JP5617286B2 - Vehicle and control method thereof - Google Patents

Vehicle and control method thereof Download PDF

Info

Publication number
JP5617286B2
JP5617286B2 JP2010060951A JP2010060951A JP5617286B2 JP 5617286 B2 JP5617286 B2 JP 5617286B2 JP 2010060951 A JP2010060951 A JP 2010060951A JP 2010060951 A JP2010060951 A JP 2010060951A JP 5617286 B2 JP5617286 B2 JP 5617286B2
Authority
JP
Japan
Prior art keywords
exhaust gas
motor generator
charge
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010060951A
Other languages
Japanese (ja)
Other versions
JP2011194926A (en
Inventor
直也 石川
直也 石川
浦田 隆
隆 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010060951A priority Critical patent/JP5617286B2/en
Publication of JP2011194926A publication Critical patent/JP2011194926A/en
Application granted granted Critical
Publication of JP5617286B2 publication Critical patent/JP5617286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)

Description

本発明は、車両およびその制御方法に関し、更に詳しくは、動力源として内燃機関と電動発電機とを搭載したハイブリッド車両において、排気ガスの浄化と燃費の向上とを両立することが可能な車両およびその制御方法に関する。   The present invention relates to a vehicle and a control method therefor, and more specifically, in a hybrid vehicle equipped with an internal combustion engine and a motor generator as a power source, and a vehicle capable of achieving both purification of exhaust gas and improvement in fuel consumption, and It relates to the control method.

近年は、車両の燃費向上等のために、内燃機関と電動発電機とを組み合わせたハイブリッド車両の開発が進められている。このハイブリッド車両の例として、発電負荷を上昇させることでエンジンの暖機を行い、排気ガス温度を上昇させて排気ガスの浄化を図るものがある(例えば特許文献1参照)。   In recent years, in order to improve vehicle fuel efficiency and the like, development of hybrid vehicles combining an internal combustion engine and a motor generator has been promoted. As an example of this hybrid vehicle, there is one that warms up the engine by increasing the power generation load and raises the exhaust gas temperature to purify the exhaust gas (see, for example, Patent Document 1).

ところで、内燃機関がガソリン機関の場合は、三元触媒等を用いて比較的容易に排気ガス規制を達成できるが、ディーゼル機関の場合には、ディーゼル機関の排ガス規制の強化に伴い、排気ガス後処理技術による排気ガスの浄化が必須となっている。   By the way, when the internal combustion engine is a gasoline engine, the exhaust gas regulation can be achieved relatively easily by using a three-way catalyst or the like. It is essential to purify exhaust gas using treatment technology.

この排気ガス後処理技術は、エンジン本体で浄化しきれなかった排気ガスを排出直前に浄化処理する技術であり、具体的には、フィルタを使い微粒子状物質(Particulate Matter:PM)を集めて燃やすDPF(Diesel Particulate Filter)や触媒による化学変化を利用して窒素酸化物(NOx)等を低減する構成がある。   This exhaust gas aftertreatment technology is a technology that purifies exhaust gas that could not be purified by the engine body immediately before exhaust, and specifically uses a filter to collect and burn particulate matter (PM). There is a configuration in which nitrogen oxide (NOx) or the like is reduced by utilizing a chemical change caused by DPF (Diesel Particulate Filter) or a catalyst.

ここで、図6にNOx浄化触媒のNOx浄化率の温度依存性を示すが、NOx浄化触媒においては、排気ガス温度が200℃以下の運転状態ではNOxをほとんど浄化することができない。このNOx浄化触媒を使用する場合は、NOx浄化率を向上させるために、排気ガス温度を高い温度に保つ必要があり、このため燃料の燃焼熱を利用している。これは、NOx浄化触媒の場合だけでなく、PM浄化のためのDPFの再生時にも同じようなことが行われており、車両の燃費が低下する問題がある。   Here, FIG. 6 shows the temperature dependence of the NOx purification rate of the NOx purification catalyst. However, in the NOx purification catalyst, NOx can hardly be purified in an operating state where the exhaust gas temperature is 200 ° C. or lower. When this NOx purification catalyst is used, it is necessary to keep the exhaust gas temperature at a high temperature in order to improve the NOx purification rate. For this reason, the combustion heat of the fuel is used. This is not only the case with the NOx purification catalyst, but also the same thing is done during regeneration of the DPF for PM purification, and there is a problem that the fuel consumption of the vehicle is reduced.

このため、ディーゼル機関と電動発電機とを搭載したハイブリッド車両においては、燃費の向上のために電動発電機を採用したにもかかわらず、排気ガスの浄化のために燃費が低下する場合があり、如何にして、ディーゼル機関の排気ガスを効率良く浄化して、排気ガスの浄化と燃費の向上との両立を図るかが重要な課題となっている。   For this reason, in a hybrid vehicle equipped with a diesel engine and a motor generator, the fuel efficiency may be reduced due to exhaust gas purification, despite the adoption of the motor generator to improve the fuel efficiency. An important issue is how to efficiently purify the exhaust gas of a diesel engine to achieve both purification of the exhaust gas and improvement of fuel consumption.

特開2008−179262号公報JP 2008-179262 A

本発明の目的は、内燃機関と電動発電機とを搭載したハイブリッド車両において、排気ガスの浄化と車両燃費の向上とを両立することができる車両およびその制御方法を提供することにある。   An object of the present invention is to provide a vehicle capable of achieving both purification of exhaust gas and improvement in vehicle fuel efficiency in a hybrid vehicle equipped with an internal combustion engine and a motor generator, and a control method therefor.

上記の目的を達成するための本発明の車両は、動力源として内燃機関と電動発電機とを備え、前記内燃機関の運転により生じる排気ガスを触媒作用により浄化する排気ガス浄化装置を備えるとともに、前記電動発電機の電力を充電可能な蓄電装置を備える車両において、電動走行モード、走行発電モードを行わずに、前記内燃機関を運転する場合の計算上の排気ガス温度を排気ガス温度算出用の計算式により算出し、前記計算上の排気ガスの温度が前記排気ガス浄化装置の触媒の活性温度に関連して予め設定された設定温度よりも高い場合には、通常走行モードで前記内燃機関による走行を行い、前記計算上の排気ガスの温度が、前記設定温度より低い場合には、前記蓄電装置の充電状態を監視して、前記充電状態が予め設定された第1設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動走行モードで前記電動発電機による走行を行い、前記第1設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記走行発電モードで前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する制御を行う制御部を有する車両である。 A vehicle of the present invention for achieving the above object includes an internal combustion engine and a motor generator as power sources, and includes an exhaust gas purification device that purifies exhaust gas generated by operation of the internal combustion engine by a catalytic action, In a vehicle including a power storage device capable of charging the electric power of the motor generator, the calculated exhaust gas temperature when the internal combustion engine is operated without performing the electric travel mode and the travel power generation mode is used for exhaust gas temperature calculation. When the calculated exhaust gas temperature is higher than a preset temperature that is preset in relation to the activation temperature of the catalyst of the exhaust gas purifying device, the internal combustion engine is operated in the normal travel mode. performs running, the temperature of the exhaust gas on the calculation is lower than the set temperature monitors the state of charge of said power storage device, a first set of said state of charge is set in advance If the travel is determined to be charged ready by the motor generator electrodeposition value basis, it performs running by the motor generator in the electric traveling mode, the electric the first set charge value as a reference A vehicle having a control unit that performs control to generate power while operating the internal combustion engine in the traveling power generation mode and charge the power storage device when it is determined that the battery is in a charging state where traveling by a generator is impossible; is there.

また、上記した車両において、前記制御部は、前記電動発電機による走行中において、前記蓄電装置の充電状態を監視し、前記充電状態が、前記第1設定充電値よりも低い値で予め設定された第2設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動発電機による走行を続け、前記第2設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する制御を行う。   Further, in the vehicle described above, the control unit monitors a state of charge of the power storage device during traveling by the motor generator, and the state of charge is preset at a value lower than the first set charge value. If it is determined that the motor generator is in a chargeable state based on the second set charge value, the motor generator continues to run, and the motor power generation is performed based on the second set charge value. When it is determined that the vehicle is in a charging state where traveling by the machine is impossible, control is performed to generate power while operating the internal combustion engine and charge the power storage device.

また、上記の目的を達成するための本発明の車両の制御方法は、動力源として内燃機関と電動発電機とを備え、前記内燃機関の運転により生じる排気ガスを触媒作用により浄化する排気ガス浄化装置を備えるとともに、前記電動発電機の電力を充電可能な蓄電装置を備える車両の制御方法において、電動走行モード、走行発電モードを行わずに、前記内燃機関を運転する場合の計算上の排気ガス温度を排気ガス温度算出用の計算式により算出し、前記計算上の排気ガスの温度が前記排気ガス浄化装置の触媒の活性温度に関連して予め設定された設定温度よりも高い場合には、通常走行モードで前記内燃機関による走行を行い、前記計算上の排気ガスの温度が、前記設定温度より低い場合には、前記蓄電装置の充電状態を監視して、前記充電状態が予め設定された第1設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動走行モードで前記電動発電機による走行を行い、前記第1設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記走行発電モードで前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する車両の制御方法である。 In addition, the vehicle control method of the present invention for achieving the above object includes an internal combustion engine and a motor generator as power sources, and exhaust gas purification that purifies exhaust gas generated by operation of the internal combustion engine by catalytic action. In a vehicle control method comprising a power storage device capable of charging electric power of the motor generator , the calculated exhaust gas when the internal combustion engine is operated without performing the electric drive mode and the drive power generation mode. When the temperature is calculated by a calculation formula for calculating the exhaust gas temperature and the calculated exhaust gas temperature is higher than a preset temperature related to the activation temperature of the catalyst of the exhaust gas purification device, performs running by the engine in the normal running mode, the temperature of the exhaust gas on the calculation is lower than the set temperature monitors the state of charge of said power storage device, the charging form If but it is determined that the charge state capable of running by the motor generator based on the first set charge value set in advance, performs running by the motor generator in the electric traveling mode, said first A vehicle that generates power while operating the internal combustion engine in the travel power generation mode and charges the power storage device when it is determined that the motor generator cannot be traveled on the basis of a set charge value This is a control method.

また、上記した車両の制御方法において、前記電動発電機による走行中において、前記蓄電装置の充電状態を監視し、前記充電状態が、前記第1設定充電値よりも低い値で予め設定された第2設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動発電機による走行を続け、前記第2設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する。   In the vehicle control method described above, the state of charge of the power storage device is monitored during traveling by the motor generator, and the state of charge is preset at a value lower than the first set charge value. When it is determined that the motor generator is in a chargeable state based on the two set charge values, the motor generator continues to run, and the motor generator uses the second set charge value as a reference. When it is determined that the vehicle is in a charging state where traveling is impossible, the power storage device is charged by generating power while operating the internal combustion engine.

本発明の車両およびその制御方法によれば、高負荷走行時のように、内燃機関の排気ガスの温度が排気ガス浄化装置の触媒の活性温度以上である場合には、触媒の活性温度より高温の排気ガスが排気ガス浄化装置に流れるので、排気ガスを効率良く浄化することができる。   According to the vehicle and its control method of the present invention, when the temperature of the exhaust gas of the internal combustion engine is equal to or higher than the activation temperature of the catalyst of the exhaust gas purification device, such as during high-load running, the temperature is higher than the activation temperature of the catalyst. Since the exhaust gas flows to the exhaust gas purification device, the exhaust gas can be purified efficiently.

また、低負荷走行時のように、内燃機関の排気ガスの温度が排気ガス浄化装置の触媒の活性温度よりも低い場合において、電動発電機による走行が不可能な充電状態の場合は、内燃機関を運転しながら電動発電機で発電して充電することにより、内燃機関の負荷が上昇するので、排気ガスの温度が上昇する。これにより、触媒の活性温度より高温の排気ガスが排気ガス浄化装置に流れるようになるので、排気ガスを効率良く浄化することができる。また、これによりエンジン効率の悪い低負荷運転を無くすことができるので、エンジン効率を向上させることができる。   Also, when the engine is in a charged state where running by the motor generator is impossible when the temperature of the exhaust gas of the internal combustion engine is lower than the activation temperature of the catalyst of the exhaust gas purification device, such as during low-load running, the internal combustion engine Since the load of the internal combustion engine is increased by generating and charging the motor generator while operating the engine, the temperature of the exhaust gas increases. As a result, exhaust gas having a temperature higher than the activation temperature of the catalyst flows to the exhaust gas purification device, so that the exhaust gas can be efficiently purified. In addition, this makes it possible to eliminate low-load operation with poor engine efficiency, thereby improving engine efficiency.

さらに、内燃機関の排気ガスの温度が排気ガス浄化装置の触媒の活性温度よりも低い場合において、電動発電機による走行が可能な充電状態の場合は、内燃機関の運転を停止して、蓄電装置から給電して電動発電機による走行に移行することにより、排気ガス温度が低い時における排気ガスの浄化効率の悪い内燃機関の運転を回避することができる。   Further, when the temperature of the exhaust gas of the internal combustion engine is lower than the activation temperature of the catalyst of the exhaust gas purification device, in the charged state where traveling by the motor generator is possible, the operation of the internal combustion engine is stopped and the power storage device By supplying power from the vehicle and shifting to running by a motor generator, it is possible to avoid the operation of the internal combustion engine having poor exhaust gas purification efficiency when the exhaust gas temperature is low.

したがって、動力源として内燃機関と電動発電機とを備えるとともに、排気ガスを触媒作用により浄化する排気ガス浄化装置を備える車両において、排気ガス温度と触媒温度とを高い状態に保って排気ガスを効率良く浄化することができ、また、内燃機関の運転状態をエンジン効率の高い高負荷運転にすることができる。このため、排気ガスの効率の良い浄化と燃費の向上とを両立することができる。   Therefore, in a vehicle including an internal combustion engine and a motor generator as a power source and an exhaust gas purification device that purifies exhaust gas by catalytic action, the exhaust gas efficiency is maintained by keeping the exhaust gas temperature and the catalyst temperature high. It is possible to purify well and to make the operating state of the internal combustion engine a high load operation with high engine efficiency. For this reason, it is possible to achieve both efficient purification of exhaust gas and improvement of fuel consumption.

本発明の実施の形態の車両の要部構成図である。It is a principal part block diagram of the vehicle of embodiment of this invention. エンジンによる走行時における排気ガスの温度マップの一例を示す図である。It is a figure which shows an example of the temperature map of the exhaust gas at the time of driving | running | working with an engine. 車両の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of a vehicle. 図3の充電状況監視フローの一例を示す図である。It is a figure which shows an example of the charging condition monitoring flow of FIG. 車両の走行時のエンジン運転モード、充電状況、排気ガス温度および車両速度を時系列で示す図である。It is a figure which shows the engine operation mode at the time of driving | running | working of a vehicle, a charging condition, exhaust gas temperature, and vehicle speed in time series. NOx浄化触媒のNOx浄化率の温度依存性を示す図である。It is a figure which shows the temperature dependence of the NOx purification rate of a NOx purification catalyst.

以下、本発明の実施の形態の車両およびその制御方法について添付の図面を参照しながら詳細に説明する。   Hereinafter, a vehicle and a control method thereof according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1に本実施の形態の車両であるディーゼルハイブリッド車(以下、単にハイブリッド車という)1の要部構成を示す。   FIG. 1 shows a main configuration of a diesel hybrid vehicle (hereinafter simply referred to as a hybrid vehicle) 1 that is a vehicle of the present embodiment.

ハイブリッド車1は、動力源としてディーゼルエンジン(内燃機関、以下、単にエンジンという)2と電動発電機3とを有しているとともに、電動発電機3の駆動で生じた電力を充電することが可能なバッテリ(蓄電装置)4を有している。   The hybrid vehicle 1 has a diesel engine (an internal combustion engine, hereinafter simply referred to as an engine) 2 and a motor generator 3 as power sources, and can be charged with electric power generated by driving the motor generator 3. A battery (power storage device) 4 is provided.

エンジン2の駆動力は、クラッチ5、変速機6、シャフト7、ディファレンシャルギア8、車軸9を通じて駆動輪(後輪)10に伝達される。また、エンジン2の駆動力の一部は、PTO(Power Take Off)部11で取り出され、シャフト12を通じて電動発電機3に伝達される。この時、電動発電機3の駆動により生じた電力(交流)は、インバータ13を介して直流に変換されバッテリ4に充電することが可能になっている。   The driving force of the engine 2 is transmitted to driving wheels (rear wheels) 10 through the clutch 5, the transmission 6, the shaft 7, the differential gear 8, and the axle 9. Further, a part of the driving force of the engine 2 is taken out by a PTO (Power Take Off) unit 11 and transmitted to the motor generator 3 through the shaft 12. At this time, the electric power (alternating current) generated by driving the motor generator 3 is converted into direct current via the inverter 13 and can be charged in the battery 4.

また、エンジン2の停止時に、バッテリ4からの給電により駆動した電動発電機3の駆動力は、シャフト12およびPTO部11を介して変速機6に伝達され、さらに、シャフト7、ディファレンシャルギア8、車軸9を通じて駆動輪10に伝達される。   Further, when the engine 2 is stopped, the driving force of the motor generator 3 driven by the power supply from the battery 4 is transmitted to the transmission 6 via the shaft 12 and the PTO unit 11, and further, the shaft 7, the differential gear 8, It is transmitted to the drive wheel 10 through the axle 9.

エンジン2、電動発電機3、バッテリ4、クラッチ5、変速機6、PTO部11およびインバータ13等の各部の電気系統は、電子制御装置(Engine Control Unit;以下、ECUと略す、制御部)14により制御される。このECU14には、アクセル信号、シフト信号、ブレーキ信号および速度信号の他、排気ガスの温度を示す情報等が送られる。なお、破線は信号線を示し、その矢印は電気信号の流れを示している。   The electric system of each part such as the engine 2, the motor generator 3, the battery 4, the clutch 5, the transmission 6, the PTO unit 11, and the inverter 13 is an electronic control unit (Engine Control Unit; hereinafter abbreviated as ECU, control unit) 14. Controlled by In addition to the accelerator signal, shift signal, brake signal, and speed signal, information indicating the temperature of the exhaust gas is sent to the ECU 14. The broken lines indicate signal lines, and the arrows indicate the flow of electrical signals.

また、エンジン2の排気口に接続された排気管15の途中には、排気ガス浄化装置16が設置されている。この排気ガス浄化装置16は、エンジン2で浄化しきれなかった排気ガスを排出直前に浄化する装置であり、例えば微粒子状物質(Particulate Matter;PM)を捕集、除去するDPF(Diesel Particulate Filter)と、NOxを浄化する触媒部とを有している。なお、符号17はエンジン2の吸気口に接続された吸気管を示している。   Further, an exhaust gas purification device 16 is installed in the middle of the exhaust pipe 15 connected to the exhaust port of the engine 2. This exhaust gas purification device 16 is a device that purifies exhaust gas that could not be purified by the engine 2 immediately before discharge, for example, DPF (Diesel Particulate Filter) that collects and removes particulate matter (PM). And a catalyst part for purifying NOx. Reference numeral 17 denotes an intake pipe connected to the intake port of the engine 2.

次に、図2に本実施の形態のハイブリッド車1のエンジン2による走行時における排気ガスの温度マップの一例を示す。ここで、A点のように低負荷状態で走行した場合は、排気ガス温度が200℃を下回るのでNOx浄化触媒によるNOxの低減が見込めない。   Next, FIG. 2 shows an example of an exhaust gas temperature map during travel by the engine 2 of the hybrid vehicle 1 of the present embodiment. Here, when the vehicle travels in a low load state as indicated by point A, the exhaust gas temperature is below 200 ° C., and therefore NOx reduction by the NOx purification catalyst cannot be expected.

そこで、本実施の形態のハイブリッド車1においては、下記のように制御する。これを、図3の制御フローを参照しながら説明する。   Therefore, in the hybrid vehicle 1 of the present embodiment, control is performed as follows. This will be described with reference to the control flow of FIG.

まず、本実施の形態のハイブリッド車1においては、排気ガス温度領域がNOx浄化触媒の活性領域か否かを判定する(ステップ100)。なお、この排気ガス温度は、ハイブリッド車1の実際の排気ガス温度ではなく、本実施の形態の車両の制御を行わない場合において、排気ガス温度算出用の計算式により各種状況に応じて算出される仮想の排気ガス温度(以下、計算上の排気ガス温度ともいう)である。   First, in the hybrid vehicle 1 of the present embodiment, it is determined whether or not the exhaust gas temperature region is the active region of the NOx purification catalyst (step 100). Note that this exhaust gas temperature is not the actual exhaust gas temperature of the hybrid vehicle 1, but is calculated according to various situations by the calculation formula for calculating the exhaust gas temperature when the vehicle of the present embodiment is not controlled. Virtual exhaust gas temperature (hereinafter also referred to as calculated exhaust gas temperature).

ステップ100において、排気ガス温度領域がNOx浄化触媒の活性領域であると判定された場合(例えば高負荷走行時)は、エンジン2の駆動による走行である通常走行モードに移行する(ステップ101)。この通常走行モードでは、NOx浄化触媒の活性温度より高温の排気ガスが排気ガス浄化装置16に流れる。このため、NOx浄化触媒のNOx浄化率が高い状態で排気ガス中のNOxを浄化することができるので、排気ガスを効率良く浄化することができる。したがって、NOxの排出量を低減することができる。   When it is determined in step 100 that the exhaust gas temperature region is the active region of the NOx purification catalyst (for example, during high load traveling), the routine proceeds to a normal traveling mode in which the engine 2 is driven (step 101). In this normal travel mode, exhaust gas having a temperature higher than the activation temperature of the NOx purification catalyst flows into the exhaust gas purification device 16. For this reason, since the NOx in the exhaust gas can be purified with the NOx purification rate of the NOx purification catalyst being high, the exhaust gas can be purified efficiently. Therefore, the amount of NOx emission can be reduced.

また、ステップ100において、排気ガス温度領域がNOx浄化触媒の活性領域でないと判定された場合(例えば低負荷走行時)は、バッテリ4の充電状況(State of charge;SOC)を監視して、電動発電機3による走行が可能な充電状態か否かを判定する(ステップ102)。   Further, when it is determined in step 100 that the exhaust gas temperature region is not the active region of the NOx purification catalyst (for example, during low-load running), the state of charge (SOC) of the battery 4 is monitored and electric It is determined whether or not the battery 3 is in a charged state that allows the generator 3 to travel (step 102).

このステップ102において、その時のバッテリ4の充電値が上限しきい値(第1設定充電値)以上であり電動走行が可能な充電状態であると判定された場合は、エンジン2を停止し(走行発電を中止する)、バッテリ4からの給電により電動発電機3を駆動させて走行する電動走行モードに移行する(ステップ103)。   If it is determined in step 102 that the charge value of the battery 4 at that time is equal to or greater than the upper limit threshold value (first set charge value) and is in a charge state in which electric running is possible, the engine 2 is stopped (running) The power generation is stopped), and the mode is shifted to the electric travel mode in which the motor generator 3 is driven by the power supply from the battery 4 (step 103).

この電動走行モードでは、エンジン2を停止しているので、PMやNOxは排出されない。また、排気ガス温度が低い時の排気ガスの浄化効率の悪い内燃機関の運転を回避することができる。   In this electric travel mode, since the engine 2 is stopped, PM and NOx are not discharged. Further, it is possible to avoid the operation of the internal combustion engine having poor exhaust gas purification efficiency when the exhaust gas temperature is low.

一方、ステップ102において、その時のバッテリ4の充電値が上限しきい値(第1設定充電値)より低く電動走行が不可能な充電状態であると判定された場合は、エンジン2を駆動し、その駆動力の一部を用いて電動発電機3を駆動して発電する走行発電モードに移行する(ステップ104)。   On the other hand, when it is determined in step 102 that the charge value of the battery 4 at that time is lower than the upper limit threshold value (first set charge value) and the electric running is impossible, the engine 2 is driven, The motor generator 3 is driven using a part of the driving force to shift to the traveling power generation mode for generating power (step 104).

すなわち、排気ガス温度が低い時においては、走行発電モードで運転することにより、電動発電機3で生じた電力(図2のB点とA点との差分の出力)をバッテリ4に充電するとともに、この発電によりエンジン負荷が上昇して排気ガスの温度が高くなる。図2では実際の排気ガス温度がA点の200℃からB点の400℃となっている。   That is, when the exhaust gas temperature is low, the battery 4 is charged with the electric power generated by the motor generator 3 (the difference output between the points B and A in FIG. 2) by operating in the traveling power generation mode. This power generation increases the engine load and raises the exhaust gas temperature. In FIG. 2, the actual exhaust gas temperature is from 200 ° C. at point A to 400 ° C. at point B.

これにより、走行発電モードでは、NOx浄化触媒の活性温度より高温の排気ガスが排気ガス浄化装置16に流れるようになる。このため、NOx浄化触媒のNOx浄化率が高い状態で排気ガス中のNOxを浄化することができるので、排気ガスを効率良く浄化することができる。したがって、NOxの排出量を低減することができる。また、これによりエンジン効率の悪い低負荷運転を無くすことができるので、エンジン効率を向上させることができる。   Thereby, in the traveling power generation mode, the exhaust gas having a temperature higher than the activation temperature of the NOx purification catalyst flows into the exhaust gas purification device 16. For this reason, since the NOx in the exhaust gas can be purified with the NOx purification rate of the NOx purification catalyst being high, the exhaust gas can be purified efficiently. Therefore, the amount of NOx emission can be reduced. In addition, this makes it possible to eliminate low-load operation with poor engine efficiency, thereby improving engine efficiency.

次に、上記のバッテリ4の充電状況(SOC)監視ロジックについて図4を参照して説明する。上記図3のステップ100において、排気ガス温度領域がNOx浄化触媒の活性領域でないと判定された場合、図4に示すように、その時のバッテリ4の充電値が上限しきい値(第1設定充電値)以上か否かを判断する(ステップ102A)。   Next, the charging status (SOC) monitoring logic of the battery 4 will be described with reference to FIG. When it is determined in step 100 of FIG. 3 that the exhaust gas temperature region is not the active region of the NOx purification catalyst, as shown in FIG. 4, the charged value of the battery 4 at that time is the upper threshold (first set charge). Value) or more (step 102A).

ステップ102Aにおいて、その時のバッテリ4の充電値が上限しきい値以上の場合は電動走行が可能と判断して電動走行モードに移行する(ステップ103)。一方、ステップ102Aにおいて、その時のバッテリ4の充電値が上限しきい値より低い場合は電動走行が不可能と判断して走行発電モードに移行する(ステップ104)。   In step 102A, when the charged value of the battery 4 at that time is equal to or greater than the upper limit threshold value, it is determined that the electric running is possible and the electric driving mode is entered (step 103). On the other hand, if the charged value of the battery 4 at that time is lower than the upper limit threshold value in step 102A, it is determined that electric traveling is impossible and the mode is shifted to the traveling power generation mode (step 104).

ステップ103の電動走行モード移行後の電動走行中も、バッテリ4の充電状況を監視し、その時のバッテリ4の充電値が、上記上限しきい値よりも低い値で予め設定された下限しきい値(第2設定充電値)以下か否かを判断し(ステップ102B)、下限しきい値よりも高ければ電動走行が可能であると判断して電動走行モードを続ける。一方、ステップ102Bにおいて、その時のバッテリ4の充電値が、下限しきい値以下であれば電動走行が不可能と判断して走行発電モードに移行する(ステップ104)。なお、ステップ104の走行発電モードへの移行後は、ステップ102Aに戻り、上記と同様の制御を行う。   Even during the electric running after the transition to the electric running mode in step 103, the charging state of the battery 4 is monitored, and the charge value of the battery 4 at that time is a lower threshold set in advance at a value lower than the upper threshold. It is determined whether or not (second set charge value) or less (step 102B), and if it is higher than the lower limit threshold, it is determined that electric travel is possible, and the electric travel mode is continued. On the other hand, if the charged value of the battery 4 at that time is equal to or lower than the lower limit threshold value in step 102B, it is determined that the electric running is impossible and the mode is shifted to the running power generation mode (step 104). After the transition to the traveling power generation mode in step 104, the process returns to step 102A and the same control as described above is performed.

次に、図5に本実施の形態のハイブリッド車1の走行時におけるエンジン運転モード、充電状況、排気ガス温度および車両速度を時系列で示す。なお、車両速度の時系列において同じ運転モードには同じハッチングを付した。また、時刻t0〜t1,t4〜t5,t10〜t11,t16〜t17はアイドル停止期間を示し、時刻t1〜t2はアイドル期間を示している。また、排気ガス温度の時系列において実線は本実施の形態の車両の制御を適用した場合の実際の排気ガス温度を示し、破線は本実施の形態の車両の制御を適用していない場合の排気ガス温度を示している。   Next, FIG. 5 shows the engine operation mode, the charging state, the exhaust gas temperature, and the vehicle speed during travel of the hybrid vehicle 1 of the present embodiment in time series. In addition, the same hatching was attached | subjected to the same operation mode in the time series of vehicle speed. Times t0 to t1, t4 to t5, t10 to t11, and t16 to t17 indicate idle stop periods, and times t1 to t2 indicate idle periods. In the time series of exhaust gas temperature, the solid line indicates the actual exhaust gas temperature when the vehicle control of the present embodiment is applied, and the broken line indicates the exhaust when the vehicle control of the present embodiment is not applied. The gas temperature is shown.

時刻t2〜t3に示すように、ハイブリッド車1の計算上の排気ガス温度がNOx浄化触媒の活性化温度より低くなるような状況において、バッテリ4の充電状態が上限しきい値以下の状態において走行を開始する場合には、走行発電を行うことにより、バッテリ4の充電値を上昇させると共に、実際の排気ガス温度を上昇させる。 As shown at times t2 to t3, in a situation where the calculated exhaust gas temperature of the hybrid vehicle 1 is lower than the activation temperature of the NOx purification catalyst, the vehicle 4 travels in a state where the state of charge of the battery 4 is equal to or lower than the upper threshold value. Is started, running power generation is performed to increase the charge value of the battery 4 and increase the actual exhaust gas temperature.

また、時刻t5〜t6に示すように、低負荷領域(時刻t5の直前の段階で計算上の排気ガス温度が触媒活性温度より低い状態)であっても、時刻t5の直前の段階で一旦バッテリ4の充電値が上限しきい値を超えているので、エンジン2を停止して、バッテリ4から給電して電動発電機3による電動走行を行う。   Further, as shown at times t5 to t6, even in a low load region (a state in which the calculated exhaust gas temperature is lower than the catalyst activation temperature at the stage immediately before time t5), the battery is temporarily stopped at the stage immediately before time t5. Since the charge value of 4 exceeds the upper limit threshold value, the engine 2 is stopped, electric power is supplied from the battery 4, and the motor generator 3 is electrically driven.

次いで、時刻t6〜t7に示すように、計算上の排気ガス温度が触媒活性化温度よりも高い運転状態では、エンジン2による通常走行を行う。続いて、時刻t7〜t8に示すように、計算上の排気ガス温度が触媒活性化温度よりも低くなった時刻t7の段階で、バッテリ4の充電値が下限しきい値よりも高いので電動走行を行う(この場合は電動走行時の充電状況の監視ロジックが適用される)。 Next, as shown at times t6 to t7, in the operating state where the calculated exhaust gas temperature is higher than the catalyst activation temperature, normal running by the engine 2 is performed. Subsequently, as shown at time t7 to t8, the exhaust gas temperature on the calculated phase time t7 which is lower than the catalyst activation temperature, the charging value of the battery 4 is higher than the lower threshold electric travel (In this case, the monitoring logic of the charging state during electric driving is applied).

続いて、時刻t8〜t9に示すように、電動走行中にバッテリ4の充電値が下限しきい値に到達した場合(時刻t8)は、電動走行モードから走行発電モードに移行することにより、バッテリ4の充電値と実際の排気ガス温度とを上昇させる。   Subsequently, as shown at times t8 to t9, when the charge value of the battery 4 reaches the lower limit threshold during electric travel (time t8), the battery is shifted from the electric travel mode to the travel power generation mode. 4 and the actual exhaust gas temperature are increased.

時刻t11〜t12は、上記時刻t2〜t3と同じである。続いて、時刻t12〜t13に示すように、走行発電によりバッテリ4の充電値が再び上限しきい値に達すると、低負荷領域での電動走行を開始する。時刻t13〜t14は、上記時刻t6〜t7と同じである。時刻t14〜t15は、上記時刻t7〜t8と同じである。   Times t11 to t12 are the same as the times t2 to t3. Subsequently, as shown at times t12 to t13, when the charged value of the battery 4 reaches the upper limit threshold again by running power generation, electric running in the low load region is started. Times t13 to t14 are the same as the above times t6 to t7. Time t14 to t15 is the same as time t7 to t8.

このように本実施の形態のハイブリッド車1においては、エンジン2による走行時においては、排気ガス温度を浄化触媒の活性温度より高温に保って効率良く排気ガスを浄化することができる。また、エンジン2を運転すると排気ガス温度が低くなる場合は、バッテリ4の充電状態に応じて、走行発電と電動走行とで使い分けることにより、排気ガス温度が低く、エンジン効率の悪い状態におけるエンジン2の運転を避けることができる。したがって、排気ガスの効率の良い浄化と燃費の向上とを両立することができる。   Thus, in the hybrid vehicle 1 according to the present embodiment, when the engine 2 is running, the exhaust gas can be efficiently purified by keeping the exhaust gas temperature higher than the activation temperature of the purification catalyst. In addition, when the exhaust gas temperature becomes low when the engine 2 is operated, the engine 2 in a state where the exhaust gas temperature is low and the engine efficiency is low by properly using driving power generation and electric driving according to the state of charge of the battery 4. Can avoid driving. Therefore, both efficient purification of exhaust gas and improvement of fuel consumption can be achieved.

本発明の車両およびその制御方法は、動力源として内燃機関と電動発電機とを備え、内燃機関の運転により生じる排気ガスを触媒作用により浄化する排気ガス浄化装置を備えるとともに、前記電動発電機の電力を充電可能な蓄電装置を備える車両において、排気ガスの効率の良い浄化と燃費の向上とを両立することができるので、自動車等の車両およびその制御方法に利用できる。   A vehicle and a control method thereof according to the present invention include an internal combustion engine and a motor generator as power sources, and include an exhaust gas purification device that purifies exhaust gas generated by the operation of the internal combustion engine by a catalytic action. In a vehicle including a power storage device capable of charging electric power, it is possible to achieve both efficient purification of exhaust gas and improvement of fuel consumption, and therefore, it can be used for a vehicle such as an automobile and a control method thereof.

1 ディーゼルハイブリッド車(車両)
2 ディーゼルエンジン(内燃機関)
3 電動発電機
4 バッテリ(蓄電装置)
14 電子制御装置(制御部)
15 排気管
16 排気ガス浄化装置
1 Diesel hybrid vehicle (vehicle)
2 Diesel engine (internal combustion engine)
3 Motor generator 4 Battery (power storage device)
14 Electronic control unit (control unit)
15 Exhaust pipe 16 Exhaust gas purification device

Claims (4)

動力源として内燃機関と電動発電機とを備え、前記内燃機関の運転により生じる排気ガスを触媒作用により浄化する排気ガス浄化装置を備えるとともに、前記電動発電機の電力を充電可能な蓄電装置を備える車両において、
電動走行モード、走行発電モードを行わずに、前記内燃機関を運転する場合の計算上の排気ガス温度を排気ガス温度算出用の計算式により算出し、
前記計算上の排気ガスの温度が前記排気ガス浄化装置の触媒の活性温度に関連して予め設定された設定温度よりも高い場合には、通常走行モードで前記内燃機関による走行を行い、
前記計算上の排気ガスの温度が、前記設定温度より低い場合には、前記蓄電装置の充電状態を監視して、
前記充電状態が予め設定された第1設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動走行モードで前記電動発電機による走行を行い、
前記第1設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記走行発電モードで前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する制御を行う制御部を有する車両。
Provided with an internal combustion engine and a motor generator as a power source, an exhaust gas purification device that purifies exhaust gas generated by the operation of the internal combustion engine by catalytic action, and a power storage device that can charge the electric power of the motor generator In the vehicle,
Calculate the exhaust gas temperature in calculation when operating the internal combustion engine without performing the electric travel mode and the travel power generation mode by a calculation formula for exhaust gas temperature calculation,
When the calculated exhaust gas temperature is higher than a preset temperature related to the activation temperature of the catalyst of the exhaust gas purifying device, traveling by the internal combustion engine in a normal traveling mode ,
If the calculated exhaust gas temperature is lower than the set temperature, monitor the state of charge of the power storage device,
When it is determined that the charging state is a charging state in which driving by the motor generator is possible with reference to a preset first set charging value, the driving by the motor generator is performed in the electric driving mode ,
If it is determined that the motor generator is in a charging state that cannot be traveled on the basis of the first set charge value, power is generated while operating the internal combustion engine in the travel power generation mode, and the power storage device is A vehicle having a control unit that controls charging .
前記制御部は、前記電動発電機による走行中において、前記蓄電装置の充電状態を監視し、
前記充電状態が、前記第1設定充電値よりも低い値で予め設定された第2設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動発電機による走行を続け、
前記第2設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する制御を行う請求項1記載の車両。
The controller monitors the state of charge of the power storage device during traveling by the motor generator,
When it is determined that the state of charge is a state of charge that can be traveled by the motor generator based on a second set charge value that is preset at a value lower than the first set charge value, the electric motor Continue running with the generator,
If it is determined that the motor generator is in a state of charge that cannot be traveled on the basis of the second set charge value, control is performed to generate power while operating the internal combustion engine and charge the power storage device. The vehicle according to claim 1.
動力源として内燃機関と電動発電機とを備え、前記内燃機関の運転により生じる排気ガスを触媒作用により浄化する排気ガス浄化装置を備えるとともに、前記電動発電機の電力を充電可能な蓄電装置を備える車両の制御方法において、
電動走行モード、走行発電モードを行わずに、前記内燃機関を運転する場合の計算上の排気ガス温度を排気ガス温度算出用の計算式により算出し、
前記計算上の排気ガスの温度が前記排気ガス浄化装置の触媒の活性温度に関連して予め設定された設定温度よりも高い場合には、通常走行モードで前記内燃機関による走行を行い、
前記計算上の排気ガスの温度が、前記設定温度より低い場合には、前記蓄電装置の充電状態を監視して、
前記充電状態が予め設定された第1設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動走行モードで前記電動発電機による走行を行い、
前記第1設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記走行発電モードで前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する車両の制御方法。
Provided with an internal combustion engine and a motor generator as a power source, an exhaust gas purification device that purifies exhaust gas generated by the operation of the internal combustion engine by catalytic action, and a power storage device that can charge the electric power of the motor generator In a vehicle control method,
Calculate the exhaust gas temperature in calculation when operating the internal combustion engine without performing the electric travel mode and the travel power generation mode by a calculation formula for exhaust gas temperature calculation,
When the calculated exhaust gas temperature is higher than a preset temperature related to the activation temperature of the catalyst of the exhaust gas purifying device, traveling by the internal combustion engine in a normal traveling mode ,
If the calculated exhaust gas temperature is lower than the set temperature, monitor the state of charge of the power storage device,
When it is determined that the charging state is a charging state in which driving by the motor generator is possible with reference to a preset first set charging value, the driving by the motor generator is performed in the electric driving mode ,
If it is determined that the motor generator is in a charging state that cannot be traveled on the basis of the first set charge value, power is generated while operating the internal combustion engine in the travel power generation mode, and the power storage device is A control method for a vehicle to be charged .
前記電動発電機による走行中において、前記蓄電装置の充電状態を監視し、
前記充電状態が、前記第1設定充電値よりも低い値で予め設定された第2設定充電値を基準として前記電動発電機による走行が可能な充電状態であると判断された場合は、前記電動発電機による走行を続け、
前記第2設定充電値を基準として前記電動発電機による走行が不可能な充電状態であると判断された場合は、前記内燃機関を運転しつつ発電をして前記蓄電装置に充電する請求項3記載の車両の制御方法。
During traveling by the motor generator, monitoring the state of charge of the power storage device,
When it is determined that the state of charge is a state of charge that can be traveled by the motor generator based on a second set charge value that is preset at a value lower than the first set charge value, the electric motor Continue running with the generator,
The power storage device is configured to generate electric power while operating the internal combustion engine and charge the power storage device when it is determined that the electric power generation is impossible with the motor generator based on the second set charge value. The vehicle control method described.
JP2010060951A 2010-03-17 2010-03-17 Vehicle and control method thereof Expired - Fee Related JP5617286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060951A JP5617286B2 (en) 2010-03-17 2010-03-17 Vehicle and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060951A JP5617286B2 (en) 2010-03-17 2010-03-17 Vehicle and control method thereof

Publications (2)

Publication Number Publication Date
JP2011194926A JP2011194926A (en) 2011-10-06
JP5617286B2 true JP5617286B2 (en) 2014-11-05

Family

ID=44873670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060951A Expired - Fee Related JP5617286B2 (en) 2010-03-17 2010-03-17 Vehicle and control method thereof

Country Status (1)

Country Link
JP (1) JP5617286B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244657B2 (en) * 2013-05-21 2017-12-13 いすゞ自動車株式会社 Hybrid electric vehicle
DE102017217284A1 (en) * 2017-09-28 2019-03-28 Robert Bosch Gmbh Method for operating a drive train of a motor vehicle with an internal combustion engine and another machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047621B2 (en) * 1992-05-25 2000-05-29 トヨタ自動車株式会社 Control device for engine-driven generator of hybrid vehicle
JP3780550B2 (en) * 1995-12-08 2006-05-31 アイシン・エィ・ダブリュ株式会社 Control device for vehicle drive device
JP3454121B2 (en) * 1997-11-01 2003-10-06 いすゞ自動車株式会社 Hybrid electric vehicle with PTO
JP2000289476A (en) * 1999-04-13 2000-10-17 Isuzu Motors Ltd Hybrid vehicle
JP2001164959A (en) * 1999-12-10 2001-06-19 Mitsubishi Motors Corp Engine control device for hybrid car having exhaust emission control device
JP2004092428A (en) * 2002-08-29 2004-03-25 Fuji Heavy Ind Ltd Control device for hybrid vehicle
JP3807399B2 (en) * 2003-10-28 2006-08-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4099160B2 (en) * 2004-04-13 2008-06-11 トヨタ自動車株式会社 Motor torque control method for hybrid vehicle
JP4967737B2 (en) * 2007-03-22 2012-07-04 トヨタ自動車株式会社 Control device for internal combustion engine
JP2009154702A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Hybrid vehicle, and control method and driving device therefor

Also Published As

Publication number Publication date
JP2011194926A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
US8452474B2 (en) Control device for hybrid vehicle and control method therefor
CN105102290B (en) Hybrid vehicle and control method therefor
JP6939605B2 (en) Hybrid vehicle control device
WO2009139283A1 (en) Device and method for controlling vehicle
US20130035845A1 (en) Control apparatus for vehicle
CN104471201B (en) The control method of vehicle and vehicle
JP2009115050A (en) Exhaust emission control device for hybrid electric vehicle
KR20170025877A (en) System and method for controlling hybrid vehicle
WO2012053603A1 (en) Regeneration control device, hybrid vehicle, regeneration control method, and program
JP2015077897A (en) Hybrid vehicle and control method therefor
JP6149510B2 (en) Hybrid vehicle and control method thereof
JP2008094238A (en) Controller for hybrid car
JP6191237B2 (en) Hybrid electric vehicle and control method thereof
JP5617286B2 (en) Vehicle and control method thereof
KR20180067429A (en) Control device for hybrid vehicle
JP7103171B2 (en) Hybrid car
JP6115307B2 (en) Hybrid electric vehicle and control method thereof
WO2020080063A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
KR20170011367A (en) System and method for controlling hybrid vehicle
JP5200801B2 (en) Control device for hybrid vehicle
JP6593129B2 (en) Hybrid vehicle and control method thereof
JP2014213715A (en) Vehicle control device and hybrid vehicle with the same, and vehicle control method
JP7355259B1 (en) Electronic equipment, vehicles and programs
WO2020085003A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
US20240001907A1 (en) Controller for hybrid electric vehicle and method for controlling hybrid electric vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees