が視認され、モアレが発生するという課題が生じる。また、タッチによる開口97の容量変化の仕方が他の部分と異なることに起因する位置検出精度劣化という課題が発生する。
図58は、垂直電極71と水平電極72とにより形成された一様な格子73を示す図である。図57に示す構成では、図56に示すような開口は発生しないが、垂直電極71及び水平電極72とも中心線対称でも無く、中心点対象でも無く、垂直電極71及び水平電極72を重ね合わせると、図58に示すように、格子73の左辺側及び下辺側にジグザグ形状78・79が形成され、水平電極72(あるいは垂直電極71)を駆動するアドレスラインと、垂直電極71(あるいは水平電極72)から信号を読み出すためのアドレスラインとをそのまま容易に格子73に接合することが困難であるという課題が生じる。
図59に示す構成では、導電Xライン164はY軸に平行であり、導電Yライン169はX軸に平行になるため、導電Xライン164と導電Yライン169とを積層して形成される光透過領域は、Y軸に平行な直線とX軸に平行な直線とから形成されることになる。このため、液晶ディスプレイ等と重ねた時に、モアレが発生するという問題が生じる。
本発明は、上記従来の問題点に鑑みてなされたものであり、その目的は、多様な種類のノイズを確実に除去することのできるタッチパネルシステムおよび電子機器を提供することにある。
本発明の他の目的は、視覚的に隙間の無い一様な格子が形成され、表示装置に重ねた際にモアレ等の発生を防ぐことができるタッチパネルシステムおよび電子機器を提供することにある。
本発明に係るタッチパネルシステムは、上記の課題を解決するために、タッチパネルと、上記タッチパネルからの信号を処理するタッチパネルコントローラと、ドライブライン駆動回路とを備えたタッチパネルシステムにおいて、
上記タッチパネルは、複数のセンスラインと、上記センスラインに対し交差して設けられた複数のドライブラインと、上記センスラインと、上記ドライブラインとの間に形成された静電容量とを有し、上記タッチパネルのタッチ操作を検出するセンサ部を備え、
上記ドライブライン駆動回路は、上記ドライブラインを並列に駆動するようになっており、
上記タッチパネルコントローラは、
上記センサ部からの信号を受信し、互いに隣接するセンスラインの信号の差分を算出する減算部と、
上記ドライブラインを並列駆動する符号系列と、上記符号系列に対応するセンスラインの差分出力系列との内積を演算することによって、上記減算部で算出された静電容量の差分値を、復号化する復号部と、
上記減算部において、上記センスラインから選択されたセンスラインSnの信号と、センスラインSnに隣接する2つのセンスライン(センスラインSn+1,センスラインSn−1)のうち、一方のセンスラインSn+1の信号との差分である第1の差分((Sn+1)−Sn)、または、センスラインSnの信号とセンスラインSnに隣接する他方のセンスラインSn−1の信号との差分である第2の差分(Sn−(Sn−1))が算出されるように、減算部に入力される信号を切り替えるスイッチを備え、
上記減算部は、上記センスラインごとの出力信号を受信し、上記互いに隣接するセンスラインの信号の差分として、上記ドライブラインが延びる方向における静電容量の差分を算出し、
上記複数のセンスラインまたはドライブラインの一方が複数の垂直電極であり、他方が複数の水平電極であり、
上記複数の垂直電極は、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置されており
上記複数の水平電極は、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置されており
前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面と前記水平電極面との間に配置された絶縁体によって絶縁されており、
前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成することを特徴としている。
本発明に係る別のタッチパネルシステムは、上記の課題を解決するために、タッチパネルと、上記タッチパネルからの信号を処理するタッチパネルコントローラと、ドライブライン駆動回路とを備えたタッチパネルシステムにおいて、
上記タッチパネルは、複数のセンスラインと、上記センスラインに対し交差して設けられた複数のドライブラインと、上記センスラインと、上記ドライブラインとの間に形成された静電容量とを有し、上記タッチパネルのタッチ操作を検出するセンサ部を備え、
上記ドライブライン駆動回路は、上記ドライブラインを並列に駆動するようになっており、
上記タッチパネルコントローラは、
上記センサ部からの信号を受信し、互いに隣接するセンスラインの信号の差分を算出する減算部と、
上記ドライブラインを並列駆動する符号系列と、上記符号系列に対応するセンスラインの差分出力系列との内積を演算することによって、上記減算部で算出された静電容量の差分値を、復号化する復号部とを備え、
上記減算部は、上記センスラインごとの出力信号を受信し、上記互いに隣接するセンスラインの信号の差分として、上記ドライブラインが延びる方向における静電容量の差分を算出し、
上記複数のセンスラインまたはドライブラインの一方が複数の垂直電極であり、他方が複数の水平電極であり、
上記複数の垂直電極は、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置されており
上記複数の水平電極は、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置されており
前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面と前記水平電極面との間に配置された絶縁体によって絶縁されており、
前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成することを特徴としている。
上記の各構成によれば、減算部が、隣接するセンスライン間で差分信号値を取得する。つまり、ノイズの相関性がより高い隣接するセンスライン間の差分を取ることとなる。これにより、主センサの出力信号からノイズ成分が除去され、タッチ操作本来の信号が抽出される。従って、タッチパネルに反映された多様な種類のノイズを確実に除去(キャンセル)することができる。
また、上記の各構成によれば、タッチパネルが並列駆動され、復号部が、減算部で算出された静電容量の差分値を、復号化する。これにより、静電容量の信号が符号長倍(N倍)されて求まるため、ドライブライン数に依存せず、静電容量の信号強度が高まる。また、従来方式と同等の信号強度で良ければ、ドライブラインの駆動回数を減らすことができ、省電力化が可能となる。
さらに、上記の各構成によれば、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置された複数の水平電極とを、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置し、隙間無く一様な格子を形成する。このため、絶縁膜を挟んで垂直電極と水平電極との電極分布を作成することにより、視覚的に隙間の無い一様な格子が形成され、表示装置に重ねた際にモアレ等の発生を防ぐことができる。
本発明に係る電子機器は、上記の課題を解決するために、本発明に係るタッチパネルシステムを備えることを特徴としている。
従って、タッチパネルに反映された多様な種類のノイズを確実に除去(キャンセル)することができる電子機器を提供することができる。さらに、絶縁膜を挟んで垂直電極と水平電極との電極分布を作成することにより、視覚的に隙間の無い一様な格子が形成され、表示装置に重ねた際にモアレ等の発生を防ぐことができる。
以上のように、本発明に係るタッチパネルシステムは、複数の垂直電極と複数の水平電極とが、垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成する構成である。従って、タッチパネルに反映された多様な種類のノイズを確実に除去(キャンセル)することができるという効果を奏する。さらに、表示装置に重ねた際にモアレ等の発生を防ぐことができるという効果を奏する。
本発明に係るタッチパネルシステムの基本構成を示す概略図である。 図1のタッチパネルシステムの基本処理を示すフローチャートである。 図1のタッチパネルシステムにおける減算部で処理される信号の波形を示す図である。 本発明に係る別のタッチパネルシステムの基本構成を示す概略図である。 図4のタッチパネルシステムにおいて、副センサ群を備えないタッチパネルを示す概略図である。 図4のタッチパネルシステムの基本処理を示すフローチャートである。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 図7のタッチパネルシステムの基本処理を示すフローチャートである。 従来のタッチパネルシステムにおけるタッチパネルの駆動方式を示す図である。 本発明のタッチパネルシステムにおけるタッチパネルの駆動方式(直交系列駆動方式)を示す図である。 図9の駆動方式のタッチパネルによって、図10の駆動方式のタッチパネルと同等の感度を得るために必要な処理を示す図である。 本発明に係るさらに別のタッチパネルシステムであって、直交系列駆動方式のタッチパネルを備えたタッチパネルシステムを示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 図16のタッチパネルシステムにおける全差動増幅器の一例を示す回路図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 特許文献1のタッチパネルシステムに設けられたノイズ処理部を示すブロック図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 図20のタッチパネルシステムの基本処理を示すフローチャートである。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 本発明に係るさらに別のタッチパネルシステムの基本構成を示す概略図である。 図22のタッチパネルシステムにおける判定部の基本処理を示すフローチャートである。 図27のフローチャートにおけるタッチ情報の認識方法を示す模式図である。 上記タッチパネルシステムを搭載した携帯電話機の構成を示す機能ブロック図である。 実施の形態18に係るタッチセンサシステムの構成を示すブロック図である。 上記タッチセンサシステムに設けられたタッチパネルの構成を説明するための断面図である。 図32の(a)は上記タッチパネルに設けられた垂直電極を構成する第一の基本形状を示す図であり、図32の(b)は上記垂直電極の構成を示す図である。 図33の(a)は上記タッチパネルに設けられた水平電極を構成する第二の基本形状を示す図であり、図33の(b)は上記水平電極の構成を示す図である。 上記垂直電極と上記水平電極により形成された一様な格子を示す図である。 図35の(a)は上記タッチパネルに設けられた変形例の垂直電極を構成する第一の基本形状を示す図であり、図35の(b)は上記変形例の垂直電極の構成を示す図である。 図36の(a)は上記タッチパネルに設けられた変形例の水平電極を構成する第二の基本形状を示す図であり、図36の(b)は上記変形例の水平電極の構成を示す図である。 上記変形例の垂直電極と上記変形例の水平電極により形成された一様な格子を示す図である。 図38の(a)は上記変形例の垂直電極の第1の基本形状に透明電極材料を埋め込んだ構成を示す図であり、図38の(b)は上記透明電極材料を埋め込んだ変形例の垂直電極を示す図である。 図39の(a)は上記変形例の水平電極の第2の基本形状に透明電極材料を埋め込んだ構成を示す図であり、図39の(b)は上記透明電極材料を埋め込んだ変形例の水平電極を示す図である。 図40の(a)は上記変形例の垂直電極にアドレスラインを接続した構成を示す図であり、図40の(b)は上記変形例の水平電極にアドレスラインを接続した構成を示す図であり、図40の(c)はアドレスラインを接続した垂直電極及び水平電極により構成される格子を示す図である。 図41の(a)は実施の形態2に係るタッチパネルに設けられた垂直電極を構成する第一の基本形状を示す図であり、図41の(b)は上記垂直電極の構成を示す図である。 図42の(a)は実施の形態2に係るタッチパネルに設けられた水平電極を構成する第二の基本形状を示す図であり、図42の(b)は上記水平電極の構成を示す図である。 図43の(a)は実施の形態3に係るタッチパネルに設けられた垂直電極を構成する第一の基本形状を示す図であり、図43の(b)は上記垂直電極の構成を示す図である。 図44の(a)は実施の形態3に係るタッチパネルに設けられた水平電極を構成する第二の基本形状を示す図であり、図44の(b)は上記水平電極の構成を示す図である。 図45の(a)は実施の形態4に係るタッチパネルに設けられた垂直電極を構成する第一の基本形状を示す図であり、図45の(b)は上記垂直電極の構成を示す図である。 図46の(a)は実施の形態4に係るタッチパネルに設けられた水平電極を構成する第二の基本形状を示す図であり、図46の(b)は上記水平電極の構成を示す図である。 図47の(a)は実施の形態5に係るタッチパネルに設けられた垂直電極を構成する第一の基本形状を示す図であり、図47の(b)は上記垂直電極の構成を示す図である。 図48の(a)は実施の形態5に係るタッチパネルに設けられた水平電極を構成する第二の基本形状を示す図であり、図48の(b)は上記水平電極の構成を示す図である。 上記垂直電極と上記水平電極により形成された一様な格子を示す図である。 図50の(a)は実施の形態5に係るタッチパネルに設けられた他の垂直電極を構成する第一の基本形状を示す図であり、図50の(b)は上記他の垂直電極の構成を示す図である。 図51の(a)は実施の形態5に係るタッチパネルに設けられた他の水平電極を構成する第二の基本形状を示す図であり、図51の(b)は上記他の水平電極の構成を示す図である。 図52の(a)は上記タッチパネルに設けられた変形例の垂直電極を構成する第一の基本形状を示す図であり、図52の(b)は変形例の水平電極を構成する第二の基本形状を示す図である。 図53の(a)は上記タッチパネルに設けられた他の変形例の垂直電極を構成する第一の基本形状を示す図であり、図53の(b)は他の変形例の水平電極を構成する第二の基本形状を示す図である。 実施の形態6に係る電子黒板の外観を示す図である。 従来の静電容量型タッチセンサパネルの垂直電極及び水平電極の構成を示す図である。 従来の他の静電容量型タッチセンサパネルの垂直電極及び水平電極の構成を示す図である。 図57の(a)は従来のさらに他の静電容量型タッチセンサパネルの垂直電極の構成を示す図であり、図57の(b)はその水平電極の構成を示す図である。 上記垂直電極と上記水平電極により形成された一様な格子を示す図である。 図59の(a)は従来のさらに他の静電容量型タッチセンサパネルの垂直電極の構成を示す図であり、図59の(b)はその水平電極の構成を示す図である。
以下、本発明の実施形態について図面に基づいて説明する。
〔実施の形態1〕
(1)タッチパネルシステム1の構成
図1は、本発明の実施の一形態に係るタッチパネルシステム1の基本構成を示す概略図である。タッチパネルシステム1は、表示装置2、タッチパネル3、タッチパネルコントローラ4、およびドライブライン駆動回路5を備えており、ノイズキャンセル機能を有する。以下では、使用者が利用する側を、前面(または上方)として説明する。
表示装置2は、図示しない表示画面(表示部)を備えている。表示画面には、操作用の各種アイコンや、使用者の操作指示に応じた文字情報等が表示される。表示装置2は、例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、電界放出ディスプレイ(FED;field emission display)等から構成される。これらのディスプレイは、日常的な電子機器に多用されており、汎用性の高いタッチパネルシステム1が構成される。表示装置2は、任意の構成とすればよく、特に限定されない。
タッチパネル3は、使用者が指またはペン等により、タッチパネル3の表面をタッチ(押圧)操作することによって、各種の操作指示を入力する。タッチパネル3は、表示画面を覆うように、表示装置2の前面(上部)に積層されている。
タッチパネル3は、同一面上(同一面内)に設けられた2つのセンサ(主センサ31,副センサ32を各1個)を備えている。主センサ31と副センサ32とは、互いに隣接して設けられている。主センサ31および副センサ32は、いずれも静電容量方式のセンサである。静電容量方式のセンサが設置されたタッチパネル3は、透過率が高く、耐久性も有するという利点を有する。
主センサ(主センサ部)31は、タッチパネル3上のタッチ操作される領域(タッチ領域)に設けられており、使用者によるタッチパネル3のタッチ操作を検出する。タッチ操作には、ダブルクリック操作、スライド操作、シングルクリック操作、ドラッグ操作等が含まれる。主センサ31は、線状電極からなるセンスライン33を備えている。センスライン33の一端は、タッチパネルコントローラ4に接続されている。これにより、主センサ31で検出された信号は、センスライン33を介して、タッチパネルコントローラ4に出力される。つまり、主センサ31で検出されたタッチ操作に応じた信号が、タッチパネルコントローラ4に出力される。
副センサ(副センサ部)32は、タッチパネル3に反映されるノイズ成分を検出する。副センサ32は、タッチパネル3上のタッチ操作されない領域(非タッチ領域)に設けられている。このため、副センサ32は、使用者がタッチ操作により接触することなく、タッチパネルシステム1で発生する各種ノイズを検出する。このように、副センサ32は、主センサ31とは異なり、タッチ操作に応じた信号は検出しない。つまり、副センサ32は、使用者がタッチ操作により接触することなく、タッチパネル3に発生するノイズを検出するようになっている。
副センサ32は、線状電極からなるサブセンスライン34を備えている。サブセンスライン34は、センスライン33に対して、平行である(センスライン33と同一方向に延びている)。サブセンスライン34の一端は、タッチパネルコントローラ4に接続されている。これにより、副センサ32で検出された信号は、サブセンスライン34を介して、タッチパネルコントローラ4に出力される。
一方、タッチパネル3は、センスライン33およびサブセンスライン34に直交するように交差したドライブライン35を備えている。ドライブライン35は、線状電極からなるものである。センスライン33またはサブセンスライン34とドライブライン35との交差部分には、静電容量が形成されている。すなわち、センスライン33とドライブライン35との間、および、サブセンスライン34とドライブライン35との間には、それぞれ、静電容量が形成されている。ドライブライン35は、ドライブライン駆動回路(センサ駆動部)5に接続されており、ドライブライン35には、タッチパネルシステム1の起動時に、一定周期で電位が印加される。
センスライン33、サブセンスライン34、およびドライブライン35は、いずれも、例えば、ITO(Indium TinOxide:酸化インジウムスズ)などの透明な配線材料から形成することができる。センスライン33、サブセンスライン34、およびドライブライン35は、タッチパネル3におけるセンサ電極であるともいえる。
なお、ドライブライン35は、透明基板または透明フィルム(図示せず)上に設けられている。さらに、ドライブライン35は、絶縁層(図示せず)により被覆されている。この絶縁層上には、センスライン33およびサブセンスライン34が設けられている。このように、センスライン33またはサブセンスライン34と、ドライブライン35とは、絶縁層を介して互いに絶縁されると共に、容量結合している。センスライン33およびサブセンスライン34は、保護層(図示せず)により被覆されている。つまり、タッチパネル3では、保護層が、最も前面側(使用者側)に配置されている。
タッチパネルコントローラ4は、タッチパネル3の主センサ31および副センサ32から入力された信号(データ)を読み取る。タッチパネルシステム1は、静電容量方式のセンサを備えているため、タッチパネルコントローラ4は、タッチパネル3で発生した静電容量を検出する。具体的にはタッチパネルコントローラ4は、センスライン33−ドライブライン35間の静電容量の変化、サブセンスライン34−ドライブライン35間の静電容量の変化を検出する。タッチパネルコントローラ4は、減算部41、座標検出部42、およびCPU43を備えている。
減算部41は、主センサ31から出力された信号を受信するための入力端子(主センサ出力用の入力端子)と、副センサ32から出力された信号を受信するための入力端子(副センサ出力用の入力端子)とを備えている。減算部41は、主センサ出力用の入力端子に入力された信号から、副センサ出力用の入力端子に入力された信号を減算する。減算部41で減算処理された信号は、座標検出部42に出力される。なお、減算部41に入力される信号は、デジタル信号であっても、アナログ信号であってもよい。すなわち、減算部41への入力信号は、減算部41の構成に応じた信号であればよい。
座標検出部42は、減算部41で減算処理された信号に基づいて、タッチ操作の有無情報を検出する。例えば、座標検出部42は、減算部41からの出力信号値が所定の閾値以上の場合、タッチ操作「有」の信号を、CPU43に出力する。なお、タッチパネルシステム1では、主センサ31が単数であるため、座標検出部42は、タッチ操作の有無情報を検出する。一方、主センサ31が複数の場合、座標検出部42は、使用者のタッチ位置の座標値も検出することになる。
CPU43は、座標検出部42から出力された情報を一定間隔で取り込み、取り込んだ情報に応じて表示装置2に出力等を行う。
ドライブライン駆動回路5は、ドライブライン35に接続されており、タッチパネルシステム1の起動時に、ドライブライン35に一定周期で電位を印加する。
(2)タッチパネルシステム1のノイズ処理
タッチパネルシステム1は、タッチパネルコントローラ4で検出される静電容量の変化に基づいて、タッチ操作の有無を検出する。しかし、タッチパネル3が表示装置2の前面(使用者側)に接着されている。このため、タッチパネルシステム1は、表示装置2が発生するクロック等のノイズだけでなく、その他外来からのノイズの影響を受けやすい。その結果、タッチ操作の検出感度(座標検出部42の検出感度)が低下してしまう。
そこで、タッチパネルシステム1は、このようなノイズを除去する対策として、副センサ32と減算部41とを備えている。図2に基づいて、タッチパネルシステム1のノイズキャンセル処理について説明する。図2は、タッチパネルシステム1の基本処理であるノイズキャンセル処理を示すフローチャートである。
タッチパネルシステム1を起動すると、ドライブライン駆動回路5からドライブライン35に一定周期で電位が印加される。使用者がタッチパネル3にタッチ操作を行うと、主センサ31および副センサ32の両センサが、減算部41に信号を出力する。
ここで、表示装置2が発生するクロック等のノイズ、および、その他外来からのノイズは、タッチパネル3に反映される。このため、主センサ31および副センサ32では、各種ノイズ成分が検出される。すなわち、主センサ31からの出力信号には、タッチ操作本来の信号に、ノイズ信号(ノイズ成分)が加算されている。一方、副センサ32はタッチ操作を検出しないようになっている。このため、副センサ32からの出力信号には、ノイズ信号(ノイズ成分)が含まれるが、タッチ操作の信号は含まれない(F201)。
タッチパネルシステム1では、主センサ31と副センサ32とが、互いに同一面内に設けられており、かつ、互いに隣接して設けられている。このため、主センサ31の出力信号に含まれるノイズ信号値と、副センサ32の出力信号に含まれるノイズ信号値とは、基本的に同じ値であるとみなすことができる。そこで、タッチパネルコントローラ4内に存在する減算部41は、主センサ31からの入力信号(信号値)から、副センサ32からの入力信号(信号値)を減算する処理を実行する(F202)。つまり、減算部41は、センスライン33とサブセンスライン34との差分をとる。これにより、主センサ31からの出力信号から、ノイズ信号が除去される。従って、タッチ操作により生じたタッチ操作本来の信号値が得られることになる。
このようにして減算処理された信号(タッチ操作本来の信号)は、タッチパネルコントローラ4内に存在する座標検出部42に出力される(F203)。これにより、タッチ操作本来の信号が、座標検出部42に出力される。座標検出部42は、タッチ操作本来の信号処理により、タッチ操作の有無を検出する。従って、座標検出部42の検出感度(タッチ操作の有無の検出精度など)の低下を抑制することができる。
このように、タッチパネルシステム1では、減算部41が、センスライン33とサブセンスライン34との差分をとり、多様なノイズ成分が含まれるセンスライン33からの入力信号から、ノイズ成分をキャンセルする。つまり、減算部41は、センスライン33からの入力信号からノイズ信号を除去し、タッチ操作により生じた本来の信号を抽出する。従って、多様な種類のノイズを確実にキャンセルすることのできるタッチパネルシステム1を提供することができる。
一方、タッチパネルシステム1のノイズキャンセル処理を視覚的に示すと、図3のようになる。図3は、タッチパネルシステム1における減算部41で処理される信号の波形を示す図である。図3の(a)は主センサ31からの出力信号、図3の(b)は副センサ32からの出力信号、図3の(c)は減算部41で処理された信号を示している。図3に示す各信号は、使用者がタッチ操作したときの信号である。
タッチパネルシステム1では、使用者がタッチ操作を行うと、タッチ操作を検出する主センサ31の容量が増加する(図3の(a))。つまり、主センサ31(センスライン33)からの出力信号値が増加する。しかし、タッチ操作されたときの主センサ31からの出力信号には、タッチ操作本来の信号だけでなく、各種ノイズ(表示装置2が発生するクロック等のノイズ、外来からのノイズ)信号が加算されている。
一方、副センサ32は、タッチ操作を検出しないため、副センサ32(サブセンスライン)の容量は、タッチ操作によっては増加しない。つまり、副センサ32からの出力信号には、タッチ操作の信号は含まれず、タッチパネル3に反映されたノイズ成分が含まれる(図3の(b))。
減算部41は、主センサ31からの出力信号から、副センサ32からの出力信号を減算する(図3の(a)の信号値−図3の(b)の信号値)。この減算処理によって、図3の(c)のような、主センサ31からの出力信号から、副センサ32から出力されたノイズ成分が除去される。従って、タッチ操作により生じたタッチ操作本来の信号が得られる。さらに、座標検出部42には、タッチ操作本来の信号が入力されるため、タッチ操作の検出精度は低下しない。
以上のように、本実施形態のタッチパネルシステム1は、タッチパネル3上の同一面内(同一面上)に、主センサ31と副センサ32とが設けられている。これにより、主センサ31および副センサ32からのいずれの出力信号にも、タッチパネル3に反映された各種ノイズ信号が含まれる。さらに、減算部41が、タッチ操作による信号とノイズ信号とを含む主センサ31からの出力信号と、ノイズ信号を含む副センサ32からの出力信号との差分をとる。これにより、主センサ31の出力信号からノイズ成分が除去され、タッチ操作本来の信号が抽出される。従って、タッチパネル3に反映された多様な種類のノイズを確実に除去(キャンセル)することができる。
なお、特許文献1のタッチパネルシステムにおいて、除去対象となるノイズ成分は、ノイズ成分を含む信号中のAC信号成分である。これに対し、タッチパネルシステム1においては、主センサ31および副センサ32からの出力信号に、各種ノイズ成分が含まれている。このため、タッチパネルシステム1において除去対象となるノイズ成分は、AC信号成分に限られない。従って、タッチパネルシステム1は、タッチパネル3に反映されるあらゆるノイズを全てキャンセルすることができる。
タッチパネルシステム1において、副センサ32は、主センサ31と共に、タッチパネル3の同一面内に設けられていればよい。これにより、主センサ31および副センサ32のいずれにおいても、タッチパネル3に反映されるノイズ成分(ノイズ信号)を検出することができる。ただし、副センサ32は、タッチパネル3のタッチ操作を検出しないようになっていることが好ましい。この構成によれば、タッチ操作による信号が副センサ32で検出されなくなるため、副センサ32からの出力信号には、タッチ操作による信号が含まれない。これにより、減算部41の減算処理によって、タッチ操作の信号値が低減されることはない。つまり、主センサ31で検出されたタッチ操作の信号が低減されることなく、ノイズ成分が除去される。従って、タッチ操作の検出感度をより一層高めることができる。
タッチパネルシステム1のように、副センサ32がタッチパネル3上の使用者がタッチ操作されない領域(非タッチ領域)に設けられている場合、タッチ操作による信号が副センサ32で検出されなくなる。このため、副センサ32は、使用者がタッチ操作することなく、タッチパネルに反映されたノイズを検出するが、タッチ操作による信号を検出しないようになっている。従って、副センサ32が、タッチ操作を検出するのを確実に回避することができる。
副センサ32によってノイズ成分を検出する上では、副センサ32は、できる限り、主センサ31の近くに設けられていることが好ましく、主センサ31に隣接して設けられていることがより好ましい。これにより、主センサ31と副センサ32とが、ほぼ同一条件に配置される。特に、副センサ32が、主センサ31に隣接して設けられている場合、主センサ31と副センサ32とが、最も接近して配置される。このため、副センサ32からの出力信号に含まれるノイズ信号値は、主センサ31からの出力信号に含まれるノイズ信号値と同一であるとみなすことができる。これにより、減算部41による減算処理によって、タッチパネル3に反映されたノイズ成分を、より確実に除去することができる。従って、タッチ操作の検出感度をより一層高めることができる。
本実施形態では、静電容量方式のタッチパネル3を備えたタッチパネルシステム1について説明した。しかし、タッチパネル3の動作原理(センサの動作方式)は、静電容量方式に限定されるものではない。例えば、抵抗膜方式、赤外線方式、超音波方式、または電磁誘導結合方式のタッチパネルを備えたタッチパネルシステムも、同様に、ノイズキャンセル機能を発揮する。また、表示装置2の種類も問わずに、ノイズキャンセル機能を発揮する。
本実施形態のタッチパネルシステム1は、タッチパネル式の各種電子機器に適用することができる。電子機器としては、例えば、テレビ、パソコン、携帯電話、デジタルカメラ、携帯ゲーム機、電子フォトフレーム、携帯情報端末(PDA:Personal Digital Assistant)、電子ブック、家電製品(電子レンジ,洗濯機等)、券売機、ATM(Automated Teller Machine)、カーナビゲーション等を挙げることができる。これにより、タッチ操作の検出感度の低下を効果的に抑制することのできる電子機器を提供することができる。
〔実施の形態2〕
(1)タッチパネルシステム1aの構成
図4は、本発明に係る別のタッチパネルシステム1aの基本構成を示す概略図である。タッチパネルシステム1aの基本的な構成は、実施の形態1のタッチパネルシステム1と略同様である。以下では、タッチパネルシステム1との相違点を中心に、タッチパネルシステム1aについて説明する。なお、説明の便宜上、実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
タッチパネルシステム1aは、タッチパネル3aに設けられたセンサの構成が、タッチパネルシステム1と異なる。すなわち、タッチパネル3aが、複数の主センサ31からなる主センサ群31a、および、複数の副センサ32からなる副センサ群32aを備えている。タッチパネルシステム1aは、使用者によるタッチ操作の有無だけでなく、使用者のタッチ操作の位置情報(座標)も検出する。
具体的には、タッチパネルシステム1aでは、タッチパネル3aは、タッチパネル3aの同一面上(同一面内)に、主センサ群31aと、副センサ群32aとを備えている。主センサ群31aと、副センサ群32aとは、互いに隣接して設けられている。主センサ群31aおよび副センサ群32aは、いずれも静電容量方式のセンサから構成されている。
主センサ群(主センサ部)31aは、タッチパネル3a上のタッチ操作される領域(タッチ領域)に設けられており、使用者によるタッチパネル3aのタッチ操作を検出する。主センサ群31aは、格子状に配置された複数の主センサ31から構成されている。主センサ群31aは、L本(Lは2以上の整数)のセンスライン33を備えている。各センスライン33は、互いに平行に、かつ、等間隔に設けられている。各センスライン33上には、M個(Mは2以上の整数)の主センサ31が配置されている。
各センスライン33の一端は、タッチパネルコントローラ4の減算部41に接続されている。これにより、主センサ31で検出された信号は、各センスライン33を介して、減算部41に出力される。つまり、主センサ31で検出されたタッチ操作に応じた信号が、減算部41に出力される。
副センサ群(副センサ部)32aは、タッチパネル3aに反映されるノイズ成分を検出する。副センサ群32aは、タッチパネル3a上のタッチ操作されない領域(非タッチ領域)に設けられている。このため、副センサ群32aは、使用者がタッチ操作により接触することなく、タッチパネルシステム1aで発生する各種ノイズを検出する。このように、副センサ群32aは、主センサ群31aとは異なり、タッチ操作に応じた信号は検出しないようになっている。つまり、副センサ群32aは、使用者がタッチ操作により接触することなく、センサに発生するノイズを検出するようになっている。副センサ群32aは、1本のサブセンスライン34を備えている。サブセンスライン34は、各センスライン33に対して平行である(センスライン33と同一方向に延びている)。サブセンスライン34上には、M個(Mは2以上の整数)の副センサ32が配置されている。つまり、各センスライン33上に配置された主センサ31の個数と、サブセンスライン34上に配置された副センサ32の個数とは、同一である。
サブセンスライン34の一端は、タッチパネルコントローラ4の減算部41に接続されている。これにより、副センサ群32aで検出された信号は、サブセンスライン34を介して、減算部41に出力される。
一方、タッチパネル3aは、各センスライン33およびサブセンスライン34に直交するように交差した、M本(Mは2以上の整数)のドライブライン35を備えている。各ドライブライン35は、互いに平行に、かつ、等間隔に設けられている。各ドライブライン35上には、L個(Lは2以上の整数)の主センサ31と、1個の副センサ32とが配置されている。さらに、各センスライン33またはサブセンスライン34と、各ドライブライン35との交差部分には、静電容量が形成されている。すなわち、各センスライン33と各ドライブライン35との間、および、サブセンスライン34と各ドライブライン35との間には、それぞれ、静電容量が形成されている。ドライブライン35は、図示しないドライブライン駆動回路に接続されており、ドライブライン35には、タッチパネルシステム1aの起動時に、一定周期で電位が印加される。
このように、タッチパネル3aでは、横方向に設けられたセンスライン33およびサブセンスライン34と、縦方向に設けられたドライブライン35とが、二次元マトリクス状に配置されている。なお、センスライン33、サブセンスライン34、ドライブライン35の本数、長さ、幅、間隔等は、タッチパネルシステム1aの用途またはタッチパネル3aのサイズ等により任意に設定することができる。
(2)タッチパネルシステム1aのノイズ処理
タッチパネルシステム1aは、タッチパネルコントローラ4で検出される静電容量の変化に基づいて、タッチ操作の有無およびタッチされた位置を検出する。しかし、タッチパネルシステム1aにおいても、タッチパネルシステム1と同様に、各種ノイズの影響を受けやすい。このため、タッチ操作の検出感度(座標検出部の検出感度)が低下してしまう。具体的には、図5は、図4のタッチパネルシステム1aにおいて、副センサ群32aを備えないタッチパネル3bを示す概略図である。図5のように、タッチパネル3bは、主センサ群31aのみを備え、副センサ群32aを備えていない。すなわち、図5のタッチパネル3bは、ノイズ対策前の構成である。この場合、タッチパネル3bが、各種ノイズの影響を受けてしまう。従って、各センスライン33から出力された信号には、各種ノイズ成分が含まれ、タッチ操作の検出感度が低下してしまう。
そこで、タッチパネルシステム1aでは、このようなノイズを除去する対策として、副センサ群32aと減算部41とを備えている。図6に基づいて、タッチパネルシステム1aのノイズキャンセル処理について説明する。図6は、タッチパネルシステム1aの基本処理であるノイズキャンセル処理を示すフローチャートである。
タッチパネルシステム1aを起動すると、ドライブライン35に一定周期で電位が印加される。使用者がタッチパネル3aにタッチ操作を行うと、主センサ群31aおよび副センサ群32aの両センサ群が、減算部41に信号を出力する。具体的には、使用者がタッチ操作を行うと、タッチ位置に対応する特定の主センサ31の容量が増加する。つまり、その主センサ31(センスライン33)からの出力信号値が増加する。タッチパネルシステム1aは、各ドライブライン35を駆動しつつ、センスライン33およびサブセンスライン34からの出力信号を、減算部41に出力する。
より詳細には、表示装置2が発生するクロック等のノイズ、および、その他外来からのノイズは、タッチパネル3aに反映される。このため、主センサ群31aおよび副センサ群32aでは、各種ノイズ成分が検出される。すなわち、主センサ群31aからの出力信号には、タッチ操作本来の信号に、ノイズ信号(ノイズ成分)が加算されている。一方、副センサ群32aはタッチ操作を検出しないようになっている。このため、副センサ群32aからの出力信号には、ノイズ信号(ノイズ成分)が含まれるが、タッチ操作の信号は含まれない(F501)。
タッチパネルシステム1aでは、主センサ群31aと副センサ群32aとが、互いに同一面内に設けられており、かつ、互いに隣接して設けられている。このため、主センサ群31aの出力信号に含まれるノイズ信号値と、副センサ群32aの出力信号であるノイズ信号値とは、基本的に同じ値であるとみなすことができる。そこで、タッチパネルコントローラ4内に存在する減算部41は、主センサ群31aからの入力信号(信号値)から、副センサ群32aからの入力信号(信号値)を減算する処理を実行する(F502)。つまり、減算部41は、各センスライン33とサブセンスライン34との差分をとる。これにより、主センサ群31aからの出力信号から、ノイズ信号が除去される。従って、タッチ操作により生じたタッチ操作本来の信号値が得られることになる。
このようにして減算処理された信号は、タッチパネルコントローラ4内に存在する座標検出部42に出力される(F503)。これにより、タッチ操作本来の信号が、座標検出部42に出力される。座標検出部42は、タッチ操作本来の信号処理により、タッチ操作の有無およびタッチ位置(座標)を検出する。従って、座標検出部42の検出感度(タッチ操作の有無の検出精度、タッチ位置の検出感度など)の低下を抑制することができる。
なお、タッチパネルシステム1aでは、タッチ位置に対応する特定の主センサ31を含むセンスライン33からの出力信号が、図3の(a)のような波形を有し、副センサ群32a(サブセンスライン34)からの出力信号が、図3の(b)のような波形を有する。減算部41は、主センサ群31aからの出力信号から、副センサ群32aからの出力信号を減算する。この減算処理によって、図3の(c)のような、主センサ群31aからの出力信号から、副センサ群32aから出力されたノイズ成分が除去される。従って、タッチ操作により生じたタッチ操作本来の信号が得られる。さらに、座標検出部42には、タッチ操作本来の信号が入力されるため、タッチ操作の検出精度もタッチ位置の検出精度も低下しない。このため、実際のタッチ位置と、座標検出部42で検出された検出位置とのズレを小さくすることができる。
以上のように、タッチパネルシステム1aは、ドライブライン35を駆動しつつ、使用者がタッチ操作を行うことによる主センサ群31aの容量値の変化をセンスライン33にて読み取る。また、ノイズ成分をサブセンスライン34にて読み取る。さらに、減算部41にて、センスライン33とサブセンスライン34との差分をとり、ノイズ成分を除去(キャンセル)することができる。
タッチパネルシステム1aは、主センサ群31aが、縦方向および横方向にマトリクス状に配置された複数の主センサ31から構成されている。これにより、タッチパネルシステム1と同様の効果に加えて、座標検出部42にて、タッチされた座標を検出することができる。つまり、タッチ操作の有無と共に、タッチ位置(座標値)を検出することができる。
タッチパネルシステム1と同様に、タッチパネルシステム1aにおいても、除去対象となるノイズ成分は、AC信号成分に限られない。従って、タッチパネルシステム1aも、タッチパネル3aに反映されるあらゆるノイズを全てキャンセルすることができる。
〔実施の形態3〕
(1)タッチパネルシステム1bの構成
図7は、本発明に係る別のタッチパネルシステム1bの基本構成を示す概略図である。タッチパネルシステム1bの基本的な構成は、実施の形態2のタッチパネルシステム1aと略同様である。以下では、タッチパネルシステム1aとの相違点を中心に、タッチパネルシステム1bについて説明する。なお、説明の便宜上、実施の形態1,2にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
タッチパネル3bは、実施の形態2のタッチパネルシステム1aのタッチパネル3aと同様の構成である。すなわち、タッチパネル3bは、複数本(図7では5本)のドライブライン35と、各ドライブライン35に交差する複数本(図7では7本)のセンスライン33と、各ドライブライン35に直交し、センスライン33と平行な1本のサブセンスライン34とを備えている。センスライン33とドライブライン35、および、サブセンスライン34とドライブライン35とは、それぞれ互いに絶縁され、かつ、容量結合している。
以下では、1本のサブセンスライン34と、7本のセンスライン33とからなる8本のセンス/サブセンス配列を、配列(1)〜配列(8)として区別して説明する。
タッチパネルコントローラ4は、入力側から順に、スイッチSW、減算部41、記憶部45a〜45d、加算部46を備えている。なお、図示しないが、タッチパネルコントローラ4は、座標検出部42とCPU43も備えている(図1)。このように、タッチパネルシステム1bは、タッチパネルコントローラ4の構成が、タッチパネルシステム1,1aとは異なる。
スイッチSWは、センスライン33またはサブセンスライン34から減算部41に入力される信号を切り替える。より詳細には、スイッチSWは、上下に2つの端子を備えており、一方の端子が選択される。図7は、スイッチSWが下側の端子を選択した状態である。
減算部41は、スイッチSWで選択された配列(1)〜(8)の信号の差分信号処理を行う。すなわち、減算部41は、隣接するセンスライン33間の差分信号処理、および、隣接するセンスライン33とサブセンスライン34との差分信号処理を行う。例えば、図7のように、スイッチSWにより下側の端子が選択されている場合、減算部41は、配列(8)−配列(7)、配列(6)−配列(5)、配列(4)−配列(3)、および配列(2)−配列(1)の各差分信号処理を行う。一方、図示しないが、スイッチSWにより上側の端子が選択されている場合、減算部41は、配列(7)−配列(6)、配列(5)−配列(4)、および配列(3)−配列(2)の各差分信号処理を行う。
記憶部45a〜45dは、スイッチSWにより一方の端子が選択された場合の減算部41による差分処理された信号(差分処理信号)を記憶する。記憶部45a〜45dに記憶された差分処理信号は、加算部46に出力される。なお、スイッチSWにより他方の端子が選択された場合、差分処理信号は、記憶部45a〜45dを経由せず、直接加算部46に出力される。
加算部46は、減算部41および記憶部45a〜45dから入力される、隣接するセンスライン33の差分処理信号を加算し、加算処理した結果を出力する。また、加算部46は、記憶部45aに記憶されたサブセンスライン34とそれに隣接するセンスライン33との差分処理信号(配列(2)−配列(1))を出力する。加算部46は、最終的に、配列(2)−配列(1)、配列(3)−配列(1)、配列(4)−配列(1)、配列(5)−配列(1)、配列(6)−配列(1)、配列(7)−配列(1)、配列(8)−配列(1)の各信号を出力する。つまり、加算部46から出力される信号は、センスライン33に含まれるノイズ信号(配列(1)の信号)が除去されている。しかも、減算部41は隣接するセンスライン33間の差分信号処理を行っている。従って、ノイズ信号がより確実に除去された信号が、加算部46から出力される。
(2)タッチパネルシステム1bのノイズ処理
図7および図8に基づいて、タッチパネルシステム1bのノイズ処理について説明する。図8は、タッチパネルシステム1bの基本処理であるノイズキャンセル処理を示すフローチャートである。
タッチパネルシステム1bを起動すると、ドライブライン35に一定周期で電位が印加される。使用者がタッチパネル3bにタッチ操作を行うと、タッチ位置に対応する特定のセンスライン33の容量が増加する。つまり、そのセンスライン33からの出力信号値が増加する。タッチパネルシステム1bは、各ドライブライン35を駆動しつつ、センスライン33およびサブセンスライン34からの出力信号を、タッチパネルコントローラ4に出力する。このように、タッチパネルシステム1bは、ドライブライン35を駆動しつつ、センスライン33およびサブセンスライン34の容量変化を検出し、タッチ操作の有無およびタッチ位置を検出する。
より詳細には、表示装置2が発生するクロック等のノイズ、および、その他外来からのノイズは、タッチパネル3bに反映される。このため、主センサ群31aおよび副センサ群32aでは、各種ノイズ成分が検出される。すなわち、センスライン33からの出力信号には、タッチ操作本来の信号に、ノイズ信号(ノイズ成分)が加算されている。一方、サブセンスライン34はタッチ操作を検出しないようになっている。このため、サブセンスライン34からの出力信号には、ノイズ信号(ノイズ成分)が含まれるが、タッチ操作の信号は含まれない(F601)。
次に、スイッチSWにおいて、下側の端子を選択する(F602)。そして、減算部41において、センスライン33(センスラインSn)と、あるセンスライン33に隣接する2つのセンスライン33のうち、サブセンスライン34に近い方のセンスライン(センスラインSn+1)との間の差分を取る(センスライン(Sn+1)−Sn:第1の差分)。このとき、サブセンスライン34に最も近いセンスライン33については、サブセンスライン34との差分(第3の差分)を取る(F603)。
図7の配列(1)〜(8)の場合、減算部41は、
・配列(2)−配列(1)(この差分値をAとする)
・配列(4)−配列(3)(この差分値をCとする)
・配列(6)−配列(5)(この差分値をEとする)
・配列(8)−配列(7)(この差分値をGとする)
の4つの差分信号処理を行う。つまり、ステップF603では、サブセンスライン34を含む配列(1)〜(8)の差分信号処理を行う。
減算部41で算出された差分値A,C,E,Gは、記憶部45a〜45dに記憶される。すなわち、記憶部45aは差分値A,記憶部45bは差分値C、記憶部45cは差分値E、記憶部45dは差分値Gを、それぞれ記憶する(F604)。
次に、下側の端子が選択されているスイッチSWを、上側の端子を選択する(閉ざす)ように切り替える(F605)。そして、減算部41において、F603と同様に処理する。すなわち、センスライン33(センスラインSn)と、あるセンスライン33に隣接する2つのセンスライン33のうち、サブセンスライン34に遠い方のセンスライン(センスラインSn−1)との間の差分信号処理(センスラインSn−(Sn−1):第2の差分)を行う。(F606)。
図7の配列(1)〜(8)の場合、減算部41は、
・配列(3)−配列(2)(この差分値をBとする)
・配列(5)−配列(4)(この差分値をDとする)
・配列(7)−配列(6)(この差分値をFとする)
の3つの差分信号処理を行う。つまり、ステップF606では、サブセンスライン34を含まない配列(2)〜(7)の差分信号処理を行う。
次に、加算部46は、ステップF606で求めた差分値B,D,Fと、記憶部45a〜45dに記憶された差分値A,C,E,Gの加算処理を行う。つまり、スイッチSWにより下側の端子が選択された場合の差分値(差分値A,C,E,G)と、上側の端子が選択された場合の差分値(差分値B,D,F)とを加算する(F607)。
図7の配列(1)〜(8)の場合、加算部46は、まず記憶部45aに記憶された差分値A(配列(2)−配列(1)信号)と、減算部41から出力された差分値B(配列(3)−配列(2)信号)を加算する。この加算処理は、
差分値A+差分値B={配列(2)−配列(1)}+{配列(3)−配列(2)}
=配列(3)−配列(1)(この差分値を差分値Hとする)
となり、配列(3)−配列(1)信号が取得できる。加算部46は、このような処理を順次進める。
すなわち、この差分値H(配列(3)−配列(1)信号)に、記憶部45bに記憶された差分値C(配列(4)−配列(3)信号)を加算する。その結果、配列(4)−配列(1)信号(差分値I)が取得できる。
次に、この差分値I(配列(4)−配列(1)信号)に、減算部41から出力された差分値D(配列(5)−配列(4)信号)を加算する。その結果、配列(5)−配列(1)信号(差分値J)が取得できる。
次に、この差分値J(配列(5)−配列(1)信号)に、記憶部45cに記憶された差分値E(配列(6)−配列(5)信号)を加算する。その結果、配列(6)−配列(1)信号(差分値K)が取得できる。
次に、この差分値K(配列(6)−配列(1)信号)に、減算部41から出力された差分値F(配列(7)−配列(6)信号)を加算する。その結果、配列(7)−配列(1)信号(差分値L)が取得できる。
次に、この差分値L(配列(7)−配列(1)信号)に、記憶部45dに記憶された差分値G(配列(8)−配列(7)信号)を加算する。その結果、配列(8)−配列(1)信号(差分値M)が取得できる。
なお、記憶部45aに記憶された差分値A(つまり、配列(2)−配列(1)信号)については、加算部46で加算処理をされずに出力される。
このように、加算部46からは、
・配列(2)−配列(1)信号=差分値A
・配列(3)−配列(1)信号=差分値H
・配列(4)−配列(1)信号=差分値I
・配列(5)−配列(1)信号=差分値J
・配列(6)−配列(1)信号=差分値K
・配列(7)−配列(1)信号=差分値L
・配列(8)−配列(1)信号=差分値M
の各信号が出力される。
図7においては、配列(2)〜配列(8)がセンスライン33であり、配列(1)がサブセンスライン34である。加算部46による加算処理の結果、配列(2)〜配列(8)の各信号から、配列(1)の信号(ノイズ信号)が除去される。このため、加算部46からの出力信号は、センスライン33の信号に含まれるノイズ信号を除去したものとなり、タッチ操作により生じたタッチ操作本来の信号値が得られることになる。ノイズ信号が除去された加算部46の出力信号は、タッチパネルコントローラ4内の座標検出部42に出力される。つまり、タッチ操作本来の信号が、座標検出部42に出力される(F608)。
以上のように、タッチパネルシステム1bは、隣接するセンスライン33間で差分信号値を取得する。つまり、ノイズの相関性がより高い隣接するセンスライン33間の差分を取ることになる。さらに、各センスライン33の出力信号から、サブセンスライン34の信号(ノイズ信号)も除去される。従って、タッチパネルシステム1bは、第1、第2の実施の形態のタッチパネルシステム1,1aに比べて、より確実にノイズを除去することができる。
また、加算部46の加算処理を、サブセンスライン34側から順に(サブセンスライン34からの距離が近い順に)行うことによって、加算処理結果を次の加算処理に利用しながら、加算処理を進め、ノイズを除去することができる。
〔実施の形態4〕
本発明のタッチパネルシステムの駆動方法は、特に限定されるものではないが、直交系列駆動方式であることが好ましい。言い換えれば、ドライブライン35を並列駆動することが好ましい。図9は、従来のタッチパネルシステムにおけるタッチパネルの駆動方式を示す図である。図10は、本発明のタッチパネルシステムにおけるタッチパネルの駆動方式(直交系列駆動方式)を示す図である。
図9は、タッチパネルから抽出した1つのセンスラインに、4つのセンサがある場合を示している。図9で示すように、従来のタッチパネルシステムは、ドライブラインの駆動に際し、駆動するドライブラインには+Vボルトを印加し、ドライブラインを逐次駆動するようになっている。
具体的には、1回目のドライブラインの駆動は、最も左側のセンサに+Vボルトを印加する。これにより、Voutの1回目の測定結果(X1)は、
X1=C1×V/Cint
となる。
同様に、2回目のドライブラインの駆動は、左から2番目のセンサに+Vボルトを印加する。これにより、Voutの2回目の測定結果(X2)は、
X2=C2×V/Cint
となる。
3回目のドライブラインの駆動は、左から3番目のセンサに+Vボルトを印加する。これにより、Voutの3回目の測定結果(X3)は、
X3=C3×V/Cint
となる。
4回目のドライブラインの駆動は、最も右側のセンサに+Vボルトを印加する。これにより、Voutの4回目の測定結果(X4)は、
X4=C4×V/Cint
となる。
これに対し、図10も図9と同様に、タッチパネルから抽出した1つのセンスラインに、4つのセンサがある場合を示している。図10のように、直交系列駆動方式の場合、ドライブラインの駆動に際し、全てのドライブラインに、+Vボルト、あるいは、−Vボルトを印加する。つまり、直交系列駆動方式では、ドライブラインが並列駆動される。
具体的には、1回目のドライブラインの駆動は、全てのセンサに+Vボルトを印加する。これにより、Voutの1回目の測定結果(Y1)は、
Y1=(C1+C2+C3+C4)×V/Cint
となる。
2回目のドライブラインの駆動は、最も左側のセンサに+Vボルト、左から2番目のセンサに−Vボルト、左から3番目のセンサに+Vボルト、最も右側のセンサに−Vボルトを印加する。これにより、Voutの2回目の測定結果(Y2)は、
Y2=(C1−C2+C3−C4)×V/Cint
となる。
3回目のドライブラインの駆動は、最も左側のセンサに+Vボルト、左から2番目のセンサに+Vボルト、左から3番目のセンサに−Vボルト、最も右側のセンサに−Vボルトを印加する。これにより、Voutの3回目の測定結果(Y3)は、
Y3=(C1+C2−C3−C4)×V/Cint
となる。
4回目のドライブラインの駆動は、最も左側のセンサに+Vボルト、左から2番目のセンサに−Vボルト、左から3番目のセンサに−Vボルト、最も右側のセンサに+Vボルトを印加する。これにより、Voutの4回目の測定結果(Y4)は、
Y4=(C1−C2−C3+C4)×V/Cint
となる。
図10において、容量値(C1、C2、C3、C4)の値は、出力系列(Y1、Y2、Y3、Y4)と直交符号diとの内積演算により求めることが可能である。この式が成立するのは、直交符号diの直交性のためである。ここで符号diとは、各ドライブラインに印加した正負の電圧の符号を示す。すなわち、符号d1は、最も左側のセンサに印加した電圧の符号であり、「+1,+1,+1,+1」となる。符号d2は、左から2番目のセンサに印加した電圧の符号であり、「+1,−1,+1,−1」となる。符号d3は左から3番目のセンサに印加した電圧の符号であり、「+1,+1,−1,−1」となる。符号d4は最も右側のセンサに印加した電圧の符号であり、「+1,−1,−1,+1」となる。
C1、C2、C3、C4の値を、出力系列Y1、Y2、Y3、Y4と、符号d1、d2、d3、d4との内積演算により求めると、
C1=1×Y1+1×Y2+1×Y3+1×Y4=4C1×V/Cint
C2=1×Y1+(−1)×Y2+1×Y3+(−1)×Y4=4C2×V/Cint
C3=1×Y1+1×Y2+(−1)×Y3+(−1)×Y4=4C3×V/Cint
C4=1×Y1+(−1)×Y2+(−1)×Y3+(−1)×Y4
=4C3×V/Cint
となる。
このように、符号diの直交性により、符号diと出力系列Yiとの内積演算によりCiが求められる。この結果を、図9に示す従来の駆動方式と比較すると、同一の駆動回数で4倍の値を検出できることとなる。図11は、図9の駆動方式のタッチパネルによって、図10の駆動方式のタッチパネルと同等の感度を得るために必要な処理を示す図である。図11のように、図9の駆動方式で、図10の駆動方式と同等の感度を得るためには、同一ドライブラインの駆動を4回繰り返し、その結果を加算する必要がある。すなわち、ドライブラインの駆動時間は、4倍となる。逆に言えば、図10に示す駆動方式によって、図9に示す従来の駆動方式と同等の感度を得るためには、ドライブラインの駆動時間が、図9に示す駆動方式の場合の1/4に短縮される。従って、タッチパネルシステムの省電力化が可能となる。
図12は、このような直交系列駆動方式のタッチパネル3を備えたタッチパネルシステム1cを示す概略図である。すなわち、図12のタッチパネルシステム1cは、図10で示した4本のドライブライン、1本のセンスラインを一般化して示している。
具体的には、タッチパネルシステム1cは、M本のドライブライン35とL本のセンスライン33(M,Lはいずれも自然数)の間に、マトリクス状に静電容量が形成されている。タッチパネルシステム1cでは、これら静電容量のマトリックスCij(i=1,...,M,j=1,...,L)に対し、+1と−1から構成される互いに直交する符号長Nの符号di=(di1,...,diN)(i=1,...,M)を用いて、+1の場合は+Vボルト、−1の場合は−VボルトになるようにM本のドライブライン35を並列に全て同時に駆動する。そして、センスライン33毎に読み出した出力系列sj=(sj1,...,sjN)(j=1,...,L)と、符号diとの内積演算di・sj=Σ(k=1,...,N)dik・sjkにより、容量値Cijを推定するようになっている。タッチパネルシステム1cは、このような内積演算を行うために、電荷積分器(演算部)47を備えている。電荷積分器47からの出力信号(Vout)の信号強度は、
Vout=Cf×Vdrive×N/Cint
によって求められる。
出力系列sjは、
sj=(sj1,...,sjN)
=(Σ(k=1,...,M)Ckj×dk1,...,Σ(k=1,...,M)Ckj×dkN)×(Vdrive/Cint)
=(Σ(k=1,...,M)Ckj×(dk1,...,dkN)×(Vdrive/Cint)
=Σ(k=1,...,M)(Ckj×dk)×(Vdrive/Cint)
となる。
符号diと出力系列sjとの内積は、
di・sj=di・(Σ(k=1,...,M)(Ckj×dk)×(Vdrive/Cint))
=Σ(k=1,...,M)(Ckj×di・dk)×(Vdrive/Cint)
=Σ(k=1,...,M)(Ckj×N×δik)×(Vdrive/Cint) [δik=1 if i=k, 0 if else]
=Cij×N×(Vdrive/Cint)
となる。
このように、タッチパネルシステム1cによれば、直交系列駆動方式によりタッチパネル3を駆動する。このため、符号diと出力系列sjとの内積を算出することにより、容量Cijの信号がN(符号長)倍されて求まると一般化される。この駆動方式による効果は、ドライブライン35の本数Mに依存せず、キャパシタの信号強度はN倍になる。また、逆に言えば、直交系列駆動方式を採用することによって、図9に示す従来の駆動方式と同等の感度を得るためには、ドライブラインの駆動時間が、図9に示す駆動方式の場合の1/Nに短縮される。つまり、ドライブラインの駆動回数を減らすことができる。従って、タッチパネルシステム1cの省電力化が可能となる。
〔実施の形態5〕
図13は、本実施形態に係るタッチパネルシステム1dの基本構成を示す概略図である。タッチパネルシステム1dは、上述した図7で示されるノイズキャンセル機能付きタッチパネルシステム1bに対し、図10,図12で示されるタッチパネルシステム1cにおけるドライブライン35の直交系列駆動方式を適用したものである。タッチパネルシステム1dの動作については、上述したタッチパネルシステム1b,1cと同様であるため、説明を省略する。
タッチパネルシステム1dによれば、隣接するセンスライン33間で差分信号値を取得する。つまり、ノイズの相関性がより高い隣接するセンスライン33間の差分を取ることになる。さらに、各センスライン33の出力信号から、サブセンスライン34の信号(ノイズ信号)も除去される。従って、タッチパネルシステム1dは、第1、第2の実施の形態のタッチパネルシステム1,1aに比べて、より確実にノイズを除去することができる。さらに、容量Cijの信号が、N(符号長)倍されて求まるため、ドライブライン35の数に依存せず、キャパシタの信号強度がN倍になる。また、直交系列駆動方式を採用することによって、図9に示す従来の駆動方式と同等の感度を得るためには、ドライブラインの駆動時間が、図9に示す駆動方式の場合の1/Nに短縮される。つまり、ドライブラインの駆動回数を減らすことができる。従って、タッチパネルシステム1dの省電力化が可能となる。
〔実施の形態6〕
図14は、本実施形態に係るタッチパネルシステム1eの基本構成を示す概略図である。タッチパネルシステム1eは、減算部41の構成が異なる。
タッチパネル3bのセンスライン33、サブセンスライン34からの出力信号は、アナログ信号である。そこで、減算部41は、AD変換部(第1のAD変換部)48とデジタル減算器(図示せず)とを備えている。
これにより、タッチパネル3bからの出力信号(アナログ信号)は、減算部41のAD変換部48にて、デジタル信号に変換される。デジタル減算器は、変換されたデジタル信号を用いて、図7のタッチパネルシステム1bと同様に減算処理を行う。
このように、タッチパネルシステム1eは、タッチパネル3bから出力されるアナログ信号をデジタル信号に変換した後、減算処理を行うことにより、ノイズを除去することができる。
〔実施の形態7〕
図15は、本実施形態に係るタッチパネルシステム1fの基本構成を示す概略図である。タッチパネルシステム1fは、減算部41の構成が異なる。
タッチパネル3bのセンスライン33、サブセンスライン34からの出力信号は、アナログ信号である。そこで、減算部41は、差動増幅器49とAD変換部48とを備えている。
これにより、差動増幅器49は、タッチパネル3bからの出力信号(アナログ信号)を、アナログ信号のまま、図7のタッチパネルシステム1bと同様に減算処理を行う。AD変換部48(第2のAD変換部)は、減算処理されたアナログ信号を、デジタル信号に変換する。
このように、タッチパネルシステム1fは、タッチパネル3bから出力されるアナログ信号を、アナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
〔実施の形態8〕
図16は、本実施形態に係るタッチパネルシステム1gの基本構成を示す概略図である。タッチパネルシステム1gは、減算部41の構成が異なる。タッチパネルシステム1gは、図15のタッチパネルシステム1fにおける差動増幅器49の代わりに、全差動増幅器50を備えている。
タッチパネル3bのセンスライン33、サブセンスライン34からの出力信号は、アナログ信号である。そこで、減算部41は、全差動増幅器50とAD変換部48とを備えている。
これにより、全差動増幅器50は、タッチパネル3bからの出力信号(アナログ信号)を、アナログ信号のまま、図7のタッチパネルシステム1bと同様に減算処理を行う。AD変換部48は、減算処理されたアナログ信号を、デジタル信号に変換する。
図17は、全差動増幅器50の一例を示す回路図である。全差動増幅器50は、差動増幅器に対称に、2対の静電容量およびスイッチが配置されている。具体的には、非反転入力端子(+)と反転入力端子(−)とには、隣接するセンスライン33からの信号が入力される。差動増幅器の反転出力端子(−)と非反転入力端子(+)との間、および、差動増幅器の非反転出力端子(+)と反転入力端子(−)の間には、同じ容量(フィードバック容量)が接続されている。さらに、反転出力端子(−)と非反転入力端子(+)との間、および、非反転出力端子(+)と反転入力端子(−)との間には、それぞれスイッチが接続されている。
このように、タッチパネルシステム1gは、タッチパネル3bから出力されるアナログ信号を、アナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
〔実施の形態9〕
図18は、本実施形態に係るタッチパネルシステム1hの基本構成を示す概略図である。タッチパネルシステム1hは、減算部41の構成及びタッチパネル3bの駆動方式が異なる。タッチパネルシステム1hは、図15のタッチパネルシステム1fにおける差動増幅器49の代わりに、全差動増幅器50を備えている。
タッチパネル3bのセンスライン33、サブセンスライン34からの出力信号は、アナログ信号である。そこで、減算部41は、全差動増幅器50とAD変換部48とを備えている。
これにより、全差動増幅器50は、タッチパネル3bからの出力信号(アナログ信号)を、アナログ信号のまま、図7のタッチパネルシステム1bと同様に減算処理を行う。AD変換部48は、減算処理されたアナログ信号を、デジタル信号に変換する。
さらに、タッチパネルシステム1hにおいて、タッチパネル3bの駆動方式として、図10,図12,図13で示す直交系列駆動方式を適用している。この場合、図10に示すように、4本のドライブラインを駆動する電圧は、2回目〜4回目の場合は+Vの印加と−Vの印加が同数の2回であるのに対し、1回目の場合は+Vの印加が4回となっている。このため、1回目の出力系列Y1の出力値が、2〜4回目の出力系列Y2〜Y4の出力値と比して大きくなる。このため、2〜4回目の出力系列Y2〜Y4の出力値に、ダイナミックレンジを合わせると、1回目の出力系列Y1が飽和してしまうことになる。
そこで、タッチパネルシステム1hの減算部41は、全差動増幅器50を備えている。さらに、全差動増幅器50は、入力コモンモード電圧範囲が、レールトゥレール動作するものを採用している。つまり、この全差動増幅器50は、コモンモード入力レンジが広い。これにより、全差動増幅器50が、電源電圧(Vdd)からGNDまでの電圧範囲で動作可能となる。また、全差動増幅器50への入力信号の差分が増幅される。従って、どのような直交系列駆動方式のタッチパネル3bを組み合わせても、全差動増幅器50からの出力信号に、出力飽和の問題が生じない。なお、全差動増幅器50の一例は、上述した図17の通りである。
このように、タッチパネルシステム1hは、タッチパネル3bから出力されるアナログ信号を、アナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。さらに、レールトゥレール(rail to rail)動作可能な全差動増幅器50を備えているため、全差動増幅器50からの出力信号に、出力飽和の問題が生じない。
〔実施の形態10〕
実施の形態1〜9では、副センサ32(サブセンスライン34)を備えたタッチパネルシステムについて説明した。しかし、本発明のタッチパネルシステムにおいて、副センサ32は、必須の構成ではない。本実施形態では、副センサ32を備えていないタッチパネルパネルシステムについて説明する。
図20は、本実施形態に係るタッチパネルシステム1iの基本構成を示す概略図である。タッチパネルシステム1iは、互いに隣接するセンスライン33の差分信号を算出する減算部41aを備えている。
より具体的には、タッチパネル3cは、複数本(図20では5本)のドライブライン35と、各ドライブライン35に交差する複数本(図20では8本)のセンスライン33とを備えている。センスライン33とドライブライン35とは、それぞれ互いに絶縁され、かつ、容量結合している。
タッチパネルコントローラ4は、入力側から順に、スイッチSW、減算部41a、記憶部45a〜45dを備えている。なお、図示しないが、タッチパネルコントローラ4は、座標検出部42とCPU43も備えている(図1参照)。
減算部41aは、主センサ31から出力された信号を受信するための入力端子(主センサ出力用の入力端子)を備えている。減算部41aは、主センサ31からの信号を受信し、互いに隣接するセンスライン33の信号を減算し、差分値(差分信号)を算出する。減算部41aで減算処理された信号は、座標検出部42(図1参照)に出力される。
このように、タッチパネルシステム1iは、副センサ32(サブセンスライン34)を備えない点、および、減算部41aの処理が、上述の実施形態のタッチパネルシステムと異なる。
スイッチSWは、センスライン33から減算部41aに入力される信号を切り替える。より詳細には、スイッチSWは、上下に2つの端子を備えており、一方の端子が選択される。図20は、スイッチSWが下側の端子を選択した状態である。
減算部41aは、スイッチSWで選択された配列(1)〜(8)の信号の差分信号処理を行う。すなわち、減算部41aは、隣接するセンスライン33間の差分信号処理を行う。例えば、図20のように、スイッチSWにより下側の端子が選択されている場合、減算部41aは、配列(8)−配列(7)、配列(6)−配列(5)、配列(4)−配列(3)、および配列(2)−配列(1)の各差分信号処理を行う。一方、図示しないが、スイッチSWにより上側の端子が選択されている場合、減算部41aは、配列(7)−配列(6)、配列(5)−配列(4)、および配列(3)−配列(2)の各差分信号処理を行う。
記憶部45a〜45dは、スイッチSWにより一方の端子が選択された場合の減算部41aによる差分処理された信号(差分処理信号)を記憶する。なお、スイッチSWにより他方の端子が選択された場合、差分処理信号は、記憶部45a〜45dを経由せず、直接出力される。
(2)タッチパネルシステム1iのノイズ処理
図20および図21に基づいて、タッチパネルシステム1iのノイズ処理について説明する。図21は、タッチパネルシステム1iの基本処理であるノイズキャンセル処理を示すフローチャートである。
タッチパネルシステム1iを起動すると、ドライブライン35に一定周期で電位が印加される。使用者がタッチパネル3cにタッチ操作を行うと、タッチ位置に対応する特定のセンスライン33の容量が変化する。つまり、そのセンスライン33からの出力信号値が変化する。タッチパネルシステム1iは、各ドライブライン35を駆動しつつ、センスライン33からの出力信号を、タッチパネルコントローラ4に出力する。このように、タッチパネルシステム1iは、ドライブライン35を駆動しつつ、センスライン33の容量変化を検出し、タッチ操作の有無およびタッチ位置を検出する。
より詳細には、表示装置2が発生するクロック等のノイズ、および、その他外来からのノイズは、タッチパネル3cに反映される。このため、主センサ群31bでは、各種ノイズ成分が検出される。すなわち、センスライン33からの出力信号には、タッチ操作本来の信号に、ノイズ信号(ノイズ成分)が加算されている(F701)。
次に、スイッチSWにおいて、下側の端子を選択する(F702)。そして、減算部41aにおいて、センスライン33(センスラインSn)と、あるセンスライン33に隣接する2つのセンスライン33のうち、一方のセンスライン(センスラインSn+1)との間の差分を取る(センスライン(Sn+1)−Sn:第1の差分)(F703)。
図20の配列(1)〜(8)の場合、減算部41aは、
・配列(2)−配列(1)(この差分値をAとする)
・配列(4)−配列(3)(この差分値をCとする)
・配列(6)−配列(5)(この差分値をEとする)
・配列(8)−配列(7)(この差分値をGとする)
の4つの差分信号処理を行う。つまり、ステップF703では、センスライン33における配列(1)〜(8)の差分信号処理を行う。
減算部41aで算出された差分値A,C,E,Gは、記憶部45a〜45dに記憶される。すなわち、記憶部45aは差分値A,記憶部45bは差分値C、記憶部45cは差分値E、記憶部45dは差分値Gを、それぞれ記憶する(F704)。
次に、下側の端子が選択されているスイッチSWを、上側の端子を選択する(閉ざす)ように切り替える(F705)。そして、減算部41aにおいて、F703と同様に処理する。すなわち、センスライン33(センスラインSn)と、あるセンスライン33に隣接する2つのセンスライン33のうち、他方のセンスライン(センスラインSn−1)との間の差分信号処理(センスラインSn−(Sn−1):第2の差分)を行う。(F706)。
図20の配列(1)〜(8)の場合、減算部41aは、
・配列(3)−配列(2)(この差分値をBとする)
・配列(5)−配列(4)(この差分値をDとする)
・配列(7)−配列(6)(この差分値をFとする)
の3つの差分信号処理を行う。つまり、ステップF706では、配列(2)〜(7)の差分信号処理を行う。
以上のように、タッチパネルシステム1iは、隣接するセンスライン33間で差分信号値を取得する。つまり、ノイズの相関性がより高い隣接するセンスライン33間の差分を取ることとなる。すなわち、主センサ群31bの出力信号からノイズ成分が除去され、タッチ操作本来の信号が抽出される。従って、タッチパネル3cに反映された多様な種類のノイズを確実に除去(キャンセル)することができる。
〔実施の形態11〕
図22は、本実施形態に係るタッチパネルシステム1jの基本構成を示す概略図である。タッチパネルシステム1jは、上述した図20で示されるノイズキャンセル機能付きタッチパネルシステム1iに対し、ドライブライン35を並列駆動するドライブライン駆動回路(図示せず)を適用したものである。さらに、タッチパネルシステム1jは、減算部41aで算出された静電容量の差分値を、復号化する復号部58と、非タッチ操作時に復号部58で復号化された静電容量の差分分布を記憶する非タッチ操作時情報記憶部61と、タッチ操作時に復号部58で復号化された静電容量の差分分布を較正する較正部62とを備えている。タッチパネルシステム1jの動作については、上述したタッチパネルシステム1iと同様であるため、説明を省略する。そこで、以下では、減算部41a復号部58、非タッチ操作時情報記憶部61、および較正部62での処理を中心に説明する。また、以下では、並列駆動のための符号列として、直交系列またはM系列を用いる例について説明する。
具体的には、ドライブラインの1番目からM番目までを並列駆動する符号系列(成分は1または−1)を、
= (d11,d12,・・・,d1N
= (d21,d22,・・・,d2N



= (dM1,dM2,・・・,dMN
とする。以下のこの系列を、直交系列、あるいは、符号長N(=2^n−1)のM系列をシフトした系列とする。このような系列では、以下の式が成立するという性質を有する。
Figure 0005620019
この系列に対応するセンスライン33の差分出力系列「Sj, P(j=1,..,[L/2], P=1,2)(Lはセンスライン33の数、[n]=nの整数部分)」を、
j,1:スイッチSWが下側の時のd〜 dに対する出力系列
j,2:スイッチSWが上側の時のd〜 dに対する出力系列
と定義する。
また、ドライブラインが延びる方向(センスライン33が配列する方向)の容量値の差分分布「(∂sC)kj,P(k=1,…,M, j=1,..,[L/2], P=1, 2)」を、
(∂sC)kj,1=Ck,2j − Ck,2j−1
(∂sC)kj,2=Ck,2j+1 − Ck,2j
と定義する。
この場合、並列駆動による容量のドライブライン35が延びる方向の差分出力は、以下の式のようになる。
Figure 0005620019
復号部58は、減算部41aで算出された静電容量の差分値(つまりドライブライン35が延びる方向の容量値の差分分布)を復号化する。具体的には、ドライブライン35を並列駆動する符号系列と、この系列に対応するセンスライン33の差分出力系列との内積を演算する。従って、復号部58による復号後の内積値は、以下の式のようになる。
Figure 0005620019
このように、復号部58では、復号後の内積値d・sj,P の主成分として、ドライブライン35が延びる方向の容量値の差分分布(∂sC)kj,PがN倍され算出される。従って、内積値d・sj,P を、ドライブライン35が延びる方向の容量値の差分分布(∂sC)ij,Pの推定値とすることにより、その容量値の信号強度をN倍(符号長倍)にした読み出しが可能になる。
一方、上述のように、センスライン33の差分出力系列Sj,P(P=1,2)を定義することによって、隣り合うセンスライン33に共通に重畳されるコモンモードノイズは、キャンセルされる。従って、SNRが高い差分容量の読み出しが可能となる。
以上のように、タッチパネルシステム1jによれば、タッチパネル3cが並列駆動され、復号部58が、減算部41aで算出された静電容量の差分値を、復号化する。これにより、静電容量の信号が符号長倍(N倍)されて求まるため、ドライブライン35の数に依存せず、静電容量の信号強度が高まる。また、図9に示す従来の駆動方式と同等の信号強度で良ければ、ドライブライン35の駆動時間が、図9に示す駆動方式の場合の1/Nに短縮される。つまり、ドライブライン35の駆動回数を減らすことができる。従ってタッチパネルシステム1jの省電力化が可能となる。
また、タッチパネルシステム1jにおいて、較正部62が、タッチ操作時に算出された互いに隣接するセンスライン33の差分(すなわち、タッチパネル3c全体における差分値の分布)から、非タッチ操作時に算出された互いに隣接するセンスライン33の差分(=タッチパネル全体における差分値の分布)を減算することが好ましい。すなわち、上述のような差分信号処理を、タッチ操作前後で行うと共に、タッチ操作前後の差分値信号を減算することが好ましい。例えば、タッチ操作の無い初期状態(非タッチ操作時)の差分分布(∂sC)kj,Pの推定値を非タッチ操作時情報記憶部61に記憶しておく。そして、較正部62が、タッチ操作時の差分分布(∂sC)kjの推定値から、非タッチ操作時情報記憶部61に記憶された非タッチ操作時の差分分布(∂sC)kj,Pの推定値を差し引く。このように、較正部62は、タッチ操作時の静電容量の差分分布から、非タッチ操作時情報記憶部61に記憶された非タッチ操作時の静電容量の差分分布を減算する(タッチ操作時の差分値信号−非タッチ操作時の差分値信号)。従って、タッチパネル3cに内在するオフセットをキャンセルすることができる。
このように、タッチパネルシステム1jでは、タッチパネル3cに内在する容量バラツキに起因する差成分は無くなり、タッチ操作に起因する差成分のみが検出される。M系列の場合は、直交系列では入らない誤差成分(δi j =-1/N if else i≠j)の混入がある。しかし、この誤差成分はタッチ操作に起因するものだけになるため、N=63または127のようにNを大きくすれば、SNRの劣化は少ない。
〔実施の形態12〕
図23は、本実施形態に係るタッチパネルシステム1kの基本構成を示す概略図である。タッチパネルシステム1kは、減算部41aの構成が異なる。
タッチパネル3cのセンスライン33からの出力信号は、アナログ信号である。そこで、減算部41aは、AD変換部(第3のAD変換部)48aとデジタル減算器(図示せず)とを備えている。
これにより、タッチパネル3cからの出力信号(アナログ信号)は、減算部41aのAD変換部48aにて、デジタル信号に変換される。デジタル減算器は、変換されたデジタル信号を用いて、図20のタッチパネルシステム1i,1jと同様に減算処理を行う。
このように、タッチパネルシステム1kは、タッチパネル3cから出力されるアナログ信号をデジタル信号に変換した後、減算処理を行うことにより、ノイズを除去することができる。
〔実施の形態13〕
図24は、本実施形態に係るタッチパネルシステム1mの基本構成を示す概略図である。タッチパネルシステム1mは、減算部41aの構成が異なる。
タッチパネル3cのセンスライン33からの出力信号は、アナログ信号である。そこで、減算部41aは、差動増幅器49とAD変換部48a(第4のAD変換部)とを備えている。
これにより、差動増幅器49は、タッチパネル3cからの出力信号(アナログ信号)を、アナログ信号のまま、図20のタッチパネルシステム1iと同様に減算処理を行う。AD変換部48aは、減算処理されたアナログ信号を、デジタル信号に変換する。
このように、タッチパネルシステム1mは、タッチパネル3cから出力されるアナログ信号を、アナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
〔実施の形態14〕
図25は、本実施形態に係るタッチパネルシステム1nの基本構成を示す概略図である。タッチパネルシステム1nは、減算部41aの構成が異なる。タッチパネルシステム1nは、図24のタッチパネルシステム1mにおける差動増幅器49の代わりに、全差動増幅器50を備えている。
タッチパネル3cのセンスライン33からの出力信号は、アナログ信号である。そこで、減算部41aは、全差動増幅器50とAD変換部48aとを備えている。
これにより、全差動増幅器50は、タッチパネル3cからの出力信号(アナログ信号)を、アナログ信号のまま、図20のタッチパネルシステム1iと同様に減算処理を行う。AD変換部48aは、減算処理されたアナログ信号を、デジタル信号に変換する。
このように、タッチパネルシステム1nは、タッチパネル3cから出力されるアナログ信号を、アナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
〔実施の形態15〕
図26は、本実施形態に係るタッチパネルシステム1oの基本構成を示す概略図である。タッチパネルシステム1oは、減算部41aの構成が異なる。タッチパネルシステム1oは、図26のタッチパネルシステム1mにおける差動増幅器49の代わりに、全差動増幅器50を備えている。
タッチパネル3cのセンスライン33からの出力信号は、アナログ信号である。そこで、減算部41aは、全差動増幅器50とAD変換部48aとを備えている。
これにより、全差動増幅器50は、タッチパネル3cからの出力信号(アナログ信号)を、アナログ信号のまま、図20のタッチパネルシステム1iと同様に減算処理を行う。AD変換部48aは、減算処理されたアナログ信号を、デジタル信号に変換する。
さらに、タッチパネルシステム1oにおいて、タッチパネル3cの駆動方式として、図10,図12,図22で示す直交系列駆動方式を適用している。この場合、図10に示すように、4本のドライブラインを駆動する電圧は、2回目〜4回目の場合は+Vの印加と−Vの印加が同数の2回であるのに対し、1回目の場合は+Vの印加が4回となっている。このため、1回目の出力系列Y1の出力値が、2〜4回目の出力系列Y2〜Y4の出力値と比して大きくなる。このため、2〜4回目の出力系列Y2〜Y4の出力値に、ダイナミックレンジを合わせると、1回目の出力系列Y1が飽和してしまうことになる。
そこで、タッチパネルシステム1oの減算部41aは、全差動増幅器50を備えている。
さらに、全差動増幅器50は、入力コモンモード電圧範囲が、レールトゥレール動作するものを採用している。つまり、この全差動増幅器50は、コモンモード入力レンジが広い。これにより、全差動増幅器50が、電源電圧(Vdd)からGNDまでの電圧範囲で動作可能となる。また、全差動増幅器50への入力信号の差分が増幅される。従って、どのような直交系列駆動方式のタッチパネル3cを組み合わせても、全差動増幅器50からの出力信号に、出力飽和の問題が生じない。なお、全差動増幅器50の一例は、上述した図17の通りである。
このように、タッチパネルシステム1oは、タッチパネル3cから出力されるアナログ信号を、アナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。さらに、レールトゥレール(rail to rail)動作可能な全差動増幅器50を備えているため、全差動増幅器50からの出力信号に、出力飽和の問題が生じない。
〔実施の形態16〕
次に、上述の実施形態に係るタッチパネルシステムによるタッチ操作の認識方法について説明する。以下では、図22のタッチパネルシステム1jを例に説明するが、他の実施形態のタッチパネルシステムについても同様である。タッチパネルシステム1jは、減算部41aおよび復号部58で算出された互いに隣接するセンスライン33の信号の差分と、正および負の閾値との比較に基づいて、タッチ操作の有無を判定する判定部59を備えている。なお、判定部59には、較正部62で較正処理された信号(静電容量の差分分布)、または、較正部62で較正処理されていない信号(静電容量の差分分布)が入力される。較正部62で較正処理されていない信号が、判定部59に入力される場合、復号部58で復号化された静電容量の差分分布が、判定部59に直接入力されることになる。以下では、較正部62で較正処理されていない信号が、判定部59に入力される場合について説明する。しかし、較正処理された信号が、判定部59に入力される場合も同様である。
図27は、図22のタッチパネルシステム1jにおける判定部59の基本処理を示すフローチャートである。図28は、図27のフローチャートにおけるタッチ情報の認識方法を示す模式図である。
図27のように、判定部59は、まず、減算部41aおよび復号部59で算出された互いに隣接するセンスラインの信号の差分値(差分情報)「(∂sC)ij,P」を取得する(F801)。次に、この差分値を、判定部59に格納された正の閾値THpおよび負の閾値THmと比較し、増減表を作成する(F802)。この増減表は、例えば、図28の(a)に示すような、3値化された増減表である。
次に、3値化された増減表を2値画像に変換(2値化)する(F803)。例えば、図28の(a)の増減表において、センスラインS1〜センスラインS7の順(図中右向き)にスキャンする場合、増減表に「+」が出たら次の「−」がでるまですべて「1」、「−」がでたらスキャン方向と逆方向(図中左向き)に遡って全て「1」に変換する。これにより、図28の(b)に示すような2値化されたデータが得られる。
次に、2値化されたデータからタッチ情報を抽出するため、連結成分を抽出する(F804)。例えば、図28の(b)において、隣り合うドライブライン上で、同じセンスライン位置に「1」が重なった場合は、同一の連結成分であるとみなし、タッチ位置候補とする。すなわち、図28の(c)において、枠で囲った「1」は同一の連結成分であるとみなし、タッチ位置候補として抽出する。
最後に、抽出されたタッチ位置候補に基づいて、タッチ情報(タッチの大きさ、位置など)を認識する(F805)。
このように、判定部59は、ノイズ信号が除去された、互いに隣接するセンスライン33の信号の差分に基づいて、タッチ操作の有無を判定する。従って、タッチ操作の有無を正確に判定することができる。
さらに、上述の例では、判定部59が、減算部41aで算出された互いに隣接するセンスライン33の信号の差分と、正および負の閾値(THp,THm)との比較に基づいて、各センスライン33の信号の差分分布を3値化した増減表を作成すると共に、その増減表を2値画像に変換する。すなわち、ノイズ信号が除去された、互いに隣接するセンスラインの信号の差分が判定部59に入力される。判定部59は、互いに隣接するセンスライン33の信号の差分と、判定部59に格納された正および負の閾値(THp,THm)との比較とを用いて、各センスライン33の信号の差分分布を3値化した増減表を作成する。さらに、判定部59は、その増減表を2値化することにより、増減表が2値画像に変換される。これにより、変換された2値画像には、タッチ位置候補が抽出される。従って、この2値画像に基づいて、タッチ情報(タッチの大きさ、位置など)を認識することにより、タッチ操作の有無に加えて、タッチ情報をより正確に認識することができる。
〔実施の形態17〕
図29は、タッチパネルシステム1を搭載した携帯電話機10の構成を示す機能ブロック図である。携帯電話機(電子機器)10は、CPU51と、RAM53と、ROM52と、カメラ54と、マイクロフォン55と、スピーカ56と、操作キー57と、タッチパネルシステム1とを備えている。各構成要素は、相互にデータバスによって接続されている。
CPU51は、携帯電話機10の動作を制御する。CPU51は、たとえばROM52に格納されたプログラムを実行する。操作キー57は、携帯電話機10のユーザによる指示の入力を受ける。RAM53は、CPU51によるプログラムの実行により生成されたデータ、または操作キー57を介して入力されたデータを揮発的に格納する。ROM52は、データを不揮発的に格納する。
また、ROM52は、EPROM(Erasable Programmable Read-Only Memory)やフラッシュメモリなどの書込みおよび消去が可能なROMである。なお、図20には示していないが、携帯電話機10が、他の電子機器に有線により接続するためのインターフェイス(IF)を備える構成としてもよい。
カメラ54は、ユーザの操作キー57の操作に応じて、被写体を撮影する。なお、撮影された被写体の画像データは、RAM53や外部メモリ(たとえば、メモリカード)に格納される。マイクロフォン55は、ユーザの音声の入力を受付ける。携帯電話機10は、当該入力された音声(アナログデータ)をデジタル化する。そして、携帯電話機10は、通信相手(たとえば、他の携帯電話機)にデジタル化した音声を送る。スピーカ56は、たとえば、RAM53に記憶された音楽データなどに基づく音を出力する。
タッチパネルシステム1は、タッチパネル3とタッチパネルコントローラ4とドライブライン駆動回路5と表示装置2とを有している。CPU51は、タッチパネルシステム1の動作を制御する。CPU51は、例えばROM52に記憶されたプログラムを実行する。RAM53は、CPU51によるプログラムの実行により生成されたデータを揮発的に格納する。ROM52は、データを不揮発的に格納する。
表示装置2は、ROM52、RAM53に格納されている画像を表示する。表示装置2は、タッチパネル3に重ねられているか、タッチパネル3を内蔵している。
上述した各実施形態のタッチパネルシステムは、以下のような静電容量型タッチセンサパネル3dを備えることもできる。
本発明の静電容量型タッチセンサパネル3dに関する実施の一形態について図30〜図52に基づいて説明すれば以下のとおりである。
(実施の形態18)
まず、静電容量型タッチセンサパネル3dを備えたタッチパネルシステム1pの全体構成を説明し、その後、タッチセンサパネル3dの構成を説明する
タッチパネルシステム1pの全体構成)
図30は、実施の形態18に係るタッチパネルシステム1pの構成を示すブロック図である。タッチパネルシステム1pは、タッチパネル3dと静電容量値分布検出回路22とを備えている。タッチパネル3dには、水平方向に沿って互いに平行に配置された複数の水平電極7(図31・図33)と、垂直方向に沿って互いに平行に配置された垂直電極6(図31・図32)と、水平電極7と垂直電極6との交点にそれぞれ形成される静電容量とを備えている。
複数の水平電極7はアドレスラインHL1〜HLMにそれぞれ接続され、複数の垂直電極6はアドレスラインVL1〜VLMにそれぞれ接続されている。
静電容量値分布検出回路22は、ドライバ16を備えている。ドライバ16は、符号系列に基づいてアドレスラインHL1〜HLMを介して複数の水平電極7に電圧を印加して各静電容量を駆動する。静電容量値分布検出回路22には、センスアンプ17が設けられている。センスアンプ17は、ドライバ16により駆動された各静電容量に対応する電荷の線形和を、複数の垂直電極6及びアドレスラインVL1〜VLMを通して読み出して、AD変換器19に供給する。AD変換器19は、アドレスラインVL1〜VLMを通して読み出した各静電容量に対応する電荷の線形和をAD変換して容量分布計算部20に供給する。
なお、本発明の実施の形態では、水平電極に電圧を印加して駆動し、垂直電極から電圧信号を読み出す例を示すが、本発明はこれに限定されない。垂直電極に電圧を印加して駆動し、水平電極から電圧信号を読み出すように構成してもよい。
容量分布計算部20は、AD変換器19から供給された各静電容量に対応する電荷の線形和と符号系列とに基づいて、タッチパネル3d上の静電容量分布を計算してタッチ認識部21に供給する。タッチ認識部21は、容量分布計算部20から供給された静電容量分布に基づいて、タッチパネル3d上のタッチされた位置を認識する。
静電容量値分布検出回路22は、タイミングジェネレータ18を有している。タイミングジェネレータ18は、ドライバ16の動作を規定する信号と、センスアンプ17の動作を規定する信号と、AD変換器19の動作を規定する信号とを生成して、ドライバ16、センスアンプ17、及びAD変換器19に供給する。
(タッチセンサパネル3dの構成)
図31は、タッチパネルシステム1pに設けられたタッチパネル3dの構成を説明するための断面図である。タッチパネル3dは、基板203(絶縁体)と、基板203の一方の面204(垂直電極面)に形成された複数の垂直電極6と、基板203の他方の面205(水平電極面)に形成された複数の水平電極7とを備えている。
基板203は、絶縁性を有する誘電体基板である。そして、基板203は、複数の垂直電極6と複数の水平電極7との間に配置されて、複数の垂直電極6と複数の水平電極7とを絶縁する。基板203の垂直電極6側には、透明接着剤13が垂直電極6を覆うように形成されている。透明接着剤13の上には、カバーフィルム15が接着されている。基板203の水平電極7側には、透明接着剤14が水平電極7を覆うように形成されている。透明接着剤14には、ディスプレイ12が接着されている。
(垂直電極6の構成)
図32の(a)はタッチパネル3dに設けられた垂直電極6を構成する第一の基本形状8を示す図であり、図32の(b)は垂直電極6の構成を示す図である。
垂直電極6は、図31を参照して前述したように、基板203の一方の面204に形成されており、図32の(a)に示す細線で形成された第一の基本形状8を、図32の(b)に示すように垂直方向に繰り返し接続して形成されている。基本形状8は、垂直中心線C1に対して線対称に形成されている。そして、基本形状8は、斜め45度傾斜した細線及び斜めマイナス45度傾斜した細線のみによって構成されている。垂直電極6は、水平方向に所定の間隔を空けて、例えば約7mmピッチで、基板203の一方の面204上(図31)に配置されている。
このように、傾斜した細線によって基本形状8を構成すると、タッチパネル3dを重ねた液晶ディスプレイ12に形成された画素を細線が遮蔽してしまうことがないので、モアレの発生を防止することができる。
(水平電極7の構成)
図33の(a)はタッチパネル3dに設けられた水平電極7を構成する第二の基本形状9を示す図であり、図33の(b)は水平電極7の構成を示す図である。
水平電極7は、図31を参照して前述したように、基板203の他方の面205に形成されており、図33の(a)に示す細線で形成された第二の基本形状9を、図33の(b)に示すように水平方向に繰り返し接続して形成されている。基本形状9は、垂直中心線C1に対して線対称に形成されている。そして、基本形状9は、基本形状8と同様に、斜め45度に傾斜した細線及び斜めマイナス45度に傾斜した細線のみによって構成されている。水平電極7は、垂直方向に所定の間隔を空けて、例えば約7mmピッチで、基板203の他方の面205上(図31)に配置されている。
垂直電極6及び水平電極7は、例えば、金属薄膜のエッチングにより形成されるか、あるいは、導電性のナノ粒子を含むインクによって印刷形成される。導電性のナノ粒子は、銀、金、白金、パラジウム、銅、カーボン、またはそれらの混合物を含む。
(格子の構成)
図34は、複数の垂直電極6と複数の水平電極7とにより形成された一様な格子210を示す図である。複数の垂直電極6と複数の水平電極7とは、基板203(図31)に垂直な方向から見ると、互いに重なる線分を持たないように配置されている。そして、複数の垂直電極6と複数の水平電極7とは、隙間無く一様に配置された格子210を形成する。格子210の輪郭は、長方形状に形成されている。
垂直電極6を構成する基本図形8及び水平電極7を構成する基本図形9は、線対称に形成されており、複数の垂直電極6と複数の水平電極7とにより構成される格子210は、開口が生じることなく、隙間無く形成されている。このため、図54に示す従来の構成のように、格子の存在しない十字状の開口97が生じ、当該開口97が視認されて視認性が低下するという問題が解消する。また、図54に示す従来の構成では、生じた開口97の周辺では容量変化の態様が開口から離れた場所での容量変化の態様と異なってくるという問題が生じるが、図34に示す実施の形態18の構成では、開口が生じないため、容量変化の態様が基板203全体で一様になるという効果を奏する。
また、図57に示す構成では、垂直電極71は、基本図形74を垂直方向に繰り返して形成した後、基本図形74とは異なる基本図形75を接合して垂直電極71を構成する。そして、水平電極72は、基本図形76を水平方向に繰り返して形成した後、基本図形76とは異なる基本図形77を接合して水平電極72を構成する。このため、垂直電極71と水平電極72とを重ね合わせて格子73を形成すると、図58に示すように、格子73の下辺において基本図形75によるジグザグ形状78が現れ、格子73の左辺において基本図形77によるジグザグ形状79が現れる。このようなジグザグ形状78・79が現れると、水平電極72を駆動するアドレスラインを、ジグザグ形状79を構成する水平電極72にそのまま容易に接合することが困難であり、垂直電極71を駆動するアドレスラインを、ジグザグ形状78を構成する垂直電極71にそのまま容易に接合することが困難であるという問題が生じる。
これに対して図34に示す実施の形態18の構成によれば、格子210は、その輪郭が長方形状に形成されて、ジグザグ形状が現れない。このため、水平電極7を駆動するアドレスラインをそのまま容易に水平電極7に接合することができ、垂直電極6から信号を読み出すためのアドレスラインをそのまま容易に垂直電極6に接合することができる。
さらに、図59の(a)に示す構成では、導電X軸162は、導電Xパッド163と導電Xライン164とを組み合わせた基本形状を垂直方向に繰り返して形成した後、この導電Xパッド163と導電Xライン164とを組み合わせた基本形状とは異なる基本形状である導電Xパッド163aを接合して導電X軸162を構成している。従って、図59の(a)に示す導電X軸162は、基本形状を垂直方向に繰り返し接続して形成されていないから、図32に示す実施の形態18の垂直電極6とは構成が異なる。
そして、図59の(b)に示す導電Y軸167は、導電Yパッド168と導電Yライン169とを組み合わせた基本形状を水平方向に繰り返して形成した後、この導電Yパッド168と導電Yライン169とを組み合わせた基本形状とは異なる基本形状である導電Yパッド168aを接合して導電Y軸167を構成している。従って、図59の(b)に示す導電Y軸167は、基本形状を水平方向に繰り返し接続して形成されていないから、図33に示す実施の形態18の水平電極7とは構成が異なる。
このように、本願発明の実施の形態では、基本形状を垂直方向または水平方向に繰り返し接続して形成するので、垂直電極、水平電極の設計が容易になり、電極の自動生成や自動修正等が可能になる。また、タッチパネル製造に用いるフォトマスク及びタッチパネル製品の検査を、繰り返し画像処理により行えるため、タッチパネルの製造も容易に行うことができる。
また、図59に示す導電Xパッド163及び導電Yパッド168を、Y軸及びX軸に平行でない斜め方向に延びる細線により構成すると、導電Xライン164はY軸に平行である必要があり、導電Yライン169はX軸に平行である必要があるため、一様な格子を構成することができないという問題が生じる。
実施の形態18に係るタッチパネル3dを製造する際、図31に示すように垂直電極6と水平電極7とを同一シート(基板203)の両面に形成する構成と、垂直電極6を形成したシートと水平電極7を形成したシートとを張り合わせる構成とが考えられる。いずれの場合も、位置合わせ精度や張り合わせ精度により、垂直電極6と水平電極7との位置関係が実施の形態18で開示した位置関係から微妙にずれることはありうる。そこで、要求されるタッチ位置検出精度に応じて、タッチパネル製造工程における位置合わせ精度、張り合わせ精度を決める必要がある。
(変形例)
図35の(a)はタッチパネル3dに設けられた変形例の垂直電極6aを構成する第一の基本形状8aを示す図であり、図35の(b)は上記変形例の垂直電極6aの構成を示す図である。基本形状8aは、上側の細線の配線経路と下側の細線の配線経路とが、接続点Q1において、細線1本分に絞られて接続されている。そして、基本形状8aは、垂直中心線C1に対して線対称である。
図36の(a)はタッチパネル3dに設けられた変形例の水平電極7aを構成する第二の基本形状9aを示す図であり、図36の(b)は上記変形例の水平電極7aの構成を示す図である。基本形状9aは、左側の細線の配線経路と中央の細線の配線経路とが、接続点Q2において、細線1本分に絞られて接続されている。そして、中央の細線の配線経路と右側の細線の配線経路とが、接続点Q3において、細線1本分に絞られて接続されている。また、基本形状9aは、垂直中心線C1に対して線対称である。
図37は、変形例の垂直電極6aと変形例の水平電極7aとにより形成された一様な格子210aを示す図である。図34に示す格子210と同様に、複数の垂直電極6aと複数の水平電極7aとは、基板203(図31)に垂直な方向から見ると、互いに重なる線分を持たないように配置されている。そして、複数の垂直電極6aと複数の水平電極7aとは、隙間無く一様に配置された格子210aを形成する。格子210aの輪郭は、長方形状に形成されている。
図35〜図37に示す垂直電極6a、水平電極7a及び格子210aの構成は、図32〜図34に示す垂直電極6、水平電極7及び格子210の構成と同様の効果を奏する。
図38の(a)は上記変形例の垂直電極6aの第一の基本形状8aに透明電極材料23を埋め込んだ構成を示す図であり、図38の(b)は透明電極材料23を埋め込んだ変形例の垂直電極6aを示す図である。図39の(a)は変形例の水平電極7aの第二の基本形状9aに透明電極材料23を埋め込んだ構成を示す図であり、図39の(b)は透明電極材料23を埋め込んだ変形例の水平電極7aを示す図である。
図38に示すように、第一の基本形状8aからなる垂直電極6aの外郭に沿って透明電極材料23を埋め込むことにより、垂直電極6aの抵抗値をさらに下げることができる。そして、図39に示すように、第二の基本形状9aからなる水平電極7aの外郭にほぼ沿って透明電極材料23を埋め込むことにより、水平電極7aの抵抗値をさらに下げることができる。透明電極材料23は、例えば、ITO膜、または、グラフェンにより構成することができる。
これにより、細線の線幅をさらに細かくすることができ、視認性を下げることができる。細線の線幅が、例えば、0.5mm以上に広いと、タッチパネル設けた表示装置の画面に視聴者が近づくと、細線が視認される。
図40の(a)は変形例の垂直電極6aにアドレスラインVL1〜VLMを接続した構成を示す図であり、図40の(b)は変形例の水平電極7aにアドレスラインHL1〜HLMを接続した構成を示す図であり、図40の(c)はアドレスラインVL1〜VLM、HL1〜HLMを接続した垂直電極6a及び水平電極7aにより構成される格子210aを示す図である。
垂直電極6a及び水平電極7aにより構成される格子210aは、格子210と同様に、その輪郭が長方形状に形成されて、ジグザグ形状が現れない。このため、水平電極7aを駆動するアドレスラインHL1〜HLMをそのまま容易に水平電極7aに接合することができ、垂直電極6aから信号を読み出すためのアドレスラインVL1〜VLMをそのまま容易に垂直電極6aに接合することができる。
(実施の形態19)
(垂直電極6bの構成)
図41の(a)は実施の形態19に係るタッチパネルに設けられた垂直電極6bを構成する第一の基本形状8bを示す図であり、図41の(b)は垂直電極6bの構成を示す図である。垂直電極6bは、図31を参照して前述したように、基板203の一方の面204に形成されており、細線で形成された第一の基本形状8bを、垂直方向に繰り返し接続して形成されている。基本形状8bは、中心点Pに対して点対称に形成されている。そして、基本形状8bは、斜め45度傾斜した細線及び斜めマイナス45度傾斜した細線のみによって構成されている。垂直電極6bは、水平方向に所定の間隔を空けて、例えば約7mmピッチで、基板203の一方の面204上(図31)に配置されている。
(水平電極7bの構成)
図42の(a)は実施の形態19に係るタッチパネルに設けられた水平電極7bを構成する第二の基本形状9bを示す図であり、図42の(b)は水平電極7bの構成を示す図である。水平電極7bは、図31を参照して前述したように。基板203の他方の面205に形成されており、図42の(a)に示す細線で形成された第二の基本形状9bを、水平方向に繰り返し接続して形成されている。基本形状9bは、中心点Pに対して点対称に形成されている。そして、基本形状9bは、基本形状8bと同様に、斜め45度に傾斜した細線及び斜めマイナス45度に傾斜した細線のみによって構成されている。水平電極7bは、垂直方向に所定の間隔を空けて、例えば約7mmピッチで、基板203の他方の面205上(図31)に配置されている。
(実施の形態20)
(垂直電極6cの構成)
図43の(a)は実施の形態20に係るタッチパネルに設けられた垂直電極6cを構成する第一の基本形状8cを示す図であり、図43の(b)は垂直電極6cの構成を示す図である。垂直電極6cは、図31に示す基板203の一方の面204に形成されており、細線で形成された第一の基本形状8cを、垂直方向に繰り返し接続して形成されている。基本形状8cは、垂直中心線C1に対して線対称に形成されているとともに、水平中心線C2に対しても線対称に形成されている。そして、基本形状8cは、斜め45度傾斜した細線及び斜めマイナス45度傾斜した細線のみによって構成されている。垂直電極6cは、水平方向に所定の間隔を空けて、例えば約7mmピッチで、基板203の一方の面204上(図31)に配置されている。
(水平電極7cの構成)
図44の(a)は実施の形態20に係るタッチパネルに設けられた水平電極7cを構成する第二の基本形状9cを示す図であり、図44の(b)は水平電極7cの構成を示す図である。水平電極7cは、図31に示す基板203の他方の面205に形成されており、細線で形成された第二の基本形状9cを、水平方向に繰り返し接続して形成されている。基本形状9cは、垂直中心線C1に対して線対称に形成されているとともに、水平中心線C2に対しても線対称に形成されている。そして、基本形状9cは、斜め45度に傾斜した細線及び斜めマイナス45度に傾斜した細線のみによって構成されている。水平電極7cは、垂直方向に所定の間隔を空けて、例えば約7mmピッチで、基板203の他方の面205上(図31)に配置されている。
(垂直電極、水平電極を対称に構成する効果)
図57に示す従来の構成では、垂直電極71及び水平電極72とも中心線対称でも無く、中心点対象でも無い。このため、図57に示す電極分布を持つ静電容量型タッチセンサでは、タッチ面積の小さい物体による容量変化に位置による対称性が無い。従って、タッチ位置検出の際に対称な位置補正が行えず、位置検出精度を向上するアルゴリズムが複雑になるという課題が生ずる。これは、演算量、回路規模、メモリ量の増大を招き、消費電力やコストの増大につながる。
これに対して、垂直電極または水平電極を線対称または点対称に構成すると、ペン等のタッチ面積の小さい物体による容量変化に同様な対称性が現れる。この容量変化の対称性を用いることにより、タッチ位置検出の際に対称な位置補正が行え、位置検出精度を向上することができる。
このように、位置検出精度の課題を解消するために、本発明の実施の形態では、細い配線を用いた対称性のあるダイヤモンド形状の構成を利用する。これにより、30インチ以上の大きな静電容量型タッチセンサにおいて、ペン等のタッチ面積の小さい物体による位置検出を高精度で行うことが可能になる。
(実施の形態21)
(垂直電極6dの構成)
図45の(a)は実施の形態21に係るタッチパネルに設けられた垂直電極6dを構成する第一の基本形状8dを示す図であり、図45の(b)は垂直電極6dの構成を示す図である。垂直電極6dは、図35に示した垂直電極6aの格子ピッチを(7/5)倍に変更したものである。基本形状8dは、上側の細線の配線経路と下側の細線の配線経路とが、接続点Q4において、細線1本分に絞られて接続されている。そして、基本形状8dは、垂直中心線C1に対して線対称である。
図46の(a)は実施の形態21に係るタッチパネルに設けられた水平電極7dを構成する第二の基本形状9dを示す図であり、図46の(b)は水平電極7dの構成を示す図である。水平電極7dは、図36に示した水平電極7aの格子ピッチを(7/5)倍に変更したものである。基本形状9dは、左側の細線の配線経路と中央の細線の配線経路とが、接続点Q5において、細線1本分に絞られて接続されている。そして、中央の細線の配線経路と右側の細線の配線経路とが、接続点Q6において、細線1本分に絞られて接続されている。また、基本形状9dは、垂直中心線C1に対して線対称である。
(実施の形態22)
(垂直電極6eの構成)
図47の(a)は実施の形態22に係るタッチパネルに設けられた垂直電極6eを構成する第一の基本形状8eを示す図であり、図47の(b)は垂直電極6eの構成を示す図である。垂直電極6eは、細線で形成された第一の基本形状8eを、垂直方向に繰り返し接続して形成されている。基本形状8eは、垂直中心線C1に対して線対称に形成されている。
そして、基本形状8eは、上側の細線の配線経路と下側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により垂直方向に接続されている。
(水平電極7eの構成)
図48の(a)は実施の形態22に係るタッチパネルに設けられた水平電極7eを構成する第二の基本形状9eを示す図であり、図48の(b)は水平電極7eの構成を示す図である。水平電極7eは、細線で形成された第二の基本形状9eを、水平方向に繰り返し接続して形成されている。基本形状9eは、垂直中心線C1に対して線対称に形成されている。
そして、基本形状9eは、左側の細線の配線経路と右側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により水平方向に接続されている。
(格子210eの構成)
図49は、垂直電極6eと水平電極7eにより形成された一様な格子210eを示す図である。複数の垂直電極6eと複数の水平電極7eとは、基板203(図31)に垂直な方向から見ると、互いに重なる線分を持たないように配置されている。そして、複数の垂直電極6eと複数の水平電極7eとは、隙間無く一様に配置された格子210eを形成する。格子210eの輪郭は、長方形状に形成されている。
(垂直電極6fの構成)
図50の(a)は実施の形態22に係るタッチパネルに設けられた他の垂直電極6fを構成する第一の基本形状8fを示す図であり、図50の(b)は上記他の垂直電極6fの構成を示す図である。垂直電極6fは、細線で形成された第一の基本形状8fを、垂直方向に繰り返し接続して形成されている。基本形状8fは、垂直中心線C1に対して線対称に形成されている。
そして、基本形状8fは、基本形状8eと同様、上側の細線の配線経路と下側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により垂直方向に接続されている。
(水平電極7fの構成)
図51の(a)は実施の形態22に係るタッチパネルに設けられた他の水平電極7fを構成する第二の基本形状9fを示す図であり、図51の(b)は上記他の水平電極7fの構成を示す図である。水平電極7fは、細線で形成された第二の基本形状9fを、水平方向に繰り返し接続して形成されている。基本形状9fは、垂直中心線C1に対して線対称に形成されている。
そして、基本形状9fは、基本形状9eと同様、左側の細線の配線経路と右側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により水平方向に接続されている。
図57に示す構成に内在するもう一点の問題点として、図57の(a)の垂直電極71、及び図57の(b)の水平電極72とも、配線経路が細線一本分に絞られて接続される部分を持つことが挙げられる。タッチセンサパネルの製造工程において、この細線一本分に絞られている部分が断線すると、電極全体に通電できなくなるため、断線の可能性のある製造工程を用いる場合は、タッチセンサパネルの歩留まりを低下させるという課題が生じる。
これに対して本発明の実施形態では、基本形状8e・8f、基本形状9e・9fは、配線経路が細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により接続されている。このため、製造工程において1本の細線が切れても、残りの細線により接続が維持され、垂直電極6e・6f、水平電極7e・7fの断線を防止することができるという効果を奏する。
(変形例の第一の基本形状8g・第二の基本形状9gの構成)
図52の(a)は変形例の第一の基本形状8gを示す図であり、図52の(b)は変形例の第二の基本形状9gを示す図である。
基本形状8gは、上側の細線の配線経路と下側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により垂直方向に接続されている。そして、基本形状8gは、中心点Pに対して点対称に形成されている。
基本形状9gは、左側の細線の配線経路と右側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により水平方向に接続されている。そして、基本形状9gは、中心点Pに対して点対称に形成されている。
(他の変形例の第一の基本形状8h・第二の基本形状9hの構成)
図53の(a)は他の変形例の第一の基本形状8hを示す図であり、図53の(b)は他の変形例の第二の基本形状9hを示す図である。
基本形状8hは、上側の細線の配線経路と下側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により垂直方向に接続されている。そして、基本形状8hは、垂直中心線C1及び水平中心線C2に対して線対称に形成されている。
基本形状9hは、左側の細線の配線経路と右側の細線の配線経路とが、細線1本分に絞られて接続されている箇所を有さず、常に、少なくとも2箇所の細線部分により水平方向に接続されている。そして、基本形状9hは、垂直中心線C1及び水平中心線C2に対して線対称に形成されている。
(実施の形態23)
(電子黒板250の構成)
図54は、実施の形態23に係る電子黒板250(情報入出力装置)の外観を示す図である。電子黒板250は、本発明の実施の形態に係るタッチパネルシステム1pを備えており、タッチパネルシステム1pは、本発明の実施の形態に係るタッチパネル3dを有している。タッチパネル3dは、例えば約80インチのサイズを有している。
なお、本発明は、以下のように表現することもできる。
〔1〕複数のセンサを持つタッチパネルと、前記センサからの信号を入力し、データを読み取るタッチパネルコントローラとからなるタッチパネルシステムに関して、前記タッチパネルは、使用者がタッチ操作を行うことにより信号を入力する主センサと、前記主センサと同じタッチパネル上に設置された副センサとを備え、前記タッチパネルコントローラは、前記主センサからの信号と前記副センサからの信号を受信し、前記主センサからの信号から、前記副センサからの信号を減算する減算手段とを有することを特徴とするタッチパネルシステム。
〔2〕前記副センサが、使用者がタッチ操作により接触することなく、センサに発生するノイズを検出することを特徴とする上記〔1〕に記載のタッチパネルシステム。
〔3〕前記主センサと前記副センサとが隣接して設置されていることを特徴とする上記〔1〕または〔2〕に記載のタッチパネルシステム。
〔4〕表示装置と、前記表示装置の表示画面の上部等に配置され、複数のセンサ群をマトリクス状に配置したタッチパネルと、前記センサ群からの信号を入力し、データを読み取るタッチパネルコントローラとからなるタッチパネルシステムに関して、前記タッチパネルは、使用者がタッチ操作を行うことにより信号を入力する主センサ群と、前記主センサ群と同じタッチパネル上に設置された副センサ群とを備え、前記タッチパネルコントローラは、前記主センサ群からの信号と前記副センサ群からの信号を受信し、前記主センサ群からの信号から、前記副センサ群からの信号を減算する減算手段とを有することを特徴とするタッチパネルシステム。
〔5〕前記副センサ群が、使用者がタッチ操作により接触することなく、センサ群に発生するノイズを検出することを特徴とする上記〔4〕に記載のタッチパネルシステム。
〔6〕前記主センサ群と前記副センサ群とが隣接して設置されていることを特徴とする上記〔4〕または〔5〕に記載のタッチパネルシステム。
〔7〕前記表示装置は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、FEDディスプレイであることを特徴とする上記〔1〕〜〔6〕のいずれかに記載のタッチパネルシステム。
〔8〕上記〔1〕〜〔7〕のいずれかのタッチパネルシステムを備えたことを特徴とする電子機器。
上記各構成によれば、タッチパネル内に、タッチ操作を検出する主センサ部と、ノイズ検出用の副センサ部とを備え、減算部が、主センサ部と副センサ部との信号の差分を取る。これにより、主センサ部からの出力信号からノイズ信号が除去され、タッチ操作により生じたタッチ操作本来の信号が抽出される。従って、タッチパネルに反映された多様な種類のノイズを確実に除去(キャンセル)することができる。それゆえ、除去対象となるノイズ成分は、ノイズを含む信号中のAC信号成分に限られることなく、タッチパネルに反映されるノイズ成分の全てである。つまり、基本的にノイズ成分を全てキャンセルすることが可能であるタッチパネルシステムおよび電子機器を提供することが可能となる。
また、本発明は、以下のように記載することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記主センサ部は、複数のセンスラインを備え、上記副センサ部は、センスラインと同一方向に延びるサブセンスラインを備え、
上記減算部は、
上記センスラインから選択されたセンスラインSnの信号と、センスラインSnに隣接する2つのセンスライン(センスラインSn+1,センスラインSn−1)のうち、一方のセンスラインSn+1の信号との差分である第1の差分((Sn+1)−Sn)、および、
センスラインSnの信号とセンスラインSnに隣接する他方のセンスラインSn−1の信号との差分である第2の差分(Sn−(Sn−1))を算出すると共に、
サブセンスラインとサブセンスラインに隣接するセンスラインとの差分である第3の差分を算出し、
上記タッチパネルコントローラは、上記第1の差分と第2の差分と第3の差分とを加算する加算部を備えることが好ましい。
上記の構成によれば、減算部が、隣接するセンスライン間で差分信号値を取得する。つまり、ノイズの相関性がより高い隣接するセンスライン間の差分を取ることになる。さらに、各センスラインの出力信号から、サブセンスラインの信号(ノイズ信号)も除去される。従って、より確実にノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記センスラインおよびサブセンスラインに対し交差して設けられたドライブラインと、上記ドライブラインを駆動するドライブライン駆動回路とを備え、
上記センスラインまたはサブセンスラインと、上記ドライブラインとの間に静電容量が形成されており、
上記ドライブライン駆動回路は、直交系列またはM系列を用いて、上記ドライブラインを並列に駆動するようになっており、
上記センスラインおよびサブセンスラインごとの出力信号を読み出し、その出力信号と上記ドライブラインを並列駆動する符号系列とを内積し、上記静電容量の容量値を算出する演算部を備えていてもよい。
上記の構成によれば、タッチパネルが直交系列駆動方式により駆動される。これにより、静電容量の信号が符号長倍(N倍)されて求まるため、ドライブライン数に依存せず、静電容量の信号強度が高まる。また、従来方式と同等の信号強度で良ければ、ドライブラインの駆動回数を減らすことができ、省電力化が可能となる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部は、上記減算部に入力されたセンスラインまたはサブセンスラインからのアナログ信号を、デジタル信号に変換する第1のAD変換部を備え、
上記減算部は、上記第1のAD変換部でデジタル信号を用いて上記第1の差分〜第3の差分を算出するようになっていてもよい。
上記の構成によれば、タッチパネルから出力されるアナログ信号をデジタル信号に変換した後、減算処理を行うことにより、ノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部は、上記減算部に入力されたセンスラインまたはサブセンスラインからのアナログ信号を、デジタル信号に変換する第2のAD変換部を備え、
上記第2のAD変換部は、上記減算部により上記アナログ信号を用いて算出された上記第1の差分〜第3の差分をデジタル信号に変換するようになっていてもよい。
上記の構成によれば、タッチパネルから出力されるアナログ信号をアナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部は、上記アナログ信号を用いて上記第1の差分〜第3の差分を算出する全差動増幅器を備えることが好ましい。
上記の構成によれば、全差動増幅器によって、タッチパネルから出力されるアナログ信号をアナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記全差動増幅器は、入力コモンモード電圧範囲が、レールトゥレール動作するようになっていることが好ましい。
上記の構成によれば、レールトゥレール(rail to rail)動作可能な全差動増幅器を備えている。これにより、全差動増幅器が、電源電圧(Vdd)からGNDまでの電圧範囲で動作可能となる。従って、全差動増幅器からの出力信号に、出力飽和の問題が生じない。
本実施の形態に係るタッチパネルシステムにおいて、上記加算部は、上記サブセンスラインからの距離が近い順に加算処理を進め、加算結果を次の加算処理に用いるようになっていることが好ましい。
上記の構成によれば、加算部が、加算結果を利用しながら、サブセンスラインから離れる方向に順次加算処理を進める。従って、加算処理速度を高めることができる。
本実施の形態に係るタッチパネルシステムにおいて、上記副センサ部は、上記タッチパネルのタッチ操作を検出しないようになっていてもよい。
上記の構成によれば、タッチ操作による信号が副センサ部で検出されないため、副センサ部からの出力信号には、タッチ操作による信号が含まれない。これにより、減算部の減算処理によって、タッチ操作の信号値が低減されることはない。つまり、主センサ部で検出されたタッチ操作の信号が低減されることなく、ノイズ成分が除去される。従って、タッチ操作の検出感度をより一層高めることができる。
本実施の形態に係るタッチパネルシステムにおいて、上記副センサ部は、上記タッチパネル上のタッチ操作されない領域に設けられていてもよい。
上記の構成によれば、副センサ部が、使用者がタッチ操作する領域(タッチ領域)を避けて設けられている。このため、副センサ部は、使用者がタッチ操作することなく、タッチパネルに反映されたノイズを検出するが、タッチ操作による信号を検出しない。従って、副センサ部が、タッチ操作を検出するのを確実に回避することができる。
つまり、上記の構成によれば、タッチ操作による信号が副センサ部で検出されないため、副センサ部からの出力信号には、タッチ操作による信号が含まれない。これにより、減算部の減算処理によって、タッチ操作の信号値が低減されることはない。つまり、主センサ部で検出されたタッチ操作の信号が低減されることなく、ノイズ成分が除去される。従って、タッチ操作の検出感度をより一層高めることができる。
本実施の形態に係るタッチパネルシステムにおいて、上記主センサ部と副センサ部とが、互いに隣接して設けられていることが好ましい。
上記の構成によれば、主センサ部と副センサ部とが、最も接近して配置される。つまり、主センサ部と副センサ部とが、略同一条件の配置状態となる。このため、副センサ部からの出力信号に含まれるノイズ信号値は、主センサ部からの出力信号に含まれるノイズ信号値と同一であるとみなすことができる。これにより、減算部による減算処理によって、タッチパネルに反映されたノイズ成分を、より確実に除去することができる。従って、タッチ操作の検出感度をより一層高めることができる。
本実施の形態に係るタッチパネルシステムにおいて、上記主センサ部は、1個の主センサからなるものであってもよい。
上記の構成によれば、主センサ部が、単数の主センサから構成されている。これにより、タッチ操作の有無を検出することのできるタッチパネルシステムを提供することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記主センサ部は、マトリクス状に配置された複数の主センサからなるものであってもよい。
上記の構成によれば、主センサ部が、マトリクス状に配置された複数の主センサから構成されている。これにより、タッチ操作の有無と共にタッチ位置を検出することのできるタッチパネルシステムを提供することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記センスラインに対し交差して設けられたドライブラインと、
上記ドライブラインを駆動するドライブライン駆動回路とを備え、
上記センスラインと、上記ドライブラインとの間に静電容量が形成されており、
上記ドライブライン駆動回路は、上記ドライブラインを並列に駆動するようになっており、
上記減算部は、上記センスラインごとの出力信号を受信し、上記互いに隣接するセンスラインの信号の差分として、上記ドライブラインが延びる方向における静電容量の差分を算出し、
上記減算部で算出された静電容量の差分値を、復号化する復号部を備えることが好ましい。
上記の構成によれば、タッチパネルが並列駆動され、復号部が、減算部で算出された静電容量の差分値を、復号化する。これにより、静電容量の信号が符号長倍(N倍)されて求まるため、ドライブライン数に依存せず、静電容量の信号強度が高まる。また、従来方式と同等の信号強度で良ければ、ドライブラインの駆動回数を減らすことができ、省電力化が可能となる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部は、上記減算部に入力されたセンスラインからのアナログ信号を、デジタル信号に変換する第3のAD変換部を備え、
上記減算部は、上記第3のAD変換部でデジタル信号を用いて算出された、上記互いに隣接するセンスラインの信号の差分を算出してもよい。
上記の構成によれば、タッチパネルから出力されるアナログ信号をデジタル信号に変換した後、減算処理を行うことにより、ノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部は、上記減算部に入力されたセンスラインからのアナログ信号を、デジタル信号に変換する第4のAD変換部を備え、
上記第4のAD変換部は、上記減算部により上記アナログ信号を用いて算出された上記互いに隣接するセンスラインの信号の差分をデジタル信号に変換してもよい。
上記の構成によれば、タッチパネルから出力されるアナログ信号をアナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部は、上記アナログ信号を用いて上記互いに隣接するセンスラインの信号の差分を算出する全差動増幅器を備えていてもよい。
上記の構成によれば、全差動増幅器によって、タッチパネルから出力されるアナログ信号をアナログ信号のまま減算処理した後、デジタル信号に変換して、ノイズを除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、非タッチ操作時に上記復号部で復号化された静電容量の差分分布を記憶する非タッチ操作時情報記憶部と、タッチ操作時に上記復号部で復号化された静電容量の差分分布から、非タッチ操作時情報記憶部に記憶された、非タッチ操作時の静電容量の差分分布を減算し、静電容量の差分分布を較正する較正部とを備える構成であってもよい。
上記の構成によれば、非タッチ操作時情報記憶部が、復号部で復号化された非タッチ操作時における静電容量の差分分布を記憶している。そして、較正部は、タッチ操作時の静電容量の差分分布から、非タッチ操作時情報記憶部に記憶された非タッチ操作時の静電容量の差分分布を減算する。つまり、較正部は、(タッチ操作時の静電容量の差分分布)−(非タッチ操作時の静電容量の差分分布)を算出する。従って、タッチパネルに内在するオフセットをキャンセルすることができる。
本実施の形態に係るタッチパネルシステムにおいて、上記減算部で算出された互いに隣接するセンスラインの信号の差分と、正および負の閾値との比較に基づいて、タッチ操作の有無を判定する判定部を備えることが好ましい。
上記の構成によれば、判定部が、ノイズ信号が除去された、互いに隣接するセンスラインの信号の差分に基づいて、タッチ操作の有無を判定する。従って、タッチ操作の有無を正確に判定することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記判定部は、上記減算部で算出された互いに隣接するセンスラインの信号の差分と、正および負の閾値との比較に基づいて、各センスラインの信号の差分分布を3値化した増減表を作成すると共に、その増減表を2値画像に変換することによって、タッチ情報を抽出することが好ましい。
上記の構成によれば、ノイズ信号が除去された、互いに隣接するセンスラインの信号の差分が判定部に入力される。判定部は、互いに隣接するセンスラインの信号の差分と、判定部に格納された正および負の閾値との比較とを用いて、各センスラインの信号の差分分布を3値化した増減表を作成する。さらに、判定部は、その増減表を2値化することにより、増減表が2値画像に変換される。これにより、変換された2値画像には、タッチ位置候補が抽出される。従って、この2値画像に基づいて、タッチ情報(タッチの大きさ、位置など)を認識することにより、タッチ操作の有無に加えて、タッチ情報をより正確に認識することができる。
本実施の形態に係るタッチパネルシステムにおいて、表示装置をさらに備え、上記タッチパネルは、上記表示装置の前面に設けられていることが好ましい。
上記の構成によれば、タッチパネルが表示装置の前面に設けられているため、表示装置に発生するノイズを確実に除去することができる。
本実施の形態に係るタッチパネルシステムにおいて、上記表示装置は、液晶ディスプレイ、プラズマディスプレイ、または有機ELディスプレイ、電解放出ディスプレイであることが好ましい。
上記の構成によれば、表示装置が、日常的な電子機器に多用されている各種ディスプレイから構成されている。従って、汎用性の高いタッチパネルシステムを提供することができる。
本発明に係る静電容量型タッチセンサパネルは、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置された複数の水平電極と、前記垂直電極面と前記水平電極面との間に配置されて前記複数の垂直電極と前記複数の水平電極とを絶縁する絶縁体とを備え、前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成することを特徴とする。
この特徴により、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置された複数の水平電極とを、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置し、隙間無く一様な格子を形成する。このため、絶縁膜を挟んで垂直電極と水平電極との電極分布を作成することにより、視覚的に隙間の無い一様な格子が形成され、表示装置に重ねた際にモアレ等の発生を防ぐことができる。
本発明に係る静電容量型タッチセンサシステムは、本発明に係るタッチセンサパネルを備えたことを特徴とする。
本発明に係る情報入出力装置は、本発明に係るタッチセンサシステムを備えたことを特徴とする。
本発明に係る静電容量型タッチセンサパネルは、複数の垂直電極と複数の水平電極とが、垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成する。この結果、表示装置に重ねた際にモアレ等の発生を防ぐことができる。
本実施の形態に係る静電容量型タッチセンサパネルでは、前記第一の基本形状及び前記第二の基本形状を形成する線分は、斜め方向に沿って形成されていることが好ましい。
上記構成によれば、第一の基本形状及び第二の基本形状を形成する線分が、ディスプレイのブラックマトリックスに対して傾斜することになるので、モアレが発生しにくくなる。
本実施の形態に係る静電容量型タッチセンサパネルでは、前記格子は、輪郭が長方形状に形成されていることが好ましい。
上記構成によれば、複数の垂直電極と複数の水平電極とは、垂直電極面に垂直な方向から見て、輪郭が長方形状の格子を形成する。従って、隙間無く一様な格子の長方形状の輪郭の辺の箇所に、水平電極または垂直電極を駆動するアドレスラインと、垂直電極または水平電極から信号を読み出すためのアドレスラインとをそのまま容易に接合することができる。
本実施の形態に係る静電容量型タッチセンサパネルでは、前記第一の基本形状及び前記第二の基本形状は、垂直方向に延びる垂直中心線に対して線対称であることが好ましい。
上記構成により、前記第一の基本形状及び前記第二の基本形状が対称形状となるので、ペンを用いたタッチ入力による静電容量分布変化に基づく座標読み取り精度を向上させることができる。
本実施の形態に係る静電容量型タッチセンサパネルでは、前記第一の基本形状及び前記第二の基本形状は、点対称であることが好ましい。
上記構成により、前記第一の基本形状及び前記第二の基本形状が対称形状となるので、ペンを用いたタッチ入力による静電容量分布変化に基づく座標読み取り精度を向上させることができる。
本実施の形態に係る静電容量型タッチセンサパネルでは、前記第一の基本形状及び前記第二の基本形状は、垂直方向に延びる垂直中心線及び水平方向に延びる水平中心線のそれぞれに対して線対称であることが好ましい。
上記構成により、前記第一の基本形状及び前記第二の基本形状が対称形状となるので、ペンを用いたタッチ入力による静電容量分布変化に基づく座標読み取り精度を向上させることができる。
本実施の形態に係る静電容量型タッチセンサパネルでは、前記第一の基本形状は、少なくとも2箇所の細線部分により垂直方向に接続されており、前記第二の基本形状は、少なくとも2箇所の細線部分により水平方向に接続されていることが好ましい。
上記構成により、前記第一の基本形状及び前記第二の基本形状が少なくとも2箇所の細線部分により接続されるので、製造工程において一方の細線部分が切れても、他方の細線部分が残るので、断線を回避することができる。
本実施の形態に係るタッチパネルシステムは、タッチパネルと、上記タッチパネルからの信号を処理するタッチパネルコントローラとを備えたタッチパネルシステムにおいて、
上記タッチパネルは、上記タッチパネルのタッチ操作を検出する主センサ部と、上記主センサ部が設けられたタッチパネル上の面と同一面内に設けられた副センサ部とを備え、
上記タッチパネルコントローラは、上記主センサ部および副センサ部からの信号を受信し、上記主センサ部からの信号から、上記副センサ部からの信号を減算する減算部を備え、
上記主センサ部は、複数のセンスラインを備え、
上記副センサ部は、センスラインと同一方向に延びるサブセンスラインを備え、
上記減算部は、
上記センスラインから選択されたセンスラインSnの信号と、センスラインSnに隣接する2つのセンスライン(センスラインSn+1,センスラインSn−1)のうち、一方のセンスラインSn+1の信号との差分である第1の差分((Sn+1)−Sn)、および、
センスラインSnの信号とセンスラインSnに隣接する他方のセンスラインSn−1の信号との差分である第2の差分(Sn−(Sn−1))を算出すると共に、
サブセンスラインとサブセンスラインに隣接するセンスラインとの差分である第3の差分を算出し、
上記タッチパネルコントローラは、上記第1の差分と第2の差分と第3の差分とを加算する加算部を備え、
上記タッチパネルは、
細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、
細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置された複数の水平電極と、
前記垂直電極面と前記水平電極面との間に配置されて前記複数の垂直電極と前記複数の水平電極とを絶縁する絶縁体とを備え、
前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成する構成であってもよい。
上記の構成によれば、タッチパネル上の同一面内(同一面上)に、主センサ部と副センサ部とが設けられている。これにより、主センサ部および副センサ部からのいずれの出力信号にも、タッチパネルに反映された各種ノイズ信号が含まれる。さらに、減算部が、タッチ操作による信号とノイズ信号とを含む主センサ部からの出力信号と、ノイズ信号を含む副センサ部からの出力信号との差分をとる。これにより、主センサ部の出力信号からノイズ成分が除去され、タッチ操作本来の信号が抽出される。従って、タッチパネルに反映された多様な種類のノイズを確実に除去(キャンセル)することができる。
また、上記の構成によれば、減算部が、隣接するセンスライン間で差分信号値を取得する。つまり、ノイズの相関性がより高い隣接するセンスライン間の差分を取ることになる。さらに、各センスラインの出力信号から、サブセンスラインの信号(ノイズ信号)も除去される。従って、より確実にノイズを除去することができる。
さらに、上記の構成によれば、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置された複数の水平電極とを、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置し、隙間無く一様な格子を形成する。このため、絶縁膜を挟んで垂直電極と水平電極との電極分布を作成することにより、視覚的に隙間の無い一様な格子が形成され、表示装置に重ねた際にモアレ等の発生を防ぐことができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。すなわち、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、各実施形態の説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が本発明の範囲に含まれることが意図される。
本発明は、テレビ、パソコン、携帯電話、デジタルカメラ、携帯ゲーム機、電子フォトフレーム、携帯情報端末、電子ブック、家電製品、券売機、ATM、カーナビゲーション等、タッチパネル式の各種電子機器に適用することができる。
本発明は、水平方向に所定の間隔を空けて垂直電極面上に配置された複数の垂直電極と、垂直方向に所定の間隔を空けて垂直電極面に平行な水平電極面上に配置された複数の水平電極と、垂直電極面と水平電極面との間に配置されて複数の垂直電極と複数の水平電極とを絶縁する絶縁体とを備えた静電容量型タッチセンサパネル、及びこれを用いた静電容量型タッチセンサシステム、情報入出力装置に利用することができる。
1 タッチパネルシステム
1a タッチパネルシステム
1b タッチパネルシステム
1c タッチパネルシステム
1d タッチパネルシステム
1e タッチパネルシステム
1f タッチパネルシステム
1g タッチパネルシステム
1h タッチパネルシステム
1i タッチパネルシステム
1j タッチパネルシステム
1k タッチパネルシステム
1m タッチパネルシステム
1n タッチパネルシステム
1o タッチパネルシステム
1p タッチパネルシステム(タッチパネルシステム,静電容量型タッチセンサシステム)
2 表示装置
3 タッチパネル
3a タッチパネル
3b タッチパネル
3c タッチパネル
3d タッチパネル(静電容量型タッチセンサパネル)
4 タッチパネルコントローラ
6 垂直電極
7 水平電極
8 基本形状(第一の基本形状)
9 基本形状(第二の基本形状)
10 格子
12 ディスプレイ
13、14 透明接着剤
15 カバーフィルム
16 ドライバ
17 センスアンプ
18 タイミングジェネレータ
19 AD変換器
20 容量分布計算部
21 タッチ認識部
22 静電容量値分布検出回路
31 主センサ(主センサ部)
31a 主センサ群(主センサ部)
31b 主センサ群(センサ部)
32 副センサ(副センサ部)
32a 副センサ群(副センサ部)
33 センスライン
34 サブセンスライン
35 ドライブライン
41 減算部
41a 減算部
46 加算部
47 電荷積分器(演算部)
48 AD変換部(第1のAD変換部,第2のAD変換部)
48a AD変換部(第3のAD変換部,第4のAD変換部)
49 差動増幅器
50 全差動増幅器
58 復号部
59 判定部
61 非タッチ操作時情報記憶部
62 較正部
203 基板(絶縁体)
204 面(垂直電極面)
205 面(水平電極面)
250 電子黒板(電子機器,情報入出力装置)
C1 垂直中心線
C2 水平中心線
P 中心点

Claims (13)

  1. タッチパネルと、上記タッチパネルからの信号を処理するタッチパネルコントローラと、ドライブライン駆動回路とを備えたタッチパネルシステムにおいて、
    上記タッチパネルは、複数のセンスラインと、上記センスラインに対し交差して設けられた複数のドライブラインと、上記センスラインと、上記ドライブラインとの間に形成された静電容量とを有し、上記タッチパネルのタッチ操作を検出するセンサ部を備え、
    上記ドライブライン駆動回路は、上記ドライブラインを並列に駆動するようになっており、
    上記タッチパネルコントローラは、
    上記センサ部からの信号を受信し、互いに隣接するセンスラインの信号の差分を算出する減算部と、
    上記ドライブラインを並列駆動する符号系列と、上記符号系列に対応するセンスラインの差分出力系列との内積を演算することによって、上記減算部で算出された静電容量の差分値を、復号化する復号部と、
    上記減算部において、上記センスラインから選択されたセンスラインSnの信号と、センスラインSnに隣接する2つのセンスライン(センスラインSn+1,センスラインSn−1)のうち、一方のセンスラインSn+1の信号との差分である第1の差分((Sn+1)−Sn)、または、センスラインSnの信号とセンスラインSnに隣接する他方のセンスラインSn−1の信号との差分である第2の差分(Sn−(Sn−1))が算出されるように、減算部に入力される信号を切り替えるスイッチを備え、
    上記減算部は、上記センスラインごとの出力信号を受信し、上記互いに隣接するセンスラインの信号の差分として、上記ドライブラインが延びる方向における静電容量の差分を算出し、
    上記複数のセンスラインまたはドライブラインの一方が複数の垂直電極であり、他方が複数の水平電極であり、
    上記複数の垂直電極は、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置されており
    上記複数の水平電極は、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置されており
    前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面と前記水平電極面との間に配置された絶縁体によって絶縁されており、
    前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成することを特徴とするタッチパネルシステム。
  2. 上記スイッチは、2つの端子を備え、一方の端子が選択されるようになっており、
    上記ドライブラインを並列駆動する符号系列は、以下に示される上記ドライブラインの1番目からM番目までを並列駆動する符号系列(成分は1または−1)であり、
    = (d11,d12,・・・,d1N
    = (d21,d22,・・・,d2N



    = (dM1,dM2,・・・,dMN
    上記符号系列に対応するセンスラインの差分出力系列「Sj, P(j=1,..,[L/2], P=1,2)(Lはセンスラインの数、[n]=nの整数部分)」を、
    j,1:スイッチSWが一方の端子を選択した時のd〜 dに対する出力系列
    j,2:スイッチSWが他方の端子を選択した時のd〜 dに対する出力系列
    と定義し、
    上記復号部は、上記ドライブラインを並列駆動する符号系列と、上記符号系列に対応するセンスラインの差分出力系列との内積を演算することを特徴とする請求項に記載のタッチパネルシステム。
  3. 上記減算部は、
    上記減算部に入力されたセンスラインからのアナログ信号を、デジタル信号に変換するAD変換部と、
    上記AD変換部変換されたデジタル信号を用いて、上記互いに隣接するセンスラインの信号の差分を算出する減算器とを備えることを特徴とする請求項1または2に記載のタッチパネルシステム。
  4. 上記減算部は、
    上記減算部に入力されたセンスラインからのアナログ信号を用いて、上記互いに隣接するセンスラインの信号の差分を算出する減算器と、
    記減算器によって算出された上記互いに隣接するセンスラインの信号の差分をデジタル信号に変換するAD変換部とを備えることを特徴とする請求項1または2に記載のタッチパネルシステム。
  5. 上記減算部は、上記減算器として、上記アナログ信号を用いて上記互いに隣接するセンスラインの信号の差分を算出する全差動増幅器を備えることを特徴とする請求項に記載のタッチパネルシステム。
  6. 非タッチ操作時に上記復号部で復号化された静電容量の差分分布を記憶する非タッチ操作時情報記憶部と、
    タッチ操作時に上記復号部で復号化された静電容量の差分分布から、非タッチ操作時情報記憶部に記憶された、非タッチ操作時の静電容量の差分分布を減算し、静電容量の差分分布を較正する較正部とを備えることを特徴とする請求項1または2に記載のタッチパネルシステム。
  7. 上記減算部で算出された互いに隣接するセンスラインの信号の差分と、正および負の閾値との比較に基づいて、タッチ操作の有無を判定する判定部を備えることを特徴とする請求項4〜6のいずれか1項に記載のタッチパネルシステム。
  8. タッチパネルと、上記タッチパネルからの信号を処理するタッチパネルコントローラと、ドライブライン駆動回路とを備えたタッチパネルシステムにおいて、
    上記タッチパネルは、複数のセンスラインと、上記センスラインに対し交差して設けられた複数のドライブラインと、上記センスラインと、上記ドライブラインとの間に形成された静電容量とを有し、上記タッチパネルのタッチ操作を検出するセンサ部を備え、
    上記ドライブライン駆動回路は、上記ドライブラインを並列に駆動するようになっており、
    上記タッチパネルコントローラは、
    上記センサ部からの信号を受信し、互いに隣接するセンスラインの信号の差分を算出する減算部と、
    上記ドライブラインを並列駆動する符号系列と、上記符号系列に対応するセンスラインの差分出力系列との内積を演算することによって、上記減算部で算出された静電容量の差分値を、復号化する復号部とを備え、
    上記減算部は、上記センスラインごとの出力信号を受信し、上記互いに隣接するセンスラインの信号の差分として、上記ドライブラインが延びる方向における静電容量の差分を算出し、
    上記複数のセンスラインまたはドライブラインの一方が複数の垂直電極であり、他方が複数の水平電極であり、
    上記複数の垂直電極は、細線で形成された第一の基本形状を垂直方向に繰り返し接続して形成され、水平方向に所定の間隔を空けて垂直電極面上に配置されており
    上記複数の水平電極は、細線で形成された第二の基本形状を水平方向に繰り返し接続して形成され、垂直方向に所定の間隔を空けて前記垂直電極面に平行な水平電極面上に配置されており
    前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面と前記水平電極面との間に配置された絶縁体によって絶縁されており、
    前記複数の垂直電極と前記複数の水平電極とは、前記垂直電極面に垂直な方向から見て、互いに重なる線分を持たないように配置され、隙間無く一様な格子を形成することを特徴とするタッチパネルシステム。
  9. 上記減算部において、上記センスラインから選択されたセンスラインSnの信号と、センスラインSnに隣接する2つのセンスライン(センスラインSn+1,センスラインSn−1)のうち、一方のセンスラインSn+1の信号との差分である第1の差分((Sn+1)−Sn)、および、センスラインSnの信号とセンスラインSnに隣接する他方のセンスラインSn−1の信号との差分である第2の差分(Sn−(Sn−1))が算出されることを特徴とする請求項に記載のタッチパネルシステム。
  10. 上記符号系列は、直交系列またはM系列であることを特徴とする請求項に記載のタッチパネルシステム。
  11. 表示装置をさらに備え、
    上記タッチパネルは、上記表示装置の前面に設けられていることを特徴とする請求項1〜10のいずれか1項に記載のタッチパネルシステム。
  12. 上記表示装置は、液晶ディスプレイ、プラズマディスプレイ、または有機ELディスプレイ、電界放出ディスプレイであることを特徴とする請求項11に記載のタッチパネルシステム。
  13. 請求項1〜12のいずれか1項に記載のタッチパネルシステムを備えることを特徴とする電子機器。
JP2013554720A 2011-07-12 2012-06-15 タッチパネルシステムおよび電子機器 Expired - Fee Related JP5620019B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013554720A JP5620019B2 (ja) 2011-07-12 2012-06-15 タッチパネルシステムおよび電子機器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPPCT/JP2011/066288 2011-07-12
PCT/JP2011/066288 WO2012090537A1 (en) 2010-12-28 2011-07-12 Touch panel system and electronic device
JPPCT/JP2012/059824 2012-04-04
PCT/JP2012/059824 WO2013035370A1 (en) 2011-09-09 2012-04-04 Capacitive touch sensor panel, capacitive touch sensor system including same, and information input-output device
JP2013554720A JP5620019B2 (ja) 2011-07-12 2012-06-15 タッチパネルシステムおよび電子機器
PCT/JP2012/065929 WO2012176857A1 (en) 2011-06-22 2012-06-15 Touch panel system and electronic device

Publications (2)

Publication Number Publication Date
JP2014519066A JP2014519066A (ja) 2014-08-07
JP5620019B2 true JP5620019B2 (ja) 2014-11-05

Family

ID=51427116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013554720A Expired - Fee Related JP5620019B2 (ja) 2011-07-12 2012-06-15 タッチパネルシステムおよび電子機器

Country Status (1)

Country Link
JP (1) JP5620019B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069696A1 (ja) * 2017-10-03 2019-04-11 株式会社ワコム ペンが送信したペン信号を検出するためのセンサパネル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944293A (ja) * 1995-07-28 1997-02-14 Sharp Corp 電子機器
JP4858206B2 (ja) * 2007-02-09 2012-01-18 アイシン・エィ・ダブリュ株式会社 車載機器の操作支援装置、操作支援方法
JPWO2009107415A1 (ja) * 2008-02-27 2011-06-30 セイコーインスツル株式会社 近接検出装置と近接検出方法
JP5174575B2 (ja) * 2008-07-31 2013-04-03 グンゼ株式会社 タッチパネル
JP5075082B2 (ja) * 2008-10-06 2012-11-14 株式会社ジャパンディスプレイイースト 入力装置、及びそれを備えた表示装置
US8570290B2 (en) * 2009-02-06 2013-10-29 Panasonic Corporation Image display device
JP5164930B2 (ja) * 2009-06-05 2013-03-21 株式会社ジャパンディスプレイウェスト タッチパネル、表示パネル、および表示装置
JP2010282539A (ja) * 2009-06-08 2010-12-16 Sanyo Electric Co Ltd 静電容量型タッチセンサ用の信号処理回路
JP2011047774A (ja) * 2009-08-26 2011-03-10 Seiko Instruments Inc 近接検出装置と近接検出方法
JP2011134069A (ja) * 2009-12-24 2011-07-07 Panasonic Corp タッチパネル装置

Also Published As

Publication number Publication date
JP2014519066A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
TWI499957B (zh) 觸摸面板系統及電子裝置
JP5389888B2 (ja) タッチパネルシステムおよび電子機器
JP4955116B1 (ja) タッチパネルシステムおよび電子機器
TWI502418B (zh) 觸摸面板系統及電子裝置
TWI524224B (zh) 觸控面板系統及電子機器
TWI518565B (zh) 觸控面板系統及電子機器
KR101548819B1 (ko) 터치스크린 장치 및 그의 터치 감지 방법
JP5281701B2 (ja) タッチパネルシステムおよび電子機器
JP5872670B2 (ja) タッチパネルシステムおよび電子機器
KR101512571B1 (ko) 접촉 감지 장치 및 터치스크린 장치
JP5620019B2 (ja) タッチパネルシステムおよび電子機器
JP5663104B2 (ja) タッチパネルシステムおよび電子機器
JP5620018B2 (ja) タッチパネルシステムおよび電子機器
JP5845344B2 (ja) タッチパネルシステムおよび電子機器
TWI460646B (zh) 電阻式觸控面板
JP5727051B2 (ja) タッチパネルシステムおよび電子機器
TWI470528B (zh) 電阻式觸控面板
TWI552059B (zh) 觸控面板系統及電子機器
KR20150063887A (ko) 터치스크린 장치 및 터치 감지 방법

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5620019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees